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Abstract

A voting situation, in which voters are asked to rank all candidates pair by pair, induces a tour-
nament and a weighted tournament, in which the strength of the majority matters. Each of these
two tournaments induces in turn a two-player zero-sum game for which different solution concepts
can be found in the literature. Four social choice correspondences for voting situations based exclu-
sively on the simple majority relation, and called C'1, correspond to four different solution concepts
for the game induced by the corresponding tournament. They are the top cycle, the uncovered
set, the minimal covering set, and the bipartisan set. Taking the same solution concepts for the
game induced by the corresponding weighted tournament instead of the tournament and working
backward from these solution concepts to the solutions for the corresponding weighted tournament
and then to the voting situation, we obtain the C'2 counterparts of these correspondences, i.e. cor-
respondences that require the size of the majorities to operate. We also perform a set-theoretical
comparison between the four C'1 correspondences, their four C2 counterparts and three other C2
correspondences, namely the Kemeny, the Kramer-Simpson, and the Borda rules. Given two sub-
sets selected by two correspondences, we say whether it always belongs to, always intersects or may
not intersect the other one.

Journal of Economic Literature Classification Number: D70.

Résumé

Un vote & la majorité ou les candidats sont comparés deux a deux induit un tournoi basé sur
la relation majoritaire et un tournoi pondéré, ou la taille de la majorité compte. Chacun de ces
tournois induit & son tour un jeu & somme nulle pour lesquels on dispose de différents concepts
de solution. Quatre correspondances de choix social applicables & la relation majoritaire, dites de
type C1, correspondent & quatre concepts de solution différents pour le jeu induit par le tournoi
correspondant. Ce sont le top cycle, le uncovered set, le minimal covering set et le bipartisan
set. En utilisant les mémes concepts de solution pour les jeux induits par les tournois pondérés
équivalents, plutot que par les tournois, et en allant des solutions pour les jeux aux tournois
pondérés et ensuite aux relations majoritaires (votes), nous obtenons 1’équivalent de type C2 des
quatre correspondances de type C'1, i.e. des correspondances qui exigent la dimension de la majorité
pour opérer. Nous effectuons également une comparaison entre les quatre correspondances de type
C1, leurs quatre équivalents de type C2 et trois autres correspondences de type C2, soit les régles
de Kemeny, de Simpson-Kramer et de Borda. De fagon plus précise, étant donné les ensembles de
décision produits par deux correspondances de choix social, nous répondons aux questions : Est-ce
qu'un de ces ensembles est toujours inclus dans 'autre? Si non, y a-t-il toujours intersection entre
les deux ou, au contraire, peut-il arriver que leur intersection soit vide?



1 Introduction

A tournament is a competition in which every contestant meets every other contestant in turn.!

In some tournaments, contestants may meet each other more than once, say ¢ times. In each of
the ¢ encounters, one of the opponents beats the other one or they tie. We call them ¢-weighted
tournaments or simply weighted tournaments, a term that we may trace back to Moulin (1988).
More generally, a (weak) tournament is defined by a complete binary relation on a finite set. A
(weak) weighted tournament is defined by a non-negative number g and a list of numbers or weights
n(x,y), such that n(z,y) + n(y,z) = q for all pairs of different contestants. The number n (x,y)
is the share of ¢ that contestant x gets when opposed to y. Weighted tournaments may be seen as
tournaments with additional information as to how strong each contestant is with respect to every
other contestant.

Tournaments may arise in many contexts other than sports. Our main interest is in voting
situations where voters are asked to rank all candidates pair by pair as imagined by Condorcet
(1785) or equivalently to furnish their complete preference over the set of all candidates. In this
paper, we define a (voting) situation as a set of candidates together with a list of preferences over
this set. A situation induces a g-weighted tournament on the set of candidates, where ¢ is the
number of voters and n(x,y) is the number of voters ranking x ahead of y. By retaining only
the majority relation, i.e. whether n(z,y) > n(y,x), the opposite or both, we get an unweighted
tournament.

