1977

The attention demands, based on kinesthetic cues, of stimulus encoding, memory retrieval and response execution.

Warren Dale. Walsh

University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation
The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE
THE ATTENTION DEMANDS, BASED ON KINESTHETIC CUES,
OF STIMULUS ENCODING, MEMORY RETRIEVAL, AND RESPONSE EXECUTION

by

Warren Dale Walsh

A Thesis
submitted to the Faculty of Graduate Studies
through the Faculty of
Human Kinetics in Partial Fulfillment
of the requirements for the Degree
of Master of Human Kinetics at
The University of Windsor

Windsor, Ontario Canada
1977
ABSTRACT

THE ATTENTION DEMANDS, BASED ON KINESTHETIC CUES,
OF STIMULUS ENCODING, MEMORY RETRIEVAL, AND RESPONSE EXECUTION

by

Warren Dale Walsh

The present study was primarily designed to determine the attention demands required by the retrieval of kinesthetic sensory information from memory. Traditionally three principal stages in processing information which have been delineated are encoding, retrieval of information from memory, and response execution. As it was necessary to isolate the memory retrieval process, it was also possible to assess the attention demands of stimulus encoding and response execution.

A total of thirty male and female students from Introductory Psychology participated in two one-hour sessions. The apparatus consisted of two pantographs which were in a one-to-one correspondence with two handles manipulated by two experimenters. On the first day, subjects learned three movement lengths—4, 9, and 13 centimeters—which were presented to the left hand without visual and auditory cues. The movement of the left pantograph was guided, with all movements being straight away from the subject. When the subject could reproduce the distances five consecutive times within a 10% deviation from the criterion
distance, it was considered that the lengths had been encoded into memory. Retention of the lengths was measured after five minutes and again after 24 hours. After relearning of the movement lengths on the second day if needed, the experimental phase was administered. Two forms of retrieval—cued and non-cued—were included. In cued retrieval the lengths to be reproduced were known before the recall performance commenced. In non-cued retrieval the lengths were not known until after the commencement of the actual retrieval performance. Subjects were required to retrieve the lengths by pushing the left pantograph forward. During encoding, subjects compared two of the learned movement lengths and were required to determine whether the two presented lengths were the 'same' or 'different'. In response execution, the subject performed a 21-centimeter movement by pushing the left pantograph forward until the movement was stopped. The attention demands of each of the processing stages were inferred from a subsidiary task of shadowing with the right foot a kinesthetic sensory input presented to the right hand. The technique of motor shadowing appeared to be a sensitive measure of the attention demands of memory processes requiring continuous information processing throughout the presentation of the kinesthetic sensory input.

There was no difference between the sexes with respect to the processing of kinesthetic sensory information, but contrary to postulates of many researchers, each of the
memory processes demanded attention and, hence, required access to central processing capacity. The greatest attention demand was during the condition necessitating retrieval of movement information not known prior to the actual retrieval performance. As all processing stages demand attention, it appears the question of where selection occurs may be inappropriate and more effort should be directed towards quantifying the relative demands of each stage depending on the nature of the activity.
ACKNOWLEDGEMENTS

The completion of this manuscript would not have been possible without the steersmanship of Dr. J. L. Leavitt, to whom I am certainly indebted for his efforts in this research as well as all my Graduate work. Many thanks to you for providing what I consider a solid foundation for my future endeavours.

An expression of appreciation is also extended to Dr. D. Reynolds, Dr. G. Olafson and Dr. D. Hrycaiko for their assistance and constructive comments on this work. A warm thanks to my colleague Cathy Swanson and my understanding typist, Mrs. Reid.

Most important is the sincere gratitude to Sallyanne for her unselfish attitude in recent years and my parents for their motivation in my previous studies. Finally, thanks to Joshua for his cooperation in not coming too soon. It is to these people this manuscript is dedicated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>6</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>7</td>
</tr>
<tr>
<td>II REVIEW OF LITERATURE</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>10</td>
</tr>
<tr>
<td>Simultaneous Memory Contact</td>
<td>11</td>
</tr>
<tr>
<td>Serial Memory Contact</td>
<td>18</td>
</tr>
<tr>
<td>Use of Dual Task Interference</td>
<td>23</td>
</tr>
<tr>
<td>Levels of Processing</td>
<td>32</td>
</tr>
<tr>
<td>The Problem</td>
<td>35</td>
</tr>
<tr>
<td>Justification of the Problem</td>
<td>38</td>
</tr>
<tr>
<td>Purpose</td>
<td>39</td>
</tr>
<tr>
<td>Hypotheses to Confirm Retrieval</td>
<td>39</td>
</tr>
<tr>
<td>from Memory Requires Attention</td>
<td></td>
</tr>
<tr>
<td>III METHODOLOGY</td>
<td>42</td>
</tr>
<tr>
<td>Subjects</td>
<td>42</td>
</tr>
<tr>
<td>Apparatus</td>
<td>42</td>
</tr>
<tr>
<td>Kinesthetic Sensory Apparatus</td>
<td>42</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>46</td>
</tr>
<tr>
<td>Independent Variables</td>
<td>46</td>
</tr>
<tr>
<td>Dependent Variables for</td>
<td></td>
</tr>
<tr>
<td>Motor Shadowing</td>
<td>48</td>
</tr>
<tr>
<td>Control Measures of Encoding, Retrieval, and Response Execution</td>
<td>49</td>
</tr>
<tr>
<td>Procedures</td>
<td>50</td>
</tr>
<tr>
<td>Learning Phase</td>
<td>50</td>
</tr>
<tr>
<td>Testing Phase</td>
<td>52</td>
</tr>
<tr>
<td>Condition 2 - Encoding</td>
<td>53</td>
</tr>
<tr>
<td>Condition 3 - Non-cued retrieval</td>
<td>54</td>
</tr>
<tr>
<td>Condition 4 - Response execution</td>
<td>55</td>
</tr>
</tbody>
</table>
Condition 5 - Motor shadowing
Condition 6 - Motor shadowing and encoding
Condition 7 - Motor shadowing and cued retrieval
Condition 8 - Motor shadowing and non-cued retrieval
Condition 9 - Motor shadowing and response execution
Data Analysis

IV RESULTS

Guaranteed Primary Task Controls
Encoding
Cued and non-cued retrieval
Response execution
Secondary Motor Shadowing Performances
Mean absolute error of angles
Directional changes missed in motor shadowing
Mean absolute error of lengths of lines in motor shadowing
Items in Retrieval

V DISCUSSION

Introduction
Distance and Direction Information
Memory Processes
Memory Retrieval
Encoding
Response Execution

VI SUMMARY AND CONCLUSIONS

Summary
Conclusions
Recommendations
Practical Applications

APPENDICES

BIBLIOGRAPHY

VITA

viii
<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary Table for the Analysis of Variance for the Response Execution Times Alone and Together with Motor Shadowing for Three Equal Movement Lengths</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of the Mean Absolute Error of the Angles in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued Retrieval and Non-cued Retrieval Using the Scheffe (S) Post Hoc Comparison Technique</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of the Number of Direction Changes Missed in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued Retrieval and Non-cued Retrieval Using the Scheffe (S) Post Hoc Comparison Technique</td>
</tr>
<tr>
<td>4</td>
<td>Comparison of the Mean Absolute Error of the Angles in Motor Shadowing When Performed Together With the Non-cued Retrieval of 9, 13, 9 and 13, 4, 9 and 13 Centimeter Lengths</td>
</tr>
<tr>
<td>5</td>
<td>Summary Table for the Analysis of Variance of Males and Females for the Mean Absolute Error of Angles in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued and Non-cued Retrieval</td>
</tr>
<tr>
<td>6</td>
<td>Summary Table for the Analysis of Variance of Males and Females for Number of Direction Changes Missed</td>
</tr>
</tbody>
</table>
in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued and Non-cued Retrieval

Summary Table for the Analysis of Variance of Males and Females for the Mean Absolute Error of the Lengths in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued and Non-cued Retrieval

Summary Table for the Analysis of Variance for the Mean Absolute Error of Angles in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued and Non-cued Retrieval

Summary Table for the Analysis of Variance for the Number of Direction Changes Missed in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued and Non-cued Retrieval

Summary Table for the Analysis of Variance of the Absolute Error of the Lengths in Motor Shadowing for Cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

Summary Table for the Analysis of Variance of the Mean Absolute Error of the Angles of Motor Shadowing for Cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

Summary Table for the Analysis of Variance of the Mean Absolute Error of the Angles of Motor Shadowing for Non-cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

Summary Table for the Analysis of
Variance of the Mean Absolute Error of the Lengths of Motor Shadowing for Non-cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

Movement Lengths and Patterns Presented on the Four Trials of the Experimental Conditions
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinesthetic Sensory Apparatus</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>Ending of left pantograph with measurement equipment (viewed from experimenter's side)</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Kinesthetic Sensory Apparatus with the subject and the two experimenters</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Time of movements in response execution measured in three seven centimeter segments, alone, and together with motor shadowing</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Mean absolute error in degrees of angles in motor shadowing for single and dual task conditions</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>Percent of direction changes missed in motor shadowing for single and dual task conditions</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Mean absolute error in centimeters of lengths of lines in motor shadowing for single and dual task conditions</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>Patterns A, B, C, and D which were used as kinesthetic sensory inputs in secondary motor shadowing performances</td>
<td>112</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Throughout the past twenty-five years there have been numerous efforts to determine how man processes the information which is continually presented to him from the environment. The verbal studies of Cherry (1953a, 1953b), Broadbent (1958), and Moray (1967) demonstrated that, although man can selectively attend to one message when another message is presented simultaneously, there are certain aspects of the unattended message which may be detected. However, when a number of sensory inputs are presented simultaneously, at some point between the reception of the stimuli and the execution of a response there appears to be a bottleneck in the amount of information processed. The phenomena of selection and allocation to particular incoming stimuli in information processing is referred to as selective attention. Although the two extremes of 'Early Selection' (Broadbent, 1958, 1971; Moray, 1959, and Treisman, 1960, 1964a, 1964b, 1964c) during perceptual analysis of stimuli, and 'Late Selection' (Deutsch and Deutsch, 1963; Norman, 1968, 1969a) during response execution have been investigated extensively, the dilemma of where selection occurs remains unresolved.

One explanation for man's processing limitation was proposed by Peterson (1969) and later supported by Posner and Boies (1971) and Keele (1972, 1973). It was suggested...
that while some stages in information processing, from the reception of the stimuli to the final output, may require attention, others do not. Processing of information from more than one task may proceed in parallel provided two attention demanding stages within each task do not overlap, necessitating simultaneous access to the central processing capacity.

Moray (1967) and Kahneman (1973) considered there was a more general functional limited capacity processor in which attention may be allocated depending on the demands of the task. Hence, any performance decrement when performing two tasks simultaneously could be attributed to the limited processing capacity of the performer and the attention requirements of the tasks.

The two above explanations for the limitation in processing are not mutually exclusive, each accounting for the limitation of performing two tasks simultaneously. Should it be true that certain processing stages do not require attention, as purported by Peterson (1969), Posner and Boies (1971) and Keele (1972, 1973), then the stages would accordingly not require access to the central processing capacity and this would therefore permit parallel processing. Furthermore, two tasks could be carried out simultaneously provided the processing stages requiring attention did not exceed the total
capacity available.

While a person is processing the information from the environmental display, he is concurrently receiving another flow of information from memory, which bears directly on his success and is no less important than the display information. This process is referred to as memory retrieval and, like any of the stages in information processing, it is conceivable that a bottleneck in processing may exist here.

As James (1890) noted:

We make search in our memory for a forgotten idea, just as we rummage our house for a lost object. In both cases we visit what seems to us the probable neighbourhood of that which we miss. We turn over the things under which, or within which, or alongside of which, it may possibly be, and if it lies near them it soon comes to view (p. 654).

There has been little consideration given to the possibility of a bottleneck existing between memory contact and the retrieval of all the appropriate information for the desired response. This has largely been due to the problems isolating the various stages of, encoding, memory contact, retrieval, and response execution, as well as a strong belief that memory retrieval does not require attention (Keele, 1970, 1972, 1973).

Extending the view of Posner and Boies (1971), Keele (1972) proposed a theory to explain the fact that in some situations parallel processing may occur. Within this theory the question of a possible bottleneck in retrieval
from memory was considered. Keele suggested that there were two distinct stages in information processing. The first stage involved the reception of information from sensory events and the retrieval of information stored in memory concerning the sensory events. The next stage involved any mental operations which occurred subsequent to the retrieval of information from memory. Keele suggested that of the two processing stages, memory retrieval did not appear to require attention, and hence could be discounted as the locus of a bottleneck in information processing. The rationale for this view was based upon the studies of memory contact of more than one source of information simultaneously (Karlin and Kestenbaum, 1968; Morton, 1969; Hawkins, 1969; Biedeman and Checkosky, 1970; Garner and Felfoldy, 1970; Keele, 1970, 1972). To say that subsequent memory retrieval does not require attention meant that if more than one source of sensory information impinges on a person at a time, all the sources activate information stored in memory without interfering with each other. Although it was justifiable from this research to conclude that more than one stimulus may contact memory simultaneously, this cannot be used as tangible evidence to support the notion that the retrieval of all information for the appropriate response does not require attention. From the studies in the verbal domain, examining the retrieval of words from memory under
different conditions (Cohen, 1966; Anderson and Bower, 1972, 1974; Tulving and Thompson, 1973; Posner, 1973; Wickelgren and Corbett, 1977), it has been concluded the retrieval of information from the memory store involves the specific operations of search and recovery.

Posner (1973), while recognizing that memory retrieval may not require attention, talked of retrieval in terms of effortful and effortless operations. When a new input presented to a subject was not identical with information stored in memory, then the retrieval process may be effortful. By inference, it was suggested that the memory retrieval process may require attention, and even in effortless retrieval the person's attention is directed to parts of memory in which it is likely more information about the particular stimuli is stored.

Keele (1973), perhaps the leading exponent of the view that retrieval from memory does not require attention, seems to have contradicted himself when he suggested that it was highly speculative to suppose that, with little practice, memory retrieval and response initiation both require attention. In fact, Keele continually makes reference to instances in which retrieval may require attention rather than allocation of attention being determined by the requirements of the specific processing stages. As Keele states:

A person's efficiency in interacting with his
environment is limited by the amount of time and attention to retrieve information... not only physical skills but the process of thinking in general depends on retrieving and assembling information from memory (p. 75).

Keele, however, considered any retrieval processes which are complicated may be viewed as several substages of retrieval and mental operations. The mental operations of comparing, evaluating and re-directing of the retrieval process may be attention demanding, while the actual retrieval per se is not. Such a view leaves one rather bewildered as to what Keele really considers retrieval in terms of its attention demands. It would not seem conceivable that the flow of information from memory concurrent with the reception of stimuli would be an automatic process.

Summary

In the investigations of selective attention there have been many attempts to determine when the limitation of the human information processing of simultaneous inputs occurs—early at the reception of the stimuli stage or at the later stage of response initiation. While the two extremes have been investigated extensively, at present, the knowledge of the contribution of memory retrieval to the bottleneck in processing of information remains obscure.

Although from verbal research memory retrieval
appears to involve distinct operations, there has been
limited research directed at this aspect in the processing
of kinesthetic sensory information and involving motor
responses. This has largely been due to the problem of
isolating the processes of encoding, memory contact and
retrieval, as well as a strong belief that memory re-
trieval does not require attention. However, the latter
view is based on limited research and, therefore, a
study examining the question of memory retrieval, employ-
ing the kinesthetic sensory system, cannot but add to
the existing scarcity of scientific knowledge available
on the memory retrieval process.

Definition of Terms

1. Cued Retrieval: the information necessary for the
 appropriate response is available having been in-
 dicated by a cue prior to the event.

2. Direction: the line or course extending away from, or
to, a given point through space.

3. Distance: the length of, or extent of, a movement.

4. Divided Attention: the requirement of performing two
tasks at the same time where one task is only permitted
as much central processing capacity as the other task
permits.

5. Encoding: the transformation of physical energy
 into a representation which may be stored in memory.
6. Kinesthesia: sensory modality concerned with the conscious perception of movement and orientation of parts of the body with respect to each other and the body as a whole.

7. Learning: relatively permanent change in behaviour due to reinforced practice.

8. Long Term Memory: relatively permanent storage of information as a result of rehearsal.

9. Memory: the learned capability for responding to something.

10. Memory Contact: the process whereby the encoded representation of a stimulus is matched with a newly presented stimulus.

11. Memory Retrieval: the recovery from memory of all information for the desired response.

12. Memory Store: the system within the human mechanism where the encoded representation of a sensory stimuli is retained.

13. Memory Trace: the representation of a sensory stimuli in the memory store.

14. Motor Shadowing: reproducing simultaneously movement presented through the kinesthetic sense modality using the motor system adhering to all characteristics of the movement.

15. Non-cued Retrieval: the information necessary for the appropriate response is unpredictable being
indicated by a cue at the time of the event.

16. Recall: the process of being able to bring from memory the match of all items presented in the sensory stimuli.

17. Recognition: the process of being able to distinguish from a group of items whether an item is one which was presented as a sensory stimuli.

18. Response Initiation: the execution of a motor program which is deemed pertinent by the particular stimulus presented.

20. Selective Attention: the process by which a person attends to certain sensory inputs while ignoring others.

21. Sensory Information: information which is derived by man from the various sense receptors of the body.
CHAPTER II

REVIEW OF LITERATURE

Introduction

Verbal studies have adequately shown that man is limited in his information processing capacity and therefore there are selection processes operating on incoming stimuli whereby the relevant stimuli are separated from all the stimuli presented in the stimulus events. The question of the processes involved in memory retrieval have been studied in the verbal domain (Sternberg, 1969; Anderson and Bower, 1972, 1974; Keele, 1972, and Reed, 1976). However, there has been limited research reported investigating memory retrieval employing the kinesthetic system and requiring processing of kinesthetic inputs necessitating motor responses.

The present chapter is devoted to studies pertaining to the question of limitations in information processing, in particular, the possibility of a bottleneck during the retrieval of information from memory. The first section includes studies of simultaneous memory contact which have led to the conclusion that memory retrieval does not require attention. The second section includes studies of memory contact in a serial manner thus refuting the idea of retrieval not requiring
attention. Other studies directly examining memory retrieval are also incorporated in this section. The third section contains studies which have employed the dual task interference paradigm. The final section is an explanation of the nature of information processing.

Simultaneous Memory Contact

There has emerged in recent years, a strong belief that the retrieval of information from memory is a non-attentive process, with sources of information being able to contact their representations in memory simultaneously.

Karlin and Kestenbaum (1968) measured reaction times to a visual stimulus followed, after a predetermined time delay, by an auditory stimulus with the response requiring the subjects to depress a key with the left hand for the visual display while the right hand was used to respond to the auditory tone. The interstimulus intervals were varied between stimulus onsets from .90 to 1.15 sec. For the visual display there was a choice of five alternative responses, one for each finger, while for the auditory tone there were two buttons actuated by the index and middle fingers in response to high and low tones respectively. The delay of a second response was found to depend on the time since the first response and not on memory retrieval time to the second signal, which confirmed the previous findings of Welford (1952), Craig (1964), and

Morton (1969) required subjects to sort cards into piles. With two redundant sources of information requiring a single response, there was faster sorting than cases in which there was a single stimulus cue. From the data it was inferred that the two sources of information simultaneously contacted memory and hence there was no interference. Morton considered since in addition the two sources of stimulus information indicated the same response, response facilitation might be expected.

Hawkins (1969), in a series of three experiments using cards varying on three dimensions (form, colour and size) required subjects to indicate as fast as possible whether the stimuli were physically identical or different when pairs were presented varying along one or more dimensions. The results indicated that when multi-dimensional stimulus information is relevant, the stimulus dimensions are compared in parallel; and comparisons terminated upon the detection of information sufficient for a correct response.

From two experiments designed to investigate the effects of information load (number of alternatives) and stimulus—response code in each of two simultaneously performed reaction time tasks, Schvaneveldt (1969) concluded that there was an overlap in the processing of stimuli which contradicted the single-channel hypothesis.
(Welford, 1952; Broadbent, 1958) which would predict that stimuli must be processed in a serial manner. The subjects were required to respond both verbally and manually on each trial for the two tasks, with verbal and manual responses done simultaneously. The stimuli consisted of numerals 1–8 which were visually presented to the subject on a panel and the manual response was made on two response buttons in front of the panel using the index finger of each hand. The verbal response activated a noise-operated relay to enable reaction time to be measured to the nearest milli-second. Although parallel processing must have occurred to permit reaction times to be unaffected by the condition requiring the two tasks to be performed simultaneously (compared to reaction times when the tasks were performed alone) the study was unable to determine at what stage parallel processing occurred. Schvaneveldt, like Hawkins (1969), suggested that the significance was not in fact that two tasks could overlap in processing, but rather to determine what aspects in information processing in two tasks can be performed together and to develop an information processing model to deal with situations that produce overlap.

Biederman and Checkosky (1970) varied stimuli on two dimensions (size and brightness) either of which was able to facilitate the correct response. The stimuli were gray circles mounted on white paper centered on glass
slides. Nine stimuli were presented from all combinations of three shades of gray (6, 9 and 15 ft. 1) and three circle sizes (diameters, 10, 13, and 16 mm). The subject’s index fingers rested on plastic keys, which activated microswitches. A display card showing the stimulus and their assignments to fingers was placed by the response panel and remained there throughout the experiment. Two stimuli were assigned to two responses. In the size condition, the two stimuli differed only in size, and brightness was held constant. In the brightness condition, the two stimuli differed only in brightness and the circles were of the same size. In a redundant task condition, the stimuli differed on both dimensions. The presence of the redundant, relevant stimulus dimension resulted in a shortening of reaction times compared to a condition where such a dimension was not present.

Garner and Felfoldy (1970), from a series of seven experiments, also found a lack of interference when multiple sources were redundant when subjects were required to sort decks of stimulus cards. Thirty-two white stimulus cards were divided into two piles corresponding to the two levels of a dimension. The task was to sort as fast as possible without making any errors. The cards were to be sorted into piles of: 16 each of two different stimuli; 16 each although the two different stimuli were formed
by using two dimensions in a correlated fashion; eight cards each of four different stimuli which were formed from the orthogonal combinations of the two dichotomous dimensions. With this third deck, subjects were also required to sort separately by each dimension. It was concluded by both Biederman and Checkosky (1970) and Garner and Felfoldy (1970) that lack of interference when the multiple sources of information were redundant was compatible with a model allowing different dimensions to be processed in parallel with a single response initiated as soon as there was sufficient information for a correct choice.

In a series of experiments (Keele, 1970, 1972; Keele and Boies, 1973) the types of decisions required for the successful completion of a task were varied by altering the input and output modes in order to determine the conditions in which multiple sources of input would interfere with each other. It was suggested that the stimulus and responses were composed of attributes which included both the number of dimensions (colour, hue) within the stimulus or response component, and the number of components that were represented in the display. Consequently, stimuli varying along two or more dimensions required that two or more channels and sources of inputs be processed assuming that none of these dimensions were irrelevant. The response could either be unitary or a
combination of responses which would also have an effect on the time to elicit the criterion task.

In the experiment by Keele (1970), two tasks were set up: an information conservation task in which each signal required a unique response; and an information condensation task which demanded that only one response be initiated. However, more than one stimulus could elicit the same response. Analysis of the mean reaction times led Keele to conclude that condensation had different effects on reaction times depending on the number of stimulus attributes in the stimulus. The reaction times for conservation tasks were significantly greater indicating that the decision of which response to make was a memory retrieval problem since, when the stimulus was introduced, the response key assigned to that stimulus had to be retrieved from memory. The data supported the contention that when two or more stimulus attributes had to be processed, but only one response elicited, the reaction times were no longer than when only one stimulus attribute was presented. Keele concluded that memory retrieval occurred in parallel but that subsequent mental operations were attention demanding. Interference in processing multiple signals was primarily due to the limitation of the capacity system to indicate independent responses simultaneously. The results obtained by Keele could also be explained in terms of the Theory of Response Conflict
(Reynolds, 1964). Reynolds suggested that there were two kinds of conflict; the conflict as to what response to make to a particular stimulus, and the conflict between making two different responses to different stimuli. It was evident that reaction times increased when two or more responses were required of the stimulus event presented. When one response tendency was selected, all the other responses were temporarily inhibited. Two or more stimulus attributes which required only one response did not increase the processing time within the central processing capacity system. Keel proposed that if it could be shown that irrelevant information must have contacted memory even though it did not interfere with processing the relevant information, then processing limitations were subsequent to memory retrieval. One indication that irrelevant information contacts memory was the Stroop Effect (Jenson and Rohwer, 1966). The reaction time to name a colour increased when the colour printed out an irrelevant colour word (e.g., the word GREEN is presented in red ink, the correct response is red). One interpretation of the Stroop Effect is that it is not during the memory retrieval stage that interference occurs, but as a result of simultaneous memory retrievals—the two sources of information, colour and form, lead to conflicting responses. However, to ensure that it was not the retrieval stage per se that results
in the Stroop Effect it was necessary to demonstrate that non-colour words caused no interference. Keele (1972) presented simultaneously two sources of information form and colour, only the latter being relevant to a key tapping response. When the irrelevant form spelled a word, such as GLASS, no interference with processing the relevant colour was found. Yet it was concluded that the irrelevant information had contacted memory, because the word meaning was changed, such as to GREEN, the time to respond to the colour of ink increased. A discrimination of meaning depends on information stored in memory. It was concluded that memory retrieval is a non-attentive process, with response conflict occurring when the words were different colour names from the ink colour. Irrelevant information did not delay the processing of relevant information although when the irrelevant information led to a conflicting response, there was interference present as indicated.

The above mentioned studies would indicate that parallel processing may occur up until memory contact. However, just because stimuli may elicit the appropriate memory representation almost spontaneously, it is unlikely that this representation contains all the appropriate information for the desired response.

Serial Memory Contact

While the preceding section provides credence for the
notion that memory contact may not require attention, studies of memory contact in a serial manner would indicate early perceptual selection between inputs. Some of these studies are reported in the present section together with the work of Norman (1968) who made the point which is paramount in the present thesis. Although, memory contact may occur simultaneously, this does not necessarily mean all information necessary for the response is provided from the stimulus itself, other stored information having to be retrieved.

Using different patterns of 10 lights as stimuli Siebel (1963) required subjects to respond by depressing corresponding patterns of simultaneous keys in a ten-key keyboard, one key assigned to each finger. After more than 75,000 discrimination reaction times for each of three subjects, average reaction times during 1,023 alternative conditions were more than 25 msec. less than reaction times under a thirty-one alternative conditions.

In an experiment by Broadbent (1967) involving serial keytapping, it was evident that when two reactions are compatible there may be considerable parallel processing. However, when the reactions are incompatible there was no evidence of any sharing of capacity during the initial 250 msec. In addition, the processing of the second signal was relatively ineffective even after the first response was completed. The shortest inter-response
interval in this condition was substantially longer than the control value of the second reaction time indicating a prolonged disruption of the secondary action by the occurrence of the first. If the processes that precede response execution require no attention and occur in parallel, there is no special reason for a variation of stimulus-response compatibility to affect the inter-response interval function. The locus of the difficulty in an incompatible situation is in the stages of retrieval and selection of the appropriate response according to this experiment, rather than being a non-attentive process (Keele, 1973).

Keele (1967) varied the reaction time of button tapping in response to lights, changing the compatibility of the S - R relationship. In a second task, the subjects counted backwards by ones, threes or sevens from a three digit number presented at the beginning of a trial. When the two tasks were performed together, tasks with long reaction times interfered considerably more than did tasks with short reaction times. While Keele's (1967) results, which were in direct contrast to Karlin and Kestenbaum (1968) and Schvaneveldt (1969), were attributed to lack of practice, this reason cannot possibly be given to account for the overcoming of the inability to initiate independent responses without interference as displayed by Seibel's (1963) subjects following extensive
practice.

A refutation of the notion that retrieval does not require attention was isolation of the effortless retrieval phase by Hart (1967) in two experiments to evaluate whether people could accurately monitor the contents of their memories when they were unable to retrieve those memories. When required to recall previously learned paired associates constructed from combining stimulus words with response trigrams, the subjects were asked to predict which unrecalled response items they would be able to recognize. Stimulus words were varied in their association value, with two groups of words being chosen. One group consisted of words which occurred over one hundred times per million and the other group containing those which occurred once or less per million. The response words were taken from a list of three place consonant syllables. Sixteen trigrams were chosen from each of three levels of association value; 10% or less, 50% and 90% or more. The trigrams were randomly paired with the stimulus words to form the paired associate learning list. The randomization assignment of words to trigrams was restricted so that equal numbers of the two association groups were present at each of the three trigram association levels. As a part of the recall requirement, for associations which were not recalled, subjects were asked whether they would be able to recognize the
learned association. This was followed by a multiple choice recognition test. In the second experiment, rather than make judgements on whether they would be able to recognize the words dichotomously yes or no, subjects made 'feeling of knowing' ratings. The results indicated that the subjects were able to make relatively accurate predictions about recognition failures and successes, suggesting what Hart considered a memory monitoring process.

Norman (1968) suggested that various sources of sensory information may contact memory simultaneously. "The sensory information can activate its image in storage without any intervening cognitive processes" (p. 526). This automatic matching does not imply immediate knowledge of everything related to the stimulus. However, the point is made that subsequent to this contact an attention mechanism is necessary to select from the associations of stored representation and sensory information that appropriate material to be retrieved to achieve a satisfactory output. It was proposed that this selection or retrieval occurs through repeated queries of the storage system until the satisfactory output is achieved.

After contact with memory has occurred then the attention mechanism might select for the processing of those sensory inputs that seem most important and relevant by
considering stored attributes of each input as well as physical attributes. The outputs of the storage system which have the highest levels of activation (Morton, 1969) are then selected for further processing. Norman (1968) suggested that a possible solution to the search process is to let each output of a retrieval be the guide in the next attempt. The strength of the output can be used directly by the decision process. The observed strength of the output can be compared with a decision criterion (recognition) or by choosing the item corresponding to the greatest strength observed (recall).

Use of Dual Task Interference

The principle behind the use of primary and secondary task technique in examining the information processing capacity of man is that the joint capacity demand of concurrently carrying out the two tasks should exceed the total capacity available (Poulton, 1965). While total capacity demands does not exceed the total capacity available, performance as a whole and of particular processing stages should continue unimpaired. Only when the total capacity demand (joint capacity demand of primary and secondary tasks) exceeds total capacity available will interference with performance occur. The degradation in performance of being required to perform two tasks (often known as the 'divided attention
effect') is one of the principal sources of evidence in support of the thesis that man is limited in the amount of information that he can process per unit time (Broadbent, 1958; Norman, 1968; Treisman, 1969, and Posner, 1973). As Johnson et al. (1970) noted, "the 'divided attention effect' has been used as a methodological vehicle for research in memory" (p. 164). In an experiment to determine the validity of this method using a tracking task and verbal task examining word recall, Johnson et al. found that tracking error was a direct function of the difficulty of the verbal task, and this result seems to validate the use of divided attention as a means of monitoring information processing during the encoding retention and recall of words. In the study the subsidiary task was tracking which required continuous information processing while subjects were required to recall previous learned words. The order of recall determining the experimental conditions were: unordered, ordered, forwards, backwards and alphabetical order. It was assumed that each recall condition was indicative of increasingly difficult forms of retrievability. Therefore, they would likely provide an increasingly greater demand on the response selection process to be verified by the degradation in performance of the tracking task. A control condition in which subjects were required merely to count from twenty-two to twenty-six while tracking
would require little response selection and, therefore, provide a measure of performance of response execution only and tracking simultaneously. Each trial lasted twenty-one seconds with recall commencing after five seconds and being completed within ten seconds. It was concluded that tracking error was a direct function of the difficulty of the verbal tasks indicating that the difficulty of the process of response selection or retrieval was dependent on the demands on the information capacity mechanism.

Trumbo and Noble (1970) employed the dual task interference technique to study serial verbal learning with the information processing defined in terms of four stages. It was concluded the stage of response selection was an important limitation on dual task performance. On the basis of previous studies involving pursuit tracking as a primary task in a dual task situation (Noble, Trumbo, and Fowler, 1967; Trumbo, Noble, and Swink, 1967) it was predicted the performance in serial verbal learning would be interfered with when a second overlapping task required response selection decisions. It had been shown through isolation of encoding, response selection and response execution processes that the capacity to perform a primary task without interference from a second overlapping task appeared to
be limited by the subject's capacity for response selection decision. Therefore, through selection of two tasks rather different from those previously used, Trumbo and Noble (1970) considered that the possibility of generality would be substantially increased. Sixty male subjects were assigned randomly to ten task conditions. The primary task required the serial anticipation learning of consonant, vowel and consonant lists, presented at a three-second rate. An array of five red jeweled lights mounted on a vertical panel formed an arc at a viewing distance of 20 inches. Five micro-switches were mounted to accommodate the five fingers of the left hand, the left forearm placed on a rest. In one of the five secondary task conditions, there was an anticipatory response task with the subject required to predict each light by pressing the spatially corresponding button. A free response, information creating task required subjects to generate a random sequence of responses with the middle light only coming on to cue each successive response. The shadowing (response execution) task required subjects to press the spatially corresponding button after the occurrence of each light. The no overt-response task required subjects to "attend to and learn" as much as possible about the sequence of lights, but without overt responding to the secondary task. The control condition had no secondary task with subjects merely
attending to pursuit tracking. There were twenty-five dual-task training trials preceded by three familiarization trials: one requiring shadowing consonants, vowels and consonants, the second shadowing lights and the third shadowing of both sets of signals.

Performance on the serial learning task was affected by secondary task requirements. Tasks requiring the selection of anticipatory responses or responses in random sequences resulted in decrements in primary task performance while tasks requiring response execution or signal processing without overt responding produced no interference. Hence, the response selection stage was seen as an important limitation on dual-task performance and could realistically be a locus for a bottleneck in any model depicting information processing.

Posner and Boies (1971) and Allport et al. (1972), while not examining retrieval, claimed the encoding stage of information processing was a stage not requiring capacity and therefore may proceed without interfering with other operations. Posner and Boies (1971) performed an experiment presenting two successive letters to subjects requiring the subjects to respond "same" if the letters were physically identical. A further experiment was conducted using mixed uppercase and lowercase letters requiring a response "same" if both vowels or both consonants were physically identical. The improvement in reaction times
for preparation (determined by varying warning signals) and encoding together was almost exactly the same as that obtained separately for the preparation and encoding functions. In the consonant vowel consonant experiment, there appeared to be a more substantial departure from additivity although these were not statistically significant due to high variability among subjects in this condition. From the additivity of improvement due to preparation and encoding, it was suggested that the two processes can proceed in parallel without interference, even with only a 150 msec. interstimulus interval when the functions were changing rapidly. Thus, the contact between an external stimulus and its representation in memory did not appear to require processing capacity. However, Posner and Boies (1971) established limited capacity results when mental operations such as response selection or rehearsal were to be performed on the encoded information. After memory contact it was necessary to retrieve information necessary for the correct response. This retrieval is commonly considered synonymous with what Posner and Boies labelled response selection. It was suggested that "attention in the sense of central processing capacity is related to mental operations of which we are conscious, such as rehearsing or choosing a response (retrieval), but is not related to the contact between the input and long-term memory" (p. 407). This view would tend to infer that while information
processing may occur in parallel up until memory contact. Thereafter the limitation or bottleneck in processing of simultaneously presented stimuli may occur in retrieval or selection of the appropriate response or its execution.

Comstock (1973) was critical of Posner and Boies (1971) claiming that the length of exposure duration of the first letter of two successive letters which often remained present throughout the msec. interstimulus interval may permit switching of attention from the primary task of encoding letters to deal with the secondary auditory probe. Furthermore, it may have been that encoding the first letter and reacting to the probe did not exceed the total available central processing capacity (Moray, 1967; Kahneman, 1973). An experiment was conducted to control for both these aspects which may have been present in the studies reported by Posner and Boies (1971). Two levels of probe task difficulty were employed called Type A and Type C reactions (Donders 1969). Posner and Boies used Type A reactions as the probe task in their studies and Type C were used to increase the load on central processing at the time of encoding the first letter. Also, on some trials, the first letter was only displayed for 15 msec. and was subject to visual masking using a pattern and random dots. Type C reaction required the subject to press a key to noises coming in the right ear although
noise bursts could occur in either the right or left ear. In the Type A reactions, all noise bursts were presented to the right ear and required a simple button press to each burst. While there was no significant difference due to the type of reaction task, when the first letter was followed by visual masking of random dots reaction time to probes was significantly increased. This suggests that subjects were forced to commence encoding the first letter as soon as it came on. Hence, the "no mask" conditions and the conditions employed by Posner and Boies may have allowed time for subjects to switch attention to begin processing on the probe task and still return to the primary task in time to encode the first letter before it disappeared from the screen or from short-term visual store. The increase in reaction time would not be expected if encoding required no capacity, because in that case processing a probe would not be deterring from processing of the letter and vice versa.

Motivated by the conflicting results of Posner and Boies (1971) and Comstock (1973), Millar (1975), also using a primary letter matching task examined the possibility of a limitation occurring during encoding. Millar (1975) assessed the capacity demand of encoding by impairment in performance on a secondary probe detection task at the moment of encoding the primary
Millar concurred with Comstock (1973) arguing that in the two experiments by Posner and Boies upon which the conclusions of memory processes were based, different warning and interstimulus intervals were used. To conclude that memory processes did not require processing capacity provided subjects had one second between items was unacceptable, the effect able to be attributed to the different length of warning intervals.

The assumption of Millar's study was that the individual had a finite capacity pool of processing resources which could be allocated, according to task demands, to particular stages in information processing (Moray, 1967; Kahneman, 1973). Letter-match stimuli were presented by two Nixie tubes mounted together inside a two-field tachistoscope, the total display size being five cm square and viewed through the eyepiece of the tachistoscope at a distance of approximately 100 cm. Physical match letters were drawn from the set A to M (omitting I) and were in uppercase form. Upside-down match letters were drawn from the same set, also in uppercase form, but omitting I and H. Response buttons for the letter-match were operated by the index and middle fingers of subject's dominant hand with the response stopping an electronic timer which had been triggered by the presentation of the first letter. The auditory probe was a 1000 cps, 100 msec. tone of approximately 70 dB presented by a loudspeaker mounted roughly
50 cm from subject's left ear. The visual probe was a 100 msec. flash of light generated by one of the tachistoscope's lamps and masked so as to give a stimulus form measuring 5 cm by 0.6 cm presented immediately above the letter display tubes. Response to the probe was a button press by the index finger of the non-dominant hand which stopped another timer which had been triggered by the probe onset. By increasing the level of difficulty of the encoding stage of the primary task, letter matching, so as to saturate available capacity, the encoding process was shown to require processing capacity through interference with the secondary probe task. These research findings, using essentially the same design, supported Comstock's (1973) findings. This view refuted the findings of Posner and Boies (1971) and the position advocating that memory contact and retrieval do not require access to processing capacity demands as purported by Keele (1970, 1972, 1973).

Levels of Processing

It is evident there is a lack of consensus on the relative processing demands of both retrieval and encoding operations. An explanation which viewed the processing functions to be at different levels was proposed by Craik and Lockhart (1972). A necessary consideration to the retrieval of any information, whether it be
motor, verbal or pictorial, is the formation of a memory trace or representation. Rather than delineate between short term and long term memory traces, Craik and Lockhart suggested the memory trace was based on the qualitative nature of stimulus encoding operations. After encoding, persistence of the memory trace is based on the depth to which the stimuli have been perceptually analyzed. Two types of perceptual coding were distinguished. Type I, or maintenance coding, was a function of the amount of rehearsal or repetition and merely prolongs the availability of the item without leading to the formation of a more permanent memory trace. Type II, or elaboration coding, was a function of the depth of processing and related to the memory trace strength as it can lead to changes in the internal representation of the stimulus.

Juola, Taylor, and Young (1974) introduced a “related levels of processing” interpretation. A study was conducted to examine recognition memory for words and pictures over varied lags between presentations of the items. A recognition model which assumed successive encoding, decision, and response stages was the basis of the interpretation of the results. The analysis indicated that stimulus form (word or pictures) and lag affected encoding processes similarly but the decision stages was influenced by the stimulus form. It was considered that the decision to respond was based on the familiarity value derived from
the conceptual code of the test item. However, the data of a second experiment indicated that memory for the stimulus form may also be used in the decision process. When this occurred, the decision occurred during the re-construction of the perceptual code of the test item rather than during memory search for familiarity based on the conceptual code. In the instance where the decision is synonymous to the encoding, the subject was believed to be relying on the perceptual analysis for the decision. From the data, these researchers postulated that information is coded either perceptually or conceptually. The perceptual code was considered to be a primitive analysis of the physical characteristics of the stimulus. Beyond this initial level, information may be coded conceptually, with the material encoded being subjected to a semantic interpretation and assigned to a distinctive category.

Lockhart, Craik, and Jacoby (1975) modified the levels of processing model proposed in 1972 with Type I and Type II perceptual analysis being viewed as a continuum, with encoded stimuli being processed at three possible depths or levels of processing—physical, phonemic, and semantic. Rehearsal or repetition could be at any level with this function being termed the spread of processing. The persistence of the memory trace depended on both the depth and spread of processing. The deeper the level at which an event is encoded or the more elaborate the
processing within a level, the more persistent and richer the trace. Memory retrieval involving the scanning of recent traces or the guided reconstruction of an event in the perceptual/cognitive system was determined by the spread and level of processing.

Chabot, Millar, and Juola (1976) examined the relationship between the depth of processing and stimulus repetitions as representative of the spread of processing. Several levels of processing were defined involving a) physically identical items, b) physically different but same-name items, c) different items from the same semantic category, and d) items from different categories. Words and pictures were used as stimuli and, as would be predicted by the levels of processing model, the deeper the level of processing (e.g., semantic) the longer the categorization response time. Increasing the repetitions from one to five presentations led to a decrease in response times. Furthermore, distributed repetitions cause a significant increase in recall probability of items which was interpreted as evidence of the possibility of formation of a stronger memory trace at any level of processing. Hence, the data were supportive of a "depth of processing" approach to memory processes.

The Problem

Investigations into the attention demands of processing
movement information cannot but add to the understanding of the nature and functional characteristics of the kines- thetic sensory system. Accordingly, the kinesthetic modality was employed with inputs and outputs being achieved via the motor system.

The basic question to answer was whether the process of memory retrieval required attention. The motivation for the study was the notion that memory contact of two sources of information simultaneously was cited as evidence that memory retrieval does not require attention.

To isolate retrieval it was necessary to delineate between the memory processes of encoding, retrieval and response execution. By doing this, it was also possible to assess the relative demands of each of the processes with respect to kinesthetic sensory information. The divided attention paradigm has been used extensively in verbal research and was chosen for the present study. The attention demands of the memory processes were determined during a secondary task of motor shadowing which required continuous information processing throughout its presentation. A continuous task was deemed essential rather than a discrete secondary probe task as had often been used in previous research, particularly in studies of the encoding opera tion.

Researchers have suggested that the movement attributes of direction and distance are coded at different
levels with distance coded perceptually and direction coded conceptually. To examine this aspect, both direction and distance information were chosen as measures of secondary motor shadowing performance.

The rationale for the choice of the primary tasks was to assess the attention demands of the processing stages of encoding, retrieval and execution with regard to movement information. In encoding, subjects had to compare two movement lengths presented passively. In this condition, no output or execution was demanded. The subject essentially only had to perceive two movement lengths and compare them. The retrieval task (reproducing specific movement lengths which had been rehearsed) required the subject not only to retrieve the stored representation but to convert it into an overt reproduction. Hence, a condition whereby the subject was required to execute a similar movement but without regard to extent or direction enabled the attention demands of the actual overt movement and the retrieval from memory to be divided.

Based on findings of a number of experiments, several researchers have made inferences about memory processes which can only really provide tenuous conclusions. The comparison of the attention demands of each processing stage relative to one another was particularly meaningful considering that the memory processes were included within the
one experiment employing only the kinesthetic sensory system.

Justification of the Problem

Investigations of the processing of kinesthetic information necessary for motor responses will have far-reaching effects by providing the scientific knowledge necessary to understand the acquisition and retention of motor skills for human performance. It has been clearly established that man is limited in the amount of information which can be processed. Therefore, any determination of where processing limitations are will enable those responsible for the teaching of motor skills to ensure that these particular stages are not overloaded. Appropriate adjustments may then be provided to facilitate the effectiveness of information processing at this stage. Should the memory retrieval stage in processing of kinesthetic information require attention and involve distinct search and recovery processes (as is evidenced in the verbal domain) then studies providing the most minute knowledge of this process in the motor system will commence, the foundation from which the empirical knowledge will be derived. However, should the retrieval stage not be attention demanding, as Keele (1973) suggested, then it will be apparent that the processing of
kinesthetic sensory information does not parallel that of verbal sensory information and therefore research should be guided toward an understanding of the unique nature of processing kinesthetic information.

Purpose

The purpose was to determine if the retrieval of kinesthetic sensory information, as measured by recall from long-term memory, requires attention.

As it was necessary to separate retrieval from encoding and response execution it was possible to assess the relative attention demands of encoding and response execution with respect to solely kinesthetic sensory information.

Hypotheses to Confirm that Retrieval from Memory Requires Attention

1. The performance of motor shadowing while retrieving learned movement lengths in a known order of recall will be less accurate than motor shadowing when done while encoding a movement length.

2. The performance of motor shadowing while retrieving learned movement lengths in a known order of recall will be less accurate than motor shadowing when done during a response execution of a movement.
3. The performance of motor shadowing while retrieving learned movement lengths in an unknown order prior to recall will be less accurate than motor shadowing when done while encoding a movement length.

4. The performance of motor shadowing while retrieving learned movement lengths from memory in an unknown order prior to recall will be less accurate than motor shadowing during a response execution of a movement.

5. The performance of encoding a movement length while motor shadowing will be as accurate as when the encoding of the movement length is done alone.

6. The time taken for response execution of a movement stop while motor shadowing will be the same as when response execution of movement is done alone.

7. The performance of retrieving of movement lengths from memory in a known order of recall while simultaneously motor shadowing will be as accurate as when the movement lengths are retrieved alone.

8. The performance of retrieving movement lengths from memory in an unknown order prior to recall while simultaneously motor shadowing will be as accurate as when the movement lengths are retrieved alone.

9. The performance of motor shadowing while simultaneously
retrieving learned movement lengths from memory in a known order of recall will be more accurate than motor shadowing while simultaneously retrieving learned movement lengths from memory in an unknown order prior to recall.
CHAPTER III

METHODOLOGY

Subjects

Thirty right-handed, right-footed volunteer Intro-
ductory Psychology university students (fifteen male,
fifteen female) served as subjects. All were experimentally
naive. The mean age was twenty-one years, three months with
a standard deviation of three years, ten months. Each
subject participated in nine experimental conditions.

Apparatus

Kinesthetic Sensory Apparatus

The apparatus used was identical for all trials within
each experimental condition and is illustrated in Figure 1.
It consists of two pantographs [A1] and [A2] each secured
to the same twelve-inch square metal frame which allows
movement on both ends of each pantograph within a cir-
cumference range of 81.28 centimeters. Handles are
attached to the movable ends of each pantograph. Each
handle links the subject’s movement with that of the ex-
perimenters in a one-to-one correspondence. A roll of
40-weight paper [B], 60 centimeters in width, is suspended
by a metal rod [C], 75 centimeters in length. The paper
42.
Figure 1 Kinesthetic Sensory Apparatus
extends over a metal baseboard [D], 121.92 centimeters wide. A second metal roll [E], 75 centimeters in length, anchors the paper on the metal baseboard. A crank is attached to a third metal rod [F] on which the paper is connected. This permits the paper to be rolled between trials. The right foot of the subject was fitted to a plywood footpiece [G] in which a magic marker was secured. The subject had full control of the foot when moving.

Movement of the left pantograph was guided by two forty centimeter metal runners [H₁] and [H₂] either side of the attached ending. Figure 2 depicts this portion of the apparatus viewed from the experimenter's side. On the outside of the right runner, a twenty-five centimeter length of wood [I] covered by a copper sheet was secured to the table. The copper was separated into three seven centimeter segments. A circuit was established between the ending of the left handle, the copper sheets and a microswitch [J] connected to three millisecond timers. This enabled the time of movements to be measured in three time periods during the course of the movement. A thirty centimeter metal rule [K] was secured to the left metal runner to enable the length of movement to be measured by reference to a pointer [L] attached to the left pantograph. A microswitch [M] which was placed against the end of the left handle and in circuit with a millisecond timer was used to time movements. Another
Figure 2 Ending of left pantograph with measurement equipment. (Viewed from experimenter's side).
microswitch [N] could be depressed by the experimenter on the completion of the movement. The experimental situation with the subject and the two experimenters is illustrated in Figure 3.

Experimental Design

The design was a 2x9 factorial design with repeated measures on the last factor. The conditions within the second factor were:

- Condition 1: Encoding
- Condition 2: Cued retrieval
- Condition 3: Non-cued retrieval
- Condition 4: Response execution
- Condition 5: Motor shadowing alone
- Condition 6: Motor shadowing and encoding
- Condition 7: Motor shadowing and cued retrieval
- Condition 8: Motor shadowing and non-cued retrieval
- Condition 9: Motor shadowing and response execution.

Conditions 1-4 and 5-9 were systematically rotated independently across males and females as outlined in Appendix D.

Independent Variables

There were two independent variables in the experimental design, sex and the number of tasks each with two levels. For the second independent variable, the number of tasks to be performed concurrently, the two levels were---
single task and dual task situations. In the single task conditions, which all served as baseline standards for comparing the dual task performances, there were five sub-levels: (a) encoding, (b) cued retrieval, (c) non-cued retrieval, (d) response execution, and (e) motor shadowing. The dual task conditions involved four sub-levels of motor shadowing a kinesthetic sensory input to the right-hand together with (a) encoding, (b) cued retrieval, (c) non-cued retrieval, and (d) response execution.

Dependent Variables for Motor Shadowing

Three dependent variables were employed in the analysis of the shadowing of patterns of movement. The first dependent variable was the absolute error in the angles of the patterns shadowed by the subjects which deviated from the criterion angles presented by the experimenter. The mean absolute error of the length of lines between the angles which deviated from the criterion lengths presented by the experimenter was the second dependent variable. The third dependent variable was the number of direction changes missed as a percentage of the total number of direction changes presented. The four patterns which were used are located in Appendix B.
Control Measures of Encoding, Retrieval, and Response Execution

Encoding: The number of correct verbal responses of the 'same' or 'different' to the movement length presented by the experimenter during trials, as compared with a movement length presented prior to the trial in encoding, served as the control of encoding performance. Correct responses 'same' or 'different' were recorded to ensure that encoding performance in the single task conditions were comparable with encoding in the dual task conditions thereby establishing that subjects only devoted as much attention to motor shadowing as encoding permitted. On any trial where an incorrect response was given the trial was discounted and a further trial given.

Cued and non-cued retrieval: There was one control measure for retrieval of the length of movement—the absolute error of the length of movement recalled from the criterion length which had previously been learned. On all trials, subjects were required to be within an absolute deviation of 10% of the criterion length otherwise trials were not counted. This measurement was necessary to ensure that subjects only devoted as much attention to motor shadowing as the retrieval conditions permitted.

Response execution: The time taken for the left pantograph to transverse the distance moved to a stop
was measured in three time periods of seven centimeters each. The time taken on trials of single task condition were compared to those performances together with motor shadowing to ensure the response execution times were comparable under both conditions.

Procedures

The experiment consisted of approximately two fifty-minute sessions administered on two consecutive days. The first day was devoted to the learning phases while on the second day the testing phase was completed.

Learning Phase

This session consisted of teaching three movement lengths which had to be both recognized and recalled to a criterion standard to determine that the lengths were rehearsed into long-term memory for later retrieval. Upon arrival at the laboratory the nature of the study and the procedures were explained in general terms. The subject was then required to wear goggles (to prevent visual information being available during the experiment) and guided into the laboratory and seated facing the kines- thetic sensory apparatus. Earphones were placed on the head and the purpose of the learning phase was explained. All experimental instructions were given through the earphones. During actual performance the earphones emitted
masking noise in order to prevent any auditory sensory information being available. One of three movement lengths to be learned—4, 9 and 13 centimeters, identified as lengths 1, 2 and 3 respectively—was presented to the left hand. After four presentations by the experimenter, the subject was required to reproduce the length and then remove the hand from the handle. Knowledge of results was provided by the experimenter to assist the subject in learning the length. The actual distance in millimeters was recorded on all trials. The subject continued practicing until the distance could be reproduced five consecutive times within an absolute deviation of 10% of the criterion distance. The times for four correct movement reproductions during learning were recorded to the nearest millisecond. Once the subject was able to reach the pre-established standard, the other two lengths were taught in the same manner. When it was considered the lengths had been learned, the experimenter randomly presented them for recognition. The subject was required to verbally respond as to which length was presented. Once the lengths could be identified, it was considered they had been learned and rehearsed into long-term memory. Prior to a five-minute break, the subject was given practice combining the lengths to be reproduced in one continuous motion, the total distance of the lengths being of interest. Once again, knowledge of results was
provided. During the break, subjects left the laboratory. Upon returning to the laboratory the footpiece was attached to the right foot and retention of lengths was tested.

Practice was then given until achievement of five consecutive reproductions within the 10% deviation. Once this was completed, practice was given shadowing with the right foot geometric patterns presented to the right hand, although at no time were the patterns to be used in the experimental phase presented. The subject was instructed to slide the whole foot and concentrate on the direction of the movement, the distance and change direction at the same angles with the right foot as was being presented to the right hand. At the completion of presentation of three patterns, the subject was permitted to leave and reported back to the laboratory at the same time the following day.

Testing Phase

When the subject returned the following day, he was again seated facing the kinesthetic sensory apparatus, the footpiece attached to the right foot. The retention of the three lengths learned the previous day was then tested. When the subject did not achieve the designated standard of 10% deviation from the designated length, relearning occurred—the procedures the same as for the previous day.
Following any necessary rehearsal, the testing phase was commenced. The instructions and the procedures within each of the nine conditions was explained on the earphones from a pre-recorded tape. Before all conditions commenced, the subject was required to re-explain what was to happen to ensure the instructions were completely understood. The instructions which preceded each experimental condition are included in Appendix A. The subject was instructed in the dual task conditions, it was imperative to only give as much attention to the motor shadowing task as the encoding, retrieval and response execution movement tasks permitted. This technique was used to determine the sensitivity of the motor shadowing task to the information processing demands of the above mentioned primary movement tasks.

Condition 1 - Encoding

This condition consisted of four trials necessitating a 'same' or 'different' verbal response—the correct response on two trials being the 'same' and two being 'different.' Following the instructions and any clarification, one of the three learned lengths was presented to the left hand, the subject having to encode the distance. The left hand was then removed from the handle. The signal to replace the hand was the masking noise being turned off and on. The experimenter then presented
another of the learned lengths. On the completion of the second presentation, the subject replaced the hands on the lap and then gave the verbal response 'same' or 'different' based on comparison of the two lengths presented. The four pairs of movements which were presented are outlined in Appendix E.

Condition 2 - Cued retrieval

Following the instructions, the subject assumed the ready position with both hands on the pantograph handles. Then the number(s) of the length(s) to be retrieved were given on the earphones. The distance(s) were then recalled by moving the left pantograph forward until the subject considered the criterion length was reproduced. Hands were then replaced on the lap to await the number(s) corresponding to the next movement length to be reproduced. The movement times were recorded. The four lengths to be retrieved and the order of trials are outlined in Appendix E.

Condition 3 - Non-cued retrieval

Following the instructions, the subject placed both hands on the pantograph handles. The left hand was then very slowly moved forward. As soon as the experimenter detected movement of the left pantograph the number(s) corresponding to the length(s) to be reproduced was given
over the earphones. The subject continued movement forward until it was considered the designated length was reproduced. The distance travelled prior to the number(s) being given was to be included as part of the overall length of movement. The movement times were recorded. The four lengths to be retrieved and the order of trials are outlined in Appendix E.

Condition 4 - Response execution

Following the instructions, the commencement of the first trial was indicated by the start of the masking noise on the earphones. The subject then pushed the left pantograph forward slowly and smoothly a distance of twenty-one centimeters. The movement through the metal runners terminated by a wooden stopper. Between trials the subject removed the left hand and the experimenter moved the left pantograph back ready for the next trial.

At the completion of the first four conditions the subject was given a two-minute rest period.

Condition 5 - Motor shadowing

The four trials by all subjects in this condition involved single task presentation of motor shadowing of movement presented to the right hand. The subject shadowed the movement patterns with the right foot, adhering to perceived length of lines, direction of movement
and angles of any direction changes. Four patterns of movement, one for each trial, were presented to all subjects in the order outlined in Appendix E. Each pattern presentation was approximately ten seconds with an intertrial interval of fifteen seconds, during which time the paper and the pattern were changed.

A millimeter scale on each pattern enabled the experimenter to determine where the presentation of movement was concluded in the remaining dual task conditions. This was necessary as it was possible, and usually the case, that the entire pattern presentation was not completed prior to the completion of the movement task with the left hand.

Condition 6 - Motor shadowing and encoding

The commencement of the four trials in this condition followed the pre-recorded instructions. On each trial, the subject was presented one of the three previously learned movement lengths, the distance of the movement being encoded, the hand removed from the left handle following the cessation of the movement. The masking noise was turned off and on which indicated to resume the ready position with the hand replaced. A pattern was then presented to the right hand to be shadowed by the right foot, while a second learned movement length was simultaneously presented to the left hand. The presenta-
tion of the pattern to the right hand was always completed at the same time as the completion of the presentation of the second movement length. With the cessation of movement to the left hand, the subject remained steady, the foot held in a stationary position. The response 'same' or 'different' was then given, based on the comparison of the two lengths presented to the left hand. The experimenter then lifted the foot to enable the paper to be rolled for the next trial—the left pantograph being placed back in position. The lengths of movements and the order of presentation are outlined in Appendix E. The order of presentation of the patterns are outlined in Appendix E.

Condition 7—Motor shadowing and cued retrieval

The number(s) of length(s) to be retrieved were given prior to each trial. A pattern was presented to the right hand to be shadowed, while the subject simultaneously recalled the length(s) denoted by the number(s) of the movement length(s) given on the earphones. Presentation of the pattern was ceased upon completion of the left hand movement by the subject. The length(s) to be recalled in each of the four trials and the order of the patterns are outlined in Appendix E.

Condition 8—Motor shadowing and non-cued retrieval

On trials in this condition, following the commence-
ment of the masking noise, the subject placed both hands on the handles and when ready commenced movement of the left pantograph slowly and smoothly forward. As soon as the experimenter detected movement the number(s) of the length(s) to be reproduced were given. The subject continued to move the left hand forward until it was considered the distance corresponding to the number(s) had been reproduced. As soon as the subject commenced movement of the left hand the second experimenter presented a pattern to the right hand to be shadowed. The presentation of the pattern was ceased upon completion of the left hand movement by the subject. The lengths to be recalled in each of the four trials and the order of the patterns are outlined in Appendix E.

Condition 9 - Motor shadowing and response execution

Following the instructions and any necessary explanation, the subject placed both hands on the pantograph handles and moved the left pantograph slowly and smoothly the same as in Condition 4. As soon as the movement was commenced, the second experimenter presented a pattern to the right hand to be shadowed with the right foot. When the movement of the left hand was stopped, the presentation of movement to the right hand was terminated.
Data Analysis

1. A series of two factor analyses of variances (sex x tasks) with repeated measures on the last factor were computed in order to determine the differences in motor shadowing performances as related to sex. These would determine if there were differences between sexes in respect to the demands of the various processing stages of encoding retrieval and response execution.

2. Single factor analyses of variances with repeated measures were computed for the primary tasks when combined with motor shadowing. For these analyses the sex variable data was pooled.

3. A two factor analyses of variance (condition x segment) was computed to compare response execution times over three, seven centimeter segments both alone and when combined with motor shadowing.

4. A series of one-way analyses of variance (number of items) were computed for the number of length retrieved from memory in cued and non-cued retrieval.

5. Scheffe (S) post hoc comparisons were calculated for significant motor shadowing performances for all three dependent variables.

6. Scheffe tables were drawn for all motor shadowing main effects.

7. Graphs were drawn for each dependent variable for
shadowing performances alone and together with the primary tasks.

8. The $\alpha = .05$ level of confidence was accepted for all experimental analyses.
CHAPTER IV

RESULTS

There have been numerous explanations forwarded to account for man's limitations in processing information derived from the sensory receptors. Subsequent to the arrival at the receptors, stages of encoding, retrieval from memory and response execution have been delineated. It has been suggested that some stages in processing may not require attention and thus can be discounted as a possible source of a limitation in processing. Several researchers consider the bottleneck to be at the response execution stage advocating encoding and retrieval of information to be automatic and non-attentive processes.

The experimental design in the present study enabled the stages of encoding, retrieval and response execution to be isolated and the attention demands of each to be assessed during the processing of kinesthetic information. The design consisted of two phases, the first a training phase was devoted to learning three movement lengths of 4, 9, and 13 centimeters. The mean number of trials for subjects to learn the lengths (to within ten percent absolute deviation of the criterion length) were: 14.76, 8.79, and 11.2, respectively. Following a five-minute
retention interval, during the learning phase, the mean number of trials to reach the criterion were 10.76, 6.79, and 7.93. After a twenty-four hour retention period, the mean number of trials to reach the criterion were 11.48, 8.03, and 7.93 for 4, 9, and 13 centimeters, respectively. Subsequent to the reattainment of the necessary standard, on the second day the second phase with the experimental conditions was administered.

Guaranteed Primary Task Controls

Four primary tasks were chosen explicitly to assess the attention demands of the following processing stages: encoding, retrieval and response execution. Two primary tasks were selected to examine two different levels of retrieval of information from memory. Each task was performed separately and then combined with the secondary task of motor shadowing. Controls were established to guarantee that each of the primary tasks, received the allocation of attention it demanded, and that only remaining processing capacity could be devoted to the secondary task of motor shadowing.

Encoding

The encoding task involved two of the movement lengths previously learned being presented successively to the
left hand. The subject was required to respond 'same' or 'different' based on the comparison of the two lengths presented. Four trials were given and on any trial where an incorrect response was given, a further trial was included. When combined with motor shadowing, on the presentation of the second movement length to the left hand, movement was also presented to the right hand to be shadowed with the right foot. The subject shadowed this movement while attempting to provide a correct response in the comparison of the two lengths presented to the left hand. The mean number of trials for subjects to correctly identify the lengths in encoding when performed with motor shadowing was 5.2 trials with a standard deviation of 1.3. Based on 50% correct responses on each trial, had the subject been guessing the mean number of trials to identify the lengths correctly would have been seven. Therefore, it can be asserted that the subjects were primarily encoding the distance presented and were only devoting additional capacity to the secondary motor shadowing task.

Cued and non-cued retrieval

Retrieval from memory required the subject to reproduce the movement lengths previously learned by moving the left handle forward. In cued retrieval, the number(s) corresponding to the movement length(s) to be retrieved
from memory were known prior to the commencement of the trial. In non-cued retrieval, the number(s) corresponding to the movement length(s) to be retrieved from memory were not given until the subject commenced movement of the left hand. In both forms of retrieval the movement lengths when retrieved while motor shadowing were required to be within 10% of the criterion length. Consequently, in retrieval and motor shadowing conditions, motor shadowing performances were not accepted unless the retrieval performance was within this criterion standard.

Response execution

In the response execution task, the subject was required to move the left hand slowly and smoothly forward twenty-one centimeters until the movement was stopped. To ensure the movement was comparable when combined with motor shadowing as when performed alone, the speed of movement was timed for three seven-centimeter segments. Any movement time when performed with motor shadowing which deviated markedly from performances alone was discounted and a further trial given. A 2 x 3 analysis of variance (task x condition) was computed and is presented in Table 1.

The main effect of single versus dual task performance was not significantly different, \(F(1,58) = 0.18 \ p > .05 \). The mean movement time for all subjects across the three
Table 1

Summary Table for the Analysis of Variance for the Response Execution Times Alone and Together with Motor Shadowing for Three Equal Movement Lengths

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>173.97</td>
<td>59</td>
<td>0.54</td>
<td>0.18</td>
</tr>
<tr>
<td>'A' Main Effects</td>
<td>173.43</td>
<td>58</td>
<td>2.99</td>
<td>30.93*</td>
</tr>
<tr>
<td>Subjects Within Groups</td>
<td>45.14</td>
<td>120</td>
<td>0.38</td>
<td>0.64</td>
</tr>
<tr>
<td>Within Subjects</td>
<td>15.59</td>
<td>2</td>
<td>7.79</td>
<td>8.42</td>
</tr>
<tr>
<td>'AB' Interaction</td>
<td>0.33</td>
<td>2</td>
<td>0.16</td>
<td>0.34</td>
</tr>
<tr>
<td>'B' x Subjects Within Groups</td>
<td>29.23</td>
<td>116</td>
<td>0.25</td>
<td>0.14</td>
</tr>
</tbody>
</table>

*P < .05
seven-centimeter segments were 1.93, 2.63, and 2.46 seconds respectively for response execution alone and 1.81, 2.43, and 2.46 with motor shadowing. There was a significant main effect of movement segment, \(F(2,120) = 30.93 \ p < .05 \), while there was no significant interaction, \(F(2,116) = 0.64 \ p > .05 \). Figure 4 graphically presents the relationship of the movement time to the segment of the movement and the single versus dual task conditions. The movement times indicated subjects did not execute the movement slowly and smoothly. A ballistic initiation was followed by a slowing down in the middle segment of the movement and a slight increase in speed in the final segment when movement was executed alone. However, as there was no difference in the response execution movement times when performed alone and with motor shadowing, it may be accepted that the movements made were the same.

By implementing the aforementioned controls, it was possible to ensure that subjects only devoted as much attention to the secondary motor shadowing task as the encoding, cued retrieval, non-cued retrieval, and response execution tasks permitted. This was necessary to guarantee the primary encoding, retrieval or response execution task gained initial access to the available central processing capacity. Any remaining capacity could be devoted to the secondary motor shadowing task and the relative demands could then be determined as a function of the demands of
Figure 4 Time of movements in response execution measured in three seven centimeter segments, alone and together with motor shadowing.
the processing stages being investigated.

Secondary Motor Shadowing Performances

Since all the controls were met the relative demands of each secondary motor shadowing performance in the dual situation was evaluated against a baseline performance of motor shadowing alone. Three dependent measures were computed to determine motor shadowing performance. The results are presented separately for each of the dependent variables: mean absolute error of the angles, mean absolute error of the lengths of lines drawn between angles, and the percent of direction changes missed. All the ANOVA tables computed for motor shadowing performances are located in Appendix C.

A series of 2 x 5 analyses of variances (sex x conditions) with repeated measures on the last factor for each of the dependent variables were calculated. There was no significant main effect of sex for mean absolute error of angles, $F(1,28) = 0.59 \ p > .05$; mean absolute error of lengths, $F(1,28) = 0.02 \ p > .05$; and number of direction changes missed, $F(1,28) = 0.65 \ p > .05$.

As there was no significant sex effect for each of the three dependent measures of motor shadowing performance, the sex variable data were pooled and analyzed using 1 x 5 analyses of variances with repeated measures.
The Scheffe (S) method of multiple comparisons was then applied to compare each of the motor shadowing conditions separately for each dependent variable.

Mean absolute error of angles shadowed

There was a significant difference between each of the motor shadowing conditions, $F(4,116) = 36.81, p < .05$. The mean absolute error in degrees of angles shadowed for motor shadowing alone, motor shadowing and response execution, motor shadowing and encoding, motor shadowing and cued retrieval, and motor shadowing and non-cued retrieval were: 22.67, 35.50, 38.87, 47.32, and 58.80 respectively, which is graphically depicted in Figure 5. The Scheffe (S) values for each individual comparison of the mean absolute error of the angles in motor shadowing are presented in Table 2. Motor shadowing performance alone was significantly different from motor shadowing when combined with all primary tasks. The mean difference in degrees between motor shadowing alone, and (a) response execution, (b) encoding, (c) cued retrieval, and (d) non-cued retrieval was 12.83, 16.20, 24.65, and 36.13.

Motor shadowing and response execution was significantly different from both cued and non-cued retrieval when combined with motor shadowing with the mean absolute error in degrees in response execution being 11.82 and
Figure 5 Mean absolute error in degrees of angles in motor shadowing for single and dual task conditions.
Table 2
Comparison of the Mean Absolute Error of the Angles in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued Retrieval and Non-cued Retrieval Using the Scheffe (S) Post Hoc Comparison Technique

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Motor Shadowing Alone</th>
<th>Motor Shadowing and Response Execution</th>
<th>Motor Shadowing and Encoding</th>
<th>Motor Shadowing and Cued Retrieval</th>
<th>Motor Shadowing and Non-cued Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Absolute Error in Degrees</td>
<td>22.67°</td>
<td>35.50</td>
<td>36.87</td>
<td>47.32</td>
<td>58.80</td>
</tr>
<tr>
<td>Motor Shadowing Alone</td>
<td>-</td>
<td>4.00*</td>
<td>5.16*</td>
<td>7.84*</td>
<td>11.50*</td>
</tr>
<tr>
<td>Motor Shadowing and Response Execution</td>
<td>-</td>
<td>1.07</td>
<td>-</td>
<td>3.76*</td>
<td>7.42*</td>
</tr>
<tr>
<td>Motor Shadowing and Encoding</td>
<td>-</td>
<td>-</td>
<td>2.69</td>
<td>-</td>
<td>6.34*</td>
</tr>
<tr>
<td>Motor Shadowing and Cued Retrieval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.65*</td>
</tr>
<tr>
<td>Motor Shadowing and Non-cued Retrieval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Required $S(4,116) = 3.13$ $p < .05$

*p < .05
23.30 less, respectively.

As well as being significantly different from motor shadowing alone, motor shadowing and encoding was significantly different from motor shadowing and non-cued retrieval. The actual difference was 19.93 degrees.

Motor shadowing and cued retrieval was significantly different from all other primary tasks with the exception of motor shadowing and encoding, the difference between these two conditions was 8.45 degrees.

Motor shadowing performance when combined with non-cued retrieval was significantly less accurate than motor shadowing when performed together with all the other primary tasks. The mean absolute error of the angles of motor shadowing in non-cued retrieval was 23.30, 19.93, 11.48 degrees greater than for response execution, encoding and cued retrieval, respectively. Hence, it was apparent each of the processing stages of encoding, retrieval and response execution when combined with shadowing adversely affected the shadowing of the angles presented. Clearly, the greatest interference (58.80 degrees) was the situation in which the items to be retrieved from memory were not known prior to the actual retrieval situation. The extent of interference to secondary motor shadowing when comparing two movement lengths presented passively was of the same magnitude as was required to reproduce movement lengths known prior to the actual
retrieval situation. Furthermore, the comparison of the two movement lengths presented passively produced equal interference to secondary motor shadowing, as did movement which only required movement to a stop. However, the interference to motor shadowing caused when reproducing movement lengths, known prior to the actual reproduction, was significantly greater than executing a movement without regard to extent, corrections and termination of the movement.

Direction changes missed in motor shadowing

There was a significant difference between the motor shadowing conditions, $F(4, 116) = 33.80, p < .05$ for the percent of direction changes missed. Table 3 contains the S values for each of the experimental conditions while the relationship of the percentage of directional changes missed to the experimental conditions is depicted in Figure 6. The percent of direction changes missed for motor shadowing alone, motor shadowing and response execution, motor shadowing and encoding, motor shadowing and cued retrieval, and motor shadowing and non-cued retrieval were: 0.00%, 11.63%, 15.27%, 33.27%, and 40.30%. The magnitude of direction changes missed in motor shadowing followed a similar pattern to the mean absolute error of the angles presented in motor shadowing. There
Table 3

Comparison of the Number of Direction Changes Missed in Motor Shadowing When Performed Alone and With Response Execution, Encoding, Cued Retrieval and Non-cued Retrieval Using the Scheffe (S)

<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Motor Shadowing Alone</th>
<th>Motor Shadowing and Response Execution</th>
<th>Motor Shadowing and Encoding</th>
<th>Motor Shadowing and Cued Retrieval</th>
<th>Motor Shadowing and Non-cued Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Direction Changes Missed</td>
<td>00.00</td>
<td>11.63%</td>
<td>15.27%</td>
<td>33.27%</td>
<td>40.30%</td>
</tr>
<tr>
<td>Motor Shadowing Alone</td>
<td></td>
<td>2.80</td>
<td>3.72*</td>
<td>8.27*</td>
<td>10.04*</td>
</tr>
<tr>
<td>Motor Shadowing and Response Execution</td>
<td>0.92</td>
<td>0.92</td>
<td>5.47*</td>
<td>7.25*</td>
<td></td>
</tr>
<tr>
<td>Motor Shadowing and Encoding</td>
<td></td>
<td></td>
<td>4.55*</td>
<td>6.33*</td>
<td></td>
</tr>
<tr>
<td>Motor Shadowing and Cued Retrieval</td>
<td></td>
<td></td>
<td></td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>Motor Shadowing and Non-cued Retrieval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required \(S(4,116) = 3.13 \) \(p < .05 \)

*\(p < .05 \)
Figure 6 Percent of direction changes missed in motor shadowing for single and dual task conditions.
was a significant difference between motor shadowing alone compared to motor shadowing combined with encoding, cued, and non-cued retrieval. There were no direction changes missed in either response execution or motor shadowing alone. With respect to the number of direction changes presented, the greatest decrement in performance in the secondary motor shadowing task was the reproduction from memory of movement lengths not known prior to the actual retrieval performance. Furthermore, it was evident that each of the other processing tasks, except response execution, caused a significant decrement in motor shadowing as evidenced by the percent of direction changes missed for each primary task being significantly more than when motor shadowing was performed alone. Motor shadowing when combined with encoding resulted in the omission of 15.27% which was significantly less than when motor shadowing was combined with cued and non-cued retrieval. The differences from motor shadowing and encoding for each was 18.00 and 25.03 degrees. Motor shadowing and response execution resulted in a 3.64% increase in omission of direction changes than motor shadowing and encoding, although this difference was not significant, $S_{(4,116)} = 0.92 \ p > .05$. The tasks of identifying passive movement distances as 'same' or 'different' and executing a movement to a stop produced less interference to the shadowing of the direction changes than did cued and non-cued
retrieval of movements from memory. However, both did
cause a significant decrement in performance as,
evidenced by the decrement of motor shadowing when
compared to motor shadowing alone.

The difference of 7.03% of direction changes missed
in motor shadowing when performed with cued as opposed to
non-cued retrieval failed to reach significance, $S(4,116) =
1.78 \ p > .05$. Unlike the mean absolute error of angles
motor shadowed, the number of direction changes missed
in motor shadowing when reproducing movement lengths was
no more adversely affected by the lengths to be retrieved
not being known prior to the actual retrieval performance.

Mean absolute error of lengths of
lines in motor shadowing

There was a significant difference between motor
shadowing conditions, $F(4,116) = 2.64 \ p < .05$. The mean
absolute error of the length of lines for all subjects for
motor shadowing alone, motor shadowing and response execu-
tion, motor shadowing and cued retrieval, and motor shadow-
ing and non-cued retrieval were: 4.90, 6.12, 5.38, 5.29,
and 5.72 centimeters. The relationship of the lengths of
lines to the conditions of motor shadowing are illustrated
in Figure 7 while S values for each condition are pre-
sented in Table 4. There was no significant differences
of the lengths of lines in terms of the S values, $p > .05$.
Figure 7 Mean absolute error in centimeters of lengths of lines in motor shadowing for single and dual task conditions.
<table>
<thead>
<tr>
<th>Experimental Condition</th>
<th>Median Absolute Error in Centimeters</th>
<th>Motor Shadowing and Response Execution</th>
<th>Motor Shadowing and Encoding</th>
<th>Motor Shadowing and Cued Retrieval</th>
<th>Motor Shadowing and Non-cued Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Shadowing Alone</td>
<td>4.90</td>
<td>6.12</td>
<td>5.38</td>
<td>5.29</td>
<td>5.72</td>
</tr>
<tr>
<td>Motor Shadowing and Response Execution</td>
<td>-</td>
<td>3.04</td>
<td>1.19</td>
<td>0.97</td>
<td>2.05</td>
</tr>
<tr>
<td>Motor Shadowing and Encoding</td>
<td>-</td>
<td>-</td>
<td>1.85</td>
<td>2.07</td>
<td>0.99</td>
</tr>
<tr>
<td>Motor Shadowing and Cued Retrieval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.22</td>
<td>1.08</td>
</tr>
<tr>
<td>Motor Shadowing and Non-cued Retrieval</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Required $S(4,116) = 3.13$ $p < .05$

p < .05
However, the difference of 1.22 centimeters between motor shadowing alone and motor shadowing and response execution reached significance, $S = 3.04$ $p < .10$. From the mean absolute error of the lengths in motor shadowing, it was obvious that subjects were unable to reproduce the movement lengths as presented in motor shadowing. This is a valid interpretation, particularly when the mean absolute error of the lengths in motor shadowing performances alone was approximately five centimeters which is half the mean absolute length of the movements presented.

Items in Retrieval

The retrieval of movement lengths from memory while motor shadowing was structured so that ancillary information the effect of the number of items to be retrieved could be examined. There was no significant difference of motor shadowing with respect to the number of items in cued retrieval for neither the absolute error of angles, $F(3, 87) = 0.82$ $p > .05$ nor the mean absolute error of the lengths of lines, $F(3, 87) = 1.34$ $p > .05$. In non-cued retrieval the difference in motor shadowing with respect to length of lines failed to reach significance, $F(3, 87) = 1.25$ $p > .05$. However, there was a significant difference disclosed for the angles shadowed, $F(3, 87) = 3.86$ $p < .05$. Employing the Scheffe (S) test it was demonstrated that the only significant difference (18.18 degrees) was the
retrieval of the 13-centimeter movement length as opposed to the retrieval of all three movement lengths, 4, 9, and 13 centimeters as is depicted in Table 5. Except for this difference, neither the cued nor the non-cued retrieval motor shadowing performances were differentially affected as a result of the number of lengths to be retrieved.
Table 5
Comparison of the Mean Absolute Error of the Angles in Motor Shadowing When Performed Together With the Non-cued Retrieval of 9, 13, 9 and 13, 4, 9 and 13 Centimeter Lengths

<table>
<thead>
<tr>
<th>Non-cued Retrieval Trials</th>
<th>Motor Shadowing and Retrieval 9 cm.</th>
<th>Motor Shadowing and Retrieval 13 cm.</th>
<th>Motor Shadowing and Retrieval 9 and 13 cm.</th>
<th>Motor Shadowing and Retrieval 4, 9 and 13 cm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Absolute Error of Angles in Degrees</td>
<td>51.38°</td>
<td>67.35</td>
<td>59.92</td>
<td>49.17</td>
</tr>
<tr>
<td>Motor Shadowing and Retrieval 9 cm.</td>
<td>-</td>
<td>2.66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motor Shadowing and Retrieval 13 cm.</td>
<td>-</td>
<td>-</td>
<td>1.24</td>
<td>3.03*</td>
</tr>
<tr>
<td>Motor Shadowing and Retrieval 9 and 13 cm.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.79</td>
</tr>
<tr>
<td>Motor Shadowing and Retrieval 4, 9 and 13 cm.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Required $s(3,87) = 2.71 \ p < .05$
*p < .05
CHAPTER V

DISCUSSION

Introduction

The principle objective of the present research was to determine whether the retrieval of kinesthetic sensory information from memory demands attention. Furthermore, it was possible to examine the relative attention demands of the information processing stages of encoding and response execution with respect to movement information. The research parallels efforts in the verbal domain to use the divided attention effect as a methodological tool for monitoring the memory processes. Within the dual task conditions instructions always emphasized that attention must be focused on the memory process tasks of encoding, retrieval or response execution with only any additional attention being devoted to the secondary motor shadowing task. In agreement with previous work (Johnston et al., 1970 and Trumbo and Milone, 1971) the divided attention effect was obtained. Secondary motor shadowing was sensitive to the attention demands of encoding, retrieval and execution of movement information. This was controlled by the implementation of the controls for primary task performances and therefore hypotheses five, six, seven and eight were accepted.
Three dependent measures, angles, percentage of direction changes and lengths of lines in motor shadowing were chosen to evaluate secondary motor shadowing performances. However, while values of the mean absolute error of angles and the percent of missed direction changes exhibited comparable indices of the demands of encoding, retrieval and movement execution, the values of the mean absolute error of the lengths of movement shadowed was insensitive to the primary task demands.

The first section of the discussion will be devoted to an explanation of the variation in performance in direction and distance reproduction when shadowing a kinesthetic sensory input. Based on the following interpretation, the remainder of the discussion will be focused on the measurement of secondary motor shadowing performance with respect to direction of movement. The second section will examine the principle aspect of the study—the attention demands of retrieval from memory. The remaining two sections will consider the attention demands of encoding and response execution processes.

Distance and Direction Information

Prior to discussing the memory processes investigated, it was necessary to examine the findings with respect to the dependent variables, angles, the percent of direction changes and lengths of movements in motor shadowing. An explanation for the divergence of reproduction of direction
and distance is the levels of processing interpretation of Craik and Lockhart (1972) and Juola, Taylor, and Young (1974). The basic differences in direction and distance may be attributed to the nature of encoding each of these forms of movement information. Firstly, in accordance with the proposal of Hall and Leavitt (1977) it may be that distance information is encoded at the perceptual level while direction may be encoded at a conceptual level. Hence, the perceptual encoding of the distance attribute allowed reproduction but with little accuracy. In fact, when secondary motor shadowing was performed alone, the mean absolute error in the lengths of movement was 4.9 centimeters—approximately half the distance the subjects were supposed to move. In comparison, the mean absolute error of angles in motor shadowing alone was 22.67 degrees while no direction changes were missed. Thus, encoding of the directional attribute of the movement was probably at a conceptual level.

An interesting aspect of the study was that while the distance information in motor shadowing was not reproduced accurately, subjects were able to successfully reproduce the three movement lengths learned either separately or in combination. The obvious inaccuracy in reproduction of distance information in motor shadowing as compared to the accurate reproduction of the movement lengths in retrieval may be explained by the model of
Juola et al. (1974). In retrieval, the distances were extensively rehearsed and like Chabot, Miller, and Juola (1976) for words and pictures, the distance information in this instance may have led to the formation of a stronger memory trace at the perceptual level of processing. However, in motor shadowing the patterns presented were novel and, hence, would be coded at a shallow depth of processing determined by the physical attributes of the distance information alone.

Another possibility for superior performance in retrieval of distances as opposed to encoding the distances in motor shadowing could be that through rehearsal in the retrieval conditions, the distance information may have been transformed from a perceptual to a conceptual level of processing—semantics being associated with the three movement lengths (Lockhart et al., 1975). This latter explanation is considered the most appropriate. When questioned after the experiment, subjects divulged that they had identified the three lengths as short, medium and long which would support the notion of conceptual encoding whereby an event is mapped into a class of events that differentiate it from other events of the same class.

Although subjects identified the lengths as short, medium and long, almost without exception all three movement lengths were overestimated with four centimeters, for instance, being generally considered
in the vicinity of four inches. This observation is most interesting when it has been proposed that some kinesthetic information when coded may eventually be transformed into a conceptual, visual and kinesthetic code (Dievert, 1975). Obviously the visual and kinesthetic codes were not compatible and yet the subjects were able to reproduce the designated distances. The understanding of the coding of movement information, particularly distance, awaits the findings of future research.

Memory Processes

The results of this study were incongruous with the proposals by Posner and Boies (1971) that encoding does not require attention, and Keele (1972, 1973) that retrieval of information from memory was an automatic non-attentive process. The results provided strong evidence that each of the stages in information processing demanded attention and, hence, access to central processing capacity. The error measures of direction in motor shadowing exhibited the predicted differential effects of the memory processes. The relative magnitude of interference to motor shadowing of each memory process was in agreement with previous verbal studies which have specifically isolated the memory processes using a continuous secondary task of tracking (Trumbo and Noble, 1970; Johnston et al., 1972; Trumbo and Milone, 1972). In each of these studies, memory retrieval
of verbal material was shown to be reflected in tracking as the most attention-demanding stage of processing followed by encoding and then overt response. In the present study, retrieval from memory was the most attention demanding. The mean absolute error of angles in degrees for non-cued, cued retrieval, encoding response execution, and motor shadowing were 58.80, 47.32, 38.87, 35.50 and 22.67 respectively. The finding that non-cued retrieval and cued retrieval demanded more attention than encoding and response execution allows hypotheses one, two, three and four to be accepted.

Memory Retrieval

The retrieval of information from memory is viewed as containing two distinct operations (Sternberg, 1969, 1975; Anderson and Bower, 1972, 1974; Reed, 1976; Wickelgren and Corbett, 1977). Information is recovered from memory through a search process and this is followed by a decision to either terminate the search and respond if the appropriate information is retrieved, or, alternatively, continue the search.

In an attempt to examine the retrieval process in some depth, two retrieval conditions of different magnitude were introduced. Firstly, in cued retrieval where the length(s) to be retrieved were known prior to the reproduction, it was assumed the subject was able to recover
the appropriate representation in advance and, hence, eliminate the search process. However, in the non-cued retrieval condition where the lengths were not known until the actual movement was commenced, the assumption was that the subject had to search and recover the appropriate representation as well as make the decision when to terminate the movement. Hypothesis nine is accepted the results indicating that pre-cuing of the information to be retrieved has a facilitatory effect on the subsequent retrieval performance as evidenced by the greater decrement (11.48 degrees greater for angles and 7.13% for directional changes missed) in the non-cued retrieval condition.

By implementing the two forms of retrieval, it was possible to equate the retrieval process with paradigms which have evaluated memory processes contrasting recognition to recall retrieval (Anderson and Bower, 1972; Tulving and Thompson, 1973). In recall, the search is considered relatively extensive to retrieve the appropriate information while in recognition retrieval the item is presented. Hence, in recognition the search is only necessary to the extent that it confirms the decision chosen with respect to the information presented. While it was assumed that both cued and non-cued retrieval were recall performances, by providing subjects with the information prior to the actual performance, it is quite conceivable that the search process had been
eliminated. Hence, all that was required was the decision to terminate the movement when it was considered the designated length was reproduced and, therefore, this condition was actually a measure of recognition retrieval. Such an interpretation would provide a plausible explanation of the greater accuracy in cued retrieval performance.

Sternberg (1969, 1975), from reaction time experiments examining the retrieval of verbal information, has presented data which would indicate that the latency of the response is a linear function of the size of the set from which the response must be made. Accordingly, the number of movement lengths to be retrieved was manipulated to determine whether the accuracy of motor shadowing was a function of the number of learned movements retrieved. The error of the angles in motor shadowing was significantly greater for one length of 13 centimeters (67.35 degrees) than for three movement lengths of 4, 9, and 13 centimeters together (49.17 degrees), which is the opposite effect with one movement item demanding more attention for retrieval than three movement items. However, subjects were given practice combining the lengths in the learning phase and it is possible the lengths may have been combined and conceptually coded into one additional movement length. However, this finding is of particular interest as the longer movement (26 centimeters) when the three learned lengths were combined.
required less attention than the shorter lengths of 9 and 13 centimeters when retrieved separately. Research of the past five years (Martenuik and Roy, 1972; Martenuik, 1973; Laabs, 1973; Roy, 1976) has indicated that the longer the distance the less accurate the reproduction which would tend to suggest that the longer movement would require more attention. However, it appears the shorter movement demanded more attention as evidenced by the greater decrement in motor shadowing performance.

A further point to note in retrieval is that should the movement reproduction in retrieval be based on kines- thetic feedback, then the limitation in processing may be that this feedback processing is overlapping with the processing of the kinesthetic feedback from the presentation of the movement in motor shadowing. If movement exe- cution in retrieval is based on a motor program which has been developed through rehearsal of the lengths, then there would be no overlap and the interference in motor shadowing would be solely due to the processing requirements of retrieving the motor program. The present study is unable to distinguish between these two possibilities although the method employing motor shadowing would indicate that this question may be answered with further research of the same basic experimental paradigm.
Encoding

It is apparent that the encoding of movement information is an attention-demanding process as evidenced by the significant decrement in motor shadowing performance when combined with this process. The increase in the mean absolute error of angles, in degrees, was 16.20 while there was a 15.27% increase in the number of directional changes missed.

This finding concurs with Johnston et al. (1972), Trumbo and Noble (1972) from studies employing tracking as the secondary task, and Comstock (1973) and Miller (1975) both using a probe secondary task. To explain why the encoding of movement information requires attention and thus access to central processing capacity, again the levels of processing models of either Juola et al. (1974) or Lockhart et al. (1975) may be appropriate. The subject knew the two lengths to be compared would be from the three lengths learned. Thus, it would be inevitable that the spread of processing of this information at the perceptual level would have strengthened the memory trace for recognition (Juola et al., 1974) or alternatively he would assign a category (short, long or medium) to the lengths presented and accordingly the lengths would be encoded at the conceptual level (Lockhart et al., 1975) synonymous to the encoding during movement reproduction in retrieval. Based on the finding of the present study,
that encoding of movement information requires attention, it would appear the encoding operation is a crucial variable to the success of subsequent retrieval of the stored representation of the encoded item as emphasized by Tulving's Encoding Specificity Principle.

Response Execution.

The response execution condition was included as a control to determine the attention demands of the overt response during the retrieval of movement lengths. It was assumed that such a movement would require minimal attention as it was guided by two metal runners and its termination was controlled by the experimenter using a wooden stopper. Having to execute the movement while shadowing caused the error in motor shadowing to increase 12.83 degrees above the error while shadowing alone. The percentage of direction changes missed increased from zero to 11.63% when motor shadowing was combined with response execution. Actually, the attention demands were equatable with the condition involving encoding—the difference in the mean absolute error of the angles in degrees between encoding and response execution was only 3.37. Similarly, the difference in the percentage of direction changes missed was only 3.64%. The attention was attributed primarily to the initiation of the movement.
Although the motor shadowing measure was not sensitive enough to determine precisely where the attention demands were during the course of the movement from observation, it appeared the greatest interference occurred primarily in the initial phase. This interpretation, based on experimental observation, does concur with previous findings of Posner and Keele (1969) and Ells (1969, 1973), both of whom reported the longest latency of reaction time to a secondary probe in movement execution being at initiation of the movement.
CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

Man is viewed as a limited processor of information and selective attention is the phenomenon whereby information from one source is processed while other sources of information are ignored. Investigations of the past decade have concentrated on where selection occurs. Studies have dealt with the reception of sensory input information throughout processing to the final output in response. The three principle stages in processing which have been delineated are encoding, retrieval of information from memory and overt response execution. One explanation forwarded to explain why it is possible in one situation to process two inputs simultaneously while in another to process in a serial manner, is that certain processing stages do not require attention. In fact, it has been proposed on different occasions that each of the processing stages of encoding, retrieval and response execution may not require attention.

This study was primarily designed to determine the attention demands of the retrieval of kinesthetic sensory information from memory. To investigate this memory
process it was necessary to distinguish attention demands of the retrieval process, the encoding process and those of the overt response (motor output). Accordingly, the attention demands of the three processes were determined separately in processing kinesthetic sensory information. The study was confined to the kinesthetic sensory system to establish whether kinesthetic processing actually differs from the more traditional visual and auditory processing, either in its limitations or its basic method of operation.

A total of thirty first year male and female students from Introductory Psychology participated in two one-hour sessions. The apparatus consisted of two pantographs which were in a one-to-one correspondence with two handles controlled by two experimenters. On the first day, subjects learned three movement lengths—4, 9, and 13 centimeters—which were presented to the left hand through the kinesthetic sensory system with visual and auditory cues excluded. The movement of the left pantograph was guided and all movements were made in a straight forward motion. Once the subject could reproduce the distances on five consecutive reproductions, (± 10%), it was assumed that the lengths had been encoded into memory. Retention of the lengths was measured after five minutes and again the following day after 24-hours.
On the second day, after any necessary relearning of the lengths, the experimental phase was conducted. In the experimental phase the attention demands of each of the processing stages was assessed. Two forms of retrieval—cued retrieval and non-cued retrieval—were included. In cued retrieval the lengths to be reproduced were known before the recall trial commenced. In non-cued retrieval the lengths were not known until after the commencement of the retrieval performance. Subjects were required to retrieve the lengths by pushing the left pantograph forward. In encoding, subjects compared two of the learned movement lengths and were required to determine whether the two lengths presented were the 'same' or 'different'. In response execution, the subject performed a 21-centimeter movement by pushing the left pantograph forward until the movement was stopped by the experimenter.

The attention demands of each of these tasks was determined by its interference with a secondary shadowing task. In secondary task of motor shadowing, the subjects replicated movement presented to the right hand with the right foot. A footpiece with a magic marker was secured to the foot and the movement was recorded as the foot moved across a sheet of paper. Two indices of motor shadowing performance were the mean absolute error of the lengths and angles when compared with those present—
ed to the hand. The third measure was the percent of missed direction changes.

It was found that there were no observed differences between the sexes in processing kinesthetic sensory information. However, contrary to postulates of several researchers, each of the memory processes demanded attention and, hence, required access to central processing capacity. Clearly the greatest attention demands were made during the retrieval of movement lengths not known prior to the beginning of retrieval performance. The attention demands of both encoding and response execution were statistically significant as reflected by increased errors during motor shadowing when combined with each of these tasks.

Conclusions

1. The error of motor shadowing when combined with each of the processing tasks was greatest for the retrieval of lengths from memory in both the cued and non-cued recall conditions, which indicates that the retrieval of the movement lengths demanded attention.

2. The retrieval of movement lengths from memory was facilitated by prior knowledge of the movement information to be retrieved.

3. Based on the finding that stimulus encoding, retrieval and response execution processes caused a significant
decrement in motor shadowing of kinesthetic sensory information, it appears that all stages of information processing require attention.

Hence a model that depicts any processing stages as being nonattentive is inappropriate as an explanation of successful human processing of two simultaneous inputs.

Recommendations

1. As all processing stages demanded attention it appears that the question of where selection occurs is inappropriate and more effort should be directed toward quantifying the relative demands of each stage depending on the nature of the activity. When attempting to speak of any process with respect to its demands on central processing capacity, it is imperative that the level of encoding, retrieval extent and the complexity of the response involved be included as essential variables.

2. By providing the subject with the information to be retrieved prior to the retrieval performance it is conceivable the memory search process is eliminated. Hence, what is considered recall retrieval may actually be recognition retrieval. The only real memory requirement in cued retrieval may be the decision to terminate the movement. This interpretation may assist in understanding and distinguishing between the two forms of retrieval and
help explain the different findings that may be a result of using recognition or recall paradigms.

3. While the visual system is considered the dominant sense, the kinesthetic system and the production of movement is the principle nonverbal means by which man expresses himself. However, the present knowledge of the attributes of movement—distance, direction, velocity, torque and time, is limited. The understanding of the coding of movement attributes into internal representations for storage in memory and subsequent retrieval is an area upon which to focus future research efforts.

4. The technique of motor shadowing appears to be a sensitive measure of the attention demands requiring continuous information processing throughout the presentation of a kinesthetic sensory input. The technique should be employed further in the study of the nature and functions of the human information processor particularly in the realms of motor learning and human performance.

Practical Application

1. The attention demands of the retrieval of movement information indicates that it may be a major contributor to the disruption in acquisition and retention of motor skills. Accordingly, educators should always endeavour to provide as much assistance as possible to facilitate
the retrieval process.

2. The coding of distance information seems to be very inaccurate but may be transformed to an accurate memory trace with rehearsal. However, the number of trials following each retention interval necessary to attain the pre-established criterion performance of each of the three movement lengths would suggest that considerable rehearsal of distance information is necessary before this attribute is stored relatively permanently. Educators should realize the inability to code and retain the distance information through kinesthesia only and, hence, use other movement attributes when developing motor skills.
APPENDIX A

INSTRUCTIONS TO SUBJECTS
The following prerecorded instructions were read to subjects prior to each experimental condition.

Condition 1 - Encoding

In this condition the commencement of the masking noise on the earphone will indicate to place both hands on the handles. I will then present a movement length to your left hand. At the completion of the presentation of this movement length the left hand should be lifted from the handle and then replaced when the masking noise is turned off and on. I will then present a second movement length. At the completion of this movement length both hands should be replaced on the lap. Then you should give a verbal response, same or different, based on the comparison of the two lengths presented. Remember, I will make the movement for you. All I want you to do is to compare the two lengths presented and give the response, "the same" or "different". Are there any questions?

Condition 2 - Cued Retrieval

In this condition I will indicate the number of a length which you have previously learned, 1, 2 or 3, which I want you to reproduce by moving the left hand forward. When you consider you have reproduced the distance corresponding to the number the hands should then be replaced on the lap. On any trial, if more than one number is indicated, for example, 1 and 2, or 2 and 3, or even 1, 2 and 3, you are to reproduce the total distance
corresponding to the numbers in one continuous movement. Once you have reproduced the distance the hands should be replaced on the lap. The next trial will be commenced by the indication of the number or numbers corresponding to the distance you are required to reproduce. Are there any questions?

Condition 3 - Non-cued Retrieval

In this condition as soon as you hear the masking noise on the earphones place both hands on the handles. You will then commence movement of the left hand slowly forward. As soon as you do this I will indicate to you the number of a length which you have previously learned 1, 2 or 3 which I want you to reproduce. When you consider you have reproduced the distance corresponding to the number the hands should then be replaced on the lap. The distance moved prior to the number being given should be included as part of the total distance moved. On any trial if more than one number is indicated, for example, 1 and 2, or 2 and 3, or even 1, 2 and 3, you are to reproduce the total distance corresponding to the numbers in one continuous movement. Once you have reproduced the distance the hands should be replaced on the lap. Then the masking noise will be turned off and one to indicate to place both hands on the handles and commence the movement for the next trial. Remember in this condition you will commence movement of the left hand slowly. I will
then indicate the number or numbers corresponding to the length of movement which I want you to reproduce. Are there any questions?

Condition 4 - Response Execution

In this condition when you hear the commencement of the masking noise on the earphones both hands should be placed on the handles. The left hand should then be moved slowly and smoothly forward until the movement is stopped. I want you to remember to make the movement with the left hand in a slow, smooth, continuous motion. I will stop the movement. You continue to push the handle forward until the movement is stopped. Then replace both hands on the lap. The masking noise will be turned off and on to indicate the commencement of the next trial. Are there any questions?

Condition 5 - Motor Shadowing

In this condition you will be required to shadow movement presented to your right hand with your right foot as you did in the practice session yesterday. I want you to remember to move your foot in the same direction, the same distance and change direction, at the same angle with your foot as is being presented to your hand. At the completion of the movement to your right hand keep your foot still and replace your hands on your lap. However, don't be alarmed if I then move your foot to assist me in rolling the paper along for the next trial. The start of the
first trial will be indicated by the commencement of the masking noise on the earphones. Further trials will be commenced by the masking noise being turned off and on. At this time the hands should be replaced on the handles ready for the commencement of the next trial. Are there any questions?

Condition 6 - Encoding and Motor Shadowing

In this condition the commencement of the masking noise on the earphones will indicate to place both hands on the handles. I will then present a movement length to your left hand. On the completion of this movement the hand should be removed from the handle. The masking noise will be turned off and on to signify to replace the handle. I will then present a second movement length. After this the hands should be replaced on the lap and the response same or different based on the comparison of the two lengths presented should be given by you. At the same time as I commence the movement of the second length, Cathy will present movement to the right hand. You may shadow this movement by moving the right foot as you have done previously. Remember to move the foot in the same direction, the same distance and change directions at the same angle as is being presented to the right hand. As soon as I have completed presenting the second movement length Cathy will stop presenting movement to the right hand. Therefore, as soon as this occurs you should keep
the foot still. In this condition it is most important that you give a correct response same or different based on the comparison of the two lengths presented to the left hand. Therefore, you should only give as much attention to shadowing the movement presented to the right hand as this task permits. If on any trial you give an incorrect response whether it be same or different, a further trial must be given. The commencement of trials in this condition will be indicated by the masking noise being turned off and on. The hands should then be placed on the handles ready for the presentation of the first movement length. Are there any questions?

Condition 7 - Cued Retrieval and Motor Shadowing

In this condition prior to the commencement of the masking noise on the earphones I will indicate the number corresponding to the length I want you to reproduce by moving the left hand forward. If more than one number is given then the total distance corresponding to the numbers should be reproduced in one continuous motion. When you consider you have reproduced the designated distance the hands should be replaced on the lap. At the same time as you commence reproducing the distance indicated, Cathy will present movement to the right hand. You may shadow this movement with the right foot. Remember to move the foot in the same direction, the same distance and change directions at the same angles with the foot as is being
presented to the right hand. At the completion of reproducing the movement with the left hand movement to the right hand will cease. You then stop shadowing, keep the foot still and wait for the next trial. In this condition it is most important you reproduce the distance indicated as accurately as possible. Therefore, you should only give as much attention to shadowing the movement presented to the right hand as reproducing the movement accurately allows you. If on any trial you do not reproduce the distance within a certain criterion previously established then a further trial will have to be given. Therefore, only give as much attention to shadowing as the task of reproducing the distance with the left hand allows you. The commencement of each trial in this condition will be preceded by the number or numbers of the movement being given on the earphones. Are there any questions.

Condition 8 - Motor Shadowing and Non-cued Retrieval

In this condition the commencement of the masking noise will indicate to place both hands on the handles. Then you should commence movement of the left hand forward. As soon as you do this I will give the number or numbers corresponding to the length of movement I want you to reproduce. If more than one number is given then the distance should be reproduced in one continuous motion. When you consider you have reproduced the distance indicated
the hands should be replaced on the lap. At the same
time as you commence movement of the left hand Cathy will
present movement to the right hand. You may shadow this
movement with the right foot. Remember to move in the
same direction, the same distance and change direction at
the same angle with the foot as is being presented to the
right hand. It is most important in this condition you
reproduce with the left hand the distance indicated.
Therefore, you should only give as much attention to shadow-
ing the movement presented to the right hand as this task
allows. If on any trial you do not reproduce the distance
within a certain criteria established, then a further
trial must be given. The commencement of trials in this
condition will be signalled by the masking noise being
turned off and on. Are there any questions?
Condition 9 - Motor Shadowing and Response Execution

The commencement of trials in this condition will be
signalled by the masking noise being turned on. You then
place both hands on the handles and move the left hand
slowly and smoothly forward until the movement is stopped.
The hands should then be removed from the handles. At the
same time as you commence movement of the left hand, Cathy
will present movement to the right hand. You may shadow
this movement with the right foot. Remember to move in
the same direction, the same distance and change direction
at the same angle with the foot as is being presented the
right hand. As soon as the movement of the left hand is stopped movement to the right hand will cease. In this condition it is most important that it is moved in a slow, smooth, continuous motion. You should only give as much attention to shadowing the movement presented to the right hand as moving in a slow, smooth, continuous motion. The speed should be at the same speed as when you made the movement alone previously. On any trial if you do not make the movement in a similar manner a further trial will have to be given. Are there any questions?
APPENDIX B

PATTERNS FOR MOTOR SHADOWING
Figure 8 Patterns A, B, C and D which were used as kinesthetic sensory inputs in secondary motor shadowing performances.
APPENDIX C

ANALYSIS OF VARIANCE SUMMARY TABLES
Table 6

Summary Table for the Analysis of Variance of Males and Females for the Mean Absolute Error of Angles in Motor Shadowing when Performed Alone and with Response Execution, Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>15384.06</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'A' Main Effects</td>
<td>318.69</td>
<td>1</td>
<td>318.69</td>
<td>0.59</td>
</tr>
<tr>
<td>Subjects Within Groups</td>
<td>15065.13</td>
<td>28</td>
<td>538.04</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>39011.75</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'B' Main Effects</td>
<td>21826.99</td>
<td>4</td>
<td>5456.75</td>
<td>36.64*</td>
</tr>
<tr>
<td>'AB' Interaction</td>
<td>506.25</td>
<td>4</td>
<td>126.56</td>
<td>0.85</td>
</tr>
<tr>
<td>'B' x Subjects Within Groups</td>
<td>16678.56</td>
<td>112</td>
<td>148.92</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Table 7
Summary Table for the Analysis of Variance of Males and Females for Number of Direction Changes Missed in Motor Shadowing when Performed Alone and with Response Execution, Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>2.27</td>
<td>29</td>
<td>0.05</td>
<td>0.65</td>
</tr>
<tr>
<td>'A' Main Effects</td>
<td>0.05</td>
<td>1</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Subjects Within Groups</td>
<td>2.21</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>6.26</td>
<td>120</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>'B' Main Effects</td>
<td>0.05</td>
<td>4</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>'AB' Interaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'B' x Subjects Within Groups</td>
<td>2.82</td>
<td>112</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Table 8
Summary Table for the Analysis of Variance of Males and Females
for the Mean Absolute Error of the Lengths in Motor Shadowing when Performed Alone and with Response Execution,
Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>494.40</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'A' Main Effects</td>
<td>0.30</td>
<td>1</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>Subjects Within Groups</td>
<td>494.10</td>
<td>28</td>
<td>17.65</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>308.32</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'B' Main Effects</td>
<td>25.70</td>
<td>4</td>
<td>6.43</td>
<td>2.58*</td>
</tr>
<tr>
<td>'AB' Interaction</td>
<td>3.72</td>
<td>4</td>
<td>0.93</td>
<td>0.37</td>
</tr>
<tr>
<td>'B' x Subjects Within Groups</td>
<td>278.90</td>
<td>112</td>
<td></td>
<td>2.49</td>
</tr>
</tbody>
</table>

*p < .05
Table 9

Summary Table for the Analysis of Variance for the Mean Absolute Error of Angles in Motor Shadowing when Performed Alone and with Response Execution, Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>15425.62</td>
<td>29</td>
<td>531.92</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>38999.81</td>
<td>120</td>
<td>325.00</td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>21814.06</td>
<td>4</td>
<td>5453.52</td>
<td>36.81*</td>
</tr>
<tr>
<td>Residual</td>
<td>17185.75</td>
<td>116</td>
<td>148.15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54425.43</td>
<td>149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Table 10
Summary Table for the Analysis of Variance for the Number of Direction Changes Missed in Motor Shadowing when Performed Along with Response Execution, Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>29</td>
<td>2.19</td>
<td>0.08</td>
</tr>
<tr>
<td>Within Subjects</td>
<td>120</td>
<td>5.90</td>
<td>0.05</td>
</tr>
<tr>
<td>Treatments</td>
<td>4</td>
<td>3.17</td>
<td>0.79</td>
</tr>
<tr>
<td>Residual</td>
<td>116</td>
<td>2.72</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>149</td>
<td>8.09</td>
<td>*p < .05</td>
</tr>
</tbody>
</table>

* p < .05
Table 11

Summary Table for the Analysis of Variance of the Absolute Error of Lengths in Motor Shadowing when Performed Alone and with Response Execution, Encoding, Cued and Non-cued Retrieval

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>494.41</td>
<td>29</td>
<td>17.05</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>308.24</td>
<td>120</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>25.71</td>
<td>4</td>
<td>6.43</td>
<td>2.64</td>
</tr>
<tr>
<td>Residual</td>
<td>282.53</td>
<td>116</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>802.65</td>
<td>149</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
Table 12
Summary Table for the Analysis of Variance of the Mean Absolute Error of the Angles of Motor Shadowing for Cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>21534.00</td>
<td>29</td>
<td>797.55</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>49876.00</td>
<td>90</td>
<td>593.76</td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>1464.63</td>
<td>3</td>
<td>488.21</td>
<td>0.82</td>
</tr>
<tr>
<td>Residual</td>
<td>40411.37</td>
<td>87</td>
<td>597.67</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>71410.00</td>
<td>119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13
Summary Table for the Analysis of Variance for the Mean Absolute Error of the Lengths of Motor Shadowing for Cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>390.11</td>
<td>29</td>
<td>13.45</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>674.45</td>
<td>90</td>
<td>7.49</td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>29.86</td>
<td>3</td>
<td>9.95</td>
<td>1.34</td>
</tr>
<tr>
<td>Residual</td>
<td>644.60</td>
<td>87</td>
<td>7.41</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1064.57</td>
<td>119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14
Summary Table for the Analysis of Variance of the Mean Absolute Error of the Angles of Motor Shadowing for Non-cued Retrieval of 9, 13, 9 and 13, 4, 9, and 13 Centimeter Lengths

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>30442.00</td>
<td>29</td>
<td>1049.72</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>53322.12</td>
<td>90</td>
<td>592.47</td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>6257.69</td>
<td>3</td>
<td>2085.90</td>
<td>3.86*</td>
</tr>
<tr>
<td>Residual</td>
<td>47064.43</td>
<td>87</td>
<td>540.97</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>83764.12</td>
<td>119</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>385.38</td>
<td>29</td>
<td>13.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>464.16</td>
<td>90</td>
<td>5.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatments</td>
<td>19.11</td>
<td>3</td>
<td>6.37</td>
<td>5.12</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>445.04</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>849.53</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

PRESENTATION ORDER OF EXPERIMENTAL CONDITIONS
Presentation Order of Experimental Conditions

Conditions:
1. Encoding
2. Cued Retrieval
3. Non-cued Retrieval
4. Response Execution
5. Motor Shadowing Alone
6. Motor Shadowing and Encoding
7. Motor Shadowing and Cued Retrieval
8. Motor Shadowing and Non-cued Retrieval
9. Motor Shadowing and Response Execution

FEMALES

<table>
<thead>
<tr>
<th>Order of Presentation</th>
<th>Single Tasks</th>
<th>Dual Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 4 1 2</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>2</td>
<td>4 1 2 3</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>3</td>
<td>4 1 2 3</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>4</td>
<td>1 2 3 4</td>
<td>5 6 7 8 9</td>
</tr>
<tr>
<td>5</td>
<td>2 3 4 1</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>6</td>
<td>2 3 4 1</td>
<td>9 5 6 7 8</td>
</tr>
<tr>
<td>7</td>
<td>1 2 3 4</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>8</td>
<td>3 4 1 2</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>9</td>
<td>4 1 2 3</td>
<td>9 5 6 7 8</td>
</tr>
<tr>
<td>10</td>
<td>4 1 2 3</td>
<td>5 6 7 8 9</td>
</tr>
<tr>
<td>11</td>
<td>2 3 4 1</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>12</td>
<td>1 2 3 4</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>13</td>
<td>1 2 3 4</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>14</td>
<td>3 4 1 2</td>
<td>9 5 6 7 8</td>
</tr>
<tr>
<td>15</td>
<td>3 4 1 2</td>
<td>5 6 7 8 9</td>
</tr>
</tbody>
</table>
MALES

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Single Tasks</th>
<th>Dual Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 1 2 3</td>
<td>9 5 6 7 8</td>
</tr>
<tr>
<td>2</td>
<td>1 2 3 4</td>
<td>5 6 7 8 9</td>
</tr>
<tr>
<td>3</td>
<td>2 3 4 1</td>
<td>9 5 6 7 8</td>
</tr>
<tr>
<td>4</td>
<td>3 4 1 2</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>5</td>
<td>3 4 1 2</td>
<td>5 6 7 8 9</td>
</tr>
<tr>
<td>6</td>
<td>4 1 2 3</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>7</td>
<td>2 3 4 1</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4</td>
<td>8 9 5 6 7</td>
</tr>
<tr>
<td>9</td>
<td>2 3 4 1</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>10</td>
<td>1 2 3 4</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>11</td>
<td>4 1 2 3</td>
<td>5 6 7 8 9</td>
</tr>
<tr>
<td>12</td>
<td>1 2 3 4</td>
<td>7 8 9 5 6</td>
</tr>
<tr>
<td>13</td>
<td>3 4 1 2</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>14</td>
<td>4 1 2 3</td>
<td>6 7 8 9 5</td>
</tr>
<tr>
<td>15</td>
<td>3 4 1 2</td>
<td>9 5 6 7 8</td>
</tr>
</tbody>
</table>
APPENDIX E

MOVEMENT LENGTHS AND PATTERNS PRESENTED ON THE FOUR
TRIALS OF THE EXPERIMENTAL CONDITIONS
<table>
<thead>
<tr>
<th>Condition</th>
<th>Encoding</th>
<th>Pattern Lengths (cms)</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition 2</td>
<td>Cued Retrieval</td>
<td>Pattern Lengths (cms)</td>
<td>9</td>
<td>13</td>
<td>4, 9, 13</td>
<td>9, 13</td>
</tr>
<tr>
<td>Condition 3</td>
<td>Non-cued Retrieval</td>
<td>Pattern Lengths (cms)</td>
<td>9, 13</td>
<td>9</td>
<td>4, 9, 13</td>
<td>13</td>
</tr>
<tr>
<td>Condition 4</td>
<td>Response Execution</td>
<td>Pattern Lengths (cms)</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Condition 5</td>
<td>Motor Shadowing Alone</td>
<td>Pattern Lengths (cms)</td>
<td>A</td>
<td>D</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Condition 6</td>
<td>Motor Shadowing and Encoding</td>
<td>Pattern Lengths (cms)</td>
<td>4/9</td>
<td>13/13</td>
<td>9/9</td>
<td>9/13</td>
</tr>
<tr>
<td>Condition 7</td>
<td>Motor Shadowing and Cued Retrieval</td>
<td>Pattern Lengths (cms)</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Condition 8</td>
<td>Motor Shadowing and Non-cued Retrieval</td>
<td>Pattern Lengths (cms)</td>
<td>9, 13</td>
<td>9</td>
<td>4, 9, 13</td>
<td>13</td>
</tr>
<tr>
<td>Condition 9</td>
<td>Motor Shadowing and Response Execution</td>
<td>Pattern Lengths (cms)</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>
APPENDIX F

EXPERIMENTAL DATA
RESPONSE EXECUTION TIMES FOR THREE SEVEN CENTIMETER SEGMENTS IN THE SINGLE
AND DUAL TASK CONDITIONS

FORMAT (6F5.4)
COLUMNS 1-5 SEGMENT 1
COLUMNS 6-10 SEGMENT 2
COLUMNS 11-15 SEGMENT 3
COLUMNS 16-20 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 75-80 SEX

06 01 MALE
06 02 MALE
06 03 MALE
06 04 MALE
06 05 MALE
06 06 MALE
06 07 MALE
06 08 MALE
06 09 MALE
06 10 MALE
06 11 MALE
06 12 MALE
06 13 MALE
06 14 MALE
06 15 MALE
06 01 FEMALE
06 02 FEMALE
06 03 FEMALE
06 04 FEMALE
06 05 FEMALE
06 06 FEMALE
06 07 FEMALE
06 08 FEMALE
06 09 FEMALE
06 10 FEMALE
06 11 FEMALE
06 12 FEMALE
06 13 FEMALE
06 14 FEMALE
06 15 FEMALE
MEAN ABSOLUTE ERROR OF ANGLES IN DEGREES DRAWN BY SUBJECTS ON FOUR TRIALS IN
THE SINGLE AND DUAL TASK CONDITIONS. CONDITIONS 5, 6, 7, 8, AND 9

<table>
<thead>
<tr>
<th>COLUMNS 1-4</th>
<th>COLUMNS 5-8</th>
<th>COLUMNS 9-12</th>
<th>COLUMNS 13-16</th>
<th>COLUMNS 17-20</th>
<th>COLUMNS 69-70</th>
<th>COLUMNS 72-73</th>
<th>COLUMNS 75-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR SHADOWING</td>
<td>MOTOR SHADOWING AND ENCODING</td>
<td>MOTOR SHADOWING AND CUED RETRIEVAL</td>
<td>MOTOR SHADOWING AND NON-CUED RETRIEVAL</td>
<td>MOTOR SHADOWING AND RESPONSE EXECUTION</td>
<td>DATA DECK NUMBER</td>
<td>SUBJECT NUMBER</td>
<td>SEX</td>
</tr>
<tr>
<td>131919323248731181418</td>
<td>01</td>
<td>01</td>
<td>MALE</td>
<td>01</td>
<td>02</td>
<td>MALE</td>
<td>01</td>
</tr>
<tr>
<td>20443092608865005072</td>
<td>01</td>
<td>04</td>
<td>MALE</td>
<td>01</td>
<td>05</td>
<td>MALE</td>
<td>01</td>
</tr>
<tr>
<td>223877805050360172303</td>
<td>01</td>
<td>07</td>
<td>MALE</td>
<td>01</td>
<td>08</td>
<td>MALE</td>
<td>01</td>
</tr>
<tr>
<td>229012933335860391948</td>
<td>01</td>
<td>10</td>
<td>MALE</td>
<td>01</td>
<td>11</td>
<td>MALE</td>
<td>01</td>
</tr>
<tr>
<td>103852635983184883992</td>
<td>01</td>
<td>13</td>
<td>MALE</td>
<td>01</td>
<td>14</td>
<td>MALE</td>
<td>01</td>
</tr>
<tr>
<td>36254062615807673617</td>
<td>01</td>
<td>01</td>
<td>FEMALE</td>
<td>01</td>
<td>02</td>
<td>FEMALE</td>
<td>01</td>
</tr>
<tr>
<td>292553950086533725</td>
<td>01</td>
<td>04</td>
<td>FEMALE</td>
<td>01</td>
<td>05</td>
<td>FEMALE</td>
<td>01</td>
</tr>
<tr>
<td>24944225504484330908</td>
<td>01</td>
<td>07</td>
<td>FEMALE</td>
<td>01</td>
<td>08</td>
<td>FEMALE</td>
<td>01</td>
</tr>
<tr>
<td>3712563390756185031</td>
<td>01</td>
<td>10</td>
<td>FEMALE</td>
<td>01</td>
<td>11</td>
<td>FEMALE</td>
<td>01</td>
</tr>
<tr>
<td>2125445871357175333</td>
<td>01</td>
<td>13</td>
<td>FEMALE</td>
<td>01</td>
<td>14</td>
<td>FEMALE</td>
<td>01</td>
</tr>
<tr>
<td>186142888255674023167</td>
<td>01</td>
<td>01</td>
<td>Female</td>
<td>01</td>
<td>02</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>16382925170428282094</td>
<td>01</td>
<td>04</td>
<td>Female</td>
<td>01</td>
<td>05</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>22563038564459193448</td>
<td>01</td>
<td>07</td>
<td>Female</td>
<td>01</td>
<td>08</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>22314150294444002769</td>
<td>01</td>
<td>10</td>
<td>Female</td>
<td>01</td>
<td>11</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>2256316229053053333</td>
<td>01</td>
<td>13</td>
<td>Female</td>
<td>01</td>
<td>14</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>22562952332556682058</td>
<td>01</td>
<td>01</td>
<td>Female</td>
<td>01</td>
<td>02</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>276585619302944235019</td>
<td>01</td>
<td>04</td>
<td>Female</td>
<td>01</td>
<td>05</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>36305073554079305013</td>
<td>01</td>
<td>07</td>
<td>Female</td>
<td>01</td>
<td>08</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>14001675415074625153</td>
<td>01</td>
<td>10</td>
<td>Female</td>
<td>01</td>
<td>11</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>22256883631772754789</td>
<td>01</td>
<td>13</td>
<td>Female</td>
<td>01</td>
<td>14</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>2756229246754546325</td>
<td>01</td>
<td>01</td>
<td>Female</td>
<td>01</td>
<td>02</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>15943183507540561917</td>
<td>01</td>
<td>04</td>
<td>Female</td>
<td>01</td>
<td>05</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>19251350311265311902</td>
<td>01</td>
<td>07</td>
<td>Female</td>
<td>01</td>
<td>08</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>17692850321234963080</td>
<td>01</td>
<td>10</td>
<td>Female</td>
<td>01</td>
<td>11</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>2406291447057564648</td>
<td>01</td>
<td>13</td>
<td>Female</td>
<td>01</td>
<td>14</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>211936646840866504008</td>
<td>01</td>
<td>01</td>
<td>Female</td>
<td>01</td>
<td>02</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>24313080182729423942</td>
<td>01</td>
<td>04</td>
<td>Female</td>
<td>01</td>
<td>05</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>17256935857507282575</td>
<td>01</td>
<td>07</td>
<td>Female</td>
<td>01</td>
<td>08</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>1969342256528752983</td>
<td>01</td>
<td>10</td>
<td>Female</td>
<td>01</td>
<td>11</td>
<td>Female</td>
<td>01</td>
</tr>
<tr>
<td>19814042881258382435</td>
<td>01</td>
<td>13</td>
<td>Female</td>
<td>01</td>
<td>14</td>
<td>Female</td>
<td>01</td>
</tr>
</tbody>
</table>
PERCENTAGE OF DIRECTIONAL CHANGES MISSED IN MOTOR SHADOWING ON FOUR TRAILS
IN THE SINGLE AND DUAL TASK CONDITIONS. CONDITIONS 5, 6, 7, 8, AND 9

<table>
<thead>
<tr>
<th>Format (5F2.2)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns 1-2</td>
<td>MOTOR</td>
<td>SHADOWING</td>
</tr>
<tr>
<td>Columns 3-4</td>
<td>MOTOR</td>
<td>SHADOWING AND ENCODING</td>
</tr>
<tr>
<td>Columns 5-6</td>
<td>MOTOR</td>
<td>SHADOWING AND CUED RETRIEVAL</td>
</tr>
<tr>
<td>Columns 7-8</td>
<td>MOTOR</td>
<td>SHADOWING AND NON-CUED RETRIEVAL</td>
</tr>
<tr>
<td>Columns 9-10</td>
<td>MOTOR</td>
<td>SHADOWING AND RESPONSE EXECUTION</td>
</tr>
<tr>
<td>Columns 69-70</td>
<td>DATA</td>
<td>DECK NUMBER</td>
</tr>
<tr>
<td>Columns 72-73</td>
<td>SUBJECT</td>
<td>NUMBER</td>
</tr>
<tr>
<td>Columns 75-80</td>
<td>SEX</td>
<td></td>
</tr>
<tr>
<td>0011305409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010202727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0050676700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000002800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0012710830</td>
<td>03</td>
<td>MALES</td>
</tr>
<tr>
<td>0010507100</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0027434330</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0025447100</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0633884515</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0038845010</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0017406720</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000000807</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0012209000</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0617143325</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000001200</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0010176099</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0025003629</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0060676718</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000625033</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0544576245</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000201807</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0020301500</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>00000005400</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000017100</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0000202208</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0012508311</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0012001020</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0057607300</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0011180000</td>
<td>03</td>
<td>MALE</td>
</tr>
<tr>
<td>0010102700</td>
<td>03</td>
<td>MALE</td>
</tr>
</tbody>
</table>
MEAN ABSOLUTE ERROR OF LENGTHS IN CENTIMETERS DRAWN BY SUBJECTS ON FOUR TRIALS IN THE SINGLE AND DUAL TASK CONDITIONS. CONDITIONS 5, 6, 7, 8, AND 9

FORMAT (5F5.3)
COLUMNS 1-5 MOTOR SHADOWING
COLUMNS 6-10 MOTOR SHADOWING AND ENCODING
COLUMNS 11-15 MOTOR SHADOWING AND CUED RETRIEVAL
COLUMNS 16-20 MOTOR SHADOWING AND NON-CUED RETRIEVAL
COLUMNS 21-25 MOTOR SHADOWING AND RESPONSE EXECUTION
COLUMNS 69-70 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 74-80 SEX

<table>
<thead>
<tr>
<th>Data</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 01</td>
<td>MALE</td>
</tr>
<tr>
<td>02 02</td>
<td>MALE</td>
</tr>
<tr>
<td>02 03</td>
<td>MALE</td>
</tr>
<tr>
<td>02 04</td>
<td>MALE</td>
</tr>
<tr>
<td>02 05</td>
<td>MALE</td>
</tr>
<tr>
<td>02 06</td>
<td>MALE</td>
</tr>
<tr>
<td>02 07</td>
<td>MALE</td>
</tr>
<tr>
<td>02 08</td>
<td>MALE</td>
</tr>
<tr>
<td>02 09</td>
<td>MALE</td>
</tr>
<tr>
<td>02 10</td>
<td>MALE</td>
</tr>
<tr>
<td>02 11</td>
<td>MALE</td>
</tr>
<tr>
<td>02 12</td>
<td>MALE</td>
</tr>
<tr>
<td>02 13</td>
<td>MALE</td>
</tr>
<tr>
<td>02 14</td>
<td>MALE</td>
</tr>
<tr>
<td>02 15</td>
<td>MALE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 01</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 02</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 03</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 04</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 05</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 06</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 07</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 08</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 09</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 10</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 11</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 12</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 13</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 14</td>
<td>FEMALE</td>
</tr>
<tr>
<td>02 15</td>
<td>FEMALE</td>
</tr>
<tr>
<td>FORMAT (06F2.1,5,3.3,3.1,5,3,1,5,3)</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 1-2 DISTANCE 9 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 3-7 TIME 9 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 8-10 DISTANCE 13 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 11-15 TIME 13 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 16-18 DISTANCE 9 & 13 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 19-23 TIME 9 & 13 CENTIMETERS ALONE</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 24-25 DISTANCE 9 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 26-30 TIME 9 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 31-33 DISTANCE 13 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 34-38 TIME 13 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 39-41 DISTANCE 9 & 13 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 42-46 TIME 9 & 13 CENTIMETERS TOGETHER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 47-50 DATA DECK NUMBER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 72-73 SUBJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 74-80 SEX</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>55028901370203921406499803057142047902905030</th>
</tr>
</thead>
<tbody>
<tr>
<td>956419014005429224050229803235140049532036319</td>
</tr>
<tr>
<td>90019013002633232074391024461420268520008526</td>
</tr>
<tr>
<td>990586712407976224116456980406212408196201225</td>
</tr>
<tr>
<td>9001742140219020800979702730136023092040340</td>
</tr>
<tr>
<td>940297131029592230379093028401430306020005030</td>
</tr>
<tr>
<td>9302892142026220044369902321430039520303820</td>
</tr>
<tr>
<td>9701435242024302000461199024210360461520004723</td>
</tr>
<tr>
<td>96103171220955520514056910626143226423515108</td>
</tr>
<tr>
<td>9402141130034522200635297036481410362220006100</td>
</tr>
<tr>
<td>90004060130548520807549804228127048932267162</td>
</tr>
<tr>
<td>90070721211018132271629694077101191175623412936</td>
</tr>
<tr>
<td>970461513906148205101159200347134097852301433</td>
</tr>
<tr>
<td>950308214304421721000459704288100530923090987</td>
</tr>
<tr>
<td>98073721033056162200788005032201370384622007880</td>
</tr>
<tr>
<td>870113140010832030236390009761410131620102170</td>
</tr>
<tr>
<td>840458012084522405127970408501400382621164909</td>
</tr>
<tr>
<td>9001765137030990281039969801980571033902581995385</td>
</tr>
<tr>
<td>9402605129032262110576590027831390995817909505050</td>
</tr>
<tr>
<td>9070451137054792100087908704965141066620309820</td>
</tr>
<tr>
<td>9402511300054142300590982043484100423522506883</td>
</tr>
<tr>
<td>8506361127075302404741599078641411061720010253</td>
</tr>
<tr>
<td>85044511402492250560109970949513010273200041831</td>
</tr>
<tr>
<td>90656591141182620208520988145140080472151331</td>
</tr>
<tr>
<td>920818112610857201784098062984121003222315132</td>
</tr>
</tbody>
</table>

04 01 MALE
04 02 MALE
04 03 MALE
04 04 MALE
04 05 MALE
04 06 MALE
04 07 MALE
04 08 MALE
04 09 MALE
04 10 MALE
04 11 MALE
04 12 MALE
04 13 MALE
04 14 MALE
04 15 MALE
04 01 FEMALE
04 02 FEMALE
04 03 FEMALE
04 04 FEMALE
04 05 FEMALE
04 06 FEMALE
04 07 FEMALE
04 08 FEMALE
04 09 FEMALE
04 10 FEMALE
04 11 FEMALE
04 12 FEMALE
04 13 FEMALE
04 14 FEMALE
04 15 FEMALE
<table>
<thead>
<tr>
<th>FORMAT (6F2.1,5.3,3.1,5.3,3.1,5.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMNS 1-2 DISTANCE 9 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 3-7 TIME 9 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 8-10 DISTANCE 13 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 11-15 TIME 13 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 16-18 DISTANCE 9 & 13 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 19-23 TIME 9 & 13 CM ALONE</td>
</tr>
<tr>
<td>COLUMNS 24-25 DISTANCE 9 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 26-30 TIME 9 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 31-33 DISTANCE 13 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 34-38 TIME 13 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 39-41 DISTANCE 9 & 13 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 42-46 TIME 9 & 13 CM TOGETHER</td>
</tr>
<tr>
<td>COLUMNS 47-72 DATA DECK NUMBER</td>
</tr>
<tr>
<td>COLUMNS 73-75 SEX</td>
</tr>
<tr>
<td>COLUMNS 76-80 SEX</td>
</tr>
</tbody>
</table>

90026121430421322165129072033251420419921605235	07 01 MALE
990481714265492410603792036751380302092065987	07 02 MALE
860121933801871240937895027511270263820108579	07 03 MALE
8602332136042042240313690200651320493223805884	07 04 MALE
900519912500008198112709800436128111122410117	07 05 MALE
90029751320163215034969801061331596221603453	07 06 MALE
9701967130032392301501090017631400217120903390	07 07 MALE
900230214103499201518592032391410284824005043	07 08 MALE
900624513009072017150759804451308111520315447	07 09 MALE
9603120127041512180794282048761190648022405908	07 10 MALE
950387112804425207290900334913340427322106572	07 11 MALE
990689013103692291564896079081261047922417000	07 12 MALE
8705220358303602951411099086121250793624017215	07 13 MALE
900436731380492722089308035761350401523306262	07 14 MALE
93046401330623422510619840332914205225230610	07 15 MALE
96012711350180520003283880130513002030235201875	07 16 MALE
930375131050812120903369029101330465206010065	07 17 MALE
900195513202170201045194014721319761904070	07 18 MALE
95034151290330721605418820281620264920605465	07 19 MALE
90031961327892300531997020871380242519805957	07 20 MALE
900345104321903211605418820281620264920605465	07 21 MALE
90031961327892300531997020871380242519805957	07 22 MALE
900350131038923106789004871250284322006136	07 23 MALE
900609814006938220153629407131136888722014670	07 24 MALE
9023110142034342027459510354300190327421600285	07 25 MALE
900422714207252211235397051381043820212540	07 26 MALE
90034951200524616050902034501300546823305193	07 27 MALE
900349133904689224063318402696137047732406202	07 28 MALE
90050231280740723407395080781971280933323911866	07 29 MALE
9008165143084521108308696086701190922922409675	07 30 MALE
8704915137078862401268298049631361216529014164	07 31 MALE
9507033314310357220160329763361380927823715459	07 32 MALE
MEAN TIME IN SECONDS OF FOUR TRIALS FOR CRITERION LENGTHS 4CMS, 9CMS & 13CMS
IN INITIAL LEARNING PHASE

FORMAT (3F6.4)
COLUMNS 1-6 TIME OF MOVEMENT FOR 4CMS
COLUMNS 7-12 TIME OF MOVEMENT FOR 9CMS
COLUMNS 13-18 TIME OF MOVEMENT FOR 13CMS
COLUMNS 19-70 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 75-80 SEX

017531028903047900
024237012450031346
021926020170020130
027367051232069417
00947202458024530
015505022450250828
020252026580541002
019300056757058175
0191050227151112347
01962503314203200
021755023472032367
039640086285096822
012535033952050412
021212033033034170
02467003032206840
011285014483016690
014773048223059360
006372004687006582
009897010000020620
018975018610021295
020885026225030512
046470059927076747
014837029612046197
046280063450072457
02018003224504532
011225021265023427
021692052435060697
01674702207040702
037172073077050022
020405040567035247
08 01 MALE
08 02 MALE
08 03 MALE
08 04 MALE
08 05 MALE
08 06 MALE
08 07 MALE
08 08 MALE
08 09 MALE
08 10 MALE
08 11 MALE
08 12 MALE
08 13 MALE
08 14 MALE
08 15 MALE
08 01 FEMALE
08 02 FEMALE
08 03 FEMALE
08 04 FEMALE
08 05 FEMALE
08 06 FEMALE
08 07 FEMALE
08 08 FEMALE
08 09 FEMALE
08 10 FEMALE
08 11 FEMALE
08 12 FEMALE
08 13 FEMALE
08 14 FEMALE
08 15 FEMALE

136
NUMBER OF LEARNING TRIALS FOR CRITERION LENGTHS DURING INITIAL LEARNING
5 MINUTES RETENTION & 24 HOUR RETENTION

FORMAT (GF2.0)
COLUMNS 1-2 NUMBER OF TRIALS TO LEARNING 4CMS
COLUMNS 3-4 NUMBER OF TRIALS TO LEARNING 9CMS
COLUMNS 5-6 NUMBER OF TRIALS TO LEARNING 13CMS
COLUMNS 7-8 NUMBER OF TRIALS 5 MIN RETENTION 4CMS
COLUMNS 9-10 NUMBER OF TRIALS 5 MIN RETENTION 9CMS
COLUMNS 11-12 NUMBER OF TRIALS 5 MIN RETENTION 13CMS
COLUMNS 13-14 NUMBER OF TRIALS 24 HOUR RETENTION 4CMS
COLUMNS 15-16 NUMBER OF TRIALS 24 HOUR RETENTION 9CMS
COLUMNS 17-18 NUMBER OF TRIALS 24 HOUR RETENTION 13CMS
COLUMNS 69-70 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 75-80 SEX

090716050510572023
090716010102190726
0907161300080202302
0907163403111160104
090716210720160904
090716220510110709
090716092120120403
090818060103050607
090909010819100701
091009100206131506
091113030902070911
210128060119040111
090410050101081210
240734090601080901
131006021804321008
131006572016120614
131006050202150805
13100670901050401
13100605050105101602
130912160805080603
110804041005091811
211111100405170601
120604050609030204
292003030102110810
110406020701011109
102410090720031705
051004041601100509
090406010410010304

09 02 MALE
09 03 MALE
09 04 MALE
09 05 MALE
09 06 MALE
09 07 MALE
09 08 MALE
09 09 MALE
09 10 MALE
09 11 MALE
09 12 MALE
09 13 MALE
09 14 MALE
09 15 MALE
09 02 FEMALE
09 03 FEMALE
09 04 FEMALE
09 05 FEMALE
09 06 FEMALE
09 07 FEMALE
09 08 FEMALE
09 09 FEMALE
09 10 FEMALE
09 11 FEMALE
09 12 FEMALE
09 13 FEMALE
09 14 FEMALE
09 15 FEMALE
MEAN ABSOLUTE ERROR OF ANGLES IN DEGREES OF MOTOR SHADOWING IN CUED RETRIEVAL
FOR LENGTHS 9CMS, 13CMS, 9 & 13CMS AND 4, 9 & 13CMS

FORMAT (4F5.2)
COLUMNS 1-5 LENGTH 9CMS
COLUMNS 6-10 LENGTH 13CMS
COLUMNS 11-15 LENGTHS 9 & 13CMS
COLUMNS 16-20 LENGTHS 4, 9 & 13CMS
COLUMNS 69-70 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 75-80 SEX

02350050000233.01867
0805002200590006225
01867073310810004000
01500025500220004600
04000520007400007400
0300005000540009333
0520010000825006833
01350065000745001600
0520007000990009750
052000400007333.00500
04600054000900007000
0270025500163301800
0110030500203307050
0000015000550000667
0000037000375002867
06833013000420000400
03800031000290002325
05200070000850004775
052000400007333.10167
0520000000516704967
06150051000520003667
07150041000630004000
10300037000500001850
08100018500390001650
08100044000220006300
00200000000470009333
00500055000176701675
08100094500433304433
06350064000143305725
03100060000283301425

10 01 MALE
10 02 MALE
10 03 MALE
10 04 MALE
10 05 MALE
10 06 MALE
10 07 MALE
10 08 MALE
10 09 MALE
10 10 MALE
10 11 MALE
10 12 MALE
10 13 MALE
10 14 MALE
10 15 MALE
10 01 FEMALE
10 02 FEMALE
10 03 FEMALE
10 04 FEMALE
10 05 FEMALE
10 06 FEMALE
10 07 FEMALE
10 08 FEMALE
10 09 FEMALE
10 10 FEMALE
10 11 FEMALE
10 12 FEMALE
10 13 FEMALE
10 14 FEMALE
10 15 FEMALE

138
<table>
<thead>
<tr>
<th>FORMAT (4F5.3)</th>
<th>SUBJECT NUMBER</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMNS 1-5</td>
<td>LENGTH 9CMS</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 6-10</td>
<td>LENGTH 13CMS</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 11-15</td>
<td>LENGTHS 9 & 13CMS</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 16-20</td>
<td>LENGTHS 4, 9 & 13CMS</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 69-70</td>
<td>DATA DECK NUMBER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 72-73</td>
<td>SUBJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>COLUMNS 75-80</td>
<td>SEX</td>
<td></td>
</tr>
<tr>
<td>02617016530205004290</td>
<td>14 01 MALE</td>
<td></td>
</tr>
<tr>
<td>04423061000631703935</td>
<td>14 02 MALE</td>
<td></td>
</tr>
<tr>
<td>02340000300356706750</td>
<td>14 03 MALE</td>
<td></td>
</tr>
<tr>
<td>00906052600453606850</td>
<td>14 04 MALE</td>
<td></td>
</tr>
<tr>
<td>06550062401193008260</td>
<td>14 05 MALE</td>
<td></td>
</tr>
<tr>
<td>01340032600461500280</td>
<td>14 06 MALE</td>
<td></td>
</tr>
<tr>
<td>0501065700321006625</td>
<td>14 07 MALE</td>
<td></td>
</tr>
<tr>
<td>02495111780305008973</td>
<td>14 08 MALE</td>
<td></td>
</tr>
<tr>
<td>05950816500548308375</td>
<td>14 09 MALE</td>
<td></td>
</tr>
<tr>
<td>03975025260968406833</td>
<td>14 10 MALE</td>
<td></td>
</tr>
<tr>
<td>05644044410877903235</td>
<td>14 11 MALE</td>
<td></td>
</tr>
<tr>
<td>02676045740220601772</td>
<td>14 12 MALE</td>
<td></td>
</tr>
<tr>
<td>01248043230314505539</td>
<td>14 13 MALE</td>
<td></td>
</tr>
<tr>
<td>07050081610501906230</td>
<td>14 14 MALE</td>
<td></td>
</tr>
<tr>
<td>1066011706346002701</td>
<td>14 15 MALE</td>
<td></td>
</tr>
<tr>
<td>05550034000063007900</td>
<td>14 01 FEMALE</td>
<td></td>
</tr>
<tr>
<td>04954043000323505915</td>
<td>14 02 FEMALE</td>
<td></td>
</tr>
<tr>
<td>07470089201686308015</td>
<td>14 03 FEMALE</td>
<td></td>
</tr>
<tr>
<td>05325067309749040800</td>
<td>14 04 FEMALE</td>
<td></td>
</tr>
<tr>
<td>0463050639006975010160</td>
<td>14 05 FEMALE</td>
<td></td>
</tr>
<tr>
<td>02233041503260804160</td>
<td>14 06 FEMALE</td>
<td></td>
</tr>
<tr>
<td>0401004070613107225</td>
<td>14 07 FEMALE</td>
<td></td>
</tr>
<tr>
<td>0327607047018482976</td>
<td>14 08 FEMALE</td>
<td></td>
</tr>
<tr>
<td>0870809220165902550</td>
<td>14 09 FEMALE</td>
<td></td>
</tr>
<tr>
<td>04035037080364000978</td>
<td>14 10 FEMALE</td>
<td></td>
</tr>
<tr>
<td>0130111401424505375</td>
<td>14 11 FEMALE</td>
<td></td>
</tr>
<tr>
<td>05982036350530200636</td>
<td>14 12 FEMALE</td>
<td></td>
</tr>
<tr>
<td>05789069741008402712</td>
<td>14 13 FEMALE</td>
<td></td>
</tr>
<tr>
<td>04317000850481906500</td>
<td>14 14 FEMALE</td>
<td></td>
</tr>
<tr>
<td>01040081100246401032</td>
<td>14 15 FEMALE</td>
<td></td>
</tr>
<tr>
<td>SEX</td>
<td>Subject Number</td>
<td>MEAN ABSOLUTE ERROR OF ANGLES IN DEGREES OF MOTOR SHADOWING IN NON-CUED RETRIEVAL FOR LENGTHS 9CMS, 13CMS, 9 & 13CMS AND 4, 9 & 13CMS</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>MALE</td>
<td>12 01</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 02</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 03</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 04</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 05</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 06</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 07</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 08</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 09</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 10</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 11</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 12</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 13</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 14</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 15</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 01</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 02</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 03</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 04</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 05</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 06</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 07</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 08</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 09</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 10</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 11</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 12</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 13</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 14</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 15</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 01</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 02</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 03</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 04</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 05</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 06</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 07</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 08</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 09</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 10</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 11</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 12</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 13</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 14</td>
<td>0.01900015000093307450</td>
</tr>
<tr>
<td>MALE</td>
<td>12 15</td>
<td>0.01900015000093307450</td>
</tr>
</tbody>
</table>
MEAN ABSOLUTE ERROR OF LENGTHS IN CM OF MOTOR SHADOWING IN NON-CUED RETRIEVAL FOR LENGTHS 9CMS, 13CMS, 9 & 13CMS AND 4, 9 & 13CMS

FORMAT (4F5.3)
COLUMNS 1-5 LENGTH 9CMS
COLUMNS 6-10 LENGTH 13CMS
COLUMNS 11-15 LENGTHS 9 & 13CMS
COLUMNS 16-20 LENGTHS 4, 9 & 13CMS
COLUMNS 69-70 DATA DECK NUMBER
COLUMNS 72-73 SUBJECT NUMBER
COLUMNS 75-80 SEX

05720054580900705742 16 01 MALE
1163080570709306380 16 02 MALE
0605304057023302540 16 03 MALE
10630045620573203392 16 04 MALE
0601077780292005920 16 05 MALE
092810210032707763 16 06 MALE
03240049650256004953 16 07 MALE
0580052830211007358 16 08 MALE
049660826604030804603 16 09 MALE
06203037710664804332 16 10 MALE
04680097210786602676 16 11 MALE
02680040770277304760 16 12 MALE
02856033090609108103 16 13 MALE
03049004920636409918 16 14 MALE
0649004097004505113 16 15 MALE
01705027900198506450 16 01 FEMALE
07508002600585705842 16 02 FEMALE
106000028030786509970 16 03 FEMALE
06977043350336009700 16 04 FEMALE
001720524900833404145 16 05 FEMALE
02899035350592304992 16 06 FEMALE
04204002529053040408 16 07 FEMALE
1268907653113810466 16 08 FEMALE
02706077630171109967 16 09 FEMALE
01049032310907103388 16 10 FEMALE
06833050000711009967 16 11 FEMALE
04772021750194804041 16 12 FEMALE
01930023250252100678 16 13 FEMALE
08654025170631510352 16 14 FEMALE
03970012140134203261 16 15 FEMALE
BIBLIOGRAPHY

VITA

The author was born in Burnie, Tasmania, Australia on January 12th, 1949. The first six years of formal education were at the Montello Primary School. This was followed by four years from 1961-1964 at the Parklands High School, Burnie, where he was awarded the Schools Board 'A' Certificate in 1964. From 1965-1966 he studied and attained the Matriculation Certificate. A two-year course leading to the Diploma of Physical Education at the University of Tasmania was completed in 1968 and this was subsequently extended to a Three Year Diploma of Physical Education awarded in 1972 following external studies with the University of Tasmania while teaching with the Tasmanian Education Department.

The Certificate of Education from the Tasmanian Education Department was gained in 1970 while the Tasmanian Teacher's Certificate was granted in 1971 following three years teaching.

Since September 1975 the author has been studying at the University of Windsor in a Two Year Program leading towards the Master of Human Kinetics Degree.