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1. INTRODUCTION 
 

WHILE THE ROLE OF EXHAUSTIBLE RESOURCES in economic growth has almost been 
thoroughly explored (see the well-known Review of Economic Studies 1974 
Symposium), the question of endogenous population and fertility decision has only 
attracted attention – once again – quite recently (see Becker and Barro (1988), Barro and 
Becker (1989), Becker, Murphy, and Tamura (1990), Galor and Weil (1998), among 
others). To our knowledge, a synthesis of these two strands of literature has not been 
undertaken, despite the fact that it certainly contributes to our understanding of the real 
world. This is the task that we propose to accomplish in this paper. 
 
In the first strand of literature, the size of population – assumed to be exogenously given 
– has seldom been a concern. The basic questions addressed by this strand of the 
literature are (i) how does the market allocate an exhaustible resource stock over time? 
and (ii) what is the time path of the resource price? This strand of the literature also 
attempted to provide an answer to the following two questions: (iii) is the market efficient 
in allocating the exhaustible resource over time? and (iv) what are the implications of 
resource exhaustibility in the context of economic growth? Some answers to these 
questions can be found in Dasgupta and Heal (1974, 1979). The answer to question (ii) is 
that the resource price rises at the rate of return for holding assets – the so-called 
Hotelling rule – and this would warrant allocation efficiency along the resource 
extraction path, with the resource being depleted asymptotically. As to the third question, 
which is raised in the dynamic framework, similar results are obtained (see Stiglitz 
(1974)), and the existence and characterization of the optimal solution have been fully 
analyzed – in the setting of an optimal growth model – by Mitra (1980).  When the 
resource is essential, the economy would sink in the long run to the trivial steady state in 
which both the resource and the capital stock vanish, and so does the consumption in the 
limit. This unpleasant outcome could only be avoided when the exhaustible resource can 
be easily substituted for by a reproducible capital. 
 
With respect to the second strand of the literature on economic growth in which the size 
of the population is endogenous, only reproducible capital has been considered as a factor 
of production besides labor. In the class of models that follow the Ramsey-Solow 
tradition in which all economic decisions are conferred to a single infinitely lived agent (a 
planner, or the head of a dynasty), the population size tends to a stationary level; see, for 
example Razin and U Ben-Zion (1975) or Nerlove, Razin, and Sadka (1987). When 
capital is human – as in Barro and Becker, op. cit. – rather than physical, the appropriate 
model is of the Uzawa-Lucas variety (see Lucas (1988)). Using also the dynastic-utility 
formulation, these authors showed that the economy exhibits exponential growth at a rate 
equal to a positive endogenous fertility rate. Works in this direction have been carefully 
surveyed in Tamura (2000). On the other hand, in the overlapping-generation framework, 
Samuelson (1975) investigated the optimal size of population in the long run and pointed 
out that the incentive to maintain an increasing fertility rate would ultimately lead to an 
inefficient allocation outcome.  Erhlich and Lui (1991) further discussed this question, 
and provided a concise literature survey in Erhlich and Lui (1997). 
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Surprisingly, there are not many studies bringing together natural resources and 
population in a comprehensive synthetic model of economic growth. Exceptions are 
Nerlove, Razin, and Sadka (1986) and Eckstein, Stern, and Wolpin (1988). These papers 
focused on indestructible land as a production factor. Nerlove et al. relied upon the 
dynastic-utility approach to show the efficiency of the competitive market outcome with 
endogenous population, while Eckstein et al. used the overlapping-generation framework 
and demonstrated that as long as the fertility decision is taken into account, the 
population growth will not be excessive; the market outcome will be efficient; and the 
economy will reach a stationary long run consumption level above the Malthusian 
subsistence level. The value of land depends on the time path of land per capita and, since 
land is fixed in quantity, the problem of over-accumulation of capital is simply ruled out. 
On the other hand, Nerlove (1993) is, to our knowledge, the only study that links the use 
of a renewable resource to the fertility decision. Studies that link exhaustible resources 
with fertility decisions are simply non-existent; see Rault and Nerlove (1997) and 
Robinson and Srinivasan (1997). 
 
The overlapping-generation framework was seldom used in the study of the extraction of 
exhaustible resources. Kemp and Long (1979) and, recently, Olson and Knapp (1997) are 
exceptions, maybe because studying the extraction of exhaustible resources in this 
framework is too involved. Kemp and Long assumed that the resource is not essential in 
the production process, and showed that the resource could be partially depleted, 
inducing, therefore, a form of inefficiency in this case. On the other hand, Olson and 
Knapp considered the exhaustible resource as an essential factor of production. They 
established the existence of an equilibrium, and provided a characterization of the market 
outcome. Market efficiency in this study is warranted; however, the economy would 
ultimately collapse into the trivial steady state of zero output in the limit. The 
convergence to this degenerate state need not be monotone, but may happen in damped 
oscillations, and the pattern of resource extraction as well as the time path of the resource 
price could possibly exhibit non-classical behavior. 
 
As we have seen, if there is no possibility of substitution for an essential exhaustible 
resource, say oil, used as an input in the production process, the whole economy might 
altogether glide to the trivial steady state of zero consumption in the long run, a regretful 
doomsday. In order to reach the state of economic sustainability, the problem of 
technology transition emphasizes the possibility of substituting for the exhaustible 
resource with an everlasting source of energy input, say solar energy, which could be 
made available through investments in the so-called backstop technology (see, for 
example, Hung and Quyen (1993, 1994)). In models of economic growth, oil is used first, 
with solar energy gradually being brought in to substitute for oil. By the time the oil stock 
is entirely depleted, the backstop capital will have reached the Golden Rule stationary 
level, and its marginal productivity is equal to the interest rate. Can these results be 
carried over into a dynamic general-equilibrium framework, especially when the 
population is not a datum, but endogenous in the sense that it results from fertility 
decisions made by economic agents? This paper aims at providing some answers to these 
questions in an overlapping-generation model. We consider the fertility decision problem 
in an economy where production requires, besides labor, an energy input. The energy 
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input comes from oil, an exhaustible resource, and could be substituted for by solar 
energy. The adoption of the overlapping-generation model as a modeling strategy could 
be justified on the following grounds. First, unlike the dynastic-utility formulation, which 
assumes perfect foresight on the part of the head of the dynasty and to whom the task of 
inter-temporal resource planning is assigned, the overlapping-generation model provides 
a decentralized setting. Individual decisions about resource allocation for each generation 
are all made explicit, and the market mechanism which consistently links these 
decentralized decisions through time worked out. Second, some results obtained under 
the overlapping-generation framework are in sharp contrast to those obtained from the 
single infinitely-lived dynastic head framework. Oil and solar energy might be used 
simultaneously in the production process. The oil stock might be incompletely depleted, 
and under this scenario, the unexploited part of the oil stock would then become a means 
of storing and transferring wealth through time. Although intrinsically productive, oil 
plays in this case the role of a bubble which persists throughout the whole time horizon. 
It is remarkable that introducing oil into the overlapping-generation framework gives rise 
to multiple equilibria with complex dynamics, including the possibility of convergence to 
some steady state through damped oscillation, limit cycles, etc.  
 
A major task of our paper is to provide a proof of the existence of a competitive 
equilibrium for an economy – with capital, oil, and fertility choice – formulated under the 
overlapping-generation framework. Our existence poof proceeds in three stages.  
 
In the first stage, we show that when the economy is truncated at the end of a finite 
number of periods, the truncated economy thus obtained always has a competitive 
equilibrium. The proof involves a modification of the technique developed by Debreu, 
Gale, and Nikaido3. In the proof technique developed by these researchers, the number of 
consumers is exogenously given. Hence in their model the market demand for each 
commodity can be obtained by aggregating the individual demands of a known number 
of consumers. In our model, because fertility decisions are endogenous, the number of 
young and old individuals – and hence the sum of their individual demands for each 
commodity – is endogenous. Thus we cannot invoke directly the results of these 
researchers to assert the existence of a competitive equilibrium, and must make some 
adjustments to account for the endogenous temporal variations in the number of 
consumers in each market in each period. The proof of the existence of a competitive 
equilibrium for a truncated economy is long and involved and is relegated to Appendix B. 
Most of the technical arguments in the proof are deployed to prevent the economy from 
collapsing by showing that the birth rate in each period is positive.  
 
In the second stage, we consider the sequence of truncated economies, with each element 
of the sequence indexed by the period at the end of which the original economy is 
truncated, and – through a series of technical arguments4 – establish some bounds on the 
                                                 
3 See Nikaido (1970, Chapter 10). 
4 The technical arguments involve the limiting values of the various endogenous variables – the birthrates, 
the oil and backstop capital investments by a young individual, the price of oil, and the price of renewable 
energy – either when energy resources are abundant or when the price of energy is near its critical value 

.maxρ  These technical arguments are needed to ensure that the birthrates are bounded below and away 
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endogenous variables that apply uniformly to all the truncated economies. In the third 
stage, we use these bounds to show that a sequence of competitive equilibria – one 
competitive equilibrium for each truncated economy – has a subsequence that converges 
in the product topology of a denumerable family of finite-dimensional Euclidean spaces. 
The limit of the subsequence is a competitive equilibrium of the infinite time horizon 
economy. The technique we employ in establishing convergence is Cantor’s famous 
diagonal trick used in the proof of the following version of the Tychonoff theorem: “The 
product of a denumerable family of compact metrizable spaces is compact and 
metrizable.” The interested reader can consult Dieudonné (1976, (12.5.9)). We would 
like to point out that Balasko and Shell (1980) and Balsko, Cass, and Shell (1980) were 
the first researchers who applied the Tychonoff theorem or Cantor’s diagonal trick to 
prove the existence of a competitive equilibrium for an overlapping-generation model of 
a pure exchange economy. Our overlapping-generation model has both capital and an 
exhaustible resource. It also has an endogenous population structure because fertility 
decisions are determined by the maximizing behavior of the successive young 
generations. Compared to the models of Balasko and Shell, op cit., and Balasko, Cass, 
and Shell, op cit., our model is much more complex, and it is not possible to invoke the 
results of these researchers to assert that it has a competitive equilibrium. Furthermore, 
unlike the proof of these researchers, our existence is accessible to readers who only 
possesse a rudimentary knowledge of real analysis. Also, we believe that our proof of the 
existence of a competitive equilibrium for an overlapping-generation model with 
endogenous fertility, oil, and capital has its own merits, and thus have presented it in 
great detail. We would also like to point out the advantage of the existence proof 
technique based on the Tychonoff theorem over that based on the monotone mapping 
theorem (see, for example, Stokey, Lucas, and Prescott (1989) or Olson and Knapp, op 
cit.) that is often used to establish the existence of a competitive equilibrium for simple 
macroeconomics models with one state variable and formulated under the overlapping-
generation framework. In the latter technique, it is necessary to establish first that the 
operator a fixed point of which constitutes a competitive equilibrium of the overlapping-
generation model has some desired monotonicity property, and this is hard to show, 
especially when the model has several state variables, as is the case of our model.  
 
The paper is organized as follows. In Section 2, the overlapping-generation model is 
presented. In the model, four classes of economic agents exist in each period: a young 
generation, an old generation, competitive firms producing the consumption good, and 
competitive firms producing solar energy. The consumption good is produced from labor 
and energy, with the energy input coming either from oil or the backstop or from both. 
We shall assume that the consumption good can also be used as investment goods to 
augment the backstop capital. As the oil stock dwindles, accumulating backstop capital is 
the only way to prevent eventually a drastic reduction in consumption. In Section 3, we 
study preliminarily the competitive equilibrium of an economy which does not have any 
oil left and which is endowed only with backstop capital. We demonstrate the existence 
of a unique forward-looking temporary equilibrium as well as the existence of at least a 
steady state under infinite time horizon. We then show the possibility of oscillation and 
                                                                                                                                                 
from 0. They are the price we pay for by our specification of a more realistic sub-utility function of 
offspring.  
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of a 2-cycle in the dynamic convergence to a steady state. To support all these findings, 
we provide a numerical example for each case. In Section 4, we focus on an economy 
endowed with both oil and backstop capital. The hard task in Section 4 is to establish the 
existence of a competitive equilibrium under infinite horizon. In Section 5, we  
characterize oil extraction and provide the conditions under which the oil stock will be 
exhausted either in finite time. We then turn to Section 6 where incomplete oil depletion 
occurs and present some numerical examples. One key feature is that when both sources 
of energy are used in production, although the total energy required is well determined, 
its composition is not. Henceforth, many time paths of resource usage might prevail in 
equilibrium, and therefore there exist accordingly many time paths of resource and 
backstop capital all of which satisfy market clearing conditions. From the moment oil 
will not be brought into use as a production factor, the remaining oil stock serves as a 
means of storing value which earns the equilibrium rate of return for asset holding. 
Depending on how much oil will be left under the ground unexploited, there will be an 
equilibrium capital price path, as studied in Section 3, and, therefore, a resulting capital 
accumulation trajectory. Again, steady states are multiple and the convergence to a steady 
state exhibits complex dynamics that might be range from monotone to cyclical 
convergence. We also provide a set of numerical examples to highlight these properties. 
In Section 7, we bring together all disparate elements into a synthetic characterization of 
the competitive equilibria that emerge from our model. Section 8 contains some 
concluding remarks. 
 
 

2. THE MODEL 
 
In this section, we present the overlapping-generation model. First, we describe the 
technology. Second, we describe the economic agents and the problems they face. 
Finally, we define the competitive equilibrium. 
 

2.1. The Technology 
 
The perfectly competitive firms produce a consumption good from two inputs – labor and 
energy – according to a neoclassical production function, say ),,( LEFY =  where Y  
denotes the output; E  the energy input; and L  the labor input. We impose the following 
conditions on :F  
 
ASSUMPTION 1: The production function F  is assumed to be linear homogenous, 
concave, and continuously differentiable. Furthermore, 0)0,(),0( == LFEF  for all 

,0,0 ≥≥ LE  and 0/),(  ,0/),( >∂∂>∂∂ LLEFELEF  for all .0),( >>LE  Also, F  
satisfies the following Inada conditions:  

(i) For any ,0>L  we have 
∞=∂∂→ ELEFimE /),(0l  and .0/),( =∂∂∞→ ELEFimEl  

(ii) For any ,0>E  we have 
∞=∂∂→ LLEFimL /),(0l  and .0/),( =∂∂∞→ LLEFimLl  
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In what follows, we shall let LEe /= denote the energy input per worker and 

)1,()( eFef =  denote the output of the consumption good – as a function of e  – produced 
by a worker.   
 
In our economy, energy inputs come from two sources: oil and a backstop, say solar 
energy. While oil can be extracted at negligible cost, its ultimate stock is limited. The 
backstop, on the other hand, can provide a perpetual flow of energy. However, harnessing 
the Sun’s energy requires investments in backstop capital, say solar collectors. In any 
period, the amount of solar energy harnessed is assumed to be proportional to the stock of 
backstop capital ,K  and, to simplify the exposition, we shall assume that the 
proportionality constant is equal to unity, i.e., one unit of backstop capital produces one 
Btu. Also, we shall assume that backstop capital depreciates at rate .10 , ≤≤ δδ  
 
If tQ  is the amount of oil – also measured in Btu’s – extracted for use as part of the 
energy input in period t  and tK  is the stock of backstop capital in that period, then the 
total energy input used in period t  is .ttt KQE +=  Furthermore, if tL  is the labor input 
used in period ,t  then the output of the consumption good in that period is 

).,( tttt LKQFY +=  We assume that the consumption good can also be used as 
investment goods to augment the stock of backstop capital. As time goes on and the oil 
resources dwindle, it is imperative that investments in the backstop be made to prevent a 
drastic reduction in consumption. The accumulation of backstop capital only influences 
the output of the consumption good indirectly through the amount of solar energy 
delivered by the backstop sector to the economy. Because there is only one kind of 
capital in the model, namely backstop capital, we shall from now on refer to backstop 
capital simply as capital.  
 

2.2. Economic Agents 
 
In this economy, four classes of economic agents coexist in each period: a young 
generation, an old generation, competitive firms producing the consumption good, and 
competitive firms producing solar energy. These economic agents interact on five 
markets – oil, solar energy, labor, backstop capital, and the consumption good. An 
individual works when she is young. She has to allocate her wages among current 
consumption, raising children, and saving for her old-age consumption. The two real 
assets in the economy are oil and capital, which represent the only possible forms of 
saving. 
 
At the beginning of each period ,...,1,0, =tt  the state of the economy is represented by a 
list ),,,,( 10

tttt NNKX  where ,tX ,tK ,0
tN and 1

tN  represent, respectively, the remaining oil 
stock, the stock of capital, the number of young individuals, and the number of old 
individuals. The initial state of the economy, i.e., ),,,,( 1

0
0
000 NNKX  is assumed to be 

known.  
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For each ,...,1,0=t  let ,tφ ,tϕ ,tω ,tρ and tp denote, respectively, the price of oil, the price 
of solar energy, the wage rate, the rental rate of backstop capital, and the price of the 
consumption good – all in period .t  Also, we shall choose the consumption good as the 
numéraire in each period and set ,...1,0,1 == tpt  The list ),,,( tttt ρωϕφ  is called the price 
system in period .t  By a price system we mean an infinite sequence ∞

=0),,,( ttttt ρωϕφ . 
 
