
1183

[Journal of Political Economy, 2003, vol. 111, no. 6]
� 2003 by The University of Chicago. All rights reserved. 0022-3808/2003/11106-0007$10.00

Overconfidence and Speculative Bubbles

José A. Scheinkman and Wei Xiong
Princeton University

Motivated by the behavior of asset prices, trading volume, and price
volatility during episodes of asset price bubbles, we present a contin-
uous-time equilibrium model in which overconfidence generates dis-
agreements among agents regarding asset fundamentals. With short-
sale constraints, an asset buyer acquires an option to sell the asset to
other agents when those agents have more optimistic beliefs. As in a
paper by Harrison and Kreps, agents pay prices that exceed their own
valuation of future dividends because they believe that in the future
they will find a buyer willing to pay even more. This causes a significant
bubble component in asset prices even when small differences of
beliefs are sufficient to generate a trade. In equilibrium, bubbles are
accompanied by large trading volume and high price volatility. Our
analysis shows that while Tobin’s tax can substantially reduce specu-
lative trading when transaction costs are small, it has only a limited
impact on the size of the bubble or on price volatility.

I. Introduction

The behavior of market prices and trading volumes of assets during
historical episodes of price bubbles presents a challenge to asset pricing
theories. A common feature of these episodes, including the recent
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Internet stock boom, is the coexistence of high prices and high trading
volume.1 In addition, high price volatility is frequently observed.2

In this paper, we propose a model of asset trading, based on hetero-
geneous beliefs generated by agents’ overconfidence, with equilibria
that broadly fit these observations. We also provide explicit links between
parameter values in the model, such as trading cost and information,
and the behavior of equilibrium prices and trading volume. More gen-
erally, our model provides a flexible framework to study speculative
trading that can be used to analyze links between asset prices, trading
volume, and price volatility.

In the model, the ownership of a share of stock provides an oppor-
tunity (option) to profit from other investors’ overvaluation. For this
option to have value, it is necessary that some restrictions apply to short
selling. In reality, these restrictions arise from many distinct sources.
First, in many markets, short selling requires borrowing a security, and
this mechanism is costly.3 In particular, the default risk if the asset price
goes up is priced by lenders of the security. Second, the risk associated
with short selling may deter risk-averse investors. Third, limitations to
the availability of capital to potential arbitrageurs may also limit short
selling.4 For technical reasons, we do not deal with short-sale costs or
risk aversion. Instead we rule out short sales, although our qualitative
results would survive the presence of costly short sales as long as the
asset owners can expect to make a profit when others have higher
valuations.

Our model follows the basic insight of Harrison and Kreps (1978)
that when agents agree to disagree and short selling is not possible,
asset prices may exceed their fundamental value. In their model, agents
disagree about the probability distributions of dividend streams—the
reason for the disagreement is not made explicit. We study overconfi-

1 See Lamont and Thaler (2003) and Ofek and Richardson (2003) for the Internet
boom. Cochrane (2002) emphasizes the significant correlation between high prices and
high turnover rates as a key characteristic of the 1929 boom and crash and of the Internet
episode. Ofek and Richardson (2003) point out that between early 1998 and February
2000, pure Internet firms represented as much as 20 percent of the dollar volume in the
public equity market, even though their market capitalization never exceeded 6 percent.

2 Cochrane (2002, p. 6) commented on the much-discussed Palm case: “Palm stock was
also tremendously volatile during this period, with … 15.4% standard deviation of 5 day
returns, [which] is about the same as the volatility of the S&P500 index over an entire
year.”

3 Duffie, Garleanu, and Pedersen (2002) provide a search model to analyze the actual
short-sale process and its implication for asset prices. D’Avolio (2002), Geczy, Musto, and
Reed (2002), and Jones and Lamont (2002) contain empirical analyses of the relevance
of short-sale costs.

4 Shleifer and Vishny (1997) argue that agency problems limit the capital available to
arbitrageurs and may cause arbitrage to fail. See also Kyle and Xiong (2001), Xiong (2001),
and Gromb and Vayanos (2002) for studies linking the dynamics of arbitrageurs’ capital
with asset price dynamics.
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dence, the belief of an agent that his information is more accurate than
it is, as a source of disagreement. Although overconfidence is only one
of the many ways by which disagreement among investors may arise,5 it
is suggested by some experimental studies of human behavior and gen-
erates a mathematical framework that is relatively simple. Our model
has an explicit solution, which allows us to derive several comparative
statics results and restrictions on the dynamics of observables. The model
may also be regarded as a fully worked out example of the Harrison-
Kreps framework in continuous time, where computations and com-
parison of solutions are particularly tractable.

We study a market for a single risky asset with limited supply and
many risk-neutral agents in a continuous-time model with an infinite
horizon. The current dividend of the asset is a noisy observation of a
fundamental variable that will determine future dividends. In addition
to the dividends, there are two other sets of signals available at each
instant. The information is available to all agents; however, agents are
divided into two groups, and they differ in the interpretation of the
signals. Each group overestimates the informativeness of a different
signal and, as a consequence, has distinct forecasts of future dividends.6

Agents in our model know that their forecasts differ from the forecasts
of agents in the other group, but behavioral limitations lead them to
agree to disagree. As information flows, the forecasts by agents of the
two groups oscillate, and the group of agents that is at one instant
relatively more optimistic may become at a future date less optimistic
than the agents in the other group. These fluctuations in relative beliefs
generate trade.

When evaluating an asset, agents consider their own view of funda-
mentals and the fact that the owner of the asset has an option to sell
the asset in the future to agents in the other group. This option can
be exercised at any time by the current owner, and the new owner gets,
in turn, another option to sell the asset. These characteristics make the
option “American” and give it a recursive structure. The value of the
option is the value function of an optimal stopping problem. Since the
buyer’s willingness to pay is a function of the value of the option that
he acquires, the payoff from stopping is, in turn, related to the value
of the option. This gives us a fixed-point problem that the option value
must satisfy. This difference between the current owner’s demand price
and his fundamental valuation, which is exactly the resale option value,

5 For example, Morris (1996) assumes noncommon priors, and Biais and Bossaerts
(1998) examine the role of higher-order beliefs.

6 “We all have the same information, and we’re just making different conclusions about
what the future will hold” (Henry Blodget, the former star analyst at Merrill Lynch, quoted
in Lewis [2002]).
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can be reasonably called a bubble.7 Fluctuations in the value of the
bubble contribute an extra component to price volatility. We emphasize
that the bubble in our model is a consequence of the divergence of
opinions generated by the overestimation of informativeness of the dis-
tinct signals. On average, our agents are neither optimists nor pessimists.

In equilibrium, an asset owner will sell the asset to agents in the other
group whenever his view of the fundamental is surpassed by the view
of agents in the other group by a critical amount. Passages through this
critical point determine turnover. When there are no trading costs, we
show that the critical point is zero: it is optimal to sell the asset im-
mediately after the valuation of fundamentals is “crossed” by the valu-
ation of agents in the other group. Our agents’ beliefs satisfy simple
stochastic differential equations, and it is a consequence of properties
of Brownian motion that once the beliefs of agents cross, they will cross
infinitely many times in any finite period of time right afterward. This
results in a trading frenzy, in which the unconditional average volume
in any time interval is infinite. Since the equilibria display continuity
with respect to the trading cost c, our model with small trading costs is
able to capture the excessive trading observed in bubbles.

When trading costs are small, the value of the bubble and the extra
volatility component are maximized. We show that increases in some
parameter values, such as the degree of overconfidence or the infor-
mation content of the signals, increase these three key variables. In this
way, our model provides an explanation for the cross-sectional corre-
lation between price, volume, and volatility that has been observed in
bubbles. However, to obtain more realistic time-series dynamics, it may
be necessary to allow the parameter values to change over time. In
Section VIIE, we discuss how to accommodate fluctuations in parameter
values, though we do not provide a theory that explains these
oscillations.