In Guénoche, Vanderputte-Riboud and Denis (1994), one finds 0-weighted tournaments where
n(x,y) represent the difference between the yield of rapeseed varieties x and y in a given territory.
Guénoche (1995) applies similar techniques to marketing. He obtains a weighted tournament by
comparing 9 brands of computers on a pairwise basis according to a poll of consumers. This is not

very different from voting,.

'In sports, this is called a round robin tournament.



A question that arises naturally in voting situations and thus in tournaments is how to choose
a winner. This question has been the subject of many articles and books since the celebrated
controversy between Borda (1784) and Condorcet (1785). Laslier (1997) provides an illuminating
synthesis of these various contributions. In the language of the theory of social choice, a rule
that selects a set of candidates in any voting situation is called a social choice correspondence.
Condorcet advocated selecting a contestant that defeats all others more than half of the time in the
q encounters. Such a candidate is called a Condorcet winner. However, Condorcet was well aware
that there might be a cycle in the majority relation preventing the existence of a Condorcet winner.
When this happens, some other rule must be called to the rescue to break these cycles or to select
some subset of contestants. A social choice correspondence that selects exclusively the Condorcet
winner whenever it exists is called a Condorcet consistent social choice correspondence. Many of
the social choice correspondences that have been proposed in the literature, including most of those
that will be considered here, are of this sort. The above concepts can be transposed to tournaments
where the social choice correspondences become solutions.

Following Fishburn (1977), we classify social choice correspondences on the basis of their data
requirements. A social choice correspondence belongs to the class C1 if it is based exclusively on
the simple majority relation, i.e. on the outcomes of all pairwise majority comparisons. The C2
social choice correspondences require more data, namely the size of the majorities or the numbers
n (z,y). Social choice correspondences requiring more data form the class C'3. We could define
another class contained in C2 and containing C'1, say the class C'1.5, consisting of social choice
correspondences that use the numbers n(z,y) —n(y, z) instead of the separate numbers n(z,y) and
n(y,x). However, all C2 social choice correspondences that have been considered in the literature
and those that we shall propose in this paper use only the numbers n(z,y) —n(y, z). Thus Fishburn
might have defined the class C2 as consisting of all correspondences that are based on the numbers
n(x,y) — n(y,x). This is the definition that we shall adopt here. This is particularly useful since
the numbers n(x,y) — n(y, z) define a 0-weighted tournament, which are easier to work with than

other ¢-weighted tournaments.



Four of the most studied C1 social choice correspondences are: Schwartz’s (1972) top cycle
(T'C), Fishburn’s (1977) and Miller’s (1980) uncovered set (UC'), Dutta’s (1988) minimal covering
set (MC) and Laffond, Laslier, and Le Breton’s (1993) bipartisan set (BP). Laffond, Laslier,
and Le Breton (1995) compare these C'1 choice correspondences from a set-theoretical point of
view. Given a pair of social choice correspondences, and more precisely the choice sets of these

correspondences, they determine which of the following three propositions holds:

e One always contains the other.
e They always intersect but, in some situations, none of them contains the other one.

e In some situations, they have an empty intersection.

Moulin (1986) also discusses some of these relations.

Laffond, Laslier, and Le Breton (1994) introduce the plurality (weighted) bipartisan set (BP,).
However, one does not find elsewhere in the literature C2 counterparts of the three other C1
correspondences mentioned above. Our purpose in this paper is twofold. First we fill the gap
between C'1 and C2 correspondences by introducing the weighted top cycle (T'Cy,), the weighted
uncovered set (UC,,), and the weighted minimal covering set (M C,).

There is probably a good reason why these concepts have not been proposed before. There
is no obvious way of defining them directly in the context of voting situations. Our strategy is
the following. As explained above, a voting situation induces a tournament and a 0-weighted
tournament. Each of these two tournaments induces in turn a two-player zero-sum game for which
different solution concepts can be found in the literature. It turns out that the four C1 social
choice correspondences mentioned above correspond to four different solution concepts for the game
induced by the corresponding tournament. Taking the same solution concepts for the game induced
by the corresponding 0-weighted tournament instead of the tournament and working backward from
these solution concepts to the solutions for the corresponding 0-weighted tournament and then to

the voting situation, we obtain the desired C2 social choice correspondences.



