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Abstract

I characterize a generalization of the negligence rule to assign
compensating damages in an accident involving multiple tortfeasors.
These tortfeasors have the opportunity to undertake spending in pre-
vention and the rule is designed to provide them with the best incen-
tives to do so. I study the case where liability is constraint in the
sense that the optimal amount of effort (not constrained by liability)
cannot be implemented. The optimal multi-player rule is to apply the
negligence rule to the most liable player (the “deep-pocket” or the
“victim”, defined as the player who is the most responsive to mone-
tary incentives under the strict liability rule) and the strict liability
rule to everybody else.
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1 Introduction

In this paper, I characterize the optimal multi-players liability rule when
players have limited liability. Models of liability rules for two players go back
to Brown (1973). Liability rules for more than two heterogeneous players
can be found in Shavell (1987) and Emons and Sobel (1991). In a series
of papers, Kornhauser and Revesz (1990, 1994) have pointed out that the
characterization of liability rules under limited liability is quite different than
when liability is not constrained. The limited solvency of tortfeasors is a real
concern in liability cases involving life or environmental matters where the
magnitude of damages can quickly skyrocket well beyond the actual capacity
of paying of injurers. A liability rule designed to provide incentives to players
to undertake due care must thus take into account these constraints.

Kornhauser and Revesz’ analysis is restricted to two players situations.
They consider the equilibria induced by ad hoc liability rules that have been
proposed in law and economics or that are actually used in real life legal
disputes. By contrast, the number of players here is arbitrary and I consider
an optimal rule that provide the maximum possible incentives for the players
to undertake effort given their liability constraints. Since this optimal rule
is not considered by Kornhauser and Revesz, the results presented here are
not directly comparable to theirs.

My analysis is related to that of Bergstrom, Blum and Varian (1986,
1992) who analyze the voluntary private provision to a public good by players
with different wealth endowments. These authors show how the voluntary
provision to a public good is affected by a redistribution of wealth when the
redistribution modifies the subset of net contributors. In the present context,
liability plays the role assigned to wealth in the public good problem. An
optimal multi-player liability rule will affect the subset of players upon which
liability will be put in order to incite an efficient amount of spending in care.

My main result states that when solvency is scarce (in the sense that the
first-best allocation cannot be implemented) it is strictly efficient to make
all players strictly liable except the “deep-pocket” or the “victim”. The
deep-pocket is defined as the player who is the most responsive to mone-
tary incentives under the strict liability rule. He is to be subjected to the
negligence rule: he shall evade liability only if he has undertaken a required
amount of spending in effort. Actually, the money gathered from the strictly
liable players is used to provide additional monetary incentives to the deep-
pocket. Under that regime, all spending in effort are undertaken by the
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deep-pocket only. Hence, the second-best is achieved by concentrating all
monetary incentives to affect the precautionary behavior of a single player.

This is a striking result. The typical analysis of liability rules deals with
the problem of disciplining a single tortfeasor and leads to the conclusion that
the negligence rule is strictly better than the strict liability rule when the
tortfeasor has a low solvency. The analysis here shows that when a group of
potential tortfeasors is involved, the negligence rule should be applied only
on a single subsidized tortfeasor (who is expected to have undertaken all
spending in effort); all the others should be subjected to the strict liability
rule.

Who shall be that subsidized player is problematic: on one hand, since
monetary incentives are scarce, we would like him to be highly responsive
under the negligence rule. Players who are the more responsive under the
strict liability rule are also those that are the most responsive under the
negligence rule. Yet, these players are also the ones who have the highest
solvency, hence the ones who would provide more monetary incentives under
the strict liability regime. I show that the first effect will dominate favoring
the deep-pocket.

The rest of this paper is structured as follows. In the next section, I
present the formal model which is solved under dominant strategy with no
liability constraint. In section 3, I recast the classical result of the dominance
of the negligence rule over the strict liability rule in the single player case
with a liability constraint. In section 4, I show that this result cannot be
extended to the multi-players case with dominant strategy implementation.
Finally, the optimal multi-players rule with Nash equilibrium implementation
is characterized. A brief conclusion follows.

2 The Model

Consider a two periods game with N players indexed with i. In the first
period, these players may spend resource in prevention to reduce the prob-
ability of an accident in the second period. In the second period, the state
of nature is revealed to be either the accident state or the no accident state.
In the accident state, I assume that the courts observe at no cost the iden-
tities of these players, their motives, the spending in prevention that they
undertook, the underlying risk and the amount of actual damages. On the
basis of this information, the courts then apply a liability rule that specifies
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the different compensating damages to be paid or received by the players.
The rule applied by the courts is known beforehand by the players and affect
their ex ante choice of spendings in prevention. There is no involvement of
the courts in the no accident state.