In the model, increases in trading costs reduce the trading frequency,
asset price volatility, and the option value. For small trading costs, the
effect on trading frequency is very significant. The impact on price
volatility and on the size of the bubble is much more modest. As the
trading cost increases, the increase in the critical point also raises the
profit of the asset owner from each trade, thus partially offsetting the
decrease in the value of the resale option caused by the reduction in
trading frequency. Our analysis suggests that a transaction tax, as pro-
posed by Tobin (1978), would, in fact, substantially reduce the amount
of speculative trading in markets with small transaction costs but would

7 An alternative would be to measure the bubble as the difference between the asset
price and the fundamental valuation of the dividends by an agent that correctly weights
the signals. We opted for our definition because it highlights the difference between beliefs
about fundamentals and trading price.
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have a limited effect on the size of the bubble or on price volatility.
Since a Tobin tax will no doubt also deter trading generated by fun-
damental causes that are absent from our model, the limited impact of
the tax on the size of the bubble and on price volatility cannot serve
as an endorsement of the Tobin tax. The limited effect of transaction
costs on the size of the bubble is also compatible with the observation
of Shiller (2000) that bubbles have occurred in the real estate market,
where transaction costs are high.8

The existence of the option component in the asset price creates
potential violations to the law of one price. Through a simple example,
we illustrate that the bubble may cause the price of a subsidiary to be
larger than that of its parent firm. The intuition behind the example
is that if a firm has two subsidiaries with fundamentals that are perfectly
negatively correlated, there will be no differences in opinion, and hence
no option component on the value of the parent firm, but possibly
strong differences of opinion about the value of a subsidiary. In this
example, our model also predicts that trading volume on the subsidiaries
would be much larger than on the parent firm. This nonlinearity of the
option value may help explain the “mispricing” of carve-outs that oc-
curred in the late 1990s such as the 3Com-Palm case.

The paper is structured as follows. In Section II, we present a brief
literature review. Section III describes the structure of the model. Sec-
tion IV derives the evolution of agents’ beliefs. In Section V, we discuss
the optimal stopping time problem and derive the equation for equi-
librium option values. In Section VI, we solve for the equilibrium. Sec-
tion VII discusses several properties of the equilibrium when trading
costs are small. In Section VIII, we focus on the effect of trading costs.
In Section IX, we construct an example in which the price of a subsidiary
is larger than that of its parent firm. Section X concludes the paper
with some discussion of implications for corporate finance. All proofs
are in the Appendix.

II. Related Literature

There is a large literature on the effects of heterogeneous beliefs. In a
static framework, Miller (1977) and Chen, Hong, and Stein (2002) an-
alyze the overvaluation generated by heterogeneous beliefs. This static
framework cannot generate an option value or the dynamics of trading.

8 In contrast, Federal Reserve Chairman Alan Greenspan seems to believe that the low
turnover induced by the high costs of transactions in the housing market are an imped-
iment to real estate bubbles: “While stock market turnover is more than 100 per cent
annually, the turnover of home ownership is less than 10 per cent annually—scarcely
tinder for speculative conflagration” (quoted in Financial Times [April 22, 2002]). The
results in this paper suggest otherwise.
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Harris and Raviv (1993), Kandel and Pearson (1995), and Kyle and Lin
(2002) study models in which trading is generated by heterogeneous
beliefs. However, in all these models there is no speculative component
in prices.

Psychology studies suggest that people overestimate the precision of
their knowledge in some circumstances, especially for challenging judg-
ment tasks (see Alpert and Raiffa 1982; Lichtenstein, Fischhoff, and
Phillips 1982). Camerer (1995) argues that even experts can display
overconfidence. A similar phenomenon is illusion of knowledge, the fact
that persons who do not agree become more polarized when given
arguments that serve both sides (Lord, Ross, and Lepper 1979) (see
Barber and Odean [2001] and Hirshleifer [2001] for reviews of this
literature). In finance, researchers have developed theoretical models
to analyze the implications of overconfidence on financial markets (see,
e.g., Kyle and Wang 1997; Daniel, Hirshleifer, and Subrahmanyam 1998;
Odean 1998; Bernardo and Welch 2001). In these papers, overconfi-
dence is typically modeled as an overestimation of the precision of one’s
information. We follow a similar approach but emphasize the speculative
motive generated by overconfidence.

The bubble in our model, based on the recursive expectations of
traders to take advantage of mistakes by others, is quite different from
“rational bubbles” (see Blanchard and Watson 1982; Santos and Wood-
ford 1997). In contrast to our setup, rational bubble models are inca-
pable of connecting bubbles with turnover. In addition, in these models,
assets must have (potentially) infinite maturity to generate bubbles. Al-
though, for mathematical simplicity, we treat the infinite horizon case,
the bubble in our model does not require infinite maturity. If an asset
has a finite maturity, the bubble will tend to diminish as maturity ap-
proaches, but it would nonetheless exist in equilibrium.

Other mechanisms have been proposed to generate asset price bub-
bles (e.g., Allen and Gorton 1993; Allen, Morris, and Postlewaite 1993;
Horst 2001; Duffie et al. 2002). None of these models emphasize the
joint properties of bubble and trading volume observed in historical
episodes.

III. The Model

There exists a single risky asset with a dividend process that is the sum
of two components. The first component is a fundamental variable that
determines future dividends. The second is “noise.” The cumulative
dividend process satisfiesDt

DdD p f dt � j dZ , (1)t t D t

where is a standard Brownian motion and is a constant volatilityDZ jD
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parameter. The fundamental variable f is not observable. However, it
satisfies

f¯df p �l( f � f )dt � j dZ , (2)t t f t

where is the mean reversion parameter, is the long-run mean of¯l ≥ 0 f
f, is a constant volatility parameter, and is a standard Brownianfj 1 0 Zf

motion. The asset is in finite supply, and we normalize the total supply
to unity.

There are two sets of risk-neutral agents. The assumption of risk neu-
trality not only simplifies many calculations but also serves to highlight
the role of information in the model. Since our agents are risk-neutral,
the dividend noise in equation (1) has no direct impact in the valuation
of the asset. However, the presence of dividend noise makes it impossible
to infer f perfectly from observations of the cumulative dividend process.
Agents use the observations of D and any other signals that are correlated
with f to infer current f and to value the asset. In addition to the cu-
mulative dividend process, all agents observe a vector of signals andAs

that satisfyBs

A Ads p f dt � jdZ (3)t t s t

and

B Bds p f dt � jdZ , (4)t t s t

where and are standard Brownian motions, and is the com-A BZ Z j 1 0s

mon volatility of the signals. We assume that all four processes , ,D fZ Z
, and are mutually independent.A BZ Z
Agents in group A (B) think of ( ) as their own signal, althoughA Bs s

they can also observe ( ). Heterogeneous beliefs arise because eachB As s
agent believes that the informativeness of his own signal is larger than
its true informativeness. Agents of group A (B) believe that innovations

( ) in the signal ( ) are correlated with the innovationsA B A B fdZ dZ s s dZ
in the fundamental process, with f ( ) as the correlation pa-0 ! f ! 1
rameter. Specifically, agents in group A believe that the process for As
is

A f A2�ds p f dt � jfdZ � j 1 � f dZ .t t s t s t

Although agents in group A perceive the correct unconditional volatility
of the signal , the correlation that they attribute to innovations causesAs
them to overreact to signal . Similarly, agents in group B believe thatAs
the process for isBs

B f B2�ds p f dt � jfdZ � j 1 � f dZ .t t s t s t

On the other hand, agents in group A (B) believe (correctly) that in-
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novations to ( ) are uncorrelated with innovations to ( ). WeB A B As s Z Z
assume that the joint dynamics of the processes D, f, , and in theA Bs s
mind of agents of each group are public information.

Lemma 1 below shows that a larger f increases the precision that
agents attribute to their own forecast of the current level of fundamen-
tals. For this reason, we shall refer to f as the overconfidence parameter.9

Each group is large, and there is no short selling of the risky asset.
To value future cash flows, we may assume either that every agent can
borrow and lend at the same rate of interest r or, equivalently, that
agents discount all future payoffs using rate r and that each group has
infinite total wealth. These assumptions will facilitate the calculation of
equilibrium prices.

IV. Evolution of Beliefs

The model described in the previous section implies a particularly sim-
ple structure for the evolution of the difference in beliefs between the
groups of traders. We show that this difference is a diffusion with vol-
atility proportional to f.

Since all variables are Gaussian, the filtering problem of the agents
is standard. With Gaussian initial conditions, the conditional beliefs of
agents in group are Gaussian with mean and varianceCˆC � {A, B} f

We shall characterize the stationary solution. Standard argumentsCg .
(e.g., Rogers and Williams 1987, sec. 6.9; Liptser and Shiryaev 1977,
theorem 12.7) allow us to compute the variance of the stationary so-
lution and the evolution of the conditional mean of beliefs. The variance
of this stationary solution is the same for both groups of agents and
equals

2 2 2 2 2 2�[l�(fj/j )] � (1 � f )[(2j /j ) � (j /j )] � [l � (fj/j )]f s f s f D f s
g { .2 2(1/j ) � (2/j )D s

The following lemma justifies associating the parameter f to “overcon-
fidence.”

Lemma 1. The stationary variance g decreases with f.