Our second objective is to perform the set-theoretical comparisons, as in Laffond, Laslier, and
Le Breton (1995), between the four C1 correspondences, their four C2 counterparts and three
other C2 correspondences frequently encountered in the literature, namely the Kemeny (Ke), the
Kramer-Simpson (SK) and the Borda (Bor) rules. Some of these comparisons are borrowed from
the existing literature. The other ones, and specially those involving the new C2 concepts, have to
be done from scratch. Our findings are summarized in Table 2 at the beginning of Section 3. One
can view these comparisons as a preliminary step towards the definition of a metric on the space
of social choice correspondences. Such a metric would give a more complete picture of the possible
disagreements between different correspondences.

We restrict ourselves to (asymmetric) tournaments, in which no tie is allowed either in the
individual encounters or in the split of the victories between contestants. In other words we assume
that the binary relation defining an unweighted tournament is asymmetric and that the numbers
n(x,y) defining a g-weighted tournament satisfy n(x,y) # n(y,x) for all pairs of different contes-
tants. As is the tradition in the literature, we reserve the term tournament for the latter. The
more general ones are weak tournaments. Dutta and Laslier (1997) consider these weak weighted
tournaments, where n(x,y) = n(y,z) is allowed. They call them comparison functions. Peris and
Subiza (1998) also study weak tournaments. Most of our results carry over to weak tournaments.
We shall indicate which ones do not in the Conclusion.

Here are some highlights of our results. Concerning the relations between TC,UC, MC, BP and
their weighted counterparts TC,,, UCy,, MC,,, BP,,, we show that UC C UC,, and MC C MC,,.
We know from Laffond, Laslier and Le Breton (1994) that possibly BP N BP,, = (. As for the top
cycles, we obtain instead that T'C\,, C T'C, i.e. the weighted top cycle is a refinement of the top
cycle. It is well known that BP C MC C UC C TC. In the weighted case the relations are more
intricate. It is easy to see that BP, C UC, and MC,, € UC,. We show that BP,, C TC,, and

BP,, € MC, and also that none of T'C,, and M, is a superset of the other.

2 A C B signifies that A is a subset of B with the possibility that A = B and C indicates a strict inclusion.



Our main results concerning the Kemeny rule are: Ke belongs to T'C' and UC),; otherwise this
set may have an empty intersection with any of the six remaining sets and notably with UC' and
TCy. As for the Kramer-Simpson rule, we prove that SK intersects MC, and therefore UC,,.
Otherwise, SK may have an empty intersection with any of the six remaining sets and notably
with the top cycle. Finally the set of Borda winners Bor may have an empty intersection with all
other sets except with UC,,. Actually Bor belongs to UC,,.

The paper is organized as follows. In section 2, we present the definitions concerning tourna-
ments and voting situations, some non standard game-theoretical notions, and the eleven solutions
for tournaments or weighted tournaments discussed and compared in this paper. In section 3,
we proceed to the set-theoretical comparison of these eleven solutions. Finally, we conclude with
some lessons that can be drawn from these comparisons and we offer some directions for further

investigation.

2 Definitions

2.1 Tournaments, weighted tournaments and situations.

A tournament is a pair (X,T) where X is a finite set and 7" is an asymmetric and complete binary
relation over X. Let X2 = {(x,y) €EX?:x# y}. Thus, in a tournament, V(z,y) € X2 we have
either Ty or yT'x, where Ty may be interpreted as: x beats y.

Let ¢ be a non negative real number. A g-weighted tournament is a pair (X, N) where X is

a finite set and N is a matrix N = [n(z,y)], ,cx such that n(z,y) + n(y,z) = ¢ Vo,y € X and

x,ye
n(z,y) # ny,z) ¥(z,y) € X2. This implies that n (z,z) = ¢/2 Vz € X. A g-weighted tournament
(X, N) induces the tournament (X,T%) where T is defined by: ¥(z,y) € X2 2TNy if and only

if n(z,y) > n(y,x). Thus a ¢g-weighted tournament may be seen as a tournament with additional

information as to how strong x is with respect to y.