2.2.1. The Old Generation 
 
The real assets in each period are owned by the old generation of that period. An old 
individual in period t  owns 1/ tt NX  units of oil and 1/ tt NK  units of backstop capital. The 
total amount of funds at the disposal of such an individual at the end of the period is 

.)1( 11
t

t
t

t

t
t N

K
N
X ρδφ +−+ Because the individual dies at the end of the period, she will 

leave nothing behind. Her consumption is thus given by 

 .)1( 11
1

t

t
t

t

t
tt N

K
N
Xc ρδφ +−+=  

 
2.2.2. The Young Generation 
 
A young individual owns nothing except for 1 unit of labor that she supplies in-elastically 
on the labor market. She has to allocate her labor income among current consumption, 
raising children, and saving for old-age consumption. A lifetime plan for a young 
individual of period t  is a list ( ),,,,, 11

1
1

0
+++ ttttt kxbcc  where ,0

tc  ,1
1+tc  ,tb ,1+tx  and 1+tk  

denote, respectively, her current consumption, her old-age consumption, the number of 
offspring she raises – at the constant cost h  in terms of real resources per child – the 
amount of oil she buys as investment, and the amount of capital she buys – also for 
investment purposes. A lifetime plan is feasible if it satisfies the following two temporal 
budget constraints: 
(1) ,011

0 =−−−− ++ tttttt kxhbc φω  
(2) .0)1( 1111

1
1 =+−−− +++++ ttttt kxc ρδφ  

The lifetime utility associated with such a lifetime plan is assumed to be given by 
(3) ),()()( 1

1
0

ttt bvcucu ++ +γ  
where )(cu  is the single-period sub-utility function associated with consumption, and 

)(bv  is the sub-utility function of offspring. Also, ,10 , << γγ  is a parameter 
representing the factor she uses to discount future utilities. It should be emphasized that 
for parents children have intrinsic value, and the number of offspring is here considered 
as a consumption good from their viewpoint.5  

                                                 
5 One may think of tb  as a measure of quality of a child – in period t  – for an economy in an economy 

endowed with a constant population, say .0N  Then the economy’s human capital at the beginning is 

,0
0
0 bN  and the economy’s human capital in the following periods are given by ,...2,1,0 =tbN t We think 
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We impose the following assumption on the single-period sub-utility function of 
consumption and the sub-utility function of offspring: 
 
ASSUMPTION 2:  

(i) The sub-utility function )(cu  is defined for all .0>c   It is continuously 
differentiable, strictly concave, and strictly increasing. Furthermore, it 
satisfies the following Inada conditions: +∞=→ )('0 cuimcl  and 

.0)(' =+∞→ cuimcl  
(ii) The sub-utility function of offspring )(bv  is defined for all .0≥b It is 

continuously differentiable and concave. Furthermore, there exists a 
number 1max >b  such that  . ,0)(' and  ,0 ,0)(' maxmax bbbvbbbv ≥≤<≤>   

 
Note that maxb  represents the saturation number of offspring. Because the single-period 
sub-utility function of consumption and the sub-utility function6 of offspring are both 
assumed to be concave and increasing, current consumption, old-age consumption, and 
offspring are all normal goods. Furthermore, because it is costly to raise children, the 
optimal number of children is strictly less than .maxb   
 
The problem of a young individual in period t  is to find a feasible lifetime plan that 
maximizes (3). Let 

(4) 








+−=
−

t
t

t
tr ρδ

φ
φ 1,max

1

   

denote the rate of return to savings for a young individual of period .t  Her lifetime utility 
maximization problem can be restated under the following form: 
(5) ( ) )()()(max 1

1
0

, 1
1

0 tttbcc
bvcucu

ttt
++ +

+
γ  

subject to the following single budget constraint: 

                                                                                                                                                 
that when one talks about human capital, the investments involved should encompass both the efforts made 
with regard to the quantity of children and the efforts made with regard to the quality of each child. Here, 
the quantity-quality trade-off is relevant and merits a further separate study. In this paper, we try not to be 
abusive by engaging in a lax interpretation of human capital. Therefore, we choose to consider b  as the 
number of offspring, and thus 10

0
0

0 ... −= tt bbNN  is the size of the young generation in period .t  The size 

of the young generation in each period is endogenous precisely because tb  is a decision variable for a 
young individual in period .t  
6 Observe that part (ii) of Assumption 2 rules out homothetic preferences. If preferences are homothetic, the 
Engel curves of current consumption, future consumption, and offspring are all straight lines. In particular, 
when labor income rises, the demand for offspring rises in the same proportion as the rise in labor income, 
which seems to be untenable. Furthermore, for an economy that is sustained only by renewable energy 
resources, homothetic preferences imply that from any initial condition the economy enters a steady state 
after one period: the transition to its steady state level of the birth rate lasts exactly one period, and this also 
seems unreasonable (see also footnote 3). On the other hand, it can be shown that homothetic preferences 
allow for a much simpler proof of the existence of a competitive equilibrium for the case the economy 
begins with a positive stock of fossil fuels. 
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(6) .01 1
1

1

0 =−++ +
+

ttt
t

t hbc
r

c ω  

Note that the budget constraint (6) asserts that the present value of consumption over two 
periods plus the current cost of raising children are equal to the current labor income, 
where the discounted price of future consumption is given by ./1 1+tr Because )(cu  is 
strictly concave for all ,0>c  and )(bv  is strictly concave in ,0 maxbb ≤≤  the lifetime 
utility maximization stated under the form represented by (5) and (6) has a unique 
solution ).,,( 1

1
0

ttt bcc +  The first-order conditions γ/)(/)( 1
0,1,

+= ttt rcucu  and 
)()( 0,,

tt chubv =  are standard and have the usual interpretations. Given the parameters γ  
and h , one these first-order conditions and the budget constraint (6) can be solved to 
obtain the demand functions ),(),,( 1

1
11

0
+++ tttttt rcrc ωω , and ),( 1+ttt rb ω . Note that the Inada 

condition imposed on the sub-utility function associated with consumption implies that 
00 >tc  and ;01

1 >+tc  that is, current consumption and future consumption are both 
positive. However, the number of offspring raised by a young individual of period t  
might be zero if the current wage rate is low enough.  
 
The saving of the individual is  
(7) ,0

tttt hbcs −−=ω   
and the division of saving between oil and capital depends on their relative rates of 
return. If ,1/ 11 ++ +−> ttt ρδφφ  i.e., if investment in oil yields a higher rate of return than 
investment in capital, then all the savings will be put into oil: the optimal investment mix 
is ttt sx φ/1 =+  and .01 =+tk  On the other hand, if ,1/ 11 ++ +−< ttt ρδφφ  then all the 
savings will be put into capital: the optimal investment mix is 01 =+tx  and .1 tt sk =+  
When ,1/ 11 ++ +−= ttt ρδφφ  the two real assets yield the same rate of return. The 
individual is indifferent between oil and capital, and 1+tk  can assume any value between 0 
and .ts  
 
What happens to the optimal lifetime plan ),,( 1

1
0

ttt bcc +  when the rate of return to saving in 
the next period rises? To answer this question, recall that 1/1 +tr represents the price – in 
terms of current consumption – of 1 unit of old-age consumption. Because a rise in 1+tr  
makes the price of 1 unit of old-age consumption cheaper, we expect that the substitution 
effect will cause old-age consumption to rise at the expense of current consumption and 
the number of offspring. Furthermore, as 1+tr  rises, real lifetime income also rises with 

.1+tr  The income effect will raise current consumption, old-age consumption, and the 
number of offspring. The income effect reinforces the substitution effect and causes old-
age consumption to rise even more, and thus, all in all, we get 0/ 1

1
1 >∂∂ ++ tt rc . However, 

for current consumption and the number of offspring, the net impact is ambiguous 
because the substitution effect and the income effect operate in opposite directions. The 
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net impact on ts  is thus ambiguous although 1
1+tc  is increasing in .1+tr  To obtain sharper 

results, we shall make the following assumption: 
 
ASSUMPTION 3: For a young individual, current consumption, old-age consumption, and 
offspring are gross substitutes 
 
Assumption 3 is often made in overlapping-generation models and looks quite innocuous 
at the macroeconomic level; see, for example Azariadis (1993, Section 7.4) and Azariadis 
and Drazen (1990). Thanks to this assumption, we obtain the result that young-age 
consumption declines when the discounted price of future consumption declines, i,e., 

0/ 1
0 ≤∂∂ +tt rc . Similarly, for the number of offspring, we have 0/ 1 ≤∂∂ +tt rb . It follows 

immediately from (7) that  .0/ 1 ≥∂∂ +tt rs  On the other hand, as already discussed 
immediately after Assumption 2, for a young individual, current consumption, old-age 
consumption, and offspring are all normal goods. Thus we expect ,0

tc  ,1
1+tc  and tb  to rise 

with the current wage rate .tω Furthermore, because ,1
1

1 ttt src ++ =  saving also rises with 
.tω  

 
Now according to Assumption 2, the Inada condition is imposed on the sub-utility 
function of consumption, but not on the sub-utility function of offspring. Thus we can 
expect that when the labor income of a young individual is too low, she will choose not to 
raise children. To determine the critical level of labor income that triggers the extinction 
of the population at the end of the following period, suppose that ),1(1 δ−=+tr  the 
minimum rate of return to saving that is possible. Next, let 
(8) }{ .)1( given that  ,0)( 1

min δωδω −=>= +ttt rbInf  

As defined, )(min δω  is the critical wage rate at or below which a young individual will 
choose not to raise children, given that the rate of return to saving is equal to its minimum 
possible level. Using Assumption 3, we can assert that )(min δω  declines when δ  rises. In 
what follows, we shall suppress the rate of capital depreciation in the notation for this 
critical wage rate and write it simply as ,minω  except when we want to stress its 
dependence on .δ  Furthermore, if minω is the labor income of a young individual, then 
using Assumption 3, we can assert that for any rate of return above the minimum level 

δ−1 , the individual still chooses not to raise children. Let mine  denote the energy input 
per worker that gives rise to the critical wage rate .minω  These two critical variables are 
linked by the following relation:  
(9) ).(')( minminminmin efeef −=ω  
Recall that as ,minωω ↓t  the number of offspring she raises will tend to 0 while the 
saving for old-age consumption is bounded below and away from 0, which implies that 

),,(/),( 11 ++ tttt rbrs ωω  the saving/offspring ratio will tend to infinity. It is this property that 
prevents the population from becoming extinct in finite time. When the labor income 
declines to the critical level minω , the birthrate approaches 0, but the saving for old-age 
consumption – although low – is still bounded below and away from 0, allowing for a 



 12

high saving/offspring ratio. The high saving/offspring ratio means a high level of energy 
input per worker in the next period, with an ensuing high wage rate in that period. A high 
wage rate in the next period leads to a high birthrate in that period, which gives the 
population a chance to bounce back. The saving/offspring ratio also tends to infinity 
when labor income tends to infinity. The reason is that the birthrate, although rises with 
income, remains bounded above by the saturation level maxb  while saving increases 
without bound. Thus when the wage rate is high, the cost of raising children becomes a 
negligible fraction of labor income, and most of the labor income is spent on current 
consumption and on investments to provide for old-age consumption. Due to these 
reasons, we can expect the curve ,  ),,(/),( min

11 ωωωωω >→ ++ tttttt rbrs  to have a U-
shape. The shape of this curve for the numerical example presented in Section 3.4 is 
depicted in Figure 1.   
 
2.2.3. Solar Energy Producers 
 
Solar energy is produced by competitive firms from capital. Given that the price of solar 
energy in period t  is tϕ  and that the rental rate of capital – also in period t  – is ,tρ  the 
profit maximization problem of the competitive firms is particularly simple. The 
representative solar energy producer solves the following profit maximization problem: 
(10) ( ) ][max ##

, ## KS ttSK
ρϕ −  

subject to the following technological constraint: 
(11) ,0## ≤− KS  
where #K  and #S  represent, respectively, this firm’s demand for capital and its output of 
solar energy. The ordered pair ),( ## SK  is called a production plan of the representative 
firm in the backstop sector, and a production plan is feasible if it satisfies the 
technological constraint (11). If ,tt ρϕ >  then because of the assumption that one unit of 
capital produces one unit of energy, the backstop sector will demand an unbounded 
amount of capital to produce an unbounded amount of solar energy and make infinite 
profits. Because of limited capital, this situation obviously cannot arise in equilibrium. 
On the other hand, if ,tt ρϕ <  then the backstop sector will shut down. When ,tt ρϕ =  the 
profits of the producers in this sector are zero, and the output of this sector is 
indeterminate.  
 
2.2.4. Producers of the Consumption Good 
 
In each period ,t  the representative firm in the consumption good sector solves the 
following profit maximization problem: 
(12) ][max ),,,( LSQY tttYLSQ ωϕφ −−−  
subject to the technological constraint 
(13) ,0),( ≤+− LSQFY  
where ,Q  ,S  ,L  and Y  represent, respectively, the oil input, the solar energy input, the 
labor input, and the output of the consumption good. The list ),,,( YLSQ  is called a 
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production plan of the representative firm, and a production plan is technological feasible 
if it satisfies the constraint (13).  
 
Let ),,,( tttt YLSQ  be a solution of the problem constituted by (12) and (13). As usual, the 
price of a factor is equal to its marginal productivity; that is, ω=∂∂ LF /  for labor,  

=∂∂ EF / tφ  for oil, and =∂∂ EF /  tϕ  for solar energy when these inputs are used.  In 
particular, we have (i) 0=tQ  if ,tt ϕφ >  (ii) 0=tS  if .tt ϕφ <  When ,tt ϕφ =  the mix 

),( tt SQ  is indeterminate, although the sum ttt SQE +=  is uniquely determined.  
 

2.3. Definition of Competitive Equilibrium 
 
Let ∞

== 0),,,( ttttt ρωϕφP  be a price system. An allocation induced by P is a list of infinite 
sequences 
 ( )∞

=
∞
=

∞
=

∞
=+++= 0

10
0

##
0011

1
1

01
0 ),,,(,),(,),,,(,),,,,(, ttttttttttttttttttt NNKXSKYLSQkxbcccA  

with the following properties: 
 (i) ;/])1([ 1

00000
1
0 NKXc ρδφ +−+=  

 (ii) ),,,,( 11
1

1
0

+++ ttttt kxbcc  is the optimal lifetime plan for a young individual of  
  period t  when the price system P  prevails. 
 (iii) ),( ##

tt SK  is an optimal production plan of the representative firm in the  
  backstop sector in period t  when the price system P  prevails. 
 (iv) ),,,( tttt YLSQ  is an optimal production plan of the representative firm in  
  the consumption good sector in period t  when the price system P prevails. 

(v) ,...2,1  ),1,,,(),,,( 1
0

1
10 == −− tbkxNNNKX tttttttt  

 
Observe that (i) represents the consumption of an old individual in period 0, and (ii) 
describes the dynamics of the system driven by the lifetime utility maximization behavior 
of the successive generations. The pair ( )A P,  is said to constitute a competitive 
equilibrium if the following market-clearing conditions are satisfied for each ,...,1,0=t  
 (vi) ,1 ttt XQX =++  
 (vii) ,#

tt SS =  
 (viii) ,0

tt NL =  
 (ix) ,#

tt KK =  
 (x) .)1()( 1

0011
tttttttt KYkhbcNcN δ−+=+++ +  

 
Observe that (vi) represents the equilibrium condition on the oil market; (vii) the 
equilibrium on the solar energy market; (viii) the equilibrium condition on the labor 
market; (ix) the equilibrium condition on the capital market; and (x) the equilibrium 
condition on the consumption good market. 
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3. COMPETITIVE EQUILIBRIUM FOR AN ECONOMY WITHOUT OIL 
RESOURCES 

 
In this section, we analyze an economy without oil resources. The analysis can also be 
used to characterize the behavior of our economy in its final phase, after the oil stock has 
been exhausted and is now completely sustained by renewable energy. 
 
Before beginning the analysis, it is worth glancing at the other extreme case of an 
economy endowed only with oil, but no capital. This is the case studied in detail by Olson 
and Knapp (1997) in a model where there is no consideration of fertility decision. Our 
model only needs to be slightly modified to accommodate this new feature. First, the 
problem of a young individual is still represented by (5) and (6). Next, note that since oil 
is the only input in the production of the consumption good, factor pricing in a 
competitive market requires )(' tt qf=φ and ),(')( tttt qfqqf −=ω where 1+−= ttt xxq  
is the oil input per worker. To warrant positive consumption in period t  requires tq > 0; 
and to warrant asset holding, one must have ),('/)('/ 111 ttttt qfqfr +++ == φφ  which is 
exactly the Hotelling rule. Now note that because oil is an exhaustible resource, its stock 
must decline inexorably over time, and the implication of this fact is that the population 
will be extinct in the long run. To see why, suppose that the birthrate tends to a limit that 
is greater than or equal to 1 in the long run. Because the cost of raising one child is ,0>h  
the oil input per worker in the long run must be bounded away from 0, which obviously 
cannot be maintained given the fixed stock of oil. Thus in the long run the remaining oil 
stock and the number of young individuals will both vanish. Furthermore, because the 
output of the economy tends to 0 through time, the total labor income of workers must 
also tend to 0 through time. This result implies that the oil asset bought by the successive 
young generations will tend to 0 in the long run, i.e., the oil stock will be asymptotically 
depleted. Sine all the oil stock will be depleted, inefficiency in term of over accumulation 
of assets is ruled out. The convergence to the trivial steady state may be monotone 
 
Let us now return to our main purpose of this section: analyzing an economy without oil 
resources. Suppose that the economy begins in state ( )1

0
0
00 ,, NNK  in period 0, with 

;0 and ,0 ,0 1
0

0
00 >>> NNK that is, the economy begins without any oil resources, but 

with a positive stock of capital and a positive population. In each period, economic agents 
thus interact only on four markets: the market for labor, the market for backstop capital, 
the market for solar energy, and the market for the consumption good. Because one unit 
of capital produces one Btu, and because in equilibrium the profit in the backstop sector 
is 0, the price of renewable energy is equal to the rental rate of capital. Thus, we shall 
conduct our analysis in terms of the rental rate of capital without explicitly mentioning 
the price of renewable energy.  