All players are assumed to have quasi-linear preferences. Player i’s utility
in the no accident state is Vi while his utility in the accident state is Ui. The
opportunity cost of an accident Vi − Ui is noted Ci. No player wishes an
accident to happen so that Ci ≥ 0 for all i. Without loss of generality,
assume that the players are indexed from 1 to N in increasing order with Vi.

In the first period, each player chooses a level of spending Xi ≥ 0 in
prevention to decrease the likelihood of the accident state1. After an accident,
player i is required to pay (or to receive) a compensating damage Li that
raises the opportunity cost of an accident to Ci + Li.

The utility Ui is to be interpreted as a measure of the value of player i’s
seizable assets so that Ui ≥ 0. Hence, player i’s liability Li is bounded above
by Ui.

Li ≤ Ui. (LCi)

I refer to these constraints as the liability constraints.
Let X = [X1, . . . , XN ]; X−i is the vector X with the ith component

suppressed; x =
∑

Xi and x−i = x − Xi. A similar notation will be use
for the variables Ui, Vi, Ci and Li to which are associated the vectors U , V ,
C and L. For instance, the liability constraint holds for all i if L ≤ U .

A one-sided budget balance constraint will be imposed throughout so that
the courts are not a net contributor:

l ≥ 0.

When l > 0, the money collected is either used to restore the resource and/or
to be distributed among the general public.2

The sum of spending x determines the probability P (x) that an accident
will occur. To account for decreasing marginal returns in accident prevention
the function P is assumed to be strictly decreasing and strictly convex and
to satisfy

1The fact that spending in effort are bounded below imposes an implicit limit on the
effect of moral hazard: a player who decides to be negligent say, by increasing production
to increase his profits, is equivalent here to a player who would reduce his Xi. That can
be done up to a limit Xi = 0. I thank Karine Gobert for pointing this to me.

2I will actually show that the optimal liability rule is such that l = 0.
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A1: limx→0 P ′(x) = −∞,

A2: limx→∞ P ′(x) = 0,

A3: limx→∞ P (x) = 0.

If player i has a liability Li, his private expected opportunity cost is

P (x)(Ci + Li) + Xi. (PCi)

I assume that the accident state entails an additional external cost a
to society. Expected social cost is defined as value of the sum of expected
private costs plus the expected external cost a and minus the expected sum
of transferts

P (x)(a− l) +
∑

PCi = P (x)(a + c) + x. (SC)

Private cost (PCi) is a strictly quasiconvex function of Xi. If Ci +Li ≤ 0,
then it is monotonously increasing; otherwise, it is strictly convex; in both
cases, quasiconvexity follows. The same result applies to (SC) which is a
strictly convex function of x. It follows that the following function is well
defined

ξ(z) = argmin
x≥0

P (x)z + x.

Because of assumption A1, notice that ξ(z) = 0 implies that z ≤ 0. The
value ξ(Vi) will be simply noted ξi.

Conditionally on the occurence of an accident, the courts are assumed
to have (ex post) perfect information. Thus a liability rule is a function
that maps a, the function P , and the vectors U , V and X into a vector
of liabilities L. Ex ante, the social planner who designs the rule is not in
relation with the players and is not considered to be a player in the game
induced by the liability rule. This explains why the liability rule is silent
in the no accident state. Think of a more general setting where there are
infinitely many potential players so that the ex ante probability that any
given set of players will end up in court is nearly zero while the probability
that some set of players will end up in court is significant. Ex ante, some
players may know that there is a significant probability that they will end
up in court (namely P (x)) while the social planner is unaware of it. Any
form of communication between these players and the social planner prior
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the state of the world is realized is implicitly assumed away3. A liability rule
will be written as a vector R of N functions of X alone (its dependency on
the parameters is implicit) so that Li = Ri(X). The notation Ri(X) will at
times be substituted by Ri(Xi, X−i).

The parameters a, V and U , the accident technology P and the liability
rule R are common knowledge among the players when they choose (simul-
taneously and independently) their spending levels X. The purpose of this
paper is to characterize the liability rule that provides the best incentives
to minimize the social cost (SC). In that context, a liability rule R is a
mechanism that structure a game then played by the potential tortfeasors.
As usual, the choice of an optimal mechanism depends on the solution con-
cept considered to give a good description of how the game is to be played.
Among the solution concepts encountered in the literature, those of (weakly)
dominant strategy equilibrium and of Nash equilibrium are the most common
place.