9 In an earlier draft, we assumed that agents overestimate the precision of their signal.
We thank Chris Rogers for suggesting that we examine this alternative framework. The
advantage of the present setup is that every agent attributes the same volatility to the
signals.
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In addition, the conditional mean of the beliefs of agents in group
A satisfies

fjj � gs fA A A Aˆ ˆ ˆ¯df p �l(f � f )dt � (ds � f dt)2js

g gB A Aˆ ˆ� (ds � f dt) � (dD � f dt). (5)2 2j js D

Since f mean-reverts, the conditional beliefs also mean-revert. The other
three terms represent the effects of “surprises.” These surprises can be
represented as standard mutually independent Brownian motions for
agents in group A:

1A A AˆdW p (ds � f dt), (6)A
js

1A B AˆdW p (ds � f dt), (7)B
js

and

1A AˆdW p (dD � f dt). (8)D
jD

Note that these processes are only Wiener processes in the mind of
group A agents. Because of overconfidence ( ), agents in group Af 1 0
overreact to surprises in .As

Similarly, the conditional mean of the beliefs of agents in group B
satisfies

gB B A Bˆ ˆ ˆ¯df p �l(f � f )dt � (ds � f dt)2js

fjj � g gs f B B Bˆ ˆ� (ds � f dt) � (dD � f dt), (9)2 2j js D
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and the surprise terms can be represented as mutually independent
Wiener processes:

1B A BˆdW p (ds � f dt),A
js

1B B BˆdW p (ds � f dt),B
js

1B BˆdW p (dD � f dt).D
jD

These processes are a standard three-dimensional Brownian motion only
for agents in group B.

Since the beliefs of all agents have constant variance, we shall refer
to the conditional mean of the beliefs as their beliefs. We let andAg

denote the differences in beliefs:Bg

A B A B A Bˆ ˆ ˆ ˆg p f � f , g p f � f .

The next proposition describes the evolution of these differences in
beliefs.

Proposition 1.

A A Adg p �rg dt � j dW ,g g

where

2j 2 1f� 2 2r p l � f � (1 � f )j � ,f( ) ( )2 2j j js s D

�j p 2fj ,g f

and is a standard Wiener process for agents in group A, with in-AWg

novations that are orthogonal to the innovations of .Af̂
Proposition 1 implies that the difference in beliefs follows a simpleAg

mean-reverting diffusion process in the mind of group A agents. In
particular, the volatility of the difference in beliefs is zero in the absence
of overconfidence. A larger f leads to greater volatility. In addition,

measures the pull toward the origin. A simple calculation shows2�r/2jg

that this mean reversion10 decreases with f. A higher f causes an increase
in fluctuations of opinions and a slower mean reversion.

In an analogous fashion, for agents in group B, satisfiesBg

B B Bdg p �rg dt � j dW ,g g

10 Conley et al. (1997) argue that this is the correct measure of mean reversion.
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where is a standard Wiener process, and it is independent of in-BWg

novations to .Bf̂

V. Trading

Fluctuations in the difference of beliefs across agents will induce trading.
It is natural to expect that investors that are more optimistic about the
prospects of future dividends will bid up the price of the asset and
eventually hold the total (finite) supply. We shall allow for costs of
trading: a seller pays per unit of the asset sold. This cost mayc ≥ 0
represent an actual cost of transaction or a tax.

At each t, agents in group are willing to pay for a unitCC � {A, B} pt

of the asset. The presence of the short-sale constraint, a finite supply
of the asset, and an infinite number of prospective buyers guarantee
that any successful bidder will pay his reservation price.11 The amount
that an agent is willing to pay reflects the agent’s fundamental valuation
and the fact that he may be able to sell his holdings for a profit at a
later date at the demand price of agents in the other group. If we let

denote the group of the current owner, be the other group,¯o � {A, B} o
and be the expectation of members of group o, conditional on theoEt

information they have at t, then

t�t

o o �r(s�t) �rt ōp p sup E e dD � e (p � c) , (10)t t � s t�t[ ]
t≥0 t

where t is a stopping time, and is the reservation value of the buyerōpt�t

at the time of transaction .t � t

Since , using the equations for the evolution of theo oˆdD p f dt � j dWt D D

conditional mean of beliefs (eqq. [5] and [9] above), we have that

t�t t�t

�r(s�t) �r(s�t) �l(s�t) oˆ¯ ¯e dD p e [f � e (f � f )]ds � M ,� s � t t�t

t t

where . Hence, we may rewrite equation (10) asoE M p 0t t�t

t�t

o o �r(s�t) �l(s�t) o �rt ōˆ¯ ¯p p max E e [f � e (f � f )]ds � e (p � c) . (11)t t � t t�t{ }
t≥0 t

We shall start by postulating a particular form for the equilibrium

11 This observation simplifies our calculations but is not crucial for what follows. We
could partially relax the short-sale constraints or the division of gains from trade, provided
that it is still true that the asset owner expects to make speculative profits from other
investors.
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price function, equation (12) below. Proceeding in a heuristic fashion,
we derive properties that our candidate equilibrium price function
should satisfy. We then construct a function that satisfies these properties
and verify that we have produced an equilibrium.12

Since all the relevant stochastic processes are Markovian and time-
homogeneous and traders are risk-neutral, it is natural to look for an
equilibrium in which the demand price of the current owner satisfies

oˆ¯ ¯f f � fto o o o oˆp p p (f , g ) p � � q(g ), (12)t t t tr r � l

with and . This equation states that prices are the sum of′q 1 0 q 1 0
two components. The first part, , is the expectedoˆ¯ ¯(f/r) � [(f � f )/(r � l)]t

present value of future dividends from the viewpoint of the current
owner. The second is the value of the resale option, , which dependsoq(g )t

on the current difference between the beliefs of the other group’s agents
and the beliefs of the current owner. We call the first quantity the owner’s
fundamental valuation and the second the value of the resale option.
Using (12) in equation (11) and collecting terms, we obtain

o oˆ¯ ¯f f � f gt t�to o o o o ō �rtˆp p p (f , g ) p � � sup E � q(g ) � c e .t t t t t�t{[ ] }r r � l r � lt≥0

Equivalently, the resale option value satisfies

ogt�to o ō �rtq(g ) p sup E � q(g ) � c e . (13)t t t�t{[ ] }r � lt≥0

Hence to show that an equilibrium of the form (12) exists, it is necessary
and sufficient to construct an option value function q that satisfies equa-
tion (13). This equation is similar to a Bellman equation. The current
asset owner chooses an optimal stopping time to exercise his resale
option. Upon the exercise of the option, the owner gets the “strike
price” , the amount of excess optimism that theo ō[g /(r � l)] � q(g )t�t t�t

buyer has about the asset’s fundamental value and the value of the resale
option to the buyer, minus the cost c. In contrast to the optimal exercise
problem of American options, the strike price in our problem depends
on the resale option value function itself.

It is apparent from the analysis in this section that one could, in
principle, treat an asset with a finite life. Equations (10) and (11) would

12 The argument that follows will also imply that our equilibrium is the only one within
a certain class. However, there are other equilibria. In fact, given any equilibrium price

and a process that is a martingale for both groups of agents, is alsoo o o rt˜p M p p p � e Mt t t t t

an equilibrium.
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apply with the obvious changes to account for the finite horizon. How-
ever, the option value q will now depend on the remaining life of the
asset, introducing another dimension to the optimal exercise problem.
The infinite horizon problem is stationary, greatly reducing the math-
ematical difficulty.

VI. Equilibrium

In this section, we derive the equilibrium option value, duration between
trades, and contribution of the option value to price volatility.

A. Resale Option Value

The value of the option should be at least as large as the gainsq(x)
realized from an immediate sale. The region in which the value of the
option equals that of an immediate sale is the stopping region. The
complement is the continuation region. In the mind of the risk-neutral
asset holder, the discounted value of the option should be a�rt oe q(g )t

martingale in the continuation region and a supermartingale in the
stopping region. Using Ito’s lemma and the evolution equation for ,og
we can state these conditions as

x
q(x) ≥ � q(�x) � c (14)

r � l

and

1 2 ′′ ′j q � rxq � rq ≤ 0, (15)g2

with equality if (14) holds strictly. In addition, the function q should be
continuously differentiable (smooth pasting). We shall derive a smooth
function q that satisfies equations (14) and (15) and then use these
properties and a growth condition on q to show that in fact the function
q solves (13).