In this paper, we focus on 0-weighted tournaments. A g-weighted tournament (X, N) induces

the 0-weighted tournament (X , MY ) where the elements of MY are defined by:

mN(xvy) = H(I‘,y) - n(y,x) = 2n(x,y) —q

Conversely, given any ¢ > 0, a O-weighted tournament (X, M) induces the g-weighted tournament
(X ,NM ) where the elements of N™ are defined by:

m(z,y) +q

n"’(z,y) =

Clearly, N MY — N and MNY = M. For any g > 0, there is thus a one-to-one correspondence
between 0-weighted tournaments and g-weighted tournaments. A tournament (X,7") may be seen
as a O-weighted tournament (X, M) where, ¥(z,y) € X2, m(z,y) € {—1,1}.

Let 7 be the set of all tournaments over all finite sets of alternatives. A solution for 7 is a
multivalued mapping Sr : 7 — X that assigns a nonempty choice set S7(X,T) C X to each
tournament (X, 7). Similarly if we let A/ be the set of weighted tournaments, a solution for N
is a multivalued mapping Sy : N' — X that assigns a nonempty choice set Syr(X,N) C X to
every weighted tournament (X, N). A solution Sy is Condorcet consistent if, for each g-weighted
tournament (X, N), we have Sy (X,N) = {x} whenever n(z,y) > % for all y € X, y # .
Alternative z is then called a Condorcet winner.

Consider a solution Sjy for the subset M of 0-weighted tournaments. Given the one-to-one
correspondence between 0-weighted tournaments and g-weighted tournaments for a particular ¢, we
can extend the solution S for M to all other weighted tournaments in A" by S(X, N) = S(X, MY).
The contrary is not possible. A solution for N/ may associate two different subsets of X to two
different N even if the latter induces the same M.

To show that this abstract framework covers voting, we define a (voting) situation as a pair

(X, P) where X is a finite set of alternatives and P is a finite list (P, Ps,..., P;,...) of linear



orders on X. #P is the number of linear orders in P. These linear orders may be interpreted as the
preferences of # P individuals or voters. Since only preferences matter, we do not introduce voters
explicitly in the model. Given a subset Y C X, P|Y represents the restriction of P to Y. Given a

profile P, we define:

V(z,y) € X?:np(xv,y) =#{P, € P: 2Py}
Ve € X :np(x,z)=#P/2

NP = [TLP((L', y)]m,yEX

Let 2 be the set of all possible situations. A social choice correspondence is a multi-valued
mapping I' : 2 — X that associates a non-empty choice set I'(X, P) C X to every situation (X, P).
As for tournaments, a social choice correspondence is Condorcet consistent if, for each situation
(X, P), we have I' (X, P) = {z} whenever n(z,y) > # for all y € X, y # x. We concentrate
on the subclass D C 2 of situations such that the matrix Np defines a # P-weighted tournament.
We write Mp for MNP and Tp for TN?. (X,Tp), (X, Np) and (X, Mp) are respectively the
tournament, the # P-weighted tournament, and the 0-weighted tournament induced by profile P
on X.

The relation from D to 7 defined by T' = Tp is onto. Indeed, McGarvey (1953) shows that,
for any tournament (X,T'), there exists a profile P such that 7' = Tp. A similar result by Debord
(1987) asserts that, for any anti-symmetric matrix M, there exists a profile P such that M = Mp if
and only if all the off-diagonal entries of M have the same parity. Thus the relation from D defined
by M = Mp is not onto the whole set M. Following Barthelemy, Guénoche and Hudry (1989), we
call voting tournaments the O-weighted tournaments (X, M) such that all the off-diagonal entries
of M have the same parity. The characterization of the relation from D to N is more intricate and

will not be addressed here.?

3This is the well known binary stochastic choice problem. See Fishburn (1992) for a description of the state of
the art on the latter.