A liability rule implements X in dominant strategies if, for each player i,
playing Xi minimizes player i’s private cost for all X−i. A liability rule im-
plements X as a Nash equilibrium if, for each player i, playing Xi minimizes
his private cost given X−i. The set of allocations X that are implementable
as a Nash equilibrium thus includes the allocations that are implementable
in dominant strategies.

If the liability constraints are discarded, any allocation X∗ may be im-
plemented in dominant strategies as follows. Let fi be a function such that

fi(Xi) ≥ P (Xi)Ci + Xi

and that reaches its minimum at X∗
i . Define the rule

Ri(X) ≡ fi(Xi)−Xi

P (x)
− Ci.

Notice that the one-sided budget balance condition is ensured since

Ri(X) ≥
[
P (Xi)− P (x)

P (x)

]
Ci ≥ 0.

With such rule, whatever player i’s expectations about x−i might be, the
minimization of his expected private cost yields

min
Xi≥0

P (x)(Ci + Ri(X)) + Xi = min
Xi≥0

fi(Xi) = fi(X
∗
i ).

3See Brown (1973) for an early discussion of that point and Emons and Sobel (1991)
for a discussion about the links with the implementation literature.
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However, that rule does not satisfy the liability constraints. For instance,
if player i believes that the other players will invest x−i → ∞ (so that
P (x) → 0) and if he chooses to invest less than X∗

i so that Ri(X) > 0,
he knows that his liability will bound at Ui. Since he does not expect the
accident state to occur anyway, he will then minimize his private cost by
investing zero. That result is easily generalized in the next proposition.

Proposition 1. Under budget balance and limited liability, the set of alloca-
tions that can be implemented in dominant strategies is empty.

Proof. Suppose that X∗ can be implemented in dominant strategies with R.
We have two cases: either x∗ = 0 (so that X∗ = 0 is the nul vector) or
x∗ > 0.

Suppose that x∗ = 0. Given a liability rule R, any player i who expects
x∗−i = 0 will spend an amount Xi such that Xi = ξ(Ci + Ri(Xi,0)). If
Xi = X∗

i = 0, then Ci + Ri(0) ≤ 0. Summing yields
∑

Ri(0) = l ≤ −c < 0
which is a violation of budget balance.

Suppose that x∗ > 0. Then there exists a player i for which setting
X∗

i > 0 is a weakly dominant strategy at least as good as investing nothing:

P (x−i + X∗
i )(Ci + Ri(X

∗
i , X−i)) + X∗

i ≤ P (x−i)(Ci + Ri(0, X−i)), ∀X−i.

Since Ri is bounded above by Ui, as x−i → ∞ and the probability of an
accident vanishes on both sides, this inequality yields X∗

i ≤ 0; a contradic-
tion.

The scope of proposition 1 goes beyond stating that it is difficult to handle
the moral hazard problem. It emphasizes that there is also a coordination
problem since no equilibrium in dominant strategies would exist even if there
was no liability rule. This is to bear in mind since I will show that the optimal
NI rule solves that fundamental coordination problem in a rather crude way.

3 The strict liability and negligence rules

A classical proposition in law and economics is to establish the weak dom-
inance of the negligence rule over the strict liability rule when a player has
a limited liability. Let x−i and l−i be fixed. The strict liability rule and the
negligence rule differ only in the definition of the event where player i shall
pay a compensation to the injured party. According to the strict liability
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rule, it is the event of an accident while under the negligence rule, it must
also be that player i spent less than a required standard4 Xi. Under both
rules, limited liability caps the amount of money player i may be required to
pay. Likewise, the liability constraints for all the other players −i limit the
compensating damage player i may receive: using (LCi) and budget balance,
we get

Li = l − l−i,

≥ −l−i.

Hence
−l−i ≤ Li ≤ Ui. (1)

Consider the class of liability rules that are lower semi-continuous and bounded
by (1). Given that X−i is fixed here, a rule r in this class will later translate
to the multi-players setting through r(Xi) ≡ Ri(Xi, X−i).