 
3.1. The Capital/Labor Ratio 

 
When there are no oil resources, all the energy needs of the economy are provided by the 
backstop. To prevent the population from becoming extinct in period 1, we shall assume 
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the initial capital/labor ratio is higher than the critical energy input per worker, i.e.,  
,min

0 e>κ  where we have let ./ 0
000 NK=κ  

 
In period 0, the equilibrium rental rate of capital and the equilibrium wage rate are given, 
respectively, by )(' 00 κρ f=  and ).(')( 0000 κκκω ff −=  The consumption of an old 
individual in period 0 is given by ./)1( 1

000
1
0 NKc ρδ +−=  As for a young individual of 

period 0, she solves the lifetime utility maximization problem obtained by setting ,0=t  
,00 ωω =  and 11 1 ρδ +−=r  in (6), with 1ρ  representing the rental rate of capital in period 

1 that is yet to be determined. The current consumption, the old-age consumption, the 
number of offspring, and the saving under the form of capital that constitute the solution 
of the preceding lifetime utility maximization problem are denoted by 

),1,(  ),1,( 10
1

10
0 ρδωρδω +−+− cc  ),1,( 10 ρδω +−b  and ),1,( 10 ρδω +−k  respectively. 

The capital/labor ratio in period 1 that is generated by this optimal lifetime plan is 

  .
)1,(
)1,(   

)1,(
)1,()1,(

10

10

10

10
10 ρδω

ρδω
ρδω
ρδωρδωκ

+−
+−

=
+−
+−

=+−
b
s

b
k  

   
3.2. Existence and Uniqueness of Competitive Equilibrium for an Economy without Oil 

Resources 
 
For any wage rate min

0 ωω >  in period 0 and any rental rate of capital 01 ≥ρ  in period 1, 
let 
(14) ( ).)1,('),( 1010 ρδωκρωζ +−= f   
As defined, ),( 10 ρωζ  represents the rental rate of capital in period 1 generated by the 
maximizing behavior of a young individual of period 0, given that 0ω  is her labor income 
and 1ρ  is the rental rate of backstop capital that this individual expects to prevail in 
period 1. Figure 2 depicts the curve ,0 ),,(:,.)( 11010 ≥→ ρρωζρωζ  for the numerical 
example presented in Section 3.4.  
 
It is clear that the curve  ,.)( 0ωζ  is continuous. Because a young individual must save for 
her old-age consumption, her capital investment is always positive even if its rate of 
return is 0; that is, .)1,(0 00 ωδω <−< k  Furthermore, because min

0 ωω > , we must also 
have .0)1,( 0 >−δωb  Hence ,0)1,( 0 >−δωκ   which implies .)0,(0 0 +∞<< ωζ  Also, 
according to Assumption 3, the capital/labor ratio )1,( 10 ρδωκ +−  is increasing in ,1ρ  
which implies that  ,.)( 0ωζ  is downward sloping. Now as 1ρ  continues to rise, if 

0)1,( 10 =+− ρδωb  for some value ,~
11 ρρ =  then +∞→+− )1,( 10 ρδωκ  when ,~

11 ρρ ↑  
which means that   0),( 10 ↓ρωζ  as ,~

11 ρρ ↑  and ,.)( 0ωζ  must have crossed the 45-
degree line before 1ρ  reaches .~

1ρ  Point B in Figure 2 represents such a value of .~
1ρ  On 

the other hand, if 0),( 10 >ρωb  for all ,01 ≥ρ  then ,.)( 0ωζ  must also cross the 45-degree 
line at a single point. In either case, ,.)( 0ωζ  crosses the 45-degree line at a single point, 
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labeled point A  in Figure 2. Point A represents the equilibrium rental rate of capital in 
period 1. Note that at point A the birthrate is positive. We have just established the 
following lemma: 
 
LEMMA 1: Suppose that ,0ω  the wage rate prevailing in period 0, is strictly above the 
critical level .minω  Then there exists a unique value for the rental rate of capital in 
period 1 that satisfies the following condition: 
(15) ( ) .)1,(' 110 ρρδωκ =+−f   
The unique value of ,1ρ  say ),( 01 ωρ g=  that solves (15) is the equilibrium rental rate of 
capital in period 1, given that 0ω  is the wage rate prevailing in period 0. Furthermore, 
the equilibrium birthrate in period 0 is strictly positive. 
 
 
Now let )( 01 ωρ g=  denote the equilibrium rental rate of capital in period 1. The 
equilibrium capital/labor ratio in period 1 is then given by 

).(]'[)1,( 1
1

101 ρρδωκκ −=+−= f  The equilibrium price of solar energy in period 1 is 
,11 ρϕ =  and the equilibrium wage rate in period 1 is .)(')( min

1111 ωκκκω >−= ff  Also, 
the state of the system in period 1 is  
 ( ) ( ),),1,(),1,(,, 0

010
0
010

0
0

1
1

0
11 NbNkNNNK ρδωρδω +−+−=  

where we have let ( ) ( ).,,,, 1
0

0
00

1
0

0
00 NNKNNK =  

 
The procedure used to obtain  
 ( ),,, 111 ρωϕ ( ))1,(),1,(),1,(),1,( 101010

1
10

0 ρδωρδωρδωρδω +−+−+−+− kbcc   

and ( )1
1

0
11 ,, NNK  can be repeated ad infinitum to obtain a price system7 ( )∞== 0,, tttt ρωϕP  

and an allocation induced by ,P  say 
 ( ),),,(,),(,),,(,),,,(, 0

10
0

##
001

1
1

01
0

∞
=

∞
=

∞
=

∞
=++= tttttttttttttttt NNKSKYLSkbcccA  

where  
( )

( ),)1,(),1,(),1,(),1,(       

,,,

111
1

1
0

1
1

1
0

++++

++

+−+−+−+−= tttttttt

tttt

kbcc

kbcc

ρδωρδωρδωρδω
 

and 

 
).,(

,

,
0

##

ttt

tt

tttt

LSFY
NL

KKSS

=

=

===

 

The pair ( ),A ,P  thus constructed, constitutes a competitive equilibrium for an economy 
without oil resources. Furthermore, it is clear there is no other competitive equilibrium. 
We summarize the result just obtained in the following proposition: 
 
                                                 
7 Note that if preferences are homothetic, then the equilibrium prices of solar energy remain the same after 
one period; that is ,...3,2 ,1 == tt ρρ  That is, the economy reaches a steady state in period 1. 
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PROPOSITION 1: For an economy that has no oil resources, but that is sustained by a 
source of renewable energy – provided by a backstop technology – there exists a unique 
competitive equilibrium. 
 
We would like to mention that this proposition is similar to Theorem 13.1 found in 
Azariadis, op.cit, page 198. The sufficient condition for the uniqueness of the forward-
looking equilibrium asserted by Theorem 13.1 is also obtained in our model, thanks to 
our Assumption 3 regarding the gross substitute relationship among all the consumption 
goods. 
 

3.3. Steady States for an Economy without Oil Resources: Existence and Uniqueness 
 
Let 
(16) )(' minmax ef=ρ  
denote the the critical price of energy at or above which a young individual will choose 
not to raise children. Now for any initial rental rate of capital 0ρ  that satisfies the 
condition ,0 max

0 ρρ <<  define 
(17) ( ),)()( 00 ρωρ gG =  
where we have let )( 0ρω  denote the prevailing equilibrium wage rate when 0ρ  is the 
equilibrium rental rate of capital; that is, ( ) ,)( 0000 κρκρω −= f  with ).(]'[ 0

1
0 ρκ −= f   

 
The map ,0 ),(: max

000 ρρρρ <<→ GG  plays a fundamental role in our analysis. It 
describes the transition of the equilibrium rental rate of capital from one period to another 
for an economy without oil or for an economy that has exhausted its oil resources. A 
fixed point of G  represents a steady-state level for the rental rate of capital. The 
following lemma, the proof of which is given in Appendix A, presents some of the 
limiting behavior of .G  
 
LEMMA 2: We have (i) 0)( 0max

0
=

↑
ρ

ρρ
Giml  and (ii) .0)( 000

=↓ ρρ Giml Also, for all 0ρ  in 

a right neighborhood of 0, we have: .1)(' 0 >ρG  
 
We shall extend the curve ,0 ),(: max

000 ρρρρ <<→GG  to all of the closed interval 
],0[ maxρ  by setting 0)0( =G  and .0)( max =ρG  Figure 3 depicts this curve for the 

numerical example in Section 3.4. 
 
Let 
(18) ).(max 00

max
max

0
ρ

ρρ
GG

≤≤
=  

Because and 0)()0( max == ρGG  and 0)( 0 >ρG  for all ),,0( max
0 ρρ ∈  we must have 

.0max >G  To preclude the possibility that the population becomes extinct in finite time, 
we shall make the following assumption: 
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ASSUMPTION 4: We have .maxmax ρ<G   
 
Assumption 4 implies that for an economy that is sustained completely by renewable 
energy, if the rental rate of capital is currently below the critical level ,maxρ  it will remain  
below maxρ  in the next period. In the literature of one-dimensional discrete dynamical 
systems, the interval ] ,0[ maxG  is known as a confining set.8  If ,)(' max

0 Gf ≤κ  then the 
equilibrium rental rate of capital will evolve inside the confining interval ]. ,0[ maxG  If 

,)(' max
0 Gf >κ  then the equilibrium rental rate of capital will enter the interval ] ,0[ maxG  

in period 1, and will never leave the confining interval after that.  
 
Now as 0ρ  rises from 0 to ,maxρ  the curve G rises from the origin and stays above the 
45-degree line initially. It reaches the maximum value maxG  at some point inside the open 
interval ), ,0( maxρ  then descends to the point maxρ  on the horizontal axis when 0ρ  
reaches .maxρ  Hence it must cross the 45-degree line at least once, and the rental rate of 
capital at such a crossing represents the rental rate of capital in a steady state. We have 
just established the following proposition:   
 
PROPOSITION 2: For an economy that has no oil resources, but that is sustained by a 
backstop technology, there exists at least a steady state. 
 
The shape of the curve max

000 0 ),(: ρρρρ ≤≤→GG  – first rising from 0, then returning 
to 0 – suggests a possible rich dynamics. Depending on the preferences, the technology, 
and the values of their parameters, convergence to a steady state might be monotone or in 
damped oscillation. There might even be cycles. To derive some of the conditions that 
lead to these possibilities, let us first recall that according to the definition of G, we have 
(19) ( )( ).)(1  ),(')( 000 ρδρωκρ GfG +−=  
Differentiating (19) with respect to ,0ρ then manipulating the result, we obtain 
 

(20) ( )( ) ( )
( ) 








+−+

+−
+−=

)(')(1  ),(
)(')(1  ),(

)(1  ),('')('
0002

0001
000 ρρδρωκ

ρωρδρωκ
ρδρωκρ

GGD
GD

GfG  

         

           = ,
)(1
)()(')()()()()(

0

00
0,

0

0
0,0,0', 1 








+−

+
ρδ
ρρρη

ρ
ρρηρηρη κρωωκ G

GGG
ref  

 
where ),( ),( ),( 0,0,0,' ρηρηρη ρωωκef  and )( 0, 1

ρηκ r  denote, respectively, the elasticity of 
the marginal productivity of energy with respect to the energy input, the elasticity – with 
respect to current labor income – of the capital/labor in the next period that is generated 
by the maximizing behavior of a young individual of the current period, the cross price 
elasticity of the wage rate with respect to the rental rate of capital in the same period, and 
                                                 
8 See, for example, Easton (1998, p. 20). 
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the elasticity of the capital/labor ratio in the next period – with respect to the net rate of 
return to capital investment in that period. More precisely, 

(21) ,
)('
)('')(

))(1),((
0,'

00 ρδρωκ

ρη
Ge

ef ef
eef

+−=

=  

(22) ( )
( ) ,

)(1),(
)()(1),()(

00

0001
0, ρδρωκ

ρωρδρωκρη ωκ G
GD
+−

+−
=  

(23) ,
)(

)(')(
0

00
0, ρω

ρωρρη ρω =  

and 

(24) ( )( )
( ) .

)(1),(
)(1)(1),()(

00

0002
0, 1 ρδρωκ

ρδρδρωκρηκ G
GGD

r +−
+−+−

=  

At a fixed point of ,G  we have ,)( 00 ρρ =G  and we shall denote by ),( 0,' ρη ef  ),( 0, ρη ωκ  
),( 0, ρη ρω  and )( 0, 1

ρηκ r  the values assumed by the elasticities in (21), (22), (23), and (24), 
respectively, at the fixed point by replacing )( 0ρG  with 0ρ  in these expressions. The 
derivative represented by (20) now becomes 

(25) ,
1

)(')()()()()('
0

00
0,0,0,0,'0 1 








+−

+=
ρδ
ρρρηρηρηρηρ κρωωκ

GG ref  

Solving (25) for )(' 0ρG , we obtain 

(26) .
)]()(1[1

]1)[()()(
)('

0,0,'0

00,0,0,'
0

1
ρηρηρδ

ρδρηρηρη
ρ

κ

ρωωκ

ref

efG
++−

+−
=  

Expression (26) represents the slope of ,0 ),(: max
000 ρρρρ ≤≤→GG  at a fixed point  of 

this curve. We have the following result: 
 
PROPOSITION 3: Consider an economy that has no oil resources and that is sustained by 
renewable energy provided by a backstop. Let 0ρ  be the rental rate of capital at a steady 
state of this economy. If 
(27) 0 <  )(' 0ρG  < 1 
then the convergence to this  steady state is monotone. On the other hand, if   
(28) ,0)('1 0 <<− ρG  
then the economy approaches this steady state in damped oscillations. Finally, if  
(29)  ,1)(' 0 −<ρG  
then the fixed point is an unstable steady state, and there exists a 2- cycle *)**,( ρρ that 
satisfies *.** 0 ρρρ <<   
 
PROOF:  The conditions (27) and (28) characterize the convergence to a fixed point of a 
one-dimensional map in discrete time, while condition (29) characterizes the existence of 
2-cycles. See, for example, Azariadis (1993, Chapters 7 and 8). 
 

3.4. Numerical Example 
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Suppose that the lifetime utility function is   
 

(30) ( ) .
2
1

1
][

1
][ 2max

1110

bbcc
−−

−
+

−

−−

βσ
γ

σ

σσ

 

  
In (30), ,0c  ,1c  and b  denote, respectively, the current consumption, the future 
consumption, and the number of offspring raised by a young individual. Also, 

,10 , <<σσ  is the parameter characterizing the sub-utility function of consumption, 
1max >b  is the saturation number of offspring, and 0>β  is the parameter characterizing 

the sub-utility function of offspring. The output produced by one worker – as a function 
of the energy input – is assumed to be given by ,)( αaeef =  where 0>a  represents the 
technological level of the economy and ,10 , <<αα  is a parameter.  
   
Given the current wage rate ,0ω  the part of the income that remains after paying for the 
cost of raising b  children is ,0 hb−ω  which must be divided between current 
consumption and backstop capital investment. That is, the individual has to solve the 
following utility maximization problem 

(31) ( ) 







−

+
−

−−

σ
γ

σ

σσ

1
][

1
][max

1110

, 10

cc
cc

 

subject to 

(32) ,
1

1 1

1

0 mcc =
+−

+
ρδ

 

where we have let 
(33) .0 hbm −=ω  
 
It is simple to show that the solution of the maximization problem constituted by (31), 
(32), and (33) is given by 

(34) 
( ) σ

σ
σ ρδγ

−
+−+

=
1

1

1
0

11

mc  

and 

(35) 
( )

.
11

]1[
1

1

1

1

1

1

1

σ
σ

σ

σσ

ρδγ

ρδγ
−

+−+

+−
=

mc  

 
Substituting (34) and (35) into the objective function in (31), we obtain the following 
expression for the indirect utility function that represents the discounted utilities of 
consumption over the two periods: 
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It is clear that ),( 1ρmU  is strictly increasing and strictly concave in .m  Furthermore, 

+∞=
∂
∂
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m
Uimml  and .0),( 1 =

∂
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+∞→ ρm
m
Uimml  Also, note that the curve 

),( 1ρm
m
Um
∂
∂

→  shifts upward when 1ρ  rises. Given the choice of ,b  the lifetime utility 

obtained is then given by 
 

(37) 

( )

( ) ( ) ( ) .
2
1  11

1
                 

              
2
1),()(

2max
1

1

11
0

2max
10

bbhb

bbhbUb

−−







+−+

−
−

=

−−−=

−−

β
ρδγ

σ
ω

β
ρωχ

σ

σ
σ

σ
σ

 

 
Differentiating (37) with respect to ,b  we obtain:     
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Observe that in (38) the expression inside the square brackets is positive and strictly 
increasing with ./0 , 0 hbb ω<≤  Furthermore, it tends to infinity when ./0 hb ω→  Hence 
the individual will choose to raise children if and only if 
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The inequality in (39) can be simplified to 
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Given ,1ρ  the rental rate of backstop capital in period 1, the expression on the right side 
of (40) represents the critical level of labor income at or below which the young 
individual will choose not to raise children. When we set 01 =ρ  in the expression on the 
right side of inequality (40), we obtain 
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11
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the current version of the critical wage rate defined by (8). For a wage rate above ,minω  
there is the possibility that a young individual might choose not to raise children if the 
rental rate of capital in the next period is high enough, and we have already indicated that 
the critical wage rate in this case is given by the right side of (40). However, according to 
Lemma 1, this will not happen in equilibrium. 
 