To construct the function q, we guess that the continuation region
will be an interval , with The variable is the minimum∗ ∗ ∗(��, k ) k 1 0. k
amount of difference in opinions that generates a trade. As usual, we
begin by examining the second-order ordinary differential equation that
q must satisfy, albeit only in the continuation region:

1 2 ′′ ′j u � rxu � ru p 0. (16)g2

The following proposition helps us construct an “explicit” solution to
equation (16).
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Proposition 2. Let

h(x) p (17)

r 1 r 2U , , x if x ≤ 0( )22r 2 jg

2p r 1 r r 1 r2 2M , , x � U , , x if x 1 0,{ ( ) ( )2 21 1 2r 2 j 2r 2 jg gG( � (r/2r))G( )2 2

where is the gamma function, and and are3 3G(7) M : R r R U : R r R
two Kummer functions described in the Appendix. The function h(x)
is positive and increasing in In addition, h solves equation (16)(��, 0).
with

p
h(0) p .

1 1G( � (r/2r))G( )2 2

Any solution to equation (16) that is strictly positive and increasingu(x)
in must satisfy with(��, 0) u(x) p b h(x) b 1 0.1 1

We shall also need properties of the function h that are summarized
in the following lemma.

Lemma 2. For each , , , , ,′ ′′ ′′′x � R h(x) 1 0 h (x) 1 0 h (x) 1 0 h (x) 1 0
, and .′lim h(x) p 0 lim h (x) p 0xr�� xr��

Since q must be positive and increasing in , we know from∗(��, k )
proposition 2 that

∗b h(x) for x ! k1

q(x) p (18)
x ∗{ � b h(�x) � c for x ≥ k .1r � l

Since q is continuous and continuously differentiable at ,∗k
∗k∗ ∗b h(k ) � � b h(�k ) � c p 0,1 1r � l

1′ ∗ ′ ∗b h (k ) � b h (�k ) � p 0.1 1 r � l

These equations imply that

1
b p , (19)1 ′ ∗ ′ ∗[h (k ) � h (�k )](r � l)

and satisfies∗k
∗ ′ ∗ ′ ∗ ∗ ∗[k � c(r � l)][h (k ) � h (�k )] � h(k ) � h(�k ) p 0. (20)
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The next theorem shows that, for each c, there exists a unique pair
that solves equations (19) and (20). The smooth pasting con-∗(k , b )1

ditions are sufficient to determine the function q and the “trading point”
.∗k
Theorem 1. For each trading cost , there exists a unique that∗c ≥ 0 k

solves (20). If , then . If , .∗ ∗c p 0 k p 0 c 1 0 k 1 c(r � l)
The next theorem establishes that the function q described by equa-

tion (18), with and given by (19) and (20), solves (13). The proof∗b k1

consists of two parts. First, we show that (14) and (15) hold and that
is bounded. We then use a standard argument to show that in fact q′q

solves equation (13) (see, e.g., Kobila [1993] or Scheinkman and Zar-
iphopoulou [2001] for similar arguments).

Theorem 2. The function q constructed above is an equilibrium op-
tion value function. The optimal policy consists of exercising immedi-
ately if ; otherwise wait until the first time in which .o ∗ o ∗g 1 k g ≥ k

It is a consequence of theorem 2 that the process will have valuesog
in . The value acts as a barrier, and when reaches , a∗ ∗ o ∗(��, k ) k g k
trade occurs, the owner’s group switches, and the process is restarted
at . The function is the difference between the current owner’s∗ o�k q(g )
demand price and his fundamental valuation and can be legitimately
called a bubble. When a trade occurs, this difference is

∗1 h(�k )∗b { q(�k ) p . (21)′ ∗ ′ ∗r � l h (k ) � h (�k )

Using equation (21), we can write the value of the resale option as

b ∗h(x) for x ! k∗h(�k )
q(x) p (22)

x b ∗{ � h(�x) � c for x ≥ k .∗r � l h(�k )

B. Duration between Trades

We let , with , giveno �rt(x,k) ow(x, k, r) p E [e Fx] t(x, k) p inf {s : g 1 k}t�s

. The term is the discount factor applied to cashog p x ≤ k w(x, k, r)t

flows received the first time the difference in beliefs reaches the level
of k given that the current difference in beliefs is x. Standard arguments
(e.g., Karlin and Taylor 1981, p. 243) show that w is a nonnegative and
strictly monotone solution to

1 2j w � rxw p rw, w(k, k, r) p 1.g xx x2
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Therefore, proposition 2 implies that

h(x)
w(x, k, r) p . (23)

h(k)

Note that the free parameter does not affect w.b1

If , trading occurs the first time when given thato ∗c 1 0 t 1 s g p kt

. The expected duration between trades provides a useful mea-o ∗g p �ks

sure of trading frequency. Since w is the moment-generating function
of t,

∗ ∗�w(�k , k , r)∗ ∗E[t(�k , k )] p � .F�r rp0

When , the expected duration between trades is zero. This is ac p 0
consequence of Brownian local time, as we discuss below.

C. An Extra Volatility Component

The option component introduces an extra source of price volatility.
Proposition 1 states that the innovations in the asset owner’s beliefs of̂
and the innovations in the difference of beliefs are orthogonal. There-og
fore, the total price volatility is the sum of the volatility of the funda-
mental value in the asset owner’s mind, , and theoˆ¯ ¯(f/r) � [(f � f )/(r � l)]t

volatility of the option component.
Proposition 3. The volatility from the option value component is

� ′2fjf h (x) ∗h(x) p Gx ! k . (24)′ ∗ ′ ∗r � l h (k ) � h (�k )

Since , the volatility of the option value is monotone.′h 1 0
The variance of an agent’s valuation of the discounted dividends is

2 2 21 fjj � g g gs f � � p( ) ( ) ( )2 [ ](r � l) j j js s D

�1 2 22 1 2lfj 2j jf f f�2 2� (r � l) 2l � � �( )2 2 2 2{j j j j js D s s D

1/2
2 22lfj j jf f f2 2 2� 2l l � � (2 � f ) � (1 � f ) ,2 2[ ] }j j js s D

which increases with f if and equals if . Therefore,2 2l 1 0 j /(r � l) l p 0f

an increase in overconfidence increases the volatility of the agent’s val-
uation of discounted dividends. In the remainder of the paper, we ignore
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this effect, which vanishes when , to focus on the extra volatilityl p 0
component caused by the option value.

VII. Properties of Equilibria for Small Trading Costs

In this section, we discuss several of the characteristics of the equilibrium
for small trading costs, including the volume of trade and the magni-
tudes of the bubble and of the extra volatility component. We also
provide some comparative statics and show how parameter changes co-
move price, volatility, and turnover.

A. Trading Volume

It is a property of Brownian motion that if it hits the origin at t, it will
hit the origin at an infinite number of times in any nonempty interval

. In our limit case of , this implies an infinite amount of[t, t � Dt) c p 0
trade in any nonempty interval that contains a single trade. When the
cost of trade , in any time interval, turnover is either zero orc p 0
infinity, and the unconditional average volume in any time interval is
infinity.13 The expected time between trades depends continuously on
c, so it is possible to calibrate the model to obtain any average daily
volume. However, a serious calibration would require accounting for
other sources of trading, such as shocks to liquidity, and should match
several moments of volume, volatility, and prices.

B. Magnitude of the Bubble

When , a trade occurs each time traders’ fundamental beliefsc p 0
“cross.” Nonetheless, the bubble at this trading point is strictly positive
since

1 h(0)
b p .′2(r � l) h (0)

Owners do not expect to sell the asset at a price above their own val-
uation, but the option has a positive value. This result may seem coun-
terintuitive. To clarify it, it is worthwhile to examine the value of the
option when trades occur whenever the absolute value of the differences
in fundamental valuations equals an . An asset owner in group Ae 1 0
(B) expects to sell the asset when agents in group B (A) have a fun-
damental valuation that exceeds the fundamental valuation of agents

13 The unconditional probability that it is zero depends on the volatility and mean
reversion of the process of the difference of opinions and on the length of the interval.
As the length of the interval goes to infinity, the probability of no trade goes to zero.
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in group A (B) by e, that is, ( ). If we write for theA Ag p e g p �e b 0

value of the option for an agent in group A that buys the asset when
and for the value of the option for an agent of group B thatAg p �e b1

buys the asset when , thenAg p e

e h(�e)
b p � b ,0 1( )r � l h(e)

where is the discount factor from equation (23). Symmetryh(�e)/h(e)
requires that and henceb p b0 1

e h(�e)
b p .0 r � l h(e) � h(�e)

As ,e r 0

1 h(0)
b r p b.0 ′2(r � l) h (0)

In this illustration, as , trading occurs with higher frequency ande r 0
the waiting time goes to zero. In the limit, traders will trade infinitely
often and the small gains in each trade compound to a significant
bubble. This situation is similar to the cost from hedging an option
using a stop-loss strategy studied in Carr and Jarrow (1990).