Under the strict liability rule, a tortfeasor is responsible for any damage
he may have cause even if he undertook an appropriate level of accident
prevention. When the liability constraint binds, the value of the damage is
greater than the value of the player’s assets. In that event, one may associate
the strict liability rule to the constant rule r(Xi) = Ui. Private cost with
that rule becomes

c1(Xi) = P (x−i + Xi)Vi + Xi.

Player i will choose Xi ≥ 0 in order to minimize c1(Xi): he wants ξi to be
spent and will thus spend X1

i = max{0, ξi − x−i} by himself.
Since Vi > 0 and P ′(0) = −∞, we have ξi > 0 for all i 6= 0. Since

P is strictly convex, P ′ is strictly increasing so that ξi increases with Vi,
hence with i. Player N wants the highest total level of spending under the
strict liability rule. I call that player the deep-pocket or the victim (both
interpretations are discussed later).

Consider now the constant rule where the player pays Li in the accident
state. Under that rule, player i expected cost becomes

c0(Xi) = P (x−i + Xi)(Vi − Ui + Li) + Xi.

4Different players may be required to satisfy different standards (Emons and Sobel
1991). According to Grady (1990), courts usually consider the peculiar setting of a case
to establish the standard of care. Besides, from the moment that players have different
solvency constraints, it seems unlikely that the same level of care will be expected from
each player. It follows from this assumption that two heterogeneous agents may have to
comply with a different standard of care to avoid liability.
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Let c0 be minimized in X0
i . Define the lower contour set

Xi = {Xi ≥ 0 : c0(Xi) ≤ c1(X1
i )}.

Proposition 2 below establishes the optimality of the negligence rule since
it can implement any level of effort that could be implemented with an other
rule (all proofs are in the appendix).

Proposition 2.

1. Xi may be implemented with a lower semi-continuous rule bounded by
(1) if and only if Xi ∈ Xi.

2. Any Xi ∈ Xi may be implemented with the negligence rule

r(z) =

{
Li if (z −Xi)(Xi −X0

i ) ≥ 0,

Ui else.

By construction, the agent expected cost is minimized in Xi with this
rule. Hence, the liability for agent i under the negligence rule is given by Li.
Notice that, when Li = Ui, then this “negligence” rule is equivalent to the
strict liability rule in a limited liability context where the agent always pays
the damages up to his limited liability Ui.

4 The multi-players case

In proposition 2, both x−i and l−i were assumed fixed. I now consider the
case where all players choose their level of spending simultaneously given a
liability rule R.

As in section 2, the problem of the choice of a multi-players liability rule
is one of mechanism design. A liability rule R will implement X in dominant
strategy if, for all i, we have Xi ∈ Xi, for all x−i ≥ 0. A liability rule
R will implement X as a Nash equilibrium if, for all i, we have Xi ∈ Xi.
Because of proposition 1, we know that the concept of dominant strategies
implementation is of little help here.

With the Nash equilibrium implementation concept, the liability rule R
needs only to be defined at the equilibrium point X: L = R(X). Hence, let
a pair (X, L) be associated to a multi-players liability rule which specifies for

9



each player i the liabilities Li and Ui paid by the player if he has provided
or not his required standard of spending Xi as in proposition 2. If Xi ∈ Xi

for all i, the pair is said to be Nash implementable (NI).
The multi-players set-up generates a dilution of incentives. Consider the

case where everybody is liable under the strict liability rule; that is L = U .
In that case, everybody will set Xi = X1

i in order to solve minXi≥0 c1(Xi).
Let I be the group of M players who spend in prevention in equilibrium.
We know that M ≥ 1 because if nobody else was providing effort, agent N
would since ξN > 0. Then

x =
∑
i∈I

Xi =
∑
i∈I

(ξi − x−i) =
∑
i∈I

(ξi − x−i −Xi + Xi) ,

=
∑
i∈I

(ξi − x + Xi) =
∑
i∈I

ξi − (M − 1)x,

so that

x =

∑
i∈I ξi

M
. (2)

The only way (2) may hold is if I ≡ {N}, M = 1 and x = ξN . Hence, under
the strict liability rule, the spending in prevention by player N crowds out
the incentives for the other agents to spend as well. That rule generates a lot
of excess liability since l−0 = u−0 = u > 0. This suggests that a better multi-
players rule where that excess liability is used to provide additional monetary
incentives to player N . I will show that such a rule is indeed optimal.

Because all players have quasi-linear preferences, we get the following
characterization of a NI pair.

Lemma 1. A pair (X, L) is NI if and only if

min
z≥−Xi

P (x + z)Vi + z ≥ P (x)(Ci + Li),

for all players.