When her labor income exceeds the critical wage level, which is given by the right side 
of (40), the optimal number of children that a young individual chooses to raise is the 
unique value of b  that satisfies following the first-order condition: 
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It follows directly from (42) that a rise in the current wage rate 0ω  will induce a rise in 
the number of offspring b  that the young individual chooses to raise. Furthermore, the 
part of labor income left after the cost of raising children has been paid, namely ,0 hb−ω  
will also rise with .0ω  Not surprisingly, current consumption, future consumption, and 
the number of offspring are all normal goods. It also follows directly from (42) that a rise 
in ,1ρ the rental rate of capital in the next period, will induce a decline in .b  The decline 
in b  implies a rise in ,0 hb−ω  which in turn will trigger a rise in 
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 i.e., a decline in ,0c  the current consumption. The 

decline in current consumption, given the rise in ,0 hb−ω  implies a rise in savings, which 
in turn implies a rise in future consumption. These results indicate that the preferences 
represented by (30) satisfy Assumption 3, namely future consumption is a gross 
substitute of both offspring and current consumption. 
 
For the simulation exercise, the numerical values chosen for the parameters are: 

.75.0 ,9 ,25.0 ,65.0 ,25 ,5.0 ,5.0 ,4 max ======== δγβσα bha  Also, the initial 
backstop capital labor ratio is taken to be 0.09.0 =κ   
 
The critical energy input per worker is ,07.0min =e  which yields the following values for 
the critical wage rate and the critical rental rate of backstop capital: 53.0min =ω  and 
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.50.7max =ρ  Also, ,89.2 maxmax ρ<=G  and Assumption 4 is satisfied. The largest 
confining interval in which the rental rate of backstop capital, i.e., the price of renewable 
energy, evolves is ].89.2 ,0[] ,0[ max =G   
 
As explained at the end of Section 2.2.2, we expect the curve 

,  ),,(/),( min
11 ωωωωω >→ ++ tttttt rbrs  to have a U-shape. Figure 1 below depicts the 

shape of this curve for the present numerical example.   
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Figure 1.─ The saving/offspring ratio as a function of labor income, given the rate of 
return to saving 
 
Also, recall from Section 3.2 that the curve ,0 ),,(:,.)( 11010 ≥→ ρρωζρωζ  represents 
the rental rate of capital in period 1 generated by the maximizing behavior of a young 
individual of period 0, given that 0ω  is her labor income and 1ρ  is the rental rate of 
backstop capital that this individual expects to prevail in period 1. Figure 2 depicts this 
curve for the present numerical example.  
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FIGURE 2.─ The equilibrium rental rate of backstop capital in the next period, given the 
current wage rate. 
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The results of the simulation exercise are presented in the following table: 

 
TABLE I 

THE DYNAMIC COMPETITIVE EQUILIBRIUM: CONVERGENCE TO STEADY STATE IN 
DAMPED OSCILLATION 

)75.0 ,9 ,25.0 ,65.0 ,25 ,5.0 ,5.0 ,4( max ======== δγβσα bha  
 

Period tκ (capital/labor 
ratio) 

tρ (rental 
rate of 
capital) 

tω (wage 
rate) 

tb (birth 
rate) 

0 0.09 6.667 0.6 0.003 
1 38.53 0.322 12.41 6.306 
2 0.45 2.993 1.34 0.714 
3 0.83 2.201 1.82 1.363 
4 0.59 2.600 1.54 0.988 
5 0.69 2.406 1.66    1.157 
6 0.64 2.503 1.60 1.069 
7 0.66 2.455 1.63 1.112 
8 0.65 2.479 1.61 1.090 
9 0.66 2.467 1.62 1.100 
10 0.65 2.473 1.62 1.096 
11 0.66 2.467 1.62 1.098 
12 0.66 2.471 1.62 1.097 

 
Clearly, Table I shows a steady state the existence of which is assured by Proposition 1. 
Our computations allow us to depict in Figure 3 the curve .0 ),(: max

000 ρρρρ ≤≤→GG  
The steady state in this example is unique.   
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FIGURE 3.─ The transition of the rental rate of capital from one period to another: the 
curve .0 ),(: max

000 ρρρρ ≤≤→GG  
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A perusal of Table I reveals several interesting results. First, the economy converges to a 
steady state in about 12 periods. Second, the convergence is in damped oscillation. As 
can be seen from the second column of the table, the capital/labor ratio enters a small 
neighborhood of its steady state value in about 5 periods. The rapid convergence is due to 
the assumption on the sub-utility function of offspring. When the capital/labor ratio is 
low, the wage is also low. A low labor income in turn induces a young individual to give 
more weight to future consumption at the expense of the number of offspring she raises, 
resulting in a higher capital/labor ratio in the next period. In the simulation exercise, the 
initial capital/labor ratio has been chosen to be rather low. As can be seen from Table I, 
the equilibrium wage in period 0 is only 0.6, which induces an initial optimal birth rate of 
0.003. The young generation of period 0 almost chooses to stop producing children. 
The capital/labor ratio in period 1 is 38.53, which is high, and the resulting high wage in 
that period induces the young generation of that period to raise more children. The 
number of offspring raised by a young individual of period 1 is 6.306, which helps to 
drive down the capital labor ratio in period 2. The special features of the sub-utility 
function of offspring thus have a stabilizing influence on the economy, and prevent the 
population from an abrupt collapse.   
 
For the values chosen for the parameters, the population grows at the rate of 9.743% per 
period in steady state. In steady state, the lifetime plan of a young individual is given by  
(43) 0.72.  1.097, 1.96, 0.63, 10 ==== kbcc  
The lifetime plan (43) involves a capital/labor ratio of 0.66,=κ  and yields a lifetime 
utility of 2.15.  
 
If the cost of raising children is high, the marginal utility offspring is low, or the 
productivity of backstop capital is low, the steady state might involve a contracting 
population, i.e., a steady birth rate strictly less than 1. In this case, the economy will 
become extinct in the long run. Indeed, if the saturation number of offspring is 8max =b  
instead of ,9max =b  the steady-state birth rate will be 0.96. A lower value of the 
saturation number of offspring implies that parents have less love for children, which 
leads to a birthrate below the replacement rate. If the saturation number of offspring 
assumes the value of ,28234.8max =b  then the steady-state birthrate is ,1=b i.e., the 
population becomes stable in the long run.  
 
Because of the shape of the curve ,0 ),(: max

000 ρρρρ ≤≤→GG  rising from 0 at 
,00 =ρ then declining to 0 when 0ρ  reaches the critical value ,maxρ  it is not surprising 

that the economy being analyzed has cycles. Indeed, if the parameters assume the 
following values: 

,0.1 ,10 ,45.0 ,75.0 ,15 ,5.0 ,75.0 ,45.7 max ======== δγβσα bha  
then the economy has a stable two-cycle ( ) ( ),330.5 ,610.4***, =ρρ  with the rental rate 
of backstop capital alternating between 4.610 and 5.330. In terms of birthrates, the two-
cycle is ( ) ( ),0.623 1.612,***, =bb  which indicates that the population will grow by 0.4% 
every two periods.  
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The traditional demographic explanation for fertility decisions rests on the interplay 
between a variable stock of humans and a relatively fixed factor – land – along the line of 
Malthus (1798). The numerical example just presented suggests that our model can 
generate fluctuations in fertility rates without appealing to a fixed factor, such as land. 
Convergence to a steady state in damped oscillation or stable cycles can be generated by 
varying the values of the parameters of the model. The source of the fluctuations in 
fertility can be found in the properties exhibited by the sub-utility function of offspring: a 
saturation level and a very small number – almost zero – of children produced when 
wages are low.  
 
 
4. EXISTENCE OF COMPETITIVE EQUILIBRIUM FOR AN ECONOMY WITH OIL 

RESOURCES 
 
In this section we give a proof of the existence of a dynamic competitive equilibrium for 
an economy with oil resources. The proof consists of three stages. In the first stage, we 
show that when the economy is truncated at the end of a finite number of periods, the 
truncated economy thus obtained always has a competitive equilibrium. In the second 
stage, we consider the sequence of truncated economies, with each element of the 
sequence indexed by the period at the end of which the original economy is truncated, 
and – through a series of technical arguments – establish some bounds on the endogenous 
variables that apply uniformly to all the truncated economies. In the third stage, we use 
these bounds to show that a sequence of competitive equilibria – one competitive 
equilibrium for each truncated economy – has a subsequence that converges in the 
product topology of a denumerable family of finite-dimensional Euclidean spaces. The 
limit of the subsequence is a dynamic competitive equilibrium of the infinite time horizon 
economy. The convergence is established by employing Cantor’s diagonal trick used in 
proving the Tychonoff theorem; see, for example, Dieudonné (1976, (12.5.9)). 
 
Suppose that the economy begins at time 0 in state ),,,,( 1

0
0
000 NNKX  with .0,0 00 ≥> KX  

Let 0
000 / NX=ξ  and 0

000 / NK=κ  denote the initial oil endowment/labor ratio and the 
initial capital/labor ratio, respectively. The initial energy endowments/labor ratio is thus 
equal to .00 κξ + To keep the problem from becoming degenerate, we shall assume that 
the initial energy endowments per worker is sufficient to prevent the population from 
becoming extinct in the next period. Thus we make the following assumption: 
 
ASSUMPTION 4: The energy endowment per worker in period 0 is higher than the critical 
level ;mine  that is, .min

00 e>+κξ  
 
Now let T  be a non-negative integer. If we truncate our economy at the end of period ,T  
then we obtain an economy with a finite time horizon that we call the truncated economy 
with time horizon .T  A price system for the truncated economy with time horizon T  is a 
finite sequence .),,,( 0

T
ttttt

T
== ρωϕφP  An allocation induced by TP is a list of finite 

sequences 
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with the following properties: 
 (i) ./])1([ 1

00000
1
0 NKXc ρδφ +−+=  

 (ii) ),,,,( 11
1

1
0

+++ ttttt kxbcc  is the optimal lifetime plan for a young individual of  
  period ,t  when the price system TP  prevails. 
 (iii) ),,,( tttt YLSQ  is an optimal production plan of the representative firm in  

the consumption good sector in period ,t  when the price system 
TP prevails. 

(iv) ),( ##
tt SK  is an optimal production plan for the representative producer of 

solar energy in period ,t  when the price system TP  prevails. 
 (v) .,...,2,1  ),1,,,(),,,( 1

0
1

10 TtbkxNNNKX tttttttt == −−  
 (vi) .0

TTc ω=  
 
Observe that (vi) represents the consumption of a young individual in period .T  Because 
the problem ends at the end of period ,T  a young individual of this period has no future 
to plan for and thus will neither save nor raise children; she will consume all the wages 
she earns. The pair ( )TT A,P  is said to constitute a competitive equilibrium for the 
truncated economy with time horizon T if the following market-clearing conditions are 
satisfied:  

(vii) . and  ,0  ,1 TTttt QXTtXQX =<<=++  
 (vii) ,0  ,# TtSS tt ≤≤=  
 (viii) ,0  ,0 TtNL tt ≤≤=  
 (ix) ,0  ,# TtKK tt ≤≤=  
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PROPOSITION 4: Consider an economy with a positive stock of oil and possibly a positive 
stock of backstop capital. For any integer ,0≥T  the truncated economy with time 
horizon T has a competitive equilibrium, say ( ),, TT AP  with T

ttttt
T

0),,,( == ρωϕφP  and 
    ( ).,),,,(,),(,),,,(,),,,,(, 0

0
10

0
##

0
1

011
1

1
01

0 T
T
ttttt

T
ttt

T
ttttt

T
tttttt

T cNNKXSKYLSQkxbccc ===
−
=+++=A  

Under such a competitive equilibrium, the birthrate in each period before the last period 
is positive. If we let ,/ 0

ttt NX=ξ  ,/ 0
ttt NK=κ  and 0/ ttt NQq =  denote, respectively, the 

equilibrium oil endowment/labor ratio, the equilibrium capital/labor ratio, and the 
equilibrium oil input per worker – all in period t – then the following relationship holds 
between the price of oil and the price of renewable energy: 
(44) ,tt ρφ ≥             ),,...,0( Tt =  



 28

with equality holding if .0>tq  Furthermore, the equilibrium price of energy in period t, 
namely }{ ,,min tt ρφ satisfies the following condition:  
(45) }{ ( ) ,',min0 maxρρκρφ <=+=< ttttt qf        ).,...,0( Tt =  
In particular, the equilibrium price of oil and the equilibrium price of renewable energy 
in period 0 are equal, i.e.,   
(46) ( ).' 0000 κρφ +== qf   
 
The proof of Proposition 4 is based on the well-known technique developed by Debreu, 
Gale, and Nikaido.9 Because fertility choice is endogenous, the number of consumers – 
old and young individuals – in each period is also endogenous. The proof of this 
proposition requires a modification of the technique developed by these researchers to 
accommodate the endogenous number of consumers in each period and to ensure that the 
population does not become extinct before the end of the time horizon. Because it is long 
and involves numerous technical arguments, the proof of Proposition 4 is relegated to 
Appendix B.   
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be a competitive equilibrium10 for the truncated economy with time horizon T.  We shall 
show that the sequence ( )∞=1, T

TT AP  has a subsequence that converges in the product 
topology of a denumerable family of Euclidean spaces and that the limit of this 
subsequence is a dynamic competitive equilibrium for the original economy.  
 
To begin the existence proof, we claim that the equilibrium prices of oil in period 1 are 
bounded above uniformly for all truncated economies; that is, .sup 11 +∞<≥

T
T φ  Indeed, if 

this is not true, then for each positive integer n we can find a positive integer )(nT  such 
that for the truncated economy with time horizon ),(nT  the equilibrium price of oil in 
period 1 satisfies the inequality .)(

1 nnT ≥φ  The rate of return to oil investment for a young 
individual of period 0 in this truncated economy is then given by >≥ )(

0
)(

0
)(

1 // nTnTnT n φφφ  
./ maxρn  The rate of return to capital for such a young individual is given by )(

11 nTρδ +−  
,1 maxρδ +−<  where the strict inequality has been obtained with the help of (45). Thus 

when n is large enough the rate of return to oil investment will be strictly higher than the 
rate of return to capital investment for a young individual of period 0 in the truncated 

                                                 
9 See Nikaido (1970, Chapter 10). 
10 Observe that we have used the superscript T to indicate the time horizon of the truncated economy in 
question. The superscript T is needed to distinguish one truncated economy from another in the sequence of 
truncated economies used in the proof of Proposition 5. Such a superscript is not needed in the proof – 
given in the appendix – of Proposition 4 because in that proof we consider only one truncated economy and 
thus no possibility for confusion might arise. 
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economy with time horizon ),(nT  and she will only invest in oil. The price of energy in 
period 1 for that truncated economy is then given by  
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1
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ρ
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+=
nT

nTnTnT

qf
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where the strict inequality has been obtained with the help of (45). The strict inequality 
contradicts the reductio ad absurdum hypothesis, and the claim is proved.   
           
To continue, let us now consider the sequence of four-dimensional vectors 
( ) .,,, 11100

∞

=T
TTTT ρφρφ  According to (45) and (46), the sequence ( )∞=1100 ,, T

TTT ρρφ  lies in a 
bounded set of the three-dimensional Euclidean space. We have also just shown that the 
sequence ( )∞=11 T

Tφ  is bounded. Thus the sequence ( )∞=11100 ,,, T
TTTT ρφρφ  has a convergent 

subsequence that we denote by ( ) ,,,, 1
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nnnn ττττ ρφρφ  where )(: 00 nn ττ →  is an 

increasing map from the set of positive integers into itself. Let  
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The convergence of the subsequence ( )∞=1
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nn ττ ρφ  implies the convergence of the 

subsequence of wage rates ( ) ,1
)(

0
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=n
nτω  the limit of which we denote by .0ω  For a young 

individual of period 0 in the subsequence of truncated economies with time horizons 
,...,2,1),(0 =nnτ  the convergence of her labor income, the current and future prices of oil, 

as well as the rental rate of capital in her old age, implies the convergence of her current 
consumption, her old-age consumption, and the number of children she raises. 
Furthermore, because the capital investment by a young individual of period 0 is bounded 
above by her labor income, the sequence ( )∞=1
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1

0
n

nkτ  has a convergence subsequence that 

by abuse of notation we still denote by ( ) ,1
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nkτ  and denote its limit by .1k  The 

convergence of ( )∞=1
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nxτ  the limit of which 
will be denoted by .1x  Thus  
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τττττl  
exists and is an optimal lifetime plan for a young individual of period 0, given that 0ω  is 
her labor income; 0φ  is the current price of oil; 0ρ  is the current price of renewable 
energy; 1φ  is the price of oil in period 1; and 1ρ  is the rental rate capital in period 1. 
Next, note that the argument used to prove Claim 3 in Section B.7 of Appendix B can 
also be used here to assert that .00 >b  Also, in the limit, the oil endowment/worker ratio 
and the capital/labor ratio in period 1 are given by ( )./,/),( 010111 bkbx=κξ  The argument 
used to establish Claim 5 in Section B.7 of Appendix B can also be used here to show 
that .min

11 e>+κξ  
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As for an old individual of period 0, her consumption in the limit is given by 
.)(,1
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0 n
n cimc τ

+∞→= l  
 
The argument used to prove +∞<≥
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T 11sup φ  can be repeated to show that .sup 21 +∞<≥
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where 1τ  is an increasing map whose domain and range are equal to the image of the map 
.0τ  More precisely, the following limits exist 
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1
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0
1 kxbcc  is an optimal lifetime plan for a young individual of period 

1 whose labor income is 1ω  and who faces the prices ( ).,,, 2211 ρφρφ  As in period 0, the 
birthrate in period 1 is also positive, and the energy endowment/labor ratio in period 2 is 
also above the critical level .mine  The process just described can be repeated ad infinitum 
to obtain 

(i)   a sequence of increasing maps ,... , , 210 τττ  with the domain and the range of  
       one map – except 0τ   – being the image of the preceding map;  
(ii)  a price system ∞

== 0),,,( ttttt ρωϕφP ; and  
(iii) an allocation induced by P , say 
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                  with the following properties:  
 (iv) for each ,...,1,0=t we have 
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 (v)  for each ,...,1,0=t  the lifetime plan ∞
=+++ 011

1
1

0 ),,,,( tttttt kxbcc  is the optimal  
                   choice for a young individual of period t when she faces the price system P; 

(vi) the pair ( )AP,  constitutes a competitive equilibrium for the economy 
       with infinite time horizon. 