It is intuitive that when becomes larger, there is more differencejg

of beliefs, resulting in a larger bubble. Also, when r becomes larger, for
a given level of difference in beliefs, the resale option is expected to
be exercised quicker, and therefore there is also a larger bubble. In fact
we can show that the following lemma is true.

Lemma 3. If c is small, b increases with and r and decreases with rjg

and v. For all , increases with and r and∗ ∗x ! k q(x) p b[h(x)/h(�k )] jg

decreases with r and v.
The proof of lemma 3 actually shows that whenever c is small, the

effect of a change in a parameter on the barrier is second-order.
Proposition 1 allows us to write and r using the parameters f, l,jg

, , and , where and measure the information inj i p j/j i p j/j i if s f s D f D s D

each of the two signals and the dividend flow, respectively. To simplify
calculations, we set . Thenl p 0

�j p 2fj ,g f

2 2 2 2�r p (2 � f )i � (1 � f )i .s D

Differentiating these equations, one can show the following: (1) As
increases, increases and r is unchanged. Therefore, b and , forj j q(x)f g

, increase. The bubble increases with the volatility of the funda-∗x ! k
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mental process. (2) As or increases, is unchanged and r increasesi i js D g

since . Therefore, b and , for , increase. The bubble∗0 ! f ! 1 q(x) x ! k
increases with the amount of information in the signals and the dividend
flow. (3) As f increases, increases and r decreases. Thus an increasejg

in f has offsetting effects on the size of the bubble. However, numerical
exercises indicate that the size of the bubble always increases with f.

C. Magnitude of the Extra Volatility Component

As the difference of opinions x approaches the trading point, the vol-
atility of the option value approaches

� ′ ∗2fjf h (k )
.′ ∗ ′ ∗r � l h (k ) � h (�k )

We have the following lemma.
Lemma 4. If c is small, decreases with the interest rate r and the∗h(k )

degree of mean reversion l and increases with the overconfidence pa-
rameter f and the fundamental volatility .jf

This lemma implies that an increase in the volatility of fundamentals
has an additional effect on price volatility at trading points, through an
increase in the volatility of the option component.

D. Price, Volatility, and Turnover

Our model provides a link between asset prices, price volatility, and
share turnover. Since these are endogenous variables, their relationship
will typically depend on which exogenous variable is shifted. In this
subsection, we illustrate this link using numerical examples with a small
trading cost.

Figure 1 shows the effect of changes in f on the equilibrium when
there is a small transaction cost on the trading barrier , expected∗k
duration between trades, the bubble at the trading point b, and the
volatility of the bubble at the trading point, . The expected duration∗h(k )
between trades is measured in years. The terms , , and b are∗ ∗k h(k )
measured in multiples of the fundamental volatility .14 Recallj/(r � l)f

that, as f increases, the volatility parameter in the difference of beliefsjg

increases, whereas the mean reversion parameter r decreases. As a result,
the resale option becomes more valuable to the asset owner, the bubble
and the extra volatility component become larger, and the optimal trad-
ing barrier becomes higher. The duration between trades is determined

14 Since the bubble is generated through an option value, it is natural to normalize it
by the volatility of the underlying fundamental value, i.e., the price volatility that would
prevail if fundamentals were observable.
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Fig. 1.—Effect of overconfidence level: a, trading barrier; b, duration between trades;
c, bubble; d, extra volatility component. Here, r p 5 percent, , , ,l p 0 v p 0.1 i p 2.0s

, and . The values of the bubble and the extra volatility component are�6i p 0 c p 10D

computed at the trading point. The trading barrier, the bubble, and the extra volatility
component are measured as multiples of , the fundamental volatility of the asset.j /(r � l)f

by two offsetting effects as f increases. On the one hand, the trading
barrier becomes higher, making the duration between trades longer.
On the other hand, the volatility of the difference in beliefs increases,jg

causing the duration to be shorter. As we stated, the proof of lemma 3
shows that, when c is small, the change in the trading barrier is second-∗k
order. Thus the duration between trades typically decreases, as illus-
trated in figure 1b.

Figure 2 shows the effect of changes in the volatility of the noise in
signals on the equilibrium, again with a small transaction cost. Wejs

measure the changes of in terms of the ratio . As increases,j i p j/j is s f s s

the mean reversion parameter r of the difference in beliefs increases,
and the volatility parameter is unchanged. Intuitively, the increase injg

r causes the trading barrier and the duration between trades to drop.
Nevertheless, the bubble at the trading point becomes larger because
of the increase in trading frequency. The extra volatility component h

is almost independent of since it is essentially determined by f andis

as shown in equation (24).jf
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Fig. 2.—Effect of information in signals: a, trading barrier; b, duration between trades;
c, bubble; d, extra volatility component. Here, r p 5 percent, , , ,l p 0 v p 0.1 f p 0.7

, and . The values of the bubble and the extra volatility component are�6i p 0 c p 10D

computed at the trading point. The trading barrier, the bubble, and the extra volatility
component are measured as multiples of , the fundamental volatility of the asset.j /(r � l)f

In both cases, there is a monotonically increasing relationship be-
tween the size of the bubble at the trading point and duration between
trades. In addition, the extra price volatility either increases or does not
decrease. We have also verified that this qualitative relationship holds
for many other parameter values. In our risk-neutral world, we may
consider several assets and analyze the equilibrium in each market in-
dependently. In this way our comparative statics properties can be trans-
lated into results about correlations among equilibrium variables in the
different markets. Thus our model is potentially capable of explaining
the observed cross-sectional correlation between log market/book and
log turnover for U.S. stocks in the period 1996–2000 as documented by
Cochrane (2002) and a similar cross-sectional correlation between the
price ratio of China’s A shares to B shares and turnover (see Mei,
Scheinkman, and Xiong 2003).
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E. Crashes and Fluctuations in Parameters

There are several ways in which we can imagine a change in equilibrium
that brings the bubble to zero. The fundamental of the asset may become
observable. The overconfident agents may correct their overconfidence.
The fundamental volatility of the asset may disappear. For concreteness,
imagine that agents in both groups believe that the asset fundamental
will become observable at a date determined by a Poisson process that
has a parameter v and is independent of the four Brownian motions
described earlier in the model. Once the fundamental becomes ob-
servable, agents in each group believe that the beliefs of agents in the
other group will collapse to their own. In this case, it is easy to see that
the option value

ogt�to o ō �(r�v)tq(g ) p sup E � q(g ) � c e .t t t�t{[ ] }r � lt≥0

Effectively, a higher discount rate is used for the profits fromr � v

exercising the option.
Cochrane (2002) shows that there was a (time-series) correlation be-

tween the New York Stock Exchange index and NYSE volume through
the 1929 boom and crash and between the NASDAQ index and
NASDAQ volume throughout the Internet bubble. To reproduce such
a correlation in a nontrivial manner, we would have to generalize our
model to account for parameter changes, in the same spirit as our
discussion of crashes. For concreteness, imagine that the overconfidence
parameter f or the informativeness of signals can assume a finiteis

number of values and that the value of the parameter follows a Markov
process with Poisson times that are independent of all the other relevant
uncertainty. The model will then produce results that are qualitatively
similar to the case in which these parameters are constant, except that
the average size of the bubble at any time will depend on the current
value of the parameter. In this way, we can admit fluctuations on the
size of the bubble and turnover rates, although a more interesting dis-
cussion should account for reasons for the parameter fluctuations.

VIII. Effect of Trading Costs

Using the results established in Section VIA, we can show that increasing
the trading cost c raises the trading barrier and reduces b, , and∗k q(x)

. In fact, we have the following proposition.h(x)
Proposition 4. If c increases, the optimal trading barrier increases.∗k

Furthermore, the bubble and the extra volatility componentq(x) h(x)
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Fig. 3.—Effect of trading costs: a, trading barrier; b, duration between trades; c, bubble;
d, extra volatility component. Here, r p 5 percent, , , , , andf p 0.7 l p 0 v p 0.1 i p 2.0s

. The values of the bubble and the extra volatility component are computed at thei p 0D

trading point. The trading barrier, the bubble, the extra volatility component, and trading
cost are measured as multiples of , the fundamental volatility of the asset.j /(r � l)f

decrease for all . As , , but the derivatives of b,∗ ∗x ! k (c) c r 0 dk /dc r �
, and are always finite.q(x) h(x)

In order to illustrate the effects of trading costs, we use the following
parameter values from our previous numerical exercise: r p 5 percent,

, , , , and . Figure 3 shows the effectf p 0.7 l p 0 v p 0.1 i p 2.0 i p 0s D

of trading costs on the trading barrier , expected duration between∗k
trades, the bubble at the trading point b, and the volatility of the bubble
at the trading point, .∗h(k )

Figure 3a shows the equilibrium trading barrier . For comparison,∗k
we also graph the amount , which corresponds to the differencec(r � l)
in beliefs that would justify trade if the option value was ignored. The
difference between these two quantities represents the “profits” that the
asset owner thinks he is obtaining when he exercises the option to sell.
When the trading cost is zero, the asset owner sells the asset immediately
when it is profitable, and these profits are infinitely small. As the trading
cost increases, the optimal trading barrier increases, and the rate of



1206 journal of political economy

increase near is dramatic since the derivative is infinite at∗c p 0 dk /dc
the origin. As a result, the trading frequency is greatly reduced by the
increasing trading cost as shown in figure 3b.