Let (X, L) be a NI pair that satisfies budget balance (l = 0). With
such a pair, the players make a total of x in spendings. Let the set of such
implementable sums be

X = {x : ∃(X, L), x = ΣXi, ∀i Xi ∈ Xi, l = 0}.

Lemma 2. X is non empty, closed and bounded above by x̂ > 0.
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The social problem is to choose a budget balanced NI liability rule that
minimizes social cost (SC) over X . Given a, let x∗a be the unconstrained
minimum of (SC) over R+. Remember that (SC) is strictly quasiconvex in
x. Hence, if a is high enough, then x̂ < x∗a and x̂ will be chosen. This
corresponds to the interesting case where liability is scarce so that a only
a second-best solution will be feasible. Assuming that this is the case, the
problem I study is then to characterize how x̂ may be implemented.

Proposition 3. When x̂ < x∗a, x̂ is uniquely implemented with (X,L) where
X−N = 0, XN = x̂, L−N = U−N and LN = −u−N .

Hence, the optimal multi-players liability rule puts every agent under a
strict liability regime except player N who stays under the negligence rule
and who actually receives money collected from the other players when an
accident happens. With this solution, x̂ is given by the top of XN , as defined
in proposition 2, when LN = −u−N .

It is easy to understand proposition (3) if we relate that problem with the
classical problem of the private provision of a public good first analyzed by
Warr (1983) and Bergstrom, Blum, and Varian (1986). These authors shows
that the amount of public good provided is independent of the distribution of
income unless the set of contributors is affected by the distribution. The op-
timal multi-player rule achieves that by concentrating all the ex post wealth
(the collected fines from the liable agents) into the hand of a single player.
That player is then disciplined through the negligence rule. Because there is
a single player who spends resources into prevention, there are no dilution of
incentives and a maximum of spending is undertaken.

Under this rule, the deep pocket is expected to undertake all spendings.
Again, the comparison with the public good problem helps to understand
that result: if all wealth is to be given to a single player to spend on a public
good and if any player would spend less than the socially optimal amount,
then it makes sense to give the wealth to the player who values the most the
public good. If we concentrate all monetary incentives upon a single player
i which we submit to the negligence rule, then the opportunity cost of an
accident for this player becomes

Ci + Li = Vi − Ui + (−u−i) = Vi − u.

Hence, the most responsive player under that rule is the one for which the
opportunity cost of an accident under strict liability (Vi) is the greatest, the
deep pocket.
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To understand the two different interpretations of player N as the “deep
pocket” or the “victim”, consider the following. By definition,

Vi ≡ Ci + Ui,

Hence, the opportunity cost of an accident and the ex post liability of a
player are jointly identified in this model. The “deep-pocket” interpretation
is natural when there is little variation in the Ci ' C (relatively to the Ui).
Then, all players would be similarly careless in absence of a liability regime
but player N is highly motivated to produce the required amount of care
once his assets Ui are at stake. He is then chosen because he is the most
responsive monetary incentives under the negligence rule.

When there is a lot of variation in Ci and Ui ' U , interpreting of player
N as a “victim” is more natural. Then, all players have roughly the same
ability to pay ex post but player N has an higher ex ante incentive to spend
in prevention because of his higher opportunity cost.

5 Manipulation of Liabilities

Liability rules work to the extent that the players cannot evade punishment
by placing their assets Ui out of the reach of the courts. Yet, liabilities
may be manipulated in another way by artificially raising or lowering the
opportunity cost of an accident. Assuming that lowering Ui is impossible,
this is done by raising or lowering Vi.

A minimal requirement that a liability rule should statisfy is to be immune
to such manipulation. In a single-player context, both the strict liability rule
and the negligence rule share that property5. As it turns out, so does the

5For the strict liability rule the proposition is trivial. For the negligence rule, one must
show that the expected cost rises with Vi. Remember that with limited liability, x̂ is set
by solving

P (x̂)(Vi − Ui) + x̂ = P (ξi)Vi + ξi.

We gather that
∂x̂

∂Vi
=

P (ξi)− P (x̂)
P ′(x̂)(Vi − Ui) + 1

> 0.

The denominator is positive because increasing spending in prevention beyond the required
standard of care would increase at the margin the player private cost. The numerator is
positive because this implies that the standard of care involves more spendings than the
player would otherwise undertake in absence of a liability system.
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optimal multi-player rule. To see this, consider the incentive of a player i
other than the deep-pocket to increase his stake Vi to VN + ε in equilibrium
so that he becomes the deep-pocket.