 
We summarize the results just obtained in the following proposition: 
 
PROPOSITION 5: Consider an economy with a positive stock of oil and possibly a positive 
stock of backstop capital. This economy has a competitive equilibrium, say ( ),AP,  with   
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Under such a competitive equilibrium, the birthrate in each period is positive. If we let 
,/ 0

ttt NX=ξ  ,/ 0
ttt NK=κ  and 0/ ttt NQq =  denote, respectively, the equilibrium oil 

endowment/labor ratio, the equilibrium capital/labor ratio, and the equilibrium oil input 
per worker – all in period t – then the following relationship holds between the price of 
oil and the price of renewable energy: 
(47) ,tt ρφ ≥              ,...),1,0( =t  
with equality holding if .0>tq  Furthermore, the equilibrium price of energy in period t, 
namely }{ ,,min tt ρφ satisfies the following condition:  
(48) }{ ( ) ,',min0 maxρρκρφ <=+=< ttttt qf          ,...).1,0( =t  
In particular, the equilibrium price of oil and the equilibrium price of renewable energy 
in period 0 are equal, i.e.,  ( ).' 0000 κρφ +== qf   
 
 

5. OIL EXTRACTION UNDER COMPETITIVE EQUILIBRIUM 
 
In this section, we study the pattern of oil extraction under competitive equilibrium. To 
this end, let ( )AP,  be a dynamic competitive equilibrium, where   ∞

== 0),,,( ttttt ρωϕφP  and  
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Recall that we have let ,/ 0
ttt NX=ξ  ,/ 0

ttt NK=κ  and 0/ ttt NQq =  denote, respectively, 
the equilibrium oil endowment/labor ratio, the equilibrium capital/labor ratio, and the 
equilibrium oil input per worker.  
 
Intuitively, we expect that in any period if the oil endowment per worker is large, but the 
capital/labor ratio is not, then the oil input per worker will be high.  To see why, let us 
look at the identity that represents the division of the output of the consumption good 
between the two factors of production – energy and labor – in period t: 

(49) 
).(')()(                           
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Now when tξ  is large, but tq  remains bounded above, say ,Mqt <  where M  is a 
positive number, then the output of the consumption good produced by a worker will be 
bounded above by )( tMf κ+  and the price of energy will be bounded below by 

).(' tMf κ+  Furthermore, when tξ  is large, tt q−ξ  is also large, which implies that 
)( ttt q−ξφ  will be large. Thus when  tξ  is large, the second line of (49) will be large, 

while )( ttqf κ+  remains bounded above, and this is not possible. We have just 
established the following result:    
 
LEMMA 3: If tξ  is large, but tκ  is not, then tq will be large.  
 
To alleviate some of the technical arguments concerning the limiting behavior of the 
economy when the energy endowments/worker ratio is extremely high or close to the 
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critical level ,mine  we shall assume that the earnings of the factor labor relative to the 
earnings of the factor energy are not very high. We state this assumption more precisely 
as follows: 
 

ASSUMPTION 5: For any positive value of e, we have ,)(')(')(
o

ebefeefef ≤− where 
o
b is 

a constant satisfying .1 maxbb
o
<<  

 
 
Now when the energy endowments/worker ratio in a period is high, we expect the energy 
input per worker to be high; the number of offspring produced to be high; and the energy 
endowments/worker ratio in the next period to be high, but lower than the energy input 
per worker in the current period. To see why, suppose that tt κξ +  is large. If  tκ  is large, 
then obviously ttq κ+  is large. If  tκ  is not large, then tξ  must be large, and ttq κ+  is 
also large in this case. A high energy input per worker in period t means a high wage rate 
in this period, which in turn implies a high number of offspring and a high level of saving 
for a young individual of period t. The saving/offspring ratio for such an individual then 
satisfies the following chain of inequalities: 
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where that the last inequality has been obtained by invoking Assumption 5. Thus we have 
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Now when tξ  is large, )(' ttqf κ+  will be small and .
o

t bb >  In this case, we have the 
following chain of inequalities: 
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We have just proved the following lemma: 
 
LEMMA 4: If tt κξ +  is large, then ttq κ+  is large and tb  is close to .maxb  Furthermore, 

11 ++ + tt κξ  is also large, but .11 tttttt q κξκκξ +≤+<+ ++   
 
The following lemma asserts that when oil resources are abundant capital will not be 
accumulated. 
 
LEMMA 5: If tξ  is large, but tκ  is not, then a young individual of period t will put all her 
saving in oil. 



 33

 
PROOF: If tξ  is large, but tκ  is not, then tq  is large according to Lemma 3. According to 
Lemma 4, 11 ++ + tt κξ  is also large. Furthermore, the price of energy in period 1+t is 
higher than the price of energy in period t, i.e., 
(50) .)(')(')(' 11111 tttttttt qffqf φκκξκφ =+>+≥+≥ +++++  
To prove the lemma, suppose .01 >+tκ  There are then two cases to consider: (i) 1+tκ  is 
large when tξ  is large and (ii) 1+tκ  remains bounded when tξ  becomes indefinitely large. 
In case (i), the rental rate of capital in period ,1+t  namely ),(' 111 +++ += ttt qf κρ will be 
close to 0, which implies that the rate of return to capital investment will be close to 

.11 ≤−δ  However, according to (50), we have ,1/1 >+ tt φφ  i.e., for a young individual of 
period t, the rate of return to oil investment is greater than 1, and it will not be optimal for 
her to invest in oil. Case (i) thus cannot arise in equilibrium. In case (ii), 1+tξ  will be 
large, which, according to Lemma 3, implies that the price of energy in period 1+t  will 
be low, and investing in capital will yield a rate of return close to ,1 δ−  which, again 
according to (50), is also strictly lower than the rate of return to oil investment.              ■ 
 
LEMMA 6: There exist two values, say −ρ and ,+ρ  which satisfy max0 ρρρ <<< +−  and 
which do not depend on the rate of capital depreciation, such that ,)(' +− <+< ρκρ ttqf  
for all  ,...1,0=t  
 
The proof of Lemma 6 is given in Appendix C. This lemma asserts the existence of a 
lower bound greater than 0 and an upper bound less than maxρ  for the equilibrium prices 
of energy through time, and that these bounds are independent of the rate of capital 
depreciation. The interval ],[ +− ρρ  thus constitutes a confining interval for all the 
competitive equilibria, regardless of the rate of capital depreciation. 
 
Now from the perspective of a young individual the decision on whether to invest in oil 
or capital depends on the rates of return of these assets. For capital investment, the rate of 
depreciation has a particularly important role to play. A high rate of depreciation 
discourages capital investment, while a low rate of depreciation, ceteris paribus, makes 
this asset relatively more attractive than oil. Thus when the rate of depreciation is low, we 
expect capital investment to be favored over oil investment; the successive generations 
prefer to invest only in capital, and we can expect that the oil stock will be exhausted in 
finite time. The following proposition confirms this intuition. 
 
PROPOSITIN 6: If the rate of capital depreciation is not too high, say ,−< ρδ  then 

(i) there exists a competitive equilibrium under which the oil stock is 
exhausted in finite time; and    

(ii) there exists no competitive equilibrium under which the oil stock is 
exhausted asymptotically. 
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PROOF: To prove the proposition, we first claim that if the rate of capital depreciation is 
not too high, say ,−< ρδ then there exists an integer T such that for any integer 

TT > and any competitive equilibrium of the truncated economy with time horizon ,T  
the oil stock is exhausted in or before the penultimate period. To prove the claim, 
suppose that it is not true. Then for any positive integer ,n  there exists a positive integer 

,, nTT >  and a competitive equilibrium for he truncated economy with time horizon ,T  
say ( )TT A,P , with T

ttttt
T

0),,,( == ρωϕφP  and 
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such that .0>TX  Because ,0>TX  the oil investment of every young generation before 
the last period must be positive, which implies that the price of oil must rise through time 
at a rate greater than or equal to the rate of capital investment, i.e., 

   ,1 1
1

+
+ +−≥ t
t

t ρδ
φ
φ                  ).1,...,0( −= Tt       

In particular, for ,1−= Tt  we have 
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Because oil exhaustion always occurs in a truncated economy, all of the remaining oil 
resources at the beginning of period T must be extracted for use in the consumption good 
sector, and this will constrain the price of oil in period T not to exceed the rental rate of 
capital in that period, i.e., .TT ρφ ≤  Using this inequality in the preceding inequality, we 
obtain 

  ,1)1( 1
1

δφ
φ
φ

−≥− −
−

T
T

T  

which constrains the price of oil in the penultimate period to be bounded above by 1, i.e., 
.11 <−Tφ  However, we know that the price of oil must rise through time from the initial 

level  0)('(' 00000 >+≥+= κξκφ fqf  at or above the rate of return to capital 
investment. Furthermore, according to Lemma 6, we must have ,−> ρρt  for .,...,0 Tt =  
Hence, using the hypothesis ,−< ρδ we obtain ,111 >+−>+− −ρδρδ t  for .,...,0 Tt =  
This last result implies that the price of oil in period 1−T  will be arbitrarily large when 
T  is large, which contradicts the hypothesis of the reductio ad absurdum argument. The 
claim is now established. 
 
We are now ready to prove Proposition 6. To this end, note that in the sequence of 
truncated economies used in the proof of Proposition 5, oil resources are depleted by 
period T  in all the truncated economies with time horizon greater than or equal to .T  
Hence in the economy that is the limit of a subsequence of the sequence of truncated 
economies oil exhaustion also occurs by period .T  This proves part (i) of Proposition 6. 
To prove (ii) of Proposition 6, note that if the oil stock is exhausted asymptotically, then 
the price of oil must rises indefinitely through time at or above the rate of return to capital 
investment. The price of oil thus will tend to infinity when t tends to infinity. However, 
we have already argued in the proof of the claim that the price of oil in the period 
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preceding a period in which oil is extracted for use in the production of the consumption 
good is bounded above by 1. Thus, part (ii) of Proposition 6 is established.                      ■                              
            
 

6. INCOMPLETE OIL EXHAUSTION UNDER COMPETITIVE EQUILIBRIUM  
 

In the preceding section, we show that when the rate of capital depreciation is not too 
high, there exists a competitive equilibrium under which oil exhaustion occurs in finite 
time. The following question immediately arises. Are there equilibria under which oil 
resources are only exhausted asymptotically or under which part of the oil stock is left 
forever under the ground unexploited. The answer to the first part of the question is 
negative if the rate of capital depreciation is not too high, according to Proposition 6, 
while the answer to the second part is maybe, as illustrated by the numerical example 
given in Section 6.2 below.  
 

6.1. Steady State under Incomplete Oil Exhaustion 
 
Consider a competitive equilibrium ( )AP, , where   ∞

== 0),,,( ttttt ρωϕφP  and  
( ),),,,(,),(,),,,(,),,,,(, 0

10
0

##
0011

1
1

01
0

∞
=

∞
=

∞
=

∞
=+++= ttttttttttttttttttt NNKXSKYLSQkxbcccA  

under which the oil stock is partially depleted. Let T  be the last period the oil stock is 
exploited. Then we have TT XQ <<0  and . ,0 TtQt >=  
 
Because all the young generations of period T or after put their savings in both oil and 
capital, we must have 
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Furthermore, the current budget constraint for a young individual of period Tt ≥  can be 
expresses under the following form: 
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Forwarding (51) by one period, we obtain 
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Dividing (52) by (51), we obtain 
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where we have let ttt bk /=κ  denote the capital/labor ratio in period ., Ttt >  Now note 
that ),(')(  ),(' tttttt fff κκκωκρ −==  and .  )),('1 ,( 1 Ttfbb ttt ≥+−= +κδω  Hence (53) 
is a second-order nonlinear difference equation in the capital/labor ratio . , Ttt ≥κ  If  
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(54) tt κκ +∞→= lim   
exists, then in the limit, the second equality in (53) becomes 

(55) ,11
=

+−

b
ρδ  

where we have let tt ρρ +∞→= lim  and .lim tt bb +∞→=  
 
If the rate of capital depreciation is not too high, then δρ >  according to Lemma 6, and 

we must have ,11 >+−= ρδb  which means that in steady state the population and the 
price of oil all grow at a rate equal to the rate of return to capital investment. 
Furthermore, a young individual of any period owns only a fraction of the oil owned by 
her parent, with the fraction being the inverse of the number of children raised by the 
parent: the same oil stock is owned by each of the successive young generations, and due 
to population growth each young individual in later periods owns a smaller and smaller 
part of the economy’s oil stock. 
 
When is incomplete oil exhaustion a likely outcome under competitive equilibrium? To 
answer this question, let us look at the following more detailed representation of the 
division of output among the various uses in a steady state under incomplete oil 
exhaustion: 

(56) .)(')()(
0

κκκκκ bbhcffbs −−−−=−  
 
In (56), we have let s  represent the saving of a young individual. The left side of (56) 
thus represents the funds allocated to oil investment. The right side of (56) represents 
what remains of the output of the consumption good produced per worker after (i) the 
factor capital has received its remuneration; (ii) the young individual has paid for her 
current consumption; (iii) the young individual has paid the costs of raising children; and 
(iv) the young individual has paid for the cost of capital investment required to sustain 
the steady state of the economy. If the earning of capital relative to output is high, there 
will be little left for wages. Furthermore, out of the low wages, the young individual must 
pay for her current consumption, the cost of raising children, and capital investment. 
Because the birthrate is higher than 1, the cost of raising children will be substantial if the 
cost of raising a child is high. There might not exist any value of κ  such that the right 
side of (56) is positive, a necessary condition for incomplete oil exhaustion. When such a 
value exists, one can always construct a competitive equilibrium under which the oil 
stock is only partially exploited, as asserted by the following proposition: 
 
PROPOSITION 7: For any value of ,mine>κ  let )(')( κκρ f=  and )(')()( κκκκω ff −=  
denote, respectively, the rental rate of capital and the wage rate that prevail when only 
renewable energy is used in the production of the consumption good and when κ is the 
capital/labor ratio. Also, recall that ),( 1

0
+tt rc ω and ),( 1+tt rb ω  denote, respectively, the 

current consumption of a young individual of period t and the number of children she 
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raises, given that tω is the prevailing wage rate in period t and 1+tr is the rate of return to 
her saving. If there exists a value of κ such that 
(57) ( ) ( )( ) ,0)(1),()(1),()()( 0 >+−+−+−−− κκρδκωκρδκωκκρκ bhcf  
then there exist infinitely many steady states in which part of the oil stock is left under the 
ground unexploited forever. Furthermore, the capital/labor ratio and the birthrate are 
lower in a steady state with incomplete oil exhaustion than in the steady state with 
complete oil exhaustion. 
 
PROOF: Before proving Proposition 7, note that if the variable κ  in (57) is interpreted as 
the steady-state capital/labor ratio under incomplete oil exhaustion, then the expression 
on the left side of inequality (57) represents the part of the saving put into oil by a young 
individual. Inequality (57) thus represents a necessary condition of incomplete oil 
exhaustion.  
  
Now let 0κ  be a value of κ that satisfies (57) and 

(58)  ( ) ( )( )[ ],)(1),()(1),()()(1
00000

0
000

0
0 κκρδκωκρδκωκρκκ

φ
ξ +−+−+−−−= bhcf  

where we have let ).( 00 κρφ =  Here we shall interpret 0κ  as the initial capital/labor ratio 
and 0ξ  – defined by (58) – as the initial oil endowment per worker. Next, let 

( ))(1),( 000 κρδκω +−= bb  and suppose that in period ,...,1,0, =tt the price of oil, the 
rental rate of capital, and the wage rate are given, respectively, by ,00

t
t bφφ =  ),( 0κρρ =t  

).( 0κωω =t  It is straightforward to verify that when the price system ( )∞== 0,, tttt ωρφP  
prevails, a young individual of each period ,...,1,0=t  will have the same labor income, 
will have the same current and old-age consumption, will raise the same number of 
children, will invest in the same quantity of capital per child, and will spend the same 
amount of real resources to buy oil. The price system constructed and the lifetime plans 
induced by this price system thus constitute a competitive equilibrium. Under this 
competitive equilibrium, the oil stock is never exploited; the capital/labor ratio is 
constant; the birthrate is constant; the rate of return to capital is equal to the birthrate; and 
the price of oil rises through time geometrically at a rate equal to the birthrate. The 
competitive equilibrium thus constructed is thus a steady state for an economy with 
exhaustible resources.  
 
Now note that if there exists a value of κ  that satisfies (57), then by continuity all the 
capital/labor ratios in a small neighborhood of κ also satisfy (57), which implies that if 
there exists one steady state, then there exist infinitely many steady states. 
 
Finally, note that when κ  is high, the left side of (57) will be negative due to the Inada 
condition .0)('lim =+∞→ κκ f  Let κ  be the smallest value of κ  such that the left side of 
(57) is less than or equal to 0. Then any value of κ  that satisfies (57) will be strictly less 
than ;κ  that is, the capital/labor ratio in a steady state with incomplete oil exhaustion is 
less than that in the steady state with complete oil exhaustion. The lower capital/labor 
ratio in a steady state with incomplete oil exhaustion means a lower wage rate and a 
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higher rate of return to saving. These last results imply – according to Assumptions 2 and 
3 – a lower birthrate in a steady state with incomplete oil exhaustion than in the steady 
state with complete oil exhaustion.                ■   
 
Incomplete oil exhaustion is likely to exist if wages account for a proportion that is much 
higher than capital remuneration and if the cost of raising a child is low. If oil resources 
are abundant, the oil input per worker will be high according to Lemma 3. Thus the 
amount of oil left under the ground unexploited in the case of incomplete oil exhaustion 
will be relatively small so that in equilibrium successive young generations can afford to 
pay for the investment in this asset out of their wages.  
 