Figures 3c and 3d show that trading costs also reduce the bubble and
the extra volatility component, but, as guaranteed by proposition 4, at
a limited rate even near . Although one could expect that thec p 0
strong reduction in trading frequency should greatly reduce the bubble,
this effect is partially offset by the increase in profits in each trade.15

Similar intuition applies to the effect of the trading cost on the extra
volatility component.

To estimate the impact of an increase in trading costs, measured as
a proportion of price, as opposed to a multiple of fundamental volatility,
we must take a stand concerning the relationship between price and
volatility of fundamentals. For the parameter values used in our ex-
ample, figure 3c shows that the bubble at the trading point, for ,c ∼ 0
is close to four times the fundamental volatility parameter .j/(r � l)f

The drop in prices of Internet stocks from the late 1990s until today
exceeds 80 percent. If we take this variation as a measure of the size of
the bubble in the late 1990s, then the size of the fundamental volatility
also must have been approximately 20 percent of trading prices. In this
way, we can reinterpret the values in the figures as multiples of prices.
The numerical results indicate that in this case a tax of 1 percent of
prices would have caused a reduction of less than 20 percent to the
magnitudes of both the bubble and the extra volatility component.

The effectiveness of a trading tax in reducing speculative trading has
been hotly debated since Tobin’s (1978) initial proposal for a transaction
tax in foreign currency markets. Shiller (2000, pp. 225–28) provides an
overview of the current status of this debate. Our model implies that
for small trading costs, increases in trading costs have a much larger
impact in trading frequency than in excess volatility or the magnitude
of the price bubble. In reality, trading also occurs for other reasons,
such as liquidity shocks or changes in risk-bearing capacity, that are not
considered in our analysis; for this reason, the limited impact of trans-
action costs on volatility and price bubbles cannot serve as an endorse-
ment of a tax on trading. Our numerical exercise can also answer a
question raised by Shiller of why bubbles can exist in real estate markets,
where the transaction costs are typically high.

15 Vayanos (1998) makes a similar point in a different context when analyzing the effects
of transaction costs on asset prices in a life cycle model. He shows that an increase in
transaction costs can reduce the trading frequency but may even increase asset prices.
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IX. Can the Price of a Subsidiary Be Larger than That of Its
Parent Firm?

The existence of the option value component in asset prices can po-
tentially create violations to the law of one price and even make the
price of a subsidiary exceed that of a parent company. In this section,
we use a simple example to illustrate this phenomenon.

There are two firms, indexed by 1 and 2. For simplicity, we assume
that the dividend processes of both assets follow the process in equation
(1) with the same parameter , but with independent innovations andjD

with different fundamental variables and , respectively. The funda-f f1 2

mental variables and are unobservable, and both follow the mean-f f1 2

reverting process in equation (2) with the same parameters , ,̄l p 0 f
and .jf

There is a third firm, and the dividend flow of firm 3 is exactly the
sum of the dividend flows of firms 1 and 2. In this sense, firms 1 and
2 are both subsidiaries of firm 3. In addition, it is known to all partic-
ipants that , a constant. This implies that innovations to( f ) � ( f ) p f1 t 2 t 3

and are perfectly negatively correlated. In particular, the price off f1 2

a share of firm 3 is .f /r3

However, according to our analysis, a speculative component exists
in the prices of the shares of firms 1 and 2. Since forC Cf̂ � f p f1 2 3

, when agents in group A are holding firm 1, agents in groupC � {A, B}
B must be holding firm 2, and the option components in the prices of
these two firms are exactly the same.

The numerical exercise in Section VIID shows that the magnitude of
the option component can equal four or five times fundamental vola-
tility. If fundamental volatility is large relative to the discounted value
of fundamentals, the value of one of the subsidiaries will exceed the
value of firm 3, even though all prices are nonnegative.16 Although
highly stylized, this analysis may help clarify the episodes such as 3Com’s
equity carve-out of Palm and its subsequent spinoff.17 In early 2000, for
a period of over two months, the total market capitalization of 3Com
was significantly less than the market value of its holding in Palm, a
subsidiary of 3Com. Other examples of this kind are discussed in Schill
and Zhou (2001), Mitchell, Pulvino, and Stafford (2002), and Lamont
and Thaler (2003). Our model also predicts that trading in the subsid-
iary would be much higher than trading in the parent company because
of the higher fluctuation in beliefs about the value of the subsidiary. In
fact, Lamont and Thaler show that the turnover rate of the subsidiaries’

16 Duffie et al. (2002) provide another mechanism to explain this phenomenon based
on the lending fee that the asset owner can expect to collect.

17 The missing link is to demonstrate that the divergence of beliefs on the combined
entity was smaller than the divergence of beliefs on the Palm spinoff.
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stocks was, on average, six times higher than that of the parent firms’
stocks.

This example also indicates that the diversification of a firm reduces
the bubble component in the firm’s stock price because diversification
reduces the fundamental uncertainty of the firm, therefore reducing
the potential disagreements among investors. This result is consistent
with the diversification discount “puzzle”—the fact that the stocks of
diversified firms appear to trade at a discount compared to the stocks
of undiversified firms (see, e.g., Lang and Stulz 1994; Berger and Ofek
1995).

X. Conclusion and Further Discussions

In this paper, we provide a simple model to study bubbles and trading
volume that result from speculative trading among agents with hetero-
geneous beliefs. Heterogeneous beliefs arise from the presence of over-
confident agents. With a short-sale constraint, an asset owner has an
option to sell the asset to other agents with more optimistic beliefs.
Agents value this option and consequently pay prices that exceed their
own valuation of future dividends because they believe that in the future
they will find a buyer willing to pay even more. We solve the optimal
exercise problem of an asset owner and derive, in an almost analytic
form, many of the equilibrium variables of interest. This allows us to
characterize properties of the magnitude of the bubble, trading fre-
quency, and asset price volatility and to show that the model is consistent
with the observation that in actual historical bubbles, volatility and turn-
over are also inordinate. Theoretical results and numerical exercises
suggest that a small trading tax may be effective in reducing speculative
trading, but it may not be very effective in reducing price volatility or
the size of the bubble. Through a simple example, we also illustrate
that the bubble can cause the price of a subsidiary to be larger than
that of its parent firm, a violation of the law of one price.

It is natural to conjecture that the existence of a speculative com-
ponent in asset prices has implications for corporate strategies. Firm
managers may be able to profit by adopting strategies that boost the
speculative component.

The underpricing of a firm’s initial public offering (IPO) has been
puzzling. Rajan and Servaes (1997) show that higher initial returns on
an IPO lead to more analysts and media coverage. Since investors may
disagree about the precision of information provided by the media, the
increase in this coverage could increase the option component of the
stock. Therefore, IPO underpricing could be a strategy used by firm
managers to boost the price of their stocks. If this mechanism is op-
erative, underpricing is more likely to occur when managers hold a



overconfidence 1209

larger share of the firm. This agrees with the empirical results in Ag-
garwal, Krigman, and Womack (2002). According to our model, a bigger
underpricing should be associated with a larger trading volume. In fact,
Reese (2000) finds that the higher initial IPO returns are associated
with larger trading volume for more than three years after issuance. In
a similar fashion, our framework may also be useful for understanding
returns and volume on name changes (adding “dot-com”).

In addition, if prices contain a large nonfundamental component,
many standard views in both corporate finance and asset pricing that
use stock prices as a measure of fundamental value will be substantially
altered. For example, Bolton, Scheinkman, and Xiong (2002) analyze
managerial contracts in such a model. The paper shows that the pres-
ence of overconfidence on the part of potential stock buyers could
induce incumbent shareholders to use short-term stock compensation
to motivate managerial behavior that increases short-term prices at the
expense of long-term performance. This provides an alternative to the
common view that the recent corporate scandals were caused by a lack
of adequate board supervision.