For this to be a profitable move, he should get a lower expected cost (on
the r.h.s.) than what he obtains under the strict liability rule (on the l.h.s.);
hence

P (x̂)Vi > P (x̂ε)(VN + ε− u) + x̂ε.

Since the negligence rule is robust to such manipulation

P (x̂ε)(VN + ε− u) + x̂ε ≥ P (x̂)(VN − u) + x̂.

By definition of x̂, where

P (x̂)(VN − u) + x̂ = P (ξN)VN + ξN ≥ 0.

It follows that
P (x̂)Vi > P (ξN)VN + ξN ≥ 0.

This is certainly false for a small Vi. Could it be true for VN − ε ? Then we
would get

0 > (P (ξN)− P (x̂))VN + P (x̂)ε + ξN ≥ 0,

a contradiction. Hence, the multi-players optimal liability rule is robust to an
upward manipulation of liabilities. Intuitively, although player N is certainly
better off if an accident happens, nobodies envy him ex ante since he has to
spend x̂ to maintain his status as a deep-pocket and the level x̂ is computed
with VN − u = maxi Vi − u so that it is barely acceptable to player N .

6 Conclusion

I have given a characterization of the optimal multi-player liability rule that
provide the players a maximum amount of incentives to produce a join effort
in the case when all players have a limited liability.

At the margin, an increase in Vi thus raises the expected cost

P ′(x̂)(Vi − Ui)
∂x̂

∂Vi
+ P (x̂) > 0.
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A Appendix

The proofs of the propositions and lemmas follow.

Proof of proposition 2. Since X1
i ∈ Xi and is c0 is quasiconvex, Xi is a non

empty, closed and convex set. Now assume that an arbitrary lower semi-
continuous rule r̂, bounded by (1), is applied. If Xi may be implemented
with this rule, then Xi must be an optimal response to it6. Hence, for all
z ≥ 0,

P (x−i + z)

[
Ci + r̂(z)

]
+ z ≥ P (x−i + Xi)

[
Ci + r̂(Xi)

]
+ Xi. (3)

Since r̂(z) ≤ Ui, for all z we have

c1(z) = P (x−i + z)Vi + z,

≥ P (x−i + z)

[
Vi − Ui + r̂(z)

]
+ z. (4)

Hence, combining (4) and (3),

c1(X1
i ) ≥ P (x−i + X1

i )

[
Ci + r̂(X1

i )

]
+ X1

i ,

≥ P (x−i + Xi)

[
Ci + r̂(Xi)

]
+ Xi,

and since Li ≤ r̂(Xi),

c1(X1
i ) ≥ P (x−i + Xi)(Ci + Li) + Xi,

≥ c0(Xi),

so that Xi ∈ Xi.
Now assume that we want to implement Xi ∈ Xi. We must verify that r

as specified in the proposition will do the trick.

• If Xi = X0
i , then then the player always pays Li and minimizes cost by

setting Xi = X0
i .

6An optimal response exists because the rule is lower semi-continuous.
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• If Xi > X0
i and z > Xi, then cost are minimized down to c0(Xi) by

lowering z up to Xi.

• If Xi > X0
i , and z < Xi, then cost are no less than c1(X1

i ) which is no
less than c0(Xi). Hence, cost would be no higher by having z = Xi like
in the previous argument.

• If Xi < X0
i , a similar argument applies.

Proof of Lemma 1. Suppose that (X,L) is NI. Then, for all i, Xi ∈ Xi or

min
y≥0

P (x−i + y)Vi + y ≥ P (x−i + Xi)(Ci + Li) + Xi,

subtracting Xi on both sides and making a change of operand z = y −Xi,

min
z≥−Xi

P (x + z)Vi + z ≥ P (x)(Vi − Ui + Li). (5)

Now suppose that (5) holds for all i. Proceed backward to show that X is
NI.

Proof of Lemma 2. Let Y be the set of NI pairs (X, L). To prove the lemma,
it is sufficient to show that Y is also non empty, closed and that there exist
(X,L) ∈ Y such that X 6= 0. Because the sum x = ΣXi is a continuous
mapping, X also share these properties.

Formally
Y = {(X, L) : ∀i Xi ∈ Xi, L ≤ U, l ≥ 0} .