6.2. Numerical Example 
 
Suppose that preferences are represented by the following lifetime utility function: 

),(10 bvLogcLogc ++ γ  with ,ˆ0 ),1()( bbbLogbv ≤≤+= β  where β  is a positive 

parameter and b̂  is a constant greater than 1 but less than the saturation number of 
offspring .maxb  As specified, the single-period sub-utility function is logarithmic and the 
sub-utility function of offspring is also logarithmic in the relevant range ].ˆ,0[ b  With 
logarithmic preferences, current consumption, the number of offspring, and saving 
depend only on labor income, not on the rate of return to saving. These features of 
logarithmic preferences allow for a closed-form solution of the lifetime utility 
maximization problem, and make the computations of competitive equilibria less 
burdensome. Given these preferences, it is simple to show that the optimal lifetime plan 
for a young individual of period t is given by 
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Here, we recall, tω  is her labor income; 1+tr  is the rate of return to her saving; and ts  is 
the value of her saving. As for the output of the consumption good produced by a worker, 
we assume that it is given by .10  ,)( <<= ααeef  The following values for the 
parameters are assumed: ,77.0  ,73.0  ,10.0 === γβα  ,13.0=h  and .15.0=δ  The 
value of 1.0=α 0 means that most of the output goes to labor as its remuneration. The 
cost of raising a child is ,13.0=h  which is sufficiently low so that there are some funds 
left after a young individual has paid for her current consumption, for the cost of raising 
children, and for the cost of capital investment.  If oil resources are abundant, the oil 
input per worker will be high, and the amount of oil left under the ground unexploited 
will be relatively small so that young generations can afford to pay for the investment in 
this asset out of their wages. In the numerical example, the oil stock is only about 18% of 
the stock of capital at the time extraction activities are terminated. Also, the initial oil 
endowment per worker and the initial capital/labor ratio are assumed to be given by 

011.20 =ξ  and ,00 =κ  respectively. The competitive equilibrium with incomplete oil 
exhaustion is presented in Table II. 
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TABLE II 
COMPETITIVE EQUILIBRIUM WITH INCOMPLETE OIL EXHAUSTION 

,77.0 ,73.0 ,10.0( === γβα ,13.0=h ,15.0=δ ,011.20 =ξ )00 =κ  
 

Period tξ  tκ  tq  tφ  tρ  tω  tb  
0 2.011 0 0.480 0.194 0.194 0.836 1.179 
1 1.898 0 0.453 0.204 0.204 0.831 1.168 
2 1.253 0 0.421 0.218 0.218 0.825 1.155 
3 0.721 0.097 0.287 0.237 0.237 0.818 1.138 
4 0.381 0.165 0.175 0.264 0.264 0.808 1.116 
5 0.185 0.209 0.081 0.305 0.305 0.795 1.087 
6 0.095 0.232 0 0.372 0.372 0.778 1.047 

… … … … … … … … 
t 

6
6

095.0
−tb

 
0.232 0 6

6372.0 −tb 0.372 0.778 1.047 

      
As can be seen from Table II, the economy begins with a large oil endowment per 
worker, but no backstop capital. For the first three periods, all the energy requirements of 
the economy are met by drawing down the oil resources. Capital begins to be 
accumulated at the end of the third period, and energy produced by the backstop 
technology provides part of the energy inputs in the fourth period. The two technologies 
– fossil fuels and the backstop – are both exploited during three periods, with the 
backstop gradually replacing oil. From period 6 on, the oil stock is not exploited 
anymore. The amount of oil that remains at the beginning of period 6 is left forever under 
the ground, unexploited, and all the energy requirements of the economy are met by the 
backstop technology. The economy enters a steady state at the beginning of period 6, and 
in this steady state, the population and the aggregate capital stock both grow 
geometrically at the same rate of 1.047, which is also the rate of return to capital 
investment. Because the oil stock is no longer exploited, it passes from one generation to 
another, and each young individual owns a fraction – which is equal to the inverse of the 
birthrate in this steady state – of the oil belonging to a young individual of the previous 
period.     
 
A competitive equilibrium with incomplete oil exhaustion is obviously not Pareto 
efficient because the oil stock is not exhausted. Although oil has an intrinsic value as an 
input in the production of the consumption good, the part of the oil stock left unexploited 
serves no production purposes. Its only use is a store of value, a means through which 
successive young generations transfer their incomes made during their working days to 
days of retirement. In this manner, the part of the oil stock left unexploited serves a basic 
function of money: a store of value. In contrast with paper money, which has no intrinsic 
value and might have a zero price in equilibrium,11 oil left under the ground unexploited 
always has a positive value, which, according to our version of Hotelling rule in general 
equilibrium setting, must appreciate at the rate of interest, namely the real value of the 

                                                 
11 See McCandless and Wallace (1991, Chapter 10). 
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solar energy harnessed from the marginal unit of capital. This surprising feature – a sort 
of oil bubble so to speak – is first encountered here.  
 

7. A CHARACTERIZATION OF COMPETITIVE EQUILIBRIUM 
 

It has been observed that in their efforts to obtain energy, humans first used firewood, 
then coal, fossil fuels, electricity, nuclear power... and energy from the Sun that will 
come some day. Energy resources that are more abundant and easy to harvest are first 
exploited, to be followed by energy resources that are less accessible and more costly to 
produce. The objective of this section is to present a characterization of this process of 
energy substitution under a competitive equilibrium. To concentrate on the influence of 
exhaustible resources on fertility decisions and on the process of technology substitution, 
we shall mimic those observations by only considering the case in which fossil fuels are 
abundant – but backstop capital is not – at the beginning, i.e., 0ξ  is large, but 0κ is 
negligible. Also, we shall assume that the population is either stable or growing in the 
long run. 
 
When fossil fuels are abundant at the beginning, a competitive equilibrium consists of 
three phases. In the first phase, the energy inputs used in the production of the 
consumption good come solely from oil, according to Lemma 3. Because the population 
does not become extinct in the long run, oil alone cannot sustain the economy 
indefinitely, and the backstop must begin to provide part of the energy requirements of 
the economy in finite time. The time interval that encompasses the introduction of the 
backstop and the end of extraction activities constitutes the second phase of a competitive 
equilibrium: the phase of technology substitution. The third phase of a competitive 
equilibrium begins after all extraction activities have been terminated, either due to oil 
exhaustion or because the competitive equilibrium in question involves incomplete oil 
depletion. 
 
According to Lemma 3, the oil input per worker in period 0, namely ,0q  will be high, 
which means a high wage rate in this period. The high labor income will induce a young 
individual of period 0 to raise a number of children close to the saturation level ,maxb  

which a fortiori implies ,0

o
bb >  where 

o
b , we recall, is the parameter described earlier in 

Assumption 5. The division of the output of the consumption good produced by a worker 
between the two factors of production – labor and oil – is represented by the identity 

.)( 0000 qqf φω +=  Furthermore, using Assumption 5 and the fact that ,0

o
bb >  we can 

assert that .0000 qb φω <  Also, according to Lemma 5, a young individual of period 0 will 
invest all her saving in oil. Thus we have 01 =κ  and 
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The chain of inequalities in (59) indicate that the oil endowment per worker in period 1 is 
strictly less than the oil input per worker in period 0, which is in turn less than the oil 
endowment per worker in period 0. Because ,11 ξ≤q  we must have 
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(60) ,)(')(')(' 00111 φξφ =>≥= qffqf  
i.e., the price of oil in period 1 will be higher than the price of oil in period 0. If the oil 
endowment per worker in period 1 is still large, the preceding argument can be repeated 
to assert that the oil input per worker – although lower than that in period 1 – is still high, 
and a version of (59) as well as a version of (60) also hold for period 1.  
 
During the early phase of the competitive equilibrium, the oil endowment per worker 
falls rapidly. There are two reasons behind this fast decline. First, the price of oil must be 
low to clear the oil market. More precisely, the low price of oil induces the firms 
producing the consumption good to use more of this input. The high oil input per worker 
also means a high wage rate, allowing the young generation to save more, which, coupled 
with a low oil price, make it possible for the young generation to buy the rest of the oil 
stock as investment. Second, the initial high birthrates mean less oil is available for each 
worker in the following periods. One implication of the fast decline in the oil endowment 
per worker is a slow-down in the population growth. As the price of oil rises, the wage 
rate declines. The income effect on fertility decision is a decrease in the birthrate. If the 
rate of return to oil investment rises through time, the substitution effect – according to 
Assumption 3 – will reinforce the income effect and cause the birthrate to fall even 
further. This result bears out in the numerical example presented in Section 6.2. Thus we 
can expect the birthrate – which is high at the beginning – to decline steadily through 
time as the oil stock is being exploited. 
 
In the second phase, technology substitution – backstop for fossil fuels – takes place. 
When both technologies are exploited in a period, say t, of the second phase, we must 
have 

(61) 
.1           

1
1
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t
t

t
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ρδ
φ
φ

+−=

+−=
−    

Observe that when (61) holds, we must have ;11 <−tφ  that is, when the two technologies 
are being exploited at the same time, the price of energy cannot be too high. If both 
technologies are exploited in each of the periods of the second phase, (61) will hold 
during the time interval in which the technology substitution takes place. Furthermore, 
according to Lemma 6, if the rate of capital depreciation is not too high, then the second 
line of (61) will be greater than 1, which implies that the price of oil as well as the rate of 
return to oil and capital both rise during the phase of technology substitution. Again as 
our discussion of the first phase, the rise in energy prices means a fall in the wage rate. 
Furthermore, a rise in the return to saving will induce a young individual to save more at 
the expense of children, according to Assumption 3. Thus, the birthrate continues to 
decline in the second phase.  
 
How long does the second phase last? To answer this question, one must determine 
precisely the time 1−tφ  exceeds 1, which requires many more technical arguments that we 
have not carried out. Needless to say, the length of the technology substitution phase 
depends critically on the rate of capital depreciation. In the particular case of ,1=δ  (61) 
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is reduced to ,/ 1 ttt φφφ =−  which leads to ;11 == −tt φφ  that is when capital depreciates 
completely at the end of each period, a necessary condition for the two technologies to 
co-exist for a period is that the price of oil in that and in the previous period to be equal to 
1, a result that cannot possibly arise in equilibrium. Thus, when capital depreciates 
completely, technology substitution occurs abruptly, with the backstop being brought into 
use only after the fossil fuels have been exhausted. The second phase does not exist in 
this case. This result is not hard to understand. When capital depreciates completely, it is 
not different from oil – an exhaustible resource – from the perspective of an investor: 
both fetch the same price on the energy markets and both are used up at the end of the 
production process. 
 
During the third phase of a competitive equilibrium all the energy needs of the economy 
are met by the backstop. There are two possible scenarios to consider: complete oil 
exhaustion and incomplete oil exhaustion.  
 
If the oil resources have been completely depleted when the third phase begins, a 
situation that might arise according to Proposition 6, then the evolution of the economy 
from this time on is completely determined by the backstop technology and the 
preferences, as described in Section 3. Proposition 3 in this section describes how the 
economy behaves in the long run. Depending on the values of the various elasticities, the 
economy might converge to a steady state in a monotone manner, in damped oscillation, 
or it might converge to a stable cycle. The existence of an exhaustible resource has only a 
fleeting impact in the short run, especially at the beginning when the resource makes it 
possible for the population to grow rapidly and for capital to accumulate in a less painful 
manner. One can visualize through time the process of transforming oil into the 
consumption good and into backstop capital. In the long run oil does not influence the 
birthrate; its only impact is to allow for a population with a larger absolute size. 
 
In Section 6.2, we presented a numerical example for which oil exhaustion is incomplete. 
The competitive equilibrium computed and exhibited in that section is not the only 
equilibrium of this numerical model. There is another competitive equilibrium under 
which the oil stock is exhausted after a finite number of periods have elapsed. This 
competitive equilibrium is presented in Table III. Under this competitive equilibrium, the 
oil stock is depleted rapidly, and is completely exhausted at the end of period 5. After that 
the economy is completely sustained by the backstop. Compared to the competitive 
equilibrium with incomplete oil exhaustion, capital accumulation begins one period 
sooner under the competitive equilibrium with complete oil exhaustion. The two 
technologies co-exist during four periods, and the economy enters a steady state – 
without any oil left – in period 6, with a higher capital/labor ratio and a higher birthrate.   
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TABLE III 
COMPETITIVE EQUILIBRIUM WITH COMPLETE OIL EXHAUSTION 

,77.0 ,73.0 ,10.0( === γβα ,13.0=h ,15.0=δ ,011.20 =ξ )00 =κ  
 

Period tξ  tκ  tq  tφ  tρ  tω  tb  
0 2.011 0 0.480 0.194 0.194 0.836 1.179 
1 1.418 0 0.453 0.204 0.204 0.831 1.168 
2 0.826 0.084 0.337 0.218 0.218 0.825 1.155 
3 0.424 0.161 0.222 0.237 0.237 0.818 1.138 
4 0.177 0.214 0.127 0.264 0.264 0.808 1.116 
5 0.044 0.246 0.044 0.305 0.305 0.795 1.087 
6 0 0.261 0 0.335 0.335 0.787 1.068 
7 0 0.263 0 0.332 0.332 0.788 1.068 
8 0 0.263 0 0.332 0.332 0.788 1.068 

… … … … … … … … 
t 0 0.263 0 0.332 0.332 0.788 1.068 

 
Note that under both competitive equilibria, the convergence to steady state is monotone, 
due to logarithmic preferences.  
 
In the case the competitive equilibrium involves incomplete oil exhaustion, there are 
infinitely many possible steady states according to Proposition 7. For the numerical 
example of Section 6.2, the competitive equilibrium presented in that sub-section is one 
among the infinitely many possible equilibria with incomplete oil exhaustion. With a 
deliberate choice of the same set of parameters, Table III provides the outcome of an 
equilibrium with complete oil exhaustion. The possibility of multiple equilibria arises 
from the indeterminate mix of solar energy and oil use that we have pointed out in 
solving the profit maximization problem constituted by (12) and (13) in Section 2.2.4.  
Starting from the same initial oil stock and the same initial capital stock, the economy 
may evolve through time along a different equilibrium trajectory, reaching the point at 
which solar energy is substituted for oil at a time different from the time technology 
substitution occurs under incomplete oil exhaustion. Furthermore, at the time technology 
substitution takes place, the oil stock and the capital stock under complete oil exhaustion 
may assume values that are different from those under incomplete oil exhaustion 
(including the special case the oil stock is completely exhausted when the backstop is 
first brought into use). Which steady state the economy will converge to in the long run 
depends on the state of the system at the time the backstop completely replaces oil in the 
production of the consumption good. In each of these steady states, the capital/labor ratio 
and the birthrate are both lower than those in the state with complete oil exhaustion.  
 
 

8. CONCLUSION 
 
The new feature in this paper is the analysis of the transition to sustainability for an 
economy in which the labor force – or population – is endogenous and in which the 
production technology allows for the substitution of an exhaustible, says oil, by an ever-
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lasting source of energy, says energy from the Sun. As modeling strategy, we chose the 
overlapping-generations framework, and adopt the simplest specification possible. In the 
model, an individual agent has a two-period life; treats offspring as a consumption good; 
and transfers his wealth over time through either oil or capital asset, or both.  
 
Before discussing the issue of transition, let us first return to Section 3, which  deals with 
the case the economy has no oil and must accumulate capital to harness the energy from 
the Sun. As mentioned in our survey of the literature on endogenous fertility decision, the 
basic advances – in our view – have been accomplished in Becker and Barro (1988), and 
Barro and Becker (1989), with the useful dynastic formulation: each one-period lived 
parent takes into consideration not only its own consumption, but also the number as well 
the well-being of their children.  Offspring are treated as a complex composite good, with 
weights put on children as a consumption and on their utility as a ‘’quality’’ measure of 
that consumption. Thanks to this assumption, recurrent consideration allows us to 
subsume the utility of all future generations in the dynastic head’s objective, transforming 
the dynamic problem into one of a social planner with infinite life and perfect foresight in 
the Ramsey-Solow tradition. Barro and Becker, op cit., pointed out but not elucidated – 
the possibility of multiple steady states and the complex dynamics of convergence. In 
contrast with these researchers, we have adopted a truncated foresight approach, with 
two-period lived individual agents who care for his young and old age consumption, and 
consider children as a consumption good which provides some pleasure of its own. Our 
view is thus somewhat more ‘’market oriented’’ than the central planning view, and the 
existence of dynamic competitive equilibrium, the possibility of multiple steady states, as 
well as the complex dynamic convergence, are all properly worked out.  
 