A social choice correspondence I is C1 if, for all pairs of situations (X, P) and (X, P’), Tp = Tps
implies T'(X, P) = T'(X, P’). Similarly a social choice correspondence I' is C2 if, for all pairs of
situations (X, P) and (X, P'), Mp = Mp: implies I'(X, P) = I'(X, P’). Put differently, a social
choice correspondence I' is C'1 if there exists a solution Sz for 7 such that, for all situations
(X,P), (X, P) =857 (X,Tp). Similarly a social choice correspondence I" is C2 if it is not C1 and
if there exists a solution S for M such that, for all situations (X, P), I'(X, P) = Sm (X, Mp).
As explained in the Introduction, Fishburn (1977), to whom one owes this classification, defines
the C2 class with respect to Np instead of Mp. We justified our use of the above definition in the
introduction.

It has just been seen that the choice sets of C'1 and C2 social choice correspondences are actually
the choice sets of solutions for respectively the tournaments and 0-weighted tournaments induced
by the voting situations. We shall go one step further and work with zero-sum two persons games
that can be defined from these tournaments.* To prepare for this task, we review in the next

subsection some non standard solution concepts for zero-sum two-person games.

2.2 Solutions for two-player zero-sum games

This subsection presents solution concepts for two-player zero-sum games. It is based on Shapley
(1964) and Duggan and Le Breton (1997a)°.

Let G = (X3, X2,u) be a finite two-player zero-sum game where X; and Xy are the sets
of pure strategies of players 1 and 2 respectively and u : X7 X X9 — R is the payoff function
of player 1. The payoff function of player 2 is —u. A game G is symmetric if X; = X5 and
w(z,y) + u(y,z) = 0 for all (z,y) € X7 x Xo. For any subset A; C X;, A(4;) denotes the set of
probability distributions over A;. Given some vector of probability p € A(A;), the support of p is

the set Supp(p) = {x € A; : p(x) > 0}.

1Laffond, Laslier and Le Breton (1994) give an interpretation of these games as Downsian games in Political
Science.

>We restrict ourselves to two-player zero-sum games but these notions can be extended to any finite constant sum
n-player game.
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Let Ay be a subset of strategies for player 2. The following notions of dominance are classical.

e 11 is strictly dominated by y; relative to Ag if u(yy, 22) > u(x1, 29) for all 29 € As.

e 1) is weakly dominated by y; relative to Ay if u(y1,22) > u(x1,22) for all zo € Ay with a

strict inequality for at least one 29 € A .
e 1 is strictly dominated in the mixed sense by p; € A(X7) relative to A, if:

ZyleXl p1(y1)u(yi, z2) > u(xy, z2) for all z3 € As.

The same three dominance relations are defined similarly for player 2. The following terminology

is borrowed from Shapley (1964) and Duggan and Le Breton (1997a).

Definition 1 A Generalized Saddle Point (GSP) for a game G is a product Ay x Ay C X7 X Xo

such that:

Vaxy ¢ Ap: 3y € Ajsuch that xq is strictly dominated by yy relative to Ay

Vre & Ag:Jys € Agsuch that xy is strictly dominated by yo relative to A;

A GSP that does not contain other GSP is a Saddle.

Definition 2 A Weak Generalized Saddle Point (WGSP) for a game G is a product Ay x Ay C

X1 x X9 such that:

Vaey ¢ Ap: 3y € Ajsuch that xq is weakly dominated by yy relative to As

Ve ¢ Az :Jys € Agsuch that xo is weakly dominated by yo relative to A;

A WGSP that does not contain other WGSP is a Weak Saddle.

Definition 3 A Mized Generalized Saddle Point (MGSP) for a game G is a product Ay X Ay C

X1 x X9 such that:

11



Vey ¢ Ap:3dpr € A(A1) such that z1 is strictly dominated in
the mixed sense by py relative to Ao
Vrg ¢ Ag:dps € A(A) such that xo is strictly dominated in

the mized sense by ps relative to Aq

A MGSP that does not contain other MGSP is a Mized Saddle.