For any given L, the choice of X by the players is a Nash equilibrium of a
game of private contributions (the Xi) to a public good (the P (x) component
of the players’ payoff functions). Bergstrom, Blum, and Varian (1986) have
shown that these games have a unique Nash equilibrium. Hence, letting
L = 0, I conclude that there exists at least one pair (X, 0) ∈ Y .

Let Y C be the complement of Y in R2(N+1). Each component Li is
bounded by (1). Each Xi is bounded below by zero. Now if (X, L) ∈ Y ,
then for all z ≥ −Xi

P (x + z)Vi + z ≥ P (x)(Ci + Li).
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Hence if Xi is not bounded above and if Xi →∞, then

z ≥ 0, ∀z ∈ R,

which is certainly false for an arbitrarily low value of z. It follows that each
Xi is bounded above, that Y is bounded and that YC is non empty.

Consider y = (X, L), y ∈ Y C . By definition, there exists some i(y) and
z(y) ≥ −Xi such that

P (x + z(y))Vi(y) + z(y) < P (x)(Vi(y) − Ui(y) + Li(y)).

Since P is continuous, there exists δ(y) > 0 such that if ||y′ − y|| < δ(y),
where y′ ≡ (X ′, L′), then

P (x′ + z(y))Vi(y) + z(y) < P (x′)(Vi(y) − Ui(y) + L′i(y)),

so that y′ ∈ Y C . It follows that y is an interior point of Y . Since y was
chosen arbitrarily, I conclude that Y C is open so that Y is closed.

To show that x̂ > 0 consider the feasible rule L = U that makes all agents
are strictly liable and that implements x = ξN > 0.

Proof of proposition 3. The proof is lengthy and proceeds in a series of lem-
mas. First, let (X, L′) implements x̂ and, given X, define

L+
i = Ui −

(P (x̂)− P (ξi)) Vi + x̂− ξi

P (x̂)
,

L−i = Ui −
(P (x̂)− P (x̂−Xi)) Vi + Xi

P (x̂)
,

and
LX = argmax

L
l s.t. L ≤ U and (X, L) is NI.

Then for all L ∈ LX , (X, L) implements x̂ as well. Without loss of generality,
I consider an implementation (X, L) of x̂ such that L ∈ LX .

Lemma 3.1 establishes that, although l is linear, it has a unique maximizer
over the set of vectors L that satisfy both the limited liability constraints and
NI.
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Lemma 3.1. LX = {L} where

Li =

{
L−i if ξi < x̂−Xi,

L+
i if ξi ≥ x̂−Xi.

Proof. By definition of ξi we have:

P (x̂)Vi + x̂ ≥ P (ξi)Vi + ξi, (6)

and

P (x̂−Xi)Vi + x̂−Xi ≥ P (ξi)Vi + ξi. (7)

Rewrite (6) as
(P (x̂)− P (ξi)) Vi + x̂− ξi ≥ 0. (6′)

Multiply (7) by −1 and add P (x̂)Vi + x̂ on both sides to get

(P (x̂)− P (ξi)) Vi + x̂− ξi ≥ (P (x̂)− P (x̂−Xi)) Vi + Xi. (7′)

From (6′), we gather that L+
i ≤ Ui.

Nash implementability constrains Li to satisfy

min
z≥−Xi

P (x̂ + z)Vi + z ≥ P (x̂)(Vi − Ui + Li). (8)

The unconstrained solution to the program on the l.h.s. is z∗ = ξi− x̂. There
are two cases:

1. If ξi − x̂ ≥ −Xi, then the solution is unconstrained and (8) yields

P (ξi)Vi + ξi − x̂ ≥ P (x̂)(Vi − Ui + Li). (9)

2. If ξi − x̂ < −Xi, then the solution is constrained in −Xi and (8) yields

P (x̂−Xi)Vi −Xi ≥ P (x̂)(Vi − Ui + Li). (10)

Now if L belongs to LX , then all the Li must be set as large as possible
given X. In the first case, (9) holds and its r.h.s. strictly increases with Li.
Raise Li so that (9) holds as an equality. Then Li = L+

i . Likewise, in the
second case, raise Li so that (10) holds as an equality. Then Li = L−i . Notice
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that in the latter case, the candidate solution z = 0, although feasible, was
discarded when solving the l.h.s. of (8). This implies that

P (x̂)Vi ≥ P (x̂−Xi)Vi −Xi,

or

(P (x̂)− P (x̂−Xi)) Vi + Xi ≥ 0,

which implies L−i ≤ Ui. Hence, Li = L−i also satisfies the limited liability
constraint in that case.