Section 3 is, however, a prelude to the analysis of the transition to economic 
sustainability, which consists of replacing exhaustible oil by solar energy as the source of 
energy needed to produce the consumption goods. The matters involved, which are 
analyzed in the rest of our paper, are rather intriguingly complicated. First, the existence 
of competitive equilibrium is problematic in that the market size is itself endogenous, 
because fertility – hence the population – is an individual decision at every point in time. 
Second, and perhaps most interestingly, the oil stock might not be entirely depleted, and 
the unused part in situ may serve the role of storing value for wealth transmission over 
time, just as a money. In this event, there are infinitely many equilibria as well as many 
steady states, depending on the data that characterize the initial state of our economy. 
This raises the problem of indeterminacy of equilibrium encountered in the literature. 
Again, the dynamic convergence remains, as before, complex. The path toward an 
equilibrium, far from being simply monotone, might exhibit cyclical behavior. Last but 
not least, in the event of incomplete resource exhaustion, oil serves the role of storing 
value as money. In contrast with paper money, which has no intrinsic value, oil is a factor 
of production. Leaving valuable oil in situ certainly adds another dimension to the 
inefficiency of overlapping-generation model in this case. In the terminology of Tirole 
(1985), oil becomes a financial bubble despite its productivity in contributing to real 
production. 
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One shortcoming of this paper is that it does not get into normative considerations. It is 
well known that inefficiency of many kinds usually arise in overlapping-generations 
models. In addition to the eventual ‘’under-accumulation’’ of capital, we now face the 
possibility of oil bubble, an ‘’over-accumulation’’ of a resource asset. Beside the 
prescription of affecting the pattern of capital accumulation through taxation imposed on 
bequests, gifts, etc. in order to restore economic efficiency, the obvious policy 
implication of our work is how to induce complete resource exhaustion by some public 
intervention which should, at some point in time, discourage asset holding under the form 
of in situ resource. The task is not that simple, because of the general equilibrium 
repercussion of any policy on the rest of the economy. This would lead us too far afield, 
so we keep it on our research agenda for some time to come. 
 

 
APPENDIX A: THE PROOF OF LEMMA 2 
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which is (i) of the Lemma 2. Next, note that as ,00 ↓ρ  the capital/labor ratio and the 
wage rate associated with ,0ρ  namely ,0κ  and ),( 0ρω  both tend to infinity. Because the 
current wage rate tends to infinity, the current consumption and the future consumption 
of a young individual both tend to infinity – even when the rental rate of capital in the 
next period is 0. Also, the number of offspring raised by a young individual will rise to 
the saturation level .maxb  Hence the capital/labor ratio generated by the maximizing 
behavior of a young individual of period 0 will tend to infinity, which implies that the 
rental rate capital in period 1, namely ),( 0ρG  will tend to 0, establishing (ii). 
 
As for the last statement of Lemma 2, note that as ,00 ↓ρ  the capital/labor ratio 
generated by the maximizing behavior of a young individual, say ,1κ  satisfies the 
following inequality: 

 .)(1)(
0

0

0
maxmax

0
1 κ

κ
κκκ 








=<

f
bb

f  

Due to the Inada condition imposed on ,f  the expression inside the square brackets tends 
to 0 as .0 +∞→κ  Hence 01 /κκ  is arbitrarily small when 0ρ  is sufficiently small, which 
means that 00110 )(')(')( ρκκρρ =>== ffG  for all 0ρ  in a right neighborhood of 0.    ■ 
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APPENDIX B: THE EXISTENCE OF A COMPETITIVE EQUILIBRIUM FOR A TRUNCATED 
ECONOMY 

 
B.1. The Price System 

 
Let T  be a nonnegative integer and ( )Ttttttt

T p 0,,,, == ρωϕφP be a price system for the 
truncated economy with time horizon .T Here ,,,, tttt rωϕφ and tp denote, respectively, the 
price of oil, the price of solar energy, the wage rate, the rental rate of capital, and the 
price of the consumption good – all in period .,...,0, Ttt =  For mathematical convenience, 
we normalize the price system TP so that it belongs to the −+ )45( T dimensional unit 

simplex )45( +∆ T , i.e., ( ) .1
0

=++++∑ =

T

t ttttt pρωϕφ   
 

B.2. A Bound for the Economy 
 
In the Debreu-Gale-Nikaido technique, a bound, sufficiently large, is imposed upon the 
economy to obtain the solutions of the various maximization problems, even when some 
of the prices are zero. To find a bound for the economy under consideration, let 
( )Ttttttt YNNKX 0

10 ,,,, =

)))))
be the finite sequence defined recursively in the following manner.  
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As defined, the five elements of the list ( )ttttt YNNKX
)))))

,,,, 10  represent, respectively, upper 
bounds on the oil stock, the stock of backstop capital, the size of the young generation, 
the size of the old generation, and the output of the consumption good – all in period 

.,...,0, Ttt =  A bound, say ,M  on the economy can then be obtained by choosing M such 
that 
(B.2.3)  ,10

ttttt YNNKXM
)))))

++++>          ).,...,0( Tt =  
The value of M  thus chosen ensures that value of any state variable at any time and 
under any possible evolution of the economy is bounded above by .M    
 

B.3. The Dynamics Generated by Lifetime Utility Maximization 
 
Let )TΓ (P be the set of all possible realizations of the system generated by the 
maximization behavior of the successive young generations when the price system TP  
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prevails. More precisely, an element of )TΓ (P is a finite sequence, say 
T
ttttt NNKX 0

10 ),,,( = , defined recursively as follows.  
 
For ,0=t  set ),,,,(),,,( 1

0
0
000

10 NNKXNNKX tttt = the initial state of the economy. Next, 
suppose that ),,,( 10

tttt NNKX has been defined for .10 −≤ tT  Let ),,,,( 11
1

1
0

+++ ttttt kxbcc be 
the lifetime plan that solves the following “more restrained” lifetime utility maximization 
problem: 
 
(B.3.1)  ( ) ),,(max 10

,,,, 10 bccu
kxbcc

 

subject to the following current and future budget constraints 
(B.3.2)  ,0)( 0 ≤−+++ ttt xkhbcp ωφ  
(B.3.3)  ,0)1( 111

1
1 ≤+−−− ++++ kpxcp tttt ρδφ  

and the following three “bounding constraints” 
(B.3.4)  ,0)( 00 ≤−++ MkhbcNt  
(B.3.5)  ,00 ≤− MxNt  
(B.3.6)  .010 ≤− McNt  
 
The bounding constraints are typical of the Debreu-Gale-Nikaido proof technique. Here 
they are temporarily imposed to ensure that the above lifetime utility maximization 
problem has a solution, even when some of the prices are zero. At the end of the 
existence proof, it will be shown that these bounding constraints are not binding. 
 
We have already explained that the first three components of ),,,,( 11

1
1

0
+++ ttttt kxbcc are 

always unique, while the last two components, namely 1+tx and 1+tk , are only unique 
when the rate of return on oil investment and the rate of return on backstop capital 
investment are different. When these two rates of return are equal, the investment mix 

),( 11 ++ tt kx  are indeterminate and is only required to satisfy the constraint 
.0)( 11

0 ≤−+++ ++ ttttttt xkhbcp ωφ  Thus for any two elements of )TΓ (P , say 

),,,( 10
tttt NNKX  and ),ˆ,ˆ,ˆ,ˆ( 10

tttt NNKX we always have ),ˆ,ˆ(),( 1010
tttt NNNN = but it might 

happen that ).ˆ,ˆ(),( tttt KXKX ≠  
 
It is clear that )TΓ (P is a nonempty convex compact subset of the −+ )1(4 T dimensional 
Euclidean space. Furthermore, it is simple to show that the map )TT ΓΓ (PP: →  is a 
closed point-to-set map. 
 

B.4. The Dynamics Generated by Profit Maximization 
 
B.4.1. Profit Maximization in the Backstop Sector 
 
For each ,,...,0 Tt = let 



 48

(B.4.1.1) ( ) ][maxarg)( ##
,

#
## KS ttSK

T
t ρϕ −=Ψ P  

subject to the technological constraint 
(B.4.1.2) ,0## ≤− KS  
and the following additional bounding constraint 
(B.4.1.3) .0## ≤−+ MKS  
As defined, )(# T

t PΨ is the set of feasible production plans that maximize the profits, 
subject to the bounding constraint (B.4.1.3), in period t  of the energy producers in the 
backstop sector when the price system TP prevails. The set )(# T

t PΨ is clearly nonempty, 
convex, and compact. Furthermore, it is simple to show that the point-to-set map 

)(: ## T
t

T
t PP Ψ→Ψ  is closed.  

 
B.4.2. Profit Maximization in the Consumption Good Sector 
 
For each ,,...,0 Tt = let 
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T
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subject to the technological constraint 
(B.4.2.2) 0),( ≤+− LSQFY  
and the following additional bounding constraint 
(B.4.2.3) .0≤−+++ MYLSQ  
As defined, )( T

t PΨ is the set of feasible production plans that maximize the profits – 
subject to the bounding constraint (B.4.2.3) – in period t  of the representative firm in the 
consumption good sector when the price system TP prevails. The set )( T

t PΨ is clearly 
nonempty, convex, and compact. Furthermore, it is simple to show that the point-to-set 
map )(: T

t
T
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B.5. Excess Demand and Walras’ Law 
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Observe that the elements in the list on the right side of (B.5.1) represent, respectively, 
the excess demands for oil, solar energy, backstop capital, labor, and the consumption 
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good – all in period .t  Furthermore, 1
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where the total consumption of the young generation in the last period is 
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Let ),,,,( ttttt
T

t pρωϕφ=P denote the price system in period .,...,0, Ttt =  We claim that 
,,...,0 ,0. TtZt

T
t ==≤P  i.e., Walras’ law holds in each period. Indeed, for ,1,...,0 −= Tt  

the value of the list of excess demands in period t  is 
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On the right side of the second equality in (B.5.5), the expression inside the first pair of 
square brackets is less than or equal to zero because ),,,( tttt YLSQ  is an optimal 
production plan for the representative firm in the production good sector; the expression 
inside the second pair of square brackets is less than or equal to zero because ),( ##

tt SK  is 
an optimal production for the representative producer of solar energy; the expression 
inside the third pair of square brackets is less than or equal to zero because it represents 
the current budget constraint of the young generation; and the expression in the last pair 
of square brackets is less than or equal to zero because it represents the budget constraint 
of the old generation. 
 
As for the value of excess demand in period ,T  we have 
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(B.5.6)  
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B.6. Application of the Gale-Nikaido Theorem 

   
Now let )(PZ denote the set of all the finite sequences ( )TttZ 0= thus defined, when 

,),,,( 0
10 T

ttttt NNKX =  ,),( 0
## T

ttt SK =  and T
ttttt YLSQ 0),,,( =  range over ),TΓ (P ),(# TPΨ and 

,),,,( 0
T
ttttt YLSQ =  respectively. It is clear that )(PZ is a nonempty, convex, and compact 

set. Furthermore, )(: PZPZ → is a closed point-to-set map from the simplex )34( +∆ T  into 
the ldimensiona)1(4 −+T Euclidean space. Next, using (B.5.5) and (B.5.6) we can write  
 

(B.6.1)  ,0.
0

≤∑
=

T

t
t

T
t ZP  for all T

ttZ 0)( = in )(PE  and all TP in )34( +∆ T ; 

 
that is, Walras’ law holds for the truncated economy. 
 
According to the Gale-Nikaido theorem,12 there exists a price system 

( )Ttttttt
T p 0,,,, == ρωϕφP and a sequence of excess demand vectors ( )TttZ 0=  in )( TPZ such 

that .,...,0,0 TtZt =≤  Let ,),,,( 0
10 T

ttttt NNKX =  ,),( 0
## T

ttt SK =  and T
ttttt YLSQ 0),,,( =  be the 

three sequences that give rise to ( )TttZ 0= . Also, let 1
011

1
1

0 ),,,,( −
=+++

T
tttttt kxbcc  be the sequence 

of lifetime plans that gives rise to .),,,( 0
10 T

ttttt NNKX =  It follows from the definition of 

( )TttZ 0=  and from its properties that 
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and 

                                                 
12 See Nikaido (1970, Theorem 45.1, p.320). 
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(B.6.3)  
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For ,0=t  (B.6.2) assumes the following form: 
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It follows from the first inequality in (B.6.4) that  
 
(B.6.5)  0000 XXXQ

)
==≤  

and   
(B.6.6)  .0001 XXXX

)
==≤  

 
Using (B.6.5), the second inequality, the fourth inequalities in (B.6.4), and the fact that 
the production plans ),( #

0
#
0 SK  and ),,,( 0000 YLSQ  satisfy the technological constraints, 

we can write  
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The strict inequality between the expression on the left of the first inequality in (B.6.7) 
and M  means that the bounding constraint (B.4.3) is not binding on the production plan 

).,,,( 0000 YLSQ  We claim that the production plan ),,,( 0000 YLSQ  actually maximizes the 
profits in period 0 – subject only to the technological constraint – of the representative 
firm in the consumption good sector when the price system TP prevails. Indeed, if this 
were not true, then we can find a feasible production plan, say ),,,,( YLSQ  which violates 
the bounding constraint (B.4.2.3), but yields a profit higher than that of ).,,,( 0000 YLSQ  
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Next, let λ  be a number strictly between 0 and 1, then consider the following production 
plan 
(B.6.8)  ).,,,,)(1(),,,( 0000 YLSQYLSQ λλ −+  
Using the assumed strict concavity of the production function of the consumption good, 
we can assert that the production plan defined by (B.6.8) is feasible and yields a higher 
profit than that of the production plan ).,,,( 0000 YLSQ  If λ  is chosen close to 1, the 
production plan defined by (B.6.8) will also satisfy the bounding constraint (B.4.2.3), 
contradicting the optimality of ).,,,( 0000 YLSQ  
 
Similarly, the production plan ),( #

0
#
0 SK  maximizes the profits in period 0 – subject only 

to the technological constraint – of the representative firm in the backstop sector when 
the price system TP prevails. 
 
Next, we claim that when the price system TP  prevails, the lifetime plan 

),,,,( 110
1
1

0
0 kxbcc maximizes the lifetime utility of a young individual in period 0, subject 

only to the current and future budget constraints. Indeed, it follows from the last 
inequality in (B.6.4) that 
 

(B.6.9)  

.                                                 

)1(),(                                           

)1(),(                                    

)1(),(                             

)1(),()1(             
)(

00

0
0
000

0
0
000

0
0
000

000000

10
0
0

0
0

MKY

KNKXF

KNKXF

KNKXF

KLKQFKY
KbhcN

<+=

−++=

−++=

−++≤

−++=−+≤

++

))

)))
δ

δ

δ

δδ

 

 
The strict inequality between the expression on the first line of (B.6.9) and M  means that 
the bounding constraint (B.3.4) is not binding on ).,,,,( 110

1
1

0
0 kxbcc  Also, inequality 

(B.6.6) means that the bounding constraint (B.3.5) is not binding on 
),,,,,( 110

1
1

0
0 kxbcc either. To continue, observe that from (B.6.9) we can draw 
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Furthermore, note that when ,1=t  (B.6.2) assumes the following form  
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From the last inequality in (B.6.11), we draw the following inequality 
.)1( 11

1
1

1
1 KYcN δ−+≤  Also, because ,0

0
1
1 NN =  we can write 
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On the second line in (B.6.12), the inequality follows from the fact that the production 
plan ),,,( 1111 YLSQ  is technologically feasible. The inequality on the third line is obtained 
by using the first two inequalities in (B.6.11), the fact that ),( #

1
#

1 SK  is a feasible 
production plan for the backstop sector, and the fourth inequality in (B.6.11). The 
inequality on the fourth line of (B.6.12) follows from (A6.6), the fact that ,10 XX

))
=  and 

(B.6.10). Thus the bounding constraint (B.3.6) is not binding on ),,,,,( 110
1
1

0
0 kxbcc either. 

 
The manner used to show that in period 0 no technologically feasible production plan 
yields a profit higher than that of the production plan ),,,( 0000 YLSQ  can also be used here 
to show that the lifetime plan ),,,,( 110

1
1

0
0 kxbcc  solves the lifetime utility maximization 

problem of a young individual in period 0, subject only to the current and future budget 
constraints, when the price system TP  prevails. 
 
Furthermore, it follows directly from (A6.9) that ,)1( 000

0
0 KYbhN

))
δ−+<  which in turn 

implies  
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Also, because ,1
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====  we have 
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Using (B.6.14) and the results that when the price system TP  prevails, 

(i) the production plan ),,,( 0000 YLSQ  maximizes the profit of the 
representative firm in the consumption good sector in period 0, and 

(ii) the lifetime plan ),,,,( 110
1
1

0
0 kxbcc  solves the lifetime utility maximization  

                        problem of a young individual in period 0, subject only to the current and  
                        future budget constraints,  
we can start an induction on t  to show that under TP ,  



 54

(i) the production plan ),,,( tttt YLSQ  maximizes the profit of the 
representative firm in the consumption good sector in period 

,,...,0, Ttt = and 
(ii)  the lifetime plan ),,,,( 11

1
1

0
+++ ttttt kxbcc  solves the lifetime utility 

maximization problem of a young individual in period ,,...,0, Ttt =  
subject only to the current and future budget constraints. 

 
B.7. Positive Prices and Positive Birthrates 

 
The results obtained in Section B.6 say nothing about whether the equilibrium prices and 
the equilibrium birthrates are positive. Our proof of the existence of a competitive 
equilibrium for the truncated economy will be not be complete unless we manage to 
prove these results, and this is the objective of Section B.7. The proofs of these results are 
long and will be established after a series of claims. 
 
In what follows, we let 0

000 / NX=ξ  denote the initial oil endowment per worker and 
0
000 / NK=κ  denote the initial capital/labor ratio. The energy endowment per worker in 

period 0 is thus given by .00 κξ +  Also, we let 0
000 / NQq =  denote the equilibrium oil 

input per worker in period 0. All the claims are stated and proved in terms of the 
production function per worker. 
 
CLAIM 1: All the prices in  ( )00000 ,,,, pρωϕφ  are positive.  
 