Since Xjand Xy are assumed to be finite, saddles, weak saddles, and mixed saddles exist.
Shapley (1964) proves that there exists a unique saddle and Duggan and Le Breton (1997a) prove
that there is a unique mixed saddle. A two-player zero-sum game may have several weak saddles.
However, Duggan and Le Breton (1996) prove that, if G is symmetric and u(x,y) # 0 for all x # y,
then there is a unique weak saddle. Moreover, if G is symmetric the saddle, the weak saddle (if
unique) and the mixed saddle are symmetric, i.e. of the form A x A. In this case, we shall refer to

A as the saddle, weak saddle or mixed saddle.

Definition 4 An equilibrium in mized strategies for a game G is a pair of probability distributions

p1 € A(X7) and p2 € A(X3) that satisfy the following inequalities:

Y pilepa(ul@zn) = > > qi(z)pa()u(rr, x2), Va1 € A(Xy)
T1€X1 T2€X2 r1€X1 T2€X2
Y piepa(wulzr, ) <> > pilan)ga(@a)u(rr, x2), Va2 € A(X2)
r1€X1 22€X2 r1€X1 w2€ X2

The following result, known as the Minmax Theorem, provides a characterization of equilibria

in mixed strategies. See Owen (1982) for a proof.

Lemma 1 Let 9 = min ma. T ro)u(ry, o). A pair , €
i Y erexy Doz x, PL(T1)P2(T2)u(T1, T2) pair (p1,p2)

A(X1) x A(X2) is an equilibrium in mized strategies if and only if :

> pi@u(ry) = 9, Yy € Xy
r€X]

> pu(r,y) < 9, Voe X,
yeXa
12



The scalar 9 in the above lemma is the wvalue of the game. If G is symmetric then ¥ = 0.
Laffond, Laslier and Le Breton (1997) prove that if G is symmetric and u(z,y) is an odd integer
for all © # y, then G has a unique Nash equilibrium in mixed strategies.

2.3 Tournament Games and C1 Choice Correspondences

A tournament (X, T) induces a symmetric two-player zero-sum game (X, X, ur) where:

1 if 2Ty
ur(z,y) = ¢ —1 if yT'z
0 if x=y

We call this game the tournament game induced by (X, T') . The relation between tournaments and
tournament games is clearly one-to-one. Since a tournament game is symmetric and urp(x,y) is an
odd integer for all x # y, we know that it has a unique saddle, a unique weak saddle, a unique
mixed saddle, and a unique equilibrium in mixed strategies. Duggan and Le Breton (1997b) point
out that if T' has no Condorcet winner, then the saddle of the tournament game consists of the
whole set X, which is not very discriminating. We shall therefore focus on the other two saddles.
Next, we introduce three C'1 solution concepts for tournaments and we mention their respective
connections with a solution of the corresponding tournament game. The first of these solutions is

Schwartz’s (1972) top cycle.

Definition 5 The top cycle TC(X,T) of a tournament (X,T) is the set of all outcomes that beat

directly or indirectly any other outcome in X:

acX:Vbe X/{a}, daj, a9, ...,ap € X
TC(X,T) = /Aa}, So0z, . 0

such that a = a1TaxT ... Ta, =b

Duggan and Le Breton (1997b) prove that the mixed saddle of the tournament game induced

by (X, T) is the top cycle of (X, T).

13



Fishburn (1977) and Miller (1980) propose another tournament solution called the uncovered
set. They first define the covering relation C relative to a subset Y C X as: Vx,y € X, zC(T)y

relative to Y C X if 2Ty and if yTw = aTw, Yw € Y.

Definition 6 The uncovered set UC(X,T) of a tournament (X,T) is the set of mazimal elements

of the covering relation C(T') relative to X :

UCX,T)={ac X: fbec X :bC(T)a relative to X}

The covering relation is also the transposition, to tournaments, of the weak dominance relation
of the corresponding tournament game. Thus, the uncovered set of a tournament (X,7T) is also
the set of weakly undominated strategies (relative to X) in the corresponding tournament game
(X, X, ur).

We