The first part of the next lemma si the core of the proof. Basically, it
states that there is at most one player who will be given incentives to spend
in prevention.

Lemma 3.2. There is at most one player i such that ξi < x̂−Xi and Xi > 0.
There is at least one player j such that ξj ≥ x̂−Xj and Xj > 0.

Proof. First part: Suppose that for k ∈ {i, j}, we have ξk < x̂ −Xk, which
implies Lk = L−k , and Xk > 0. Let Xi +Xj = X so that Xj ≡ X −Xi. Then
Xi belongs to an interval [0, X] of strictly positive measure. If L belongs to
LX , then L−i + L−j should be maximized. Equivalently, using the definition
of L−k with X fixed, hence x̂ fixed, Xi should maximize

P (x̂−Xi)Vi + P (x̂−X + Xi)Vj, (11)

over [0, X]. Yet, (11) is strictly convex in Xi so that it does not have an
interior maximum on [0, X]. It follows that either Xi or Xj is zero and we
get a contradiction.

Second part: Suppose there are no player j such that ξj ≥ x̂ − Xj and
Xj > 0. Since x̂ > 0, then all spending is provided by some player i such
that Xi = x̂ and ξi < x̂−Xi = 0. This can’t be because ξi ≥ 0 for all i.

At this point, it is easy to establish that, given the liability structure,
there is no player who does not feel compelled to spend in prevention who
would actually do so. This is done in the next lemma.

Lemma 3.3. There is no player such that ξi < x̂−Xi and Xi > 0.
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Proof. Suppose there is such a player. Then he has liability a L−i which
strictly decreases with Xi and is maximized to Ui in Xi = 0. From Lemma
3.2, we know that there is a player j such that ξj ≥ x̂−Xj and Xj > 0 who
pays L+

j . Reduce Xi to zero and increase Xj by Xi so that x̂ stays constant.
Since L+

j is independent of Xj, the liability of player j has not changed while
that of player i has strictly increased. Hence total liability l has increased
and L /∈ LX ; a contradiction.

At this point, we have established that a solution (X, L) is such that there
is a group (possibly empty) of players who, in equilibrium, do not want and
do not spend in prevention, that is for which ξi < x̂; while the other group
(certainly not empty) have ξj ≥ x̂ − Xj with Xj > 0, willingly contribute.
In the last lemma, it is established that this group is resumed by player N
alone.

Lemma 3.4. Let (X, L) implements x̂. Then all spending is provided by
player N .

Proof. Suppose there are more than one player who spend in prevention.
These players can be ranked with their index i (which strictly increase with
ξi). Reduce the spending of the lowest ranked player, say player i, to zero and
increase that of the highest ranked player, say player j, by the same amount
to keep x̂ constant. Liabilities are left unchanged except perhaps that of the
player i if ξi − x̂ ≥ −Xi but ξi − x̂ < 0. In that case, player i’s liability
has strictly increased (since ξi 6= x̂) from L+

i to Ui. Repeat the operation for
the second-lowest ranked player and so on. Eventually, all spending will be
provided by the highest ranked player.

We have a configuration for a solution where a single player produces
all the effort and all the others players pay the maximum liability that en-
tails providing zero spending as a best-response. Since x̂ is a constrained
optimum, all the money gather this way should be used to provide the maxi-
mum amount of incentive (−u−j) under the negligence rule to the player who
spends in prevention. Such a solution may be implemented as a sequence:

1. Collect all the players their Ui to get a maximum u in incentives to
distribute.

2. Provide some incentives to some player i who then implements Xi = x̂.

3. Provide the remaining incentives to all other players j such that ξj ≥ x̂
to entail a zero best-response in spendings.
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It is clear that we should select player N in step 2 because he provides the
highest x̂ at stage 2 and the higher the x̂, the lesser the number of players
that have to be subsidized in step 3 (that is, none with player N). With this
solution7

L = [U1, U2, U3, . . . , UN−1,−u−N ].

7Being under the negligence rule, player N is indifferent between providing x̂ as required
to receive u−N in case of an accident or shirking with ξN < x̂ (otherwise x̂ would not be
a constrained optimum) and being fined up to UN . It follows that

P (x̂)(VN − UN − u−N ) + x̂ = P (ξN )VN + ξN ,

(P (x̂)− P (ξN ))VN + x̂− ξN = P (x̂)u.

Hence, LN = L+
N = UN − u = −u−N as stated.
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