PROOF OF CLAIM 1: First, note that if ,00 =p then in period 0 the demand for the 
consumption good by the young as well as the old generation will be unbounded, and the 
bounding constraint (B.3.4) as well as the bounding constraints (B.5.2) must be binding. 
However, at the end of Section B.6 we have shown that none of the bounding constraints 
is binding. Hence .00 >p  From now on we shall normalize the equilibrium price system 
in period 0 by choosing the consumption good in this period to be the numeraire. Thus 
we will set 00 =p  and adjust the other prices in period 0 accordingly. Next, note that if 
the price of an input in period 0 is equal to 0, then its demand by the firms in the 
consumption good sector will be infinite, and again the bounding constraint 
corresponding to this input will be binding.                ■ 
 
Now note that the price of energy in period 0 is given by 
(B.7.1)  ( ).'},min{ 0000 κρφ += qf   
To see why, note that if the initial stock of backstop capital is equal to 0, i.e., if ,00 =κ  
then we must have ,00 >q  which means that ( ) ,' 000 ρφ ≤= qf  and (B.7.1) must hold. In 
this case, we can set 00 φρ =  without disturbing the equilibrium for the truncated 
economy being considered. On the other hand, if ,00 >κ  then ( ),' 0000 κρφ +=≥ qf  with 

( ),' 0000 κρφ +== qf  when ,00 >q  and (B.7.1) also holds in this case. 
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CLAIM 2: The price of energy in period 0 is strictly less than .maxρ   More precisely, we 
have, 
(B.7.2)  ( ) ( ) .'' max

000000 ρκρφκξ <+==≤+ qff  
 
PROOF OF CLAIM 2: Because ,00 ξ≤q  we must have ( ) ( ) .'' 000000 ρφκκξ ==+≤+ qff  
To prove the strict inequality in (B.7.2), suppose the contrary, i.e., suppose 

( ) .' max
00 ρκ ≥+qf  Then the wage rate in period 0, namely ,0ω  will be less than or equal 

to the critical level minω  that induces the young generation of period 0 not to raise any 
offspring, with the ensuing consequence that there is no young generation – and a fortiori 
no workers – in period 1. Without any workers, the firms in the consumption good sector 
will not be able to produce any new consumption good. The young generation of period 0 
– which will become the old generation of period 1 and which will be the only generation 
that exists in period 1 – will obtain its old-age consumption by consuming what remains 
of the stock of backstop capital after allowing for depreciation. Any oil remaining at the 
beginning of period 1 will find no use in the production process and thus will have zero 
price. Under such a scenario, it will not be rational for a young individual of period 0 to 
invest in oil. However, if ( ) ,' max

00 ρκ ≥+qf  then we must have 
( ) ,]'[ minmax1

00 efq =≤+ − ρκ  and in equilibrium the oil investment made by a young 
individual of period 0 is given by 
(B.7.3)  ,0min

00001 >−+≥−= eqx κξξ  
with the strict inequality in (B.7.3) being due to Assumption 4.            ■ 
 
CLAIM 3: The equilibrium birthrate in period 0 is strictly positive. 
 
PROOF OF CLAIM 3: To prove the lemma, suppose the contrary, say .00 =b  Then a 
young individual of period 0 will not invest in oil, which means that all the oil resources 
will be depleted in period 0, and we must have 
(B.7.4)  ( ) ( ) .'' max

000000 ρκξκρφ <+=+== fqf  
It follows from (B.7.4) that the equilibrium wage rate in period 0, namely ,0ω  will 
exceed the critical level .minω  Furthermore, because a young individual of period 0 only 
invests in backstop capital, the argument leading to Lemma 1 can be used to show that 
the birthrate in period 0 is strictly positive and the rental rate of backstop capital in period 
1 will be given by ).(' 01 ρρ G=  These results contradict the assumption .00 =b               ■ 
 
According to Claim 3, the equilibrium birthrate in period 0 is positive, which means that 
there will be a young generation in period 1. The argument used to show that all the 
equilibrium prices in period 0 are positive can be repeated to show that all the 
equilibrium prices in period 1 are also positive. Again, we normalize the equilibrium 
price system in period 1 by choosing the consumption good in this period to be the 
numeraire, i.e., we set ,11 =p  then adjust the remaining prices accordingly. In what 
follows, we shall let 011 /bx=ξ  and 011 /bk=κ  denote, respectively, the equilibrium oil 
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endowment/worker ratio and the equilibrium capital/labor ratio in period 1. Also, let 
0

0
011 / bNQq =  denote the equilibrium oil input per worker in period 1.  

 
CLAIM 4: The equilibrium price of energy in period 1 is given by 
(B.7.5)  ( ) .'},min{ 111111 φρκρφ ≤=+= qf  
 
PROOF OF CLAIM 4: If 1q  and 1κ  are positive, then the price of oil and the price of 
renewable energy in period 1 are both equal, and their common value is the price of 
energy in that period, i.e., 
(B.7.6)  ( ) .'},min{ 111111 φρκρφ ==+= qf  
The claim is established in this case. If ,01 >q  but ,01 =κ  then ( ) ( ) 1111 '' φκ ==+ qfqf  
and .11 φρ ≥  In this case, we can set 11 φρ =  without disturbing the competitive 
equilibrium of the truncated economy being considered, and (B.7.6) also holds in this 
case. If  ,01 >κ  but ,01 =q  then ( ) ( ) ,'' 11111 φρκκ ≤==+ fqf  which is (B.7.5).              ■ 
 
CLAIM 5: The equilibrium energy endowment per worker ratio in period 1 is higher than 
the critical level ;mine  that is, .min

11 e>+κξ   
 
PROOF OF CLAIM 5: If a young individual of period 0 does not invest in oil, then her 
backstop capital investment is equal to her saving, i.e., 01 =x  and ).,( 101 rsk ω=  The 
rental rate of backstop capital in period 1 is then given by 

,)(')/(')( max
1010 ρκρ <== fbkfG  and the claim is proved in this case. 

  
If a young individual of period 0 invests in oil, then we must have 101 1/ ρδφφ +−≥  and 

,11 φρ ≥  which together imply that .1/ 101 φδφφ +−≥  The last inequality can only hold if 
.10 <φ  To prove the claim in this case, suppose the contrary, i.e., suppose .min

11 e≤+κξ  
If this is the case, then in period 1 the equilibrium price of oil and the equilibrium price of 
renewable energy satisfy the following relation: .)(')(' max

111111 ρκξκρφ ≥+≥+=≥ fqf  
In period 1, the rate of return to oil investment thus satisfies the following condition:   
(B.7.7)  .1/ max

01 ρδφφ +−≥  
Now imagine an economy without oil resources in which the equilibrium rental rate of 
backstop capital in period 0 is given by .0ρ  Then according to Lemma 1 and Assumption 
4 the equilibrium rental rate of backstop capital in period 1 of this economy is given by 

.)( maxmax
0 ρρ <≤ GG  The rate of return to backstop capital investment obtained in period 

1 is then given by 
(B.7.8)  .1)(1 max

0 ρδρδ +−≤+− G   
Together, (B.7.7) and (B.7.8) allow us to write 
(B.7.9)  ,/1)(1 01

max
0 φφρδρδ ≤+−≤+− G  

which means that in period 0 the rate of return to capital investment in the economy 
without oil is less than or equal to that in the economy with oil resources. This last result, 
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according to Assumption 4, implies that the saving of a young individual of period 0 is 
higher in the former economy than in the latter economy. Because the saving/offspring 
ratio of a young individual in the former economy is always higher than ,mine we must 
then have  ,/),( min

010 ebrs >ω  and the energy endowment/young individuals ratio in 
period 1 satisfies the following relation: 
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                                 ■ 
 

B.8. Completion of the Existence Proof 
 
An induction argument on t  then shows that (i) the energy endowment per worker in 
each period ,,...,0 Tt =  is strictly higher than the critical level ;mine  (ii) the equilibrium 
price of energy is strictly less than the critical level maxρ  for each period ;,...,0 Tt =  (iii) 
all the prices in TP  are positive; and (iv) the equilibrium birth rate in each period 

,1,...,0 −= Tt  is positive. Finally, using (iii); (iv) the result that all the prices in TP  are 
positive; and (v) Walras’ law, namely (B.5.5), we can conclude that ,,...,0,0 TtZt ==  
i.e., all markets clear in each period. We have just established the existence of a 
competitive equilibrium for a truncated with time horizon .T     
 
                                                

APPENDIX C: PROOF OF LEMMA 6 
 
To prove Lemma 6, we need to establish some preliminary results. 
 
LEMMA C.1: If the initial energy endowment per worker is not too high, then its 
equilibrium value in period 1 will be higher. More precisely, there exists a small positive 
number ε  such that if ,)(' max

00
max ρκξερ <+≤− f  then ).(')(' 0011 κξκξ +<+ ff  

 
PROOF: Let n be a positive integer such that ./1min

00
min nee +<+< κξ  We have 

 .)(')(')/1(' max
0000

min ρκκξ <+≤+<+ qffnef  
Now when ,+∞→n  the equilibrium price of energy in period 0 must tend to ,maxρ  
which in turn implies that ,0b the number of offspring raised by a young individual of 
period 0, will tend to 0. On the other hand, ,110 kx +φ the saving of such an individual is 
bounded below and away from 0. Hence when ,+∞→n  we must have 
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 .111
0

111 +∞→+=
+ κξφφ

b
kx  

Now recall that in the argument leading to Proposition 5 we have shown that the price of 
oil in period 1 is bounded above, regardless of the value of the initial energy endowments 
per worker. Hence we must have +∞→+ 11 κξ  when .111 +∞→+κξφ Thus when 

,+∞→n  the energy endowment per worker in period 1, namely ,11 κξ +  will be large; 
that is, )(')(' 0011 κξκξ +<+ ff  when .+∞→n                                     ■ 
 
LEMMA C.2: For any positive number ,ε  let )I(ε  be the set of all positive integers n such 
that ./1 ε<n  There exists an integer )I(ε∈n  with the following property: if the energy 
endowment per worker in period 0 is such that ,/1)(' max

00 nf −≤+ ρκξ  then the energy 
endowments per worker in period 1 also satisfies the same condition, i.e.,  

./1)(' max
11 nf −≤+ ρκξ   

 
PROOF: Indeed, if the claim is not true, then for each large positive integer n, we can find 
a number ),(0 nξ  , a number ),(0 nκ  and a competitive equilibrium ( )∞=1)(),( nnn AP  that has 

)(0 nξ  and ),(0 nκ  respectively, as its initial oil endowment per worker and its initial 
capital/labor ratio. Furthermore, under this competitive equilibrium, we have 

( ) ,/1)()(' max
00 nnnf −≤+ ρκξ  but ( ) ./1)()(' max

11 nnnf −>+ ρκξ   
 
As in the proof of Proposition 5, we can also use Cantor’s diagonal trick here to assert 
that the sequence of competitive equilibria ( )∞=1)(),( nnn AP  has a convergent subsequence; 
that is, there is an increasing map )(: nn ψψ →  such that the sequence 
( )∞=1))(()),(( nnn ψψ AP  converges in the product topology to a competitive equilibrium that 
we denote by ( ).,AP . There are three cases to consider.  
 
First, if ( )))(())((' 00 nnf ψκψξ +  tends to 0 when n tends to infinity, then 

))(())(( 00 nn ψκψξ +  will be large when n is large, and according to Lemma 4,  
))(())(( 11 nn ψκψξ +  will also be large, which means that ( )))(())((' 11 nnf ψκψξ +  will be 

low, contradicting the hypothesis of the reductio ad absurdum argument.  
 
Second, if ( )))(())((' 00 nnf ψκψξ +  tends to ,maxρ  then according to Lemma C.1, we will 
have ( ) ( ),))(())(('))(())((' 0011 nnfnnf ψκψξψκψξ +<+  a contradiction to the reductio 
ad absurdum hypothesis. 
 
Third, if ( )))(())((' 00 nnf ψκψξ +  tends to a limit ),,0( maxρρ ∈  then ))(())(( 00 nn ψκψξ +  
will tend to ,)(]'[ min1 ef >= − ρκ  and the equilibrium wage rate in period 0 will tend to 

.)( minωκρκω >−= f  Let ))((lim 00 nn ψξξ +∞→=  and ))((lim 00 nn ψκκ +∞→=  denote, 
respectively, the initial oil endowment per worker and the initial capital/labor ratio of the 
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limiting economy. Also, let ))((lim 11 nn ψξξ +∞→=  and ))((lim 11 nn ψκκ +∞→=  denote, 
respectively, the oil endowment per worker and the capital/labor ratio – both in period 1 – 
of the limiting economy. According to Proposition 5, we have ,min

11 e>+κξ  which 
means that .)(' max

11 ρκξ <+f  However, according to the reduction ad absurdum 
hypothesis, we have ( ) ./1))(())((' max

11 nnnf −>+ ρψκψξ  In the limit, this inequality 
becomes ( ) ,' max

11 ρκξ ≥+f  which contradicts .)(' max
11 ρκξ <+f                                     ■                   

 
LEMMA C.3: Let ε  be a positive number and )(ε+n  be the smallest integer in )I(ε that 
satisfies the conclusion of Lemma C.2. There exists a positive integer n that satisfies the 
following conditions: (i) )(/1/1 max ερ +−< nn  and (ii) if the initial energy endowment per 
worker satisfies the condition ),(/1)('/1 max

00 ερκξ +−≤+≤ nfn  then the equilibrium 
energy endowment per worker in period 1 also satisfies the same condition i.e., 

).(/1)('/1 max
11 ερκξ +−≤+≤ nfn   

 
PROOF: If the claim is not true, then for each positive integer n, we can find a number 

),(0 nξ  , a number ),(0 nκ  and a competitive equilibrium ( )∞=1)(),( nnn AP  that has )(0 nξ  
and ),(0 nκ  respectively, as its initial oil endowment per worker and its initial 
capital/labor ratio. Furthermore, under this competitive equilibrium, we have 

( ) ),(/1)()('/1 max
00 ερκξ +−≤+≤ nnnfn  but ( ) ./1)()(' 11 nnnf <+κξ   

 
As in the proof of Proposition 5, we can also use Cantor’s diagonal trick here to assert 
that the sequence of competitive equilibria ( )∞=1)(),( nnn AP  has a convergent subsequence; 
that is, there is an increasing map )(: nn ψψ →  such that the sequence 
( )∞=1))(()),(( nnn ψψ AP  converges in the product topology to a competitive equilibrium that 
we denote by ( ).,AP . There are two cases to consider.  
 
First, if ( )))(())((' 00 nnf ψκψξ +  tends to 0 when n tends to infinity, then 

))(())(( 00 nn ψκψξ +  will be large when n is large, and according to Lemma 4,  
))(())(( 11 nn ψκψξ +  will be lower than ),(())(( 00 nn ψκψξ +  which implies that 

( ) ( ),))(())(('))(())(('/1 1100 nnfnnfn ψκψξψκψξ +<+≤ contradicting the hypothesis of 
the reductio ad absurdum argument.  
 
Second, if ( )))(())((' 00 nnf ψκψξ +  tends to a limit ),,0( maxρρ ∈  then 

))(())(( 00 nn ψκψξ +  will tend to ,)(]'[ min1 ef >= − ρκ  and the equilibrium wage rate in 
period 0 will tend to .)( minωκρκω >−= f  Let ))((lim 00 nn ψξξ +∞→=  and 

))((lim 00 nn ψκκ +∞→=  denote, respectively, the initial oil endowment per worker and the 
initial capital/labor ratio of the limiting economy. Also, let ))((lim 11 nn ψξξ +∞→=  and 

))((lim 11 nn ψκκ +∞→=  denote, respectively, the oil endowment per worker and the 
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capital/labor ratio – both in period 1 – of the limiting economy. According to Proposition 
5, we have ,11 +∞<+κξ  which means that .0)(' 11 >+κξf  However, according to the 
reduction ad absurdum hypothesis, we have ( ) ,/1))(())((' 11 nnnf <+ ψκψξ  which implies 
that ( ) ,0)('))(())(('lim 1111 =+=++∞→ κξψκψξ fnnfn  which is not consistent with 

.0)(' 11 >+κξf                   ■ 
 
 In what follows, we shall denote by )(ε−n  the smallest integer that satisfies the 
conclusion of Lemma C.3. 
            
PROOF OF LEMMA 6: Let ).(')( 00

max κξρδε +−= f  Applying Lemmas C.2 and C.3, we 
can assert the existence of two integers ))(( δε+n  and ))(( δε−n  such that 
 )),(()('))((/1 max δερκξδε +− −≤+≤ nfn tt          ,...).1,0( =t  
The set of confining intervals for ,...,1,0),(' =+ tf tt κξ is thus not empty. Let 

)](),([ max δερδε +− −  denote the intersection of all the confining intervals of ).(' ttf κξ +  
Then  )](),([ max δερδε +− −  is the smallest confining interval for ,...1,0),(' =+ tf tt κξ  
Next, let 
 ).('sup)( 0 ttt qf κδρ += ≤

+     
Observe that in the definition of ),(  ),( δεδε +−  and )(δρ +  we have made their 
dependence on the rate of capital depreciation explicit. We claim that .)( maxρδρ <+  
Indeed, if this is not true, then we can find a period t such that )(' ttqf κ+  is in a small 
left neighborhood of ,maxρ  and this will lead to a large value for the energy endowment 
per worker in period ,1+t  which implies ),()(' δεκξ −<+ ttf  contradicting the fact that  

)](),([ max δερδε +− −  is a confining interval for ,...1,0),(' =+ tf tt κξ  Letting 
),()( δεδρ −− =  we have 

 ,)()(')(')(0 maxρδρκκξδρ <≤+≤+≤< +−
tttt qff        ,...).1,0( =t  

Finally, let 

.sup
,inf

)],(),([10

I
I

I

=

=

=

+

−

+−
≤≤

ρ

ρ

δρδρδU

  

Then ],[ +− ρρ  is a confining interval for ,...,1,0),(' =+ tqf tt κ  regardless of the value of 
.δ  A limiting argument – similar to the ones used in the proofs of Lemmas C.2 and C.3 – 

can be used to show that .0 maxρρρ <<< +−               ■  
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