Appendix

Proofs

Proof of Lemma 1

Let and . Then2 2 2 2 2c(f) p l � f(j/j ) i(f) p (1 � f )[(2j /j ) � (j /j )]f s f s f D

dg 1 2c(dc/df) � (di/df) dc∼ �
2�df 2 df(c � i)

c dc 1 di
p � 1 � ≤ 0.( )2 2� �df dfc � i 2 c � i

Proof of Proposition 1

The process for can be derived from equations (5) and (9):Ag

2g � fjj g fjs f fA B A A B Aˆ ˆdg p df � df p � l � � g dt � (ds � ds ).( )2 2j j js D s

Using the formula for g, we may write the mean-reversion parameter as

2j 2 1f� 2 2r p l � f � (1 � f )j � .f( ) ( )2 2j j js s D
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Using equations (6) and (7), we get

fjfA A A Adg p �rg dt � (jdW � jdW ).s B s A
js

The result follows by writing

1A A AW p (W � W ).g B A�2

It is easy to verify that innovations to are orthogonal to innovations to inA AˆW fg

the mind of agents in group A.

Proof of Proposition 2

Let be a solution to the differential equationv(y)

r1′′ ′yv (y) � ( � y)v (y) � v(y) p 0. (A1)2 2r

It is straightforward to verify that satisfies equation (16).2 2u(x) p v((r/j )x )g

The general solution of equation (A1) is (see Abramowitz and Stegun 1964,
chap. 13)

r 1 r 1
v(y) p aM , , y � bU , , y ,( ) ( )2r 2 2r 2

where and are Kummer functions defined asM(7, 7 , 7) U(7, 7 , 7)

2 nay (a) y (a) y2 n… …M(a, b, y) p 1 � � � � � ,
b (b) 2! (b) n!2 n

with and ; and…(a) p a(a � 1)(a � 2) (a � n � 1) (a) p 1n 0

p M(a, b, y) M(1 � a � b, 2 � b, y)1�bU(a, b, y) p � y .[ ]sinpb G(1 � a � b)G(b) G(a)G(2 � b)

Furthermore, , for all , , and asM (a, b, y) 1 0 y 1 0 M(a, b, y) r �� U(a, b, y) r 0y

.y r ��
Given a solution u to equation (16), we can construct two solutions v to

equation (A1) by using the values of the function for and for . Wex ! 0 x 1 0
shall denote the corresponding linear combinations of M and U by a M �1

and . If these combinations are constructed from the same u,b U a M � b U1 2 2

their values and first derivatives must have the same limit as . To guaranteex r 0
that is positive and increasing for , must be zero. Therefore,u(x) x ! 0 a1

r 1 r 2u(x) p b U , , x if x ≤ 0.1 ( )22r 2 jg
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The solution must be continuously differentiable at . From the definitionx p 0
of the two Kummer functions, we can show that

�b p r1b p1 ′x r 0 � , u(x) r , u (x) r ,
1 1 3G( � (r/2r))G( ) j G(r/2r)G( )g2 2 2

�b p r2b p2 ′x r 0 � , u(x) r a � , u (x) r � .2 1 1 3G( � (r/2r))G( ) j G(r/2r)G( )g2 2 2

By matching the values and first-order derivatives of from the two sides ofu(x)
, we havex p 0

2b p1
b p �b , a p .2 1 2 1 1

G( � (r/2r))G( )2 2

The function h is a solution to equation (16) that satisfies

p
h(0) p 1 0,

1 1
G( � (r/2r))G( )2 2

and . Equation (16) guarantees that at any critical point at whichh(��) p 0
, h has a maximum, and at any critical point at which , it has a minimum.h ! 0 h 1 0

Hence h is strictly positive and increasing in .(��, 0)

Proof of Lemma 2

Write and . The function is a positive, and in-2a p j /2r 1 0 b p r/r 1 0 h(x)g

creasing in , solution to .′′ ′(��, 0) ah � xh � bh p 0
If with and , then . Hence h∗ ∗ ′ ∗ ′′ ∗ ∗x � R h(x ) 1 0 h (x ) p 0 h (x ) p bh(x )/a 1 0

has no local maximum while it is positive, and as a consequence, it is always
positive and has no local maxima. In particular, h is monotonically increasing.
Since for and for , for all x. From the solution′ ′′ ′h 1 0 x ≤ 0 h ≥ 0 x ≥ 0 h (x) 1 0
constructed in proposition 2, .lim h(x) p 0xr��

Note that any solution to the differential equation is infinitely differentiable.
Next, we show that h is convex. For , . To′′ ′x 1 0 h (x) p [xh (x)/a] � [bh(x)/a] 1 0
prove that h is also convex for , let us assume that there exists such∗x ! 0 x ! 0
that . Then′′ ∗h (x ) ≤ 0

∗ ′′ ∗ ′ ∗x h (x ) (b � 1)h (x )′′′ ∗h (x ) p � 1 0.
a a

This directly implies that for . Then . In this′′ ∗ ′h (x) ! 0 x ! x lim h (x) p �xr��

situation the boundary condition cannot be satisfied. In this way, weh(��) p 0
get a contradiction.

Let . The function is positive and increasing. Also, v satisfies′v(x) p h (x) v(x)
. By repeating the proof that we use for h, we′′ ′av (x) � xv (x) � (b � 1)v(x) p 0

can show that is convex and . In fact, one can show thatv(x) lim v(x) p 0xr��

any higher-order derivative of is positive, increasing, and convex.h(x)
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Proof of Theorem 1

Let

′ ′l(k) p [k � c(r � l)][h (k) � h (�k)] � h(k) � h(�k).

We first show that there exists a unique that solves .∗k l(k) p 0
If , then and for all . There-′ ′′ ′′c p 0 l(0) p 0 l (k) p k[h (k) � h (�k)] 1 0 k ( 0

fore, is the only root of .∗k p 0 l(k) p 0
If , then for all . Since and are increasing′′ ′′′c 1 0 l(k) ! 0 k � [0, c(r � l)] h h

(lemma 2), for all ,k 1 c(r � l)

′ ′′ ′′l (k) p [k � c(r � l)][h (k) � h (�k)] 1 0,
′′ ′′ ′′ ′′′ ′′′l (k) p h (k) � h (�k) � [k � c(r � l)][h (k) � h (�k)] 1 0.

Therefore, has a unique solution .∗l(k) p 0 k 1 c(r � l)

Proof of Theorem 2

First we show that q satisfies equation (14). Using the notation introduced in
equations (21) and (22), we have

b ∗h(�x) for x 1 �k∗h(�k )
q(�x) p

�x b ∗{ � h(x) � c for x ≤ �k .∗r � l h(�k )

We must establish that

x
U(x) p q(x) � � q(�x) � c ≥ 0.

r � l

A simple calculation shows that

∗2c for x ! �k

�x b ∗ ∗U(x) p � [h(x) � h(�x)] � c for �k ≤ x ≤ k∗r � l h(�k ){
∗0 for x 1 k .

Thus

b′′ ′′ ′′ ∗ ∗U (x) p [h (x) � h (�x)], �k ≤ x ≤ k .∗h(�k )

From lemma 2 we know that for and for′′ ∗ ′′ ∗U (x) 1 0 0 ! x ! k U (x) ! 0 �k !

. Since , for . On the other hand,′ ∗ ′ ∗ ′ ∗x ! 0 U (k ) p 0 U (x) ! 0 0 ! x ! k U (�k ) p
, so for . Therefore, is monotonically decreasing for′ ∗0 U (x) ! 0 �k ! x ! 0 U(x)

. Since and , for .∗ ∗ ∗ ∗ ∗ ∗�k ! x ! k U(�k ) p 2c 1 0 U(k ) p 0 U(x) 1 0 �k ! x ! k
We now show that equation (15) holds. By construction, it holds in the region
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. Therefore, we need only to show that equation (15) is valid for .∗ ∗x ≤ k x ≥ k
In this region,

x b
q(x) p � h(�x) � c;∗r � l h(�k )

thus

1 b′ ′q (x) p � h (�x)∗r � l h(�k )

and

b′′ ′′q (x) p h (�x).∗h(�k )

