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Abstract

This paper studies the informational content of elective teams in a dynamic agency framework

with adverse selection. Two agents with di�erent employment histories are paid their conditional

expected marginal product. They observe their types (good or bad), and choose between working

together or separately. We characterize the distributions on agents' types, nature and wages such

that teams are formed exclusively by good-type agents, with and without side payments. As

employment records matter when idiosyncratic contributions are di�cult to isolate, a good-type

agent prefers not to jeopardize his reputation by teaming up with a bad-type agent.

Keywords: Adverse Selection, Dynamic Games, Team Production.

JEL classi�cation: D82, J42.



1 Introduction

Despite many advantages, a major drawback of team production is the di�culty to isolate idiosyn-

cratic contributions. This leads to at least two sources of ine�ciencies. First, from a moral hazard

perspective, individual e�ort level may be sub-optimal if the principal observes only joint output.

Solutions to this problem include organizing production through the �rm as an e�cient monitoring

institution [1], not distributing all ex-post output among team members [2], and randomization of

arbitrary punishment for insu�cient output levels [8]. Second, from an adverse selection stand-

point, informational rents can arise when teammates' abilities are known by the agents, but not by

the principal. Mechanisms designed to extract this rent include alternative payment schemes [4],

monitoring [13] as well as partner sharing rules [5].

We focus on this second source of ine�ciency from a peer grouping perspective. In particular,

if group tasks are elective rather than imposed, and if agents have insider information about each

other's types, we ask whether observing a team (or, by the same reasoning, not observing a team)

can yield information to the principal on the team members' types (good or bad), beyond the

information conveyed by the joint output.

Our answer to this question is that teams can be an e�cient screening mechanism under three

assumptions: �rst, wages are proportional to the expected probability of being of a good type con-

ditional on all past employment records, i.e. wages re�ect the agent's reputation; second, two agents

with di�erent work histories share information on each other's type; and �nally, these two agents

express a preference between working together or separately. In both single and team assignments,

production is obtained as a function of the agent(s)' type(s) plus a random shock by nature, while

only �nal output is observed by the principal. In this setting, observing a team rather than two
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separate outputs can reveal that at least one, and sometimes both agents must be of a good type.

More interesting still, this result holds even in the presence of side payments, where a potential

partner who gains from being in a team may compensate a reluctant teammate.

This separating property of elective teams arises because expected-utility maximizing agents care

about their reputation, the reason being that it is persistent and that it is used by the principal to

determine their lifetime wages. As a member of a team, if the joint output level is low, an agent

risks being confused by the principal for someone else, i.e. he may inherit part of his partner's

reputation. When his potential partner's reputation is su�ciently bad, the agent will join a team

only if the partner resembles him. This `birds-of-a-feather' e�ect runs to the detriment of bad type

agents: if a team has been selected and one of the members' reputation is su�ciently bad, then it

must be that both members are good-type agents. Put di�erently, the confusion about individual

contributions actually helps separating good-type from bad-type agents.

Our �rst assumption that �rms pay conditional probability of being a good type should be

uncontroversial. In our setting, an agent's type is either zero or one and equals his marginal con-

tribution, such that this remuneration scheme amounts to paying conditional expected marginal

product. A corresponding optimization schedule would be for the principal to minimize a quadratic

in informational rents. Admittedly, more complex payment schemes may also solve the particu-

lar agency problem that we consider in this paper;1 the central issue that we address is whether

the simpler conditional wage structure paired with elective team formation can produce a similar

outcome.

The second hypothesis of `local' information can be related to the vast literature on referrals. It

has long been recognized that a signi�cant proportion of �rms prefer to use referrals made by their

1Such as paying an arbitrary large bonus in the event of an output only two good agents could have produced.
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own employees on job candidates rather than using formal hiring channels [9, 10, 6]. Moreover,

search models help explain why referred employees have higher entry wages, lower turnovers, and a

�atter wage pro�le as indicating less uncertainty at the time of hiring [11]. These facts suggest that

the referring employee has valuable information on the candidate's true abilities and is willing to

make it available to the �rm. To the extent that our elective teams involve members with di�erent

histories, it may be thought of as referral with commitment.2

The �nal assumption is that workers are free to choose under which type of assignment, team or

single, they wish to be employed. This situation could be related to one in which group tasks have

no clear advantage over individual organization as far as the �rm is concerned [5]. One example

is academic research, for which it may be argued that the bene�ts of team work (e.g. exposure

to alternative approaches) may or may not be o�set by its costs (e.g. coordination issues), with

the result that elective rather than exogenous team formation is more likely the norm. Moreover,

endogenous team formation has been used in situations where incentives to help partners are present

[3]. Finally, workers are often asked to express their preferences over tasks in determining labor

assignments: job applications and requests for re-assignments typically ask applicants to state for

which job they wish to be considered. If job openings include both group and individual tasks, the

applicant's ranking could be considered as representing a preference ordering over these assignments.

The rest of the paper is organized as follows. Section 2 presents the dynamic game, in which

two agents of di�erent ages and histories select team or individual contracts, and Section 3 outlines

the players' equilibrium strategies. This is followed by a discussion of the steady-state results in

2Our setting is also relevant for analyzing employment in traditional societies. Here, the future of family members

is a concern of the elders who intervene on the labor market on their behalf [7], the speci�c identity of employers and

employees matters [14], and information is near perfect within a family [12]. All these characteristics �t our model

and our conclusions provide some justi�cation as why employers in traditional societies deal with the same families

over generations.

3



Section 4. Finally, a conclusion reviews the main �ndings and suggests potential elements for future

research. Most tables and �gures, as well as a discussion of the numerical approaches, are in the

appendix.

2 Model

We consider a three-period overlapping generations model where an agent is junior in the �rst period,

sophomore in the second, and senior in the last period. Let the (n � 3) matrix Ft � [F 1
t F 2

t F 3
t ]

denote all agents employed by the in�nitely-lived principal, where F i
t is the i

th (n�1) column vector

of agents of age i = 1; 2; 3, in period t. Moving from period t to period t+ 1 yields as a new cohort

F 1
t+1 of juniors, F 2

t+1 = F 1
t , and F 3

t+1 = F 2
t . We de�ne a family ft � [f1t f2t f3t ]; composed of a

junior f1t , a sophomore f2t , and a senior f3t , as a row in Ft.

Denote by �if t the type of an agent of age i in family ft. We assume that �1f t is drawn from a

Bernoulli distribution, with support I � f0; 1g and Pr(�1f t = 1) = �. Furthermore, types are time-

invariant, i.e. �1f t = �2f t+1 = �3f t+2 for all ft 2 Ft and t. Observe that types are purely independent

random events; in particular, an agent's type does not depend on the other family members'.

Up to a linear transformation, output of the unique non-storable consumption good can be

obtained under one of two assignments, single (S):

y(�if t; �t) = �if t + �t (1)

for i 2 f1; 2; 3g; or team (T ):

x(�1f t; �
2
f t; �t) = �1f t + �2f t + �t; (2)
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where �t is a shock from nature drawn from a Bernoulli distribution with support I and Pr(�t =

1) = �. We assume that only juniors and sophomores may be hired under T or S, while seniors are

restricted to S. The production technologies (1) and (2) are as in [5].3

The informational structure is asymmetric. In particular, let 
t denote the information set of

the principal in period t, such that


t � ffzf jg
t
j=0gf2Ft

(3)

where zf j is the set of outputs by members of family f in period j:

zf j =

8><
>:

n
y(�1f j ; �j); y(�

2
f j ; �j); y(�

3
f j; �j)

o
; if S at time j;

n
x(�1f j ; �

2
f j ; �j); y(�

3
f j; �j)

o
; if T at time j.

Let !i
f t denote the information set of f it , and !f t � !1

f t \ !2
f t \ !3

f t denote the information set

shared by the three members of family ft. Then,

!f t = fzf j ; �
1
f jg

t
j=0;

!f t \ !g t = ;;

(4)

for ft; gt 2 Ft and ft 6= gt. We assume the principal observes only outputs and the kind of contracts,

but neither agents' types nor nature. Furthermore, he observes only joint output under the team

contract. In comparison, agents in the same family observe all past and current juniors' types. By

time invariance, the types of the junior, sophomore and senior are known by members of a given

family. Finally, information is local in the sense that it is not observed by members of other families.

3Note that a linear transformation may be applied to (1) and (2) such that they both yield identical unconditional

expected pro�ts.
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Agent f i's wages in period t are denoted W (t; f i), and are given by the conditional probability

that f i is a type-1 worker:

W (t; f i) = Pr(�if t = 1 j 
t�1)

� pif t:

(5)

for i = 1; 2; 3. Because types are binary, the payment scheme implies that the principal pays

expected marginal product, conditional on the family's entire employment history. As in [5], the

value of the information on types to the principal is left implicit (e.g. for subsequent promotion

decisions). Observe that a junior has no personal employment records and is paid the unconditional

probability of being of type 1 since types are genetically independent. We also consider below a

modi�cation of the payment scheme (5), where a junior hired under T receives the same wage as his

sophomore teammate. This modi�ed assumption captures payment schemes where �rms pay the

same wage to all teammates and where the wage is calculated from the incumbent's performance.

De�nition 1 (ITP) Under an incumbent team payments scheme, a junior's wage is:

W (t; f1) =

8<
:
�; if S in t;

p2f t; if T in t.
(6)

Sophomore, and senior agents' wages remain as in (5).

All agents are risk-neutral. Juniors and sophomores choose S and/or T to maximize their

discounted expected utility, with subjective discount factor � 2 (0; 1], conditional on the family

information set (4). A team forms only if both junior and sophomore select T ; otherwise, single

contracts are chosen. Moreover, we allow for bargaining to take place between potential teammates.

Compensation to a reluctant family member implies that teams arise as a Pareto-dominating equi-

librium.
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To close the model, we assume the following sequence of events. At the beginning of period t,

the principal computes (p1f t; p
2
f t; p

3
f t) using last period's output and makes the corresponding wage

o�ers. Juniors and sophomores then choose between S or T , possibly after bargaining takes place.

Uncertainty is resolved: nature �t is drawn from the probability density function �, and output is

observed by the principal. At the end of the period, a new cohort F 1
t+1, with types drawn from the

probability density function �, is hired and aging takes place.

3 Decision rules

By Bayesian updating, the principal summarizes the entire history of a family by the last set of

conditional wages, and the new information contained in their most recent output.4 From the tech-

nological assumptions, output provides only partial information on agents' types when y(�it; �t) = 1,

or when x(�1t ; �
2
t ; �t) = 1 or 2. Tables 3 and 4 in the Appendix report the Bayesian updates on

sophomore and senior wages in period t+1, conditional on output in period t, and current sophomore

conditional probability p2t .
5

In each period, an agent i 2 f1; 2g chooses either S or T . His decision is based on the following

relevant information: the employer's estimate of the sophomore's type, p2t , and the types �1t and

�2t in his family. De�ne an agent's decision space as A � fS;T g and the relevant state space as

S � [0; 1]� I2, such that an agent of age i uses policy �i : S �! A; for i = 1; 2. Denote the space of

all policies by �. A stationary strategy for player i, also denoted �i, consists in using the policy �i

4Henceforth, we focus on a single family, and drop the subscript f , such that an agent is solely identi�ed by his

age i in the current period.
5Only the output (team or single) is used as conditioning information. Incorporating the agents' equilibrium

decisions within the principal's payment scheme would be a natural extension to the linear rule that we adopt.

However, this approach proves particularly challenging when side payments between agents in an OLG setting are

allowed. We therefore leave nonlinear wage decisions on the research agenda.
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in all periods. De�ne a pair of strategies as � = (�1; �2): We wish to compute an equilibrium pair of

strategies ��, in the sense of Nash (to be de�ned below). Let vi�(s) denote agent's i expected future

utility function under the probability distribution over future states induced by the strategy pair �

and the starting state s 2 S . Moreover, f i�(s) � max v
i
(��i;)

(s) for i = 1; 2 where (��i; ) is

the strategy vector obtained by replacing the ith component of � by  2 �.

De�nition 2 (equilibrium) An equilibrium �� is a vector of strategies (�1�; �2�) such that f i��(s) =

vi��(s) for i = 1; 2:

Suppose that an equilibrium strategy �� exists. By analogy with static games, we de�ne a value

multi-function w : S �! <2
+ such that w(s) = (w1(s); w2(s)) and wi(s) � f i��(s) = vi��(s), for

i = 1; 2. The pair of values w(s) represents the value of the dynamic game for each player when

the starting state is s. Generally, the functions vi� and f i� are de�ned recursively and do not admit

closed forms. We therefore resort to numerical methods and brie�y describe the method used to

compute equilibrium strategies.

For all s, Table 1 de�nes a static bi-matrix game where the junior and the sophomore decide

to team up or work singly. Each agent's payo� ri
�i
, for i = 1; 2 and �i 2 A, is the sum of his

instantaneous wage and future expected utility computed from any arbitrary multi-function which

maps S �! <2
+. Notice that the payo� pair (r1T ; r

2
T ) is only attained when both players choose

action T . In all other cases, the payo� is (r1S ; r
2
S). Let H be the operator which returns the Nash

equilibrium pair of payo� of this static bi-matrix game, as a function of s. Finally, use the updating

rule w(k+1)(s) = (Hw(k))(s) to iterate on the value multi-function until it converges. The Appendix

provides a complete description of the algorithm.
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Table 1: Bi-matrix Game

Player 1
Player 2 S T

S (r1S ; r
2
S) (r1S ; r

2
S)

T (r1S ; r
2
S) (r1T ; r

2
T )

Note: rij , i 2 f1; 2g, j 2 fS; T g, is agents i's payo� if he chooses strategy j.

4 Equilibrium Strategies

4.1 No side payments

Tables 3 and 4 allow us to express our �rst result.

Lemma 1 Under payment scheme (5), the functions v1� (p; �; �) and f1� (p; �; �) are non-increasing in

p, while the functions v2� (p; �; �) and f2� (p; �; �) are non-decreasing in p.

Proof.

Denote by a and b two distinct employer's current estimates of the sophomore's type (i.e the

�rst component of the state variable), with a < b and Pa and Pb the corresponding random variable

denoting the value of this �rst component after one transition. It is easy to see, using Table 3,

that Pa is stochastically larger than Pb under both contracts. 6 Since the sophomore's wage is a

non-decreasing function of the state variable component p2, by induction, this implies that v2� (p; �; �)

and f2� (p; �; �) are non-decreasing in p and that v1� (p; �; �) and f1� (p; �; �) are non-increasing in p for all

� 2 �.

6Observe that Pa � Pb if Pr(Pa � c) � Pr(Pb � c)8c 2 <. This is equivalent to E(f(Pa)) � E(f(Pb)) for any
non-decreasing function f .
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Let g�1 : [0; 1] � I �! [0; 1] denote the sophomore's wage if he chose action �1 when he was

junior, and h�2 : [0; 1] � I �! [0; 1] denote the senior's wage if he chose action �2 when he was

sophomore. For all p; �; �, we have (from Tables 3 and 4):

0 � gT (p; 1) � gS(p; 1) � gT (p; 2) � 1

0 � hT (p; 1) � hS(p; 1) � hT (p; 2) � 1

(7)

For any function v : S ! <, de�ne �v : [0; 1] � I �! < as follows:

�v(p; �) = �v(p; 1; �) + (1� �)v(p; 0; �): (8)

Notice that, if v is non-decreasing (resp. non-increasing) in p, then �v is also non-decreasing

(resp. non-increasing) in p.

Proposition 1 (Separation) Under payment scheme (5), in the absence of side payments between

agents, elective teams are separating: a team is observed if and only if two agents are of type 1.

Proof.

For any strategy � 2 �; f i�; i = 1; 2 satisfy:

f1� (p; �
1; �2) = �+ �maxfE[�f2� (gS(p; �

1 + �); �1)]; E[�f2� (gT (p; �
1�2 + �); �1)]g

f2� (p; �
1; �2) = p+ �maxfE[hS (p; �

2 + �)]; E[hT (p; �
1�2 + �))]g

(9)

Using equations (7), it is easy to verify, since f2� (p; �:�) is non-decreasing in p that the optimal

actions for any p are as given in Table 2.
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Table 2: Optimal actions (junior, sophomore) as functions of �1 and �2

�1

0 1

0 (S; S) (S; T )

�2

1 (T ; S) (T ; T )

Hence, in the absence of side payments, no mixed teams arise for all non-degenerate uncondi-

tional distributions. Note that separation is partial: not observing a team reveals only that at least

one family member is type 0, without identifying which ones(s). The next step is to investigate how

ITP and bargaining a�ect the separating equilibrium.

Under ITP, a junior su�ers an initial loss in teaming-up with a bad-reputation sophomore

(p2t < �), whereas the latter receives the same current wage independent of his decision. In the

absence of side payments, a large second-period gain is needed to induce the junior to accept a

team, while equation (7) shows that a sophomore always gains in the next period from teaming-up

with a good-type junior. Table 5 reports, for various combinations of � and �, and for � = 0:5,

the minimum value of p2 for which the �� = (T ;T ) and teammates are exclusively of the good

type. Otherwise, for all p2 < p2min; S is optimal. Hence, the T contract is separating, i.e. teams

are observed if and only if the junior and the sophomore are type 1. For example, the number 45

reported for � = � = 0:5 means that ��(p2; 1; 1) = (T ;T ) for 0:45 � p2 < 1, and (S;S) is an

equilibrium otherwise. Similarly, a value of 1 indicates ��(p2; 1; 1) = (T ;T ) for 0 < p2 < 1, while S

is the optimal strategy otherwise.

Table 5 suggests that the degree of discrimination against sophomores is increasing in � since

the junior must incur a larger initial loss under ITP. In addition, the discrimination is convex in
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�, the probability that �t = 1. The reason is that polar distributions on �t reduce next-period's

gain for the junior. Conversely, output is least informative when � ' �. In this case the gain in

the next period increases and a good-type junior is willing to accept a team o�er from a good-type

sophomore with a bad reputation. Indeed, for � low enough, the initial loss for the junior is so low

that separating teams are observed regardless of the sophomore's reputation.

4.2 Side payments

Next, we allow for side payments and calculate the separating ranges as a function of � and �.

Table 6 is equivalent to Table 5 with bargaining taking place between family members. The results

must be read as follows. For all combinations of � and �; two numbers are reported: the top

number is p2min, while the bottom one is p2max. Teams are composed exclusively of good-type agents

for p2min � p2 � p2max. We also report in Table 7 the `semi-separating' ranges, that is where teams

are made up of good-type sophomores while the junior member is of any type.

With side payments a losing teammate is compensated for any reputation loss. Hence, when the

sophomore's reputation (p2) is su�ciently high, teams start losing their separating properties, that

is if p2 > p2max, mixed teams arise as optimal strategies. For low values of p2, mixed teams involve

a bad-type junior and a good-type sophomore, followed by all but two bad-type agents, and �nally

T is chosen all agents regardless of their types when p2 approaches 1.

Comparing the results reported in Tables 5 and 6, we �rst observe that whenever comparable

separating teams exist, p2min is always lower in the presence of side payments. When we allow for

compensation, a junior is less discriminating against a type-1 sophomore with a bad reputation.

Moreover, with side payment, the separating range is followed by a semi-separating range. The

reason is intuitive: sophomores have only one remaining employment period and are willing to
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su�er a reputation loss provided they are su�ciently compensated. Conversely, type-1 juniors reject

team o�ers from type-0 sophomores, since their reputation determine their wages for two remaining

employment periods. If they were to team up with a bad-type sophomore the loss cannot be

su�ciently compensated. As a result, no type-0 sophomore �nds a teammate, unless his reputation

is excellent (p2 approaching 1). Secondly, as in Table 5, the same argument holds when � approaches

�.

To summarize, our results indicate that side payments reduce separating ranges obtained without

bargaining. On the one hand, with side payments, p2min falls, pointing towards less discrimination by

good-type juniors against good-type sophomores with bad reputations, and on the other hand, p2max

falls as well, indicating less discrimination against bad-type agents. We also �nd that sophomores

su�er the most from discrimination since juniors at entry levels stand to lose more from a loss of

reputation than a sophomore with only one remaining employment period. Nevertheless, despite

the high degree of discounting, nonempty separating and semi-separating ranges are still obtained

for most unconditional distributions.

4.3 Steady-state distributions

The previous section computed the steady-state equilibrium strategy for elective team formation as

a function of all p2, �1 and �2. In practice, because of the relatively short time range considered, it

is possible that p2 always lie outside the separating ranges. Hence two issues need to be considered:

(i) what are the characteristics of the ex-post sophomore probability distribution and (ii) what is

the ex-post distribution on errors on types made by the principal? To answer these questions, we

compute the steady-state ex-post distribution of p2 using the method described in Appendix D

for � = 0:5, � = 0:4 and � = 0:6, and graph that distribution in Figure 1. For these parameter
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values, teams are fully separating if 0:27 � p2 � 0:35 (Table 6), and teams are semi-separating if

0:27 � p2 � 0:45 (Table 7). The steady-state distribution of p2 reported in Figure 1 shows that for

these parameter values p2 falls in the fully separating segment 13% of the time, and in the semi-

separating range 2% of the time, indicating that more than half of the contracts (0 � p2 � 0:45)

reveal information on at least one member of the family.

We next computed the large-sample distribution for the di�erences between the sophomore's

actual type and his conditional probability, (�2 � p2), i.e. the pricing error made by the principal.

Recall that paying a wage equal to the conditional expected type is optimal if the employer minimizes

a quadratic function in informational rent. Therefore, to compare the performance of our model, we

computed the second to fourth moments of the asymptotic distribution on errors for three alternative

strategies: (i) single contracts are imposed (S), (ii) teams are elective (E) and (iii) teams are imposed

(T ).7 The results reported in Table 9 indicate that regardless of the informational content of teams,

using elective contracts rather than compulsory single or team contracts is sensible if the objective

of the employer is to minimize a quadratic function of informational rent. From the self-selection

inherent in elective teams, allowing workers to choose between the single or team contracts yielded

lower estimates for the squared errors on types than compulsory single or team contracts. Moreover,

while the elective contract produced a slightly more right-skewed distribution than the compulsory

team contract, it is less subject to making large errors than both compulsory alternatives, as can

be seen from the lower kurtosis estimates.

7Speci�cally, we used an experiment consisting of 20,000 replications in which types and shocks by nature were

drawn, and optimal employment strategies selected according to the equilibrium rules obtained from the previous

discussion.
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5 Conclusion

This paper focuses on the informational content of elective teams. We show that when a worker's

reputation is at stake, and when, unlike his employer, he observes his co-worker's type, elective

teams can support a (partially) separating equilibrium. In the absence of side payments, a team

involves exclusively two good-type agents; no agent wishes to jeopardize his reputation which is

used to determine current and future wages. With side payments, teams are either fully or semi

separating. Our model suggests a rationale for the conjecture that good agents regroup while bad

agents are ostracized: the good agent fears being mistaken for the bad one in the event of an adverse

outcome.

The equilibrium assignments that we �nd are consistent with several stylized facts identi�ed with

referrals, in particular, the observation that referees tend to refer agents with similar characteristics,

that referred workers tend to earn higher entry wages and have a �atter wage pro�le, and more

generally that �rms value subjective information concerning applicants supplied by workers. To the

extent that our elective team structure can be seen as a referral with commitment, our results are

encouraging.

A number of simplifying assumptions could be revised for further development. The absence of

uncertainty on types in a team might be replaced by a noisy observation � albeit one with smaller

variance than the principal � or a sequential learning process. Moreover, we implicitly assumed that

the information on types was valuable to the principal without explicitly introducing this valuation

into the model. Finally, it would be of interest to account for moral hazard issues in the context of

elective teams.
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A Transition Probabilities

Table 3: Period t+ 1's sophomore wages (p2t+1)

output in t S in t T in t

0 0 0

1
�(1��)

�(1��)+(1��)�

(1�p2
t
)�(1��)

p2
t
(1��)(1��)+(1�p2

t
)�(1��)+(1�p2

t
)(1��)�

2 1
(1�p2

t
)��+p2

t
�(1��)

(1�p2
t
)��+p2

t
(1��)�+p2

t
�(1��)

3 1

Table 4: Period t+ 1's senior wages (p3t+1)

output in t S in t T in t

0 0 0

1
p2
t
(1��)

p2
t
(1��)+(1�p2

t
)�

p2
t
(1��)(1��)

p2
t
(1��)(1��)+(1�p2

t
)�(1��)+(1�p2

t
)(1��)�

2 1
p2
t
(1��)�+p2

t
�(1��)

(1�p2
t
)��+p2

t
(1��)�+p2

t
�(1��)

3 1

Note: S denotes the single contract, T is the team contract, � = Pr(�1 = 1), � = Pr(� = 1) and
t is the time index.

B Method used to compute optimal strategies

This section describes the equilibrium algorithm which computes agents' steady-state optimal strate-
gies as discussed in Section 3. The intuition behind the procedure is as follows. We discretize the
state space and initialize the value function to some arbitrary value, which we then use to compute
agents' expected payo�s under either the team and the single contract. Each agent subsequently
chooses the strategy which yields either the highest expected utility (no side payments) or that
strategy where their combined utility is maximized (with side payments). Given agents' choice, the
value function is updated. We repeat this procedure and iterate on the value function until it con-
verges. In practice, for any parameter value, the value function converged in at most six iterations.
We now provide a more detailed description of the algorithm.

1. Initialization: for all s =
�
p2; �1; �2

�
2 S,

�
w1(s); w2(s)

�
= (0; 0).

2. Expected utility of the junior if:

18



(a) �1(s) = S
r1S(s) = �+ � [��w2(p2(�1 + 1); 1; �1)

+�(1� �)w2(p2(�1 + 1); 0; �1)

+(1� �)�w2(p2(�1 + 0); 1; �1)

+(1� �)(1� �)w2(p2(�1 + 0); 0; �1]

(10)

where the probability function p2 is given in the second column of Table 3.

(b) �1(s) = T :

r1T (s) = p2 + � f��w2(p2(�1 + �2 + 1); 1; �1)

+�(1� �)w2
�
p2(�1 + �2 + 1); 0; �1

�
+(1� �)�w2

�
p2(�1 + �2 + 0); 1; �1

�
+(1� �)(1� �)w2

�
p2(�1 + �2 + 0); 0; �1

�
g

(11)

where the probability function p2 is given in the third column of Table 3.

3. Expected utility of sophomore if:

(a) �2(s) = S:
r2S(s) = p2 + �f�p3(�2 + 1) + (1� �)p3(�2 + 0)g (12)

where the probability function p3 is given in the second column of Table 4.

(b) �2(s) = T :

r2T (s) = p2 + �f�p3(�1 + �2 + 1) + (1� �)p3(�1 + �2 + 0)g (13)

where the probability function p2 is given in the third column of Table 4.

4. Decision rules:

(a) No side payments:

� �1(s) = �2(s) = T if r1T (s) > r1S(s) and r2T (s) > r2S(s).

� �1(s) = �2(s) = S otherwise.

(b) Side payments:

� �1(s) = �2(s) = T if r1T (s) + r2T (s) > r1S(s) + r2S(s).

� �1(s) = �2(s) = S otherwise.

5. Candidate value function ~w(s) =
�
~w1(s); ~w2(s)

�
:

(a) if �(s) = T :

~w(s) =
�
r1T (s); r

2
T (s)

�
; (14)

(b) else,

~w(s) =
�
r1S(s); r

2
S(s)

�
; (15)

6. Grid: repeat steps 2 to 5 for all s on the grid.
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7. Stopping rule:

� If maxs j ~w(s)� w(s)j > ", w = ~w, set
�
f1� (s); f

2
� (s)

�
= w(s), and start again at step 2.

� Otherwise �� = �, stop.

C Separating Regions

Table 5: Minimum separating sophomore wage p2min, ITP, no bargaining

�

� 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 7

15 1 1 1 1 1 1 1 1 1 1 1 1 1 6 9 11 13

20 16 12 1 1 1 1 1 1 1 1 1 7 10 13 15 16 18

25 23 20 17 14 11 7 5 6 8 10 12 15 16 18 20 21 23

30 29 27 25 22 21 19 18 18 18 19 20 21 22 24 25 27 28

35 35 33 31 30 28 27 26 26 25 26 26 27 28 29 31 32 33

40 40 39 38 37 35 34 33 32 32 32 32 32 34 35 36 37 38

45 45 44 44 42 41 40 40 39 38 38 38 38 39 40 41 42 43

50 50 50 49 48 47 47 46 45 45 44 44 44 45 45 46 47 48

55 56 55 54 54 53 52 52 51 51 50 50 50 50 51 51 52 53

60 60 60 60 59 59 59 58 57 57 56 56 56 56 56 57 58 58

65 65 65 65 65 64 64 64 63 62 62 61 61 61 62 62 63 64

70 70 71 70 70 69 69 69 68 68 68 67 67 67 67 68 68 69

75 75 75 75 75 75 75 74 74 74 73 73 73 73 73 73 73 74

80 81 81 81 80 80 80 80 79 79 79 79 79 79 79 79 79 79

85 86 86 86 85 86 85 85 85 85 85 84 84 84 84 84 84 84

90 91 91 91 90 90 90 90 91 90 90 90 90 90 90 90 90 90

Note: minimum p2 (in %) required for equilibrium team formation involving two

type-1 agents in function of unconditional probabilities � (rows) and � (columns).

Positive discounting of future utility, with � = 0:5. No side payments, incumbent

team payment scheme.
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Table 6: Separating sophomore's wage [p2min; p
2
max], ITP with bargaining

�
� p2min

p2max

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

10 � � � � 0 0 0 0 0 0 0 1 � � � � �

� � � � 2 3 3 4 4 4 4 2 � � � � �

15 � � � 0 0 0 0 0 0 0 0 0 0 3 6 8 �

� � � 2 5 7 8 9 9 9 9 9 9 9 8 9 �

20 � � � 0 0 0 0 0 0 0 0 3 6 9 11 14 �

� � � 7 9 11 13 14 14 14 14 14 15 14 14 14 �

25 � � 6 2 0 0 0 0 0 2 7 10 12 14 16 19 �

� � 7 12 14 16 16 19 19 19 19 19 19 19 19 20 �

30 � � � 13 11 9 8 8 9 10 14 16 18 20 22 24 �

� � � 17 19 20 23 24 24 24 24 25 25 24 25 24 �

35 � � � � 21 18 17 17 17 17 20 22 23 25 27 29 �

� � � � 24 25 28 29 29 29 29 30 30 29 30 30 �

40 � � � � 29 27 25 24 24 26 27 28 29 31 33 34 �

� � � � 29 33 33 35 34 35 35 35 35 35 35 34 �

45 � � � � 37 35 33 32 31 33 34 34 35 36 38 40 �

� � � � 38 38 39 40 39 40 40 41 41 40 40 40 �

50 � � � � � 43 41 39 39 40 40 40 41 42 43 45 47

� � � � � 43 45 45 45 45 45 46 46 49 45 47 49

55 � � � � � 49 48 47 46 47 46 46 47 48 49 50 52

� � � � � 49 50 51 50 51 51 50 53 54 54 54 55

60 � � � � � � 55 54 53 53 53 53 53 53 54 55 56

� � � � � � 55 56 54 55 55 59 59 59 59 60 60

65 � � � � � � � 60 59 60 59 59 59 59 59 60 62

� � � � � � � 60 59 60 63 64 64 65 65 66 65

70 � � � � � � � � � 66 65 65 64 64 65 66 67

� � � � � � � � � 68 69 70 70 71 70 71 71

75 � � � � � � � � � 72 72 71 70 70 71 71 72

� � � � � � � � � 73 74 75 75 76 76 77 76

80 � � � � � � � � � � 78 77 77 77 77 77 78

� � � � � � � � � � 79 80 80 81 82 82 82

85 � � � � � � � � � � 84 83 83 83 83 83 83

� � � � � � � � � � � 85 86 87 87 88 88

90 � � � � � � � � � � � 89 89 89 89 89 89

� � � � � � � � � � � 90 90 92 92 93 93

Note: minimum p2 (�rst line, in %) and maximum p2 (second line) required for

equilibrium team formation involving one type-1 sophomore, and one type-1 junior,

in function of unconditional probabilities � (rows) and � (columns). Positive dis-

counting of future utility, with � = 0:5. Side payments allowed; incumbent team

payment scheme.

21



Table 7: Semi-separating sophomore's wage [p2min; p
2
max], ITP with bargaining

�
� p2min

p2max

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10

15 0 0 0 0 0 0 0 0 0 0 0 0 0 3 6 8 10

12 12 12 13 13 14 16 16 16 16 16 15 15 15 15 15 15

20 0 0 0 0 0 0 0 0 0 0 0 3 6 9 11 14 16

18 14 18 18 19 20 20 21 22 21 21 20 20 20 20 20 20

25 0 0 6 2 0 0 0 0 0 2 7 10 12 14 16 19 20

25 24 24 24 25 25 26 27 27 26 26 26 25 25 25 25 25

30 14 14 16 13 11 9 8 8 9 10 14 16 18 20 22 24 25

31 30 29 29 30 30 31 32 30 31 32 32 32 30 30 30 30

35 23 22 23 24 21 18 17 17 17 17 20 22 23 25 27 29 30

37 36 35 35 36 36 37 35 36 36 39 38 37 36 35 35 35

40 29 28 29 29 29 27 25 24 24 26 27 28 29 31 33 34 35

43 41 41 41 41 41 40 40 41 44 45 44 43 42 41 41 40

45 34 34 34 34 37 35 33 32 31 33 34 34 35 36 38 40 40

49 47 47 47 46 44 46 46 47 50 51 51 49 48 47 46 45

50 41 39 39 39 44 43 41 39 39 40 40 40 41 42 43 45 47

54 53 51 49 50 50 51 52 53 55 56 57 56 54 53 51 50

55 45 45 50 49 49 49 48 47 46 47 46 46 47 48 49 50 52

54 54 55 55 55 56 57 57 58 61 61 62 63 61 65 57 56

60 57 56 55 55 55 56 55 54 53 53 53 53 53 53 54 55 56

60 60 61 61 61 62 62 63 63 66 66 68 66 66 65 63 61

65 62 61 61 60 60 61 61 60 59 60 59 59 59 59 59 60 62

64 65 66 66 66 67 67 68 69 71 71 70 72 73 73 70 67

70 67 67 65 65 65 66 67 67 68 66 65 65 64 64 65 66 67

70 71 71 71 72 72 73 73 74 76 76 76 78 74 79 77 74

75 72 72 71 71 71 71 72 72 71 72 71 70 70 71 71 72 72

75 76 77 77 77 78 78 78 79 81 80 82 83 85 86 86 81

80 78 77 76 76 76 76 77 75 78 79 78 77 77 77 77 77 78

81 81 82 82 83 83 84 84 84 85 86 87 88 90 93 99 90

85 83 82 81 81 81 81 78 82 83 84 84 83 83 83 83 83 83

86 87 87 87 88 88 89 89 90 90 90 91 93 95 100 100 100

90 88 87 87 86 85 82 86 87 88 89 90 89 89 89 89 89 89

92 93 94 94 94 94 95 95 95 95 95 95 96 100 100 100 100

Note: minimum p2 (�rst line, in %) and maximum p2 (second line) required for equi-

librium team formation involving one type-1 sophomore, regardless of the junior's

type, in function of unconditional probabilities � (rows) and � (columns). Positive

discounting of future utility, with � = 0:5. Side payments allowed; incumbent team

payment scheme.
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D Steady-State Probability Distribution

This section describes the method used to compute the steady-state distribution of p2.

1. Choose E 2 N su�ciently large (e.g. 100), and let l = 1
E

2. Let i; j; s; s0 2 f0; l; 2l; : : : ; 1g � f0; 1g � f0; 1g � Sd where s and s0 denote current and next
period state respectively.

3. Construct a transition matrixM of dimension 4(E+1)�4(E+1) such that a typical element
on the ith line and jth column, Mij = Pr(s0 = jjs = i):

4. For each s 2 Sd, �
1
�(s) is obtained from section 4.

5. Given �1�(s), use Table 3 to calculate p2 in the next period. Note that this probability corre-
sponds in fact to the current junior's, and that

� it depends on today's realization of nature (good or bad), and

� the junior can be either of the good type or bad type.

Hence s0 is restricted only to four possibilities each weighted by the appropriate probability
as given below:

Table 8: Feasible states

Nature Junior0s type state Probability

0 0 (p20; 0; �1) � s00 (1� �)(1� �)

0 1 (p20; 1; �1) � s01 (1� �)�

1 0 (p21; 0; �1) � s10 �(1� �)

1 1 (p21; 1; �1) � s11 ��

6. Let sf � fs00; s01; s10; s11g and use Table 8 to �ll in the transition matrix M as follows:

(a) If s0 2 sf ; Mss0 equals the corresponding transition probability as given in the Table 8.

(b) If s0 =2 sf ; Mss0 = 0:

7. The steady-state distribution of p2, which we denote �, is obtained by solving the system of
4(E + 1) equations (A0 � I)� = V , where I is the identity matrix, V is a 4(E + 1) column
vector of 0, except for V4(E+1) = 1.
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Figure 1: Steady-state ex-post distribution for p2
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Note: Fixed parameters: � = 0:5; � = 0:4 and � = 0:6. SR: separating range (teams only if both

type-1 agents). SSR: semi-separating range (teams only if type-1 sophomore).
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E Large-sample distribution

Table 9: Moments of the error distribution

moments S E T

E(�2 � p2)2 0:110 0:103 0:131

E(�2 � p2)3 0:042 0:034 0:031

E(�2 � p2)4 0:039 0:035 0:048

Note: Sample means of the second, third and fourth moments of the errors on

sophomore's type �2 � p2, based on Monte-Carlo experiment, with 20,000 replica-

tions. Fixed parameters: � = 0:5; � = 0:4 and � = 0:6, ITP, with bargaining.

Types of contracts: S, singles only, T teams only, and E agents choose between the

S and T contracts.
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