Hence,

b1 12 ′′ ′ 2 ′′ ′j q (x) � rxq (x) � rq(x) p [ j h (�x) � rxh (�x) � rh(�x)]g g∗2 2h(�k )

r � r
� x � rc

r � l

r � r
p � x � rc ≤ �(r � r)c � rc

r � l

p �rc ! 0,

where the inequality comes from the fact that from theorem 1.∗x ≥ k 1 (r � l)c
Also, q has an increasing derivative in and has a derivative bounded∗(��, k )

in absolute value by in . Hence is bounded.∗ ′1/(r � l) (k , �) q
If t is any stopping time, the version of Ito’s lemma for twice-differentiable

functions with absolutely continuous first derivatives (e.g., Revuz and Yor 1999,
chap. 6) implies that

t

1�rt o o 2 ′′ o o ′ o oe q(g ) p q(g ) � [ j q (g ) � rg q (g ) � rq(g )]dst 0 � g s s s s2
0

t

′ o� j q (g )dW .� g s s
0

Equation (15) states that the first integral is nonpositive, and the bound on
guarantees that the second integral is a martingale. Using equation (14), we′q

obtain

og to �rt o o �rt o oE e � q(�g ) � c ≤ E [e q(g )] ≤ q(g ).t t 0{ [ ]}r � l

This shows that no policy can yield more than .q(x)
Now consider the stopping time . Such a t is finite witho ∗t p inf {t : g ≥ k }t

probability one, and is in the continuation region for . Using exactly theog s ! ts
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same reasoning as above, but recalling that in the continuation region (15)
holds with equality, we obtain

og to o �rt oq(g ) p E e � q(�g ) � c .t{ [ ]}r � l

Proof of Proposition 3

Since

1 h(x)
q(x) p ,′ ′r � lh (k) � h (�k)

the volatility of is given byoq(g )t

′ o1 h (g )t
′ ′r � lh (k) � h (�k)

multiplied by the volatility of . From the proof of proposition 1,ogt

fjfo o ō odg p �rg dt � (ds � ds ).t t
js

From equations (3) and (4), the volatility of is in an objective measure.ō o �s � s 2js

Hence the volatility of is .o �g 2fjf

Proof of Lemma 3

When , the magnitude of the bubble at the trading point isc p 0

j G((r � v)/2r)g
b p .0 1�2 2r(r � l)G( � [(r � v)/2r])2

It is obvious that increases with . We can directly show that increases withb j b0 g 0

r and decreases with r and v by plotting it.
When , the bubble is , where is a positive andc p 0 q (x) p b [h(x)/h(0)] h(x)0 0

increasing solution to

1 2 ′′ ′j h (x) � rxh (x) � (r � v)h(x) p 0,g2

p
h(0) p .

1 1
G( � [(r � v)/2r])G( )2 2

Note that is not affected by letting .q (x) h(0) p 10

Assume , let solve , ,1 2 ′′ ′˜ ˜ ˜ ˜ ˜˜ ˜j 1 j h(x) j h (x) � rxh(x) � (r � v)h(x) p 0 h(��) p 0g g g2
and

p
h̃(0) p .

1 1
G( � [(r � v)/2r])G( )2 2

We show that for all . Let . Then from lemma˜ ˜h(x) 1 h(x) x ! 0 f(x) p h(x) � h(x)
2, . Suppose that f has a local minimum with . If∗ ∗f(��) p f(0) p 0 x f(x ) ! 0
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such a local minimum exists, and . On the other hand, from′ ∗ ′′ ∗f (x ) p 0 f (x ) ≥ 0
the equations satisfied by and , we haveh̃(x) h(x)

1 2 ′′ 2 ′′ ′ ′˜ ˜ ˜˜[j h (x) � j h (x)] � rx[h(x) � h (x)] � (r � v)[h(x) � h(x)] p 0.g g2

This implies that . Since , this in turn implies that2 ′′ ∗ 2 ′′ ∗ 2 2˜˜ ˜j h (x ) ! j h (x ) j 1 jg g g g

. This is equivalent to , which contradicts with as a′′ ∗ ′′ ∗ ′′ ∗ ∗h̃ (x ) ! h (x ) f (x ) ! 0 x
local minimum. Therefore, cannot have a local minimum with its value lessf(x)
than zero. Since , must stay above zero for .f(��) p f(0) p 0 f(x) x � (��, 0)
Therefore, for all . This implies that the bubble increasesh̃(x) 1 h(x) x ! 0 q (x)0

with for all .j x ! 0g

Assume , and let solve¯r̄ 1 r h(x)

1 2 ′′ ′¯ ¯ ¯j h (x) � r̄xh(x) � (r � v)h(x) p 0,g2

, andh̄(��) p 0

p
h̄(0) p .

1 1
G( � [(r � v)/2r])G( )2 2

We can show that for all . Again let . We first¯ ¯h(x) ! h(x) x ! 0 f(x) p h(x) � h(x)
establish that has no local minimum with . If such a local min-∗ ∗f(x) x f(x ) ! 0
imum exists, and . On the other hand, taking differences,′ ∗ ′′ ∗f (x ) p 0 f (x ) ≥ 0
we obtain

1 2 ′′ ′′ ′ ′ ′¯ ¯ ¯ ¯j [h (x) � h (x)] � rx[h(x) � h (x)] � (r � v)[h(x) � h(x)] p (r̄ � r)xh(x).g2

This last equation implies that , which contradicts the fact that is′ ∗¯ ¯h(x ) ! 0 h(x)
an increasing function. Therefore, cannot have a local minimum belowf(x)
zero. Since , must stay above zero for . This directlyf(��) p f(0) p 0 f(x) x ! 0
implies that for all , and increases with r for all .h̄(x) 1 h(x) x ! 0 q (x) x ! 00

Similarly, we can prove that decreases with r and v for all .q (x) x ! 00

One can extend the comparative statics we established for for the casec p 0
of c small. Let From equation (21) it follows that if ∗z � {j , r, v}. �k (z,g

, then the comparative statics of b with respect to z is preserved for∗c)/�z p o(k )
small c.

Using the definition of function h in equation (17), we write h as . Fromh(x, z)
equation (20),

∗�k (z, c)
p

�z

∗ ∗ 2 ∗ 2 ∗�h(k , z) �h(�k , z) � h(k , z) � h(�k , z)∗� � [k � c(r � l)] �[ ] [ ]�z �z �x�z �x�z
. (A2)

2 ∗ 2 ∗� h(k , z) � h(�k , z)∗[k � c(r � l)] �2 2[ ]�x �x

As , and the numerator and denominator go to zero. To find the∗c r 0 k r 0
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limit behavior, we use the explicit form of h given in the proof of proposition
2 and write

2 3 4h(x, z) p C � C x � C x � C x � o(x ),0 1 2 3

with

�p rp
C p , C p ,0 11 1 3G((r/2r) � )G( ) G(r/2r)G( )jg2 2 2

�p r(r � r)pr
C p , C p .2 31 1 32 34G((r/2r) � )G( )j 3G(r/2r)G( )jg g2 2 2

We use equation (20) to replace the term on the right-hand side∗k � c(r � l)
of equation (A2) by

∗ ∗h(k , z) � h(�k , z)
.∗ ∗[�h(k , z)/�x] � [�h(�k , z)/�x]

Taking limits as , we obtain∗k r 0

∗�k (z, c) ∗∼ o(k ), z � {j , r, v}.g
�z

A small variation establishes the same result for Hence, for small ,∗�k (r, c)/�r. c
b increases with and r and decreases with r and v. In addition, we can showjg

that for increases with and r and decreases with r and v.∗q(x) x ! k jg

Proof of Lemma 4

This is analogous to the proof of lemma 3.

Proof of Proposition 4

Let

′ ′l(k, c) p [k � c(r � l)][h (k) � h (�k)] � h(k) � h(�k).

The function is the root of . If ,∗k (c) l(k, c) p 0 c 1 0

∗ ′ ∗ ′ ∗dk r � l h (k ) � h (�k )
p 1 0.∗ ′′ ∗ ′′ ∗dc k � c(r � l) h (k ) � h (�k )

Hence is differentiable in . Now suppose that . The sequence∗k (c) (0, �) c r 0n

is bounded, and every limit point must solve . Hence, as we∗ ∗ ∗¯ ¯k (c ) k l(k , 0) p 0n

argued in the proof of theorem 1, and the function is continuous.∗ ∗k̄ p 0 k (c)
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Hence as . The claims on b and follow from equations (21)∗dk /dc r � c r 0 q(x)
and (22) and lemma 2. The derivative of with respect to c ish(x)

� ′ ′′ ∗ ′′ ∗ ∗2fjfdh(x) h (x)[h (k ) � h (�k )] dk
p �( )′ ∗ ′ ∗ 2dc r � l [h (k ) � h (�k )] dc

′�2fj h (x)f
p � ! 0.∗ ′ ∗ ′ ∗[k � c(r � l)][h (k ) � h (�k )]

Therefore, decreases with c. However, note that is finite as ,h(x) dh(x)/dc c r 0
although as .∗dk /dc r � c r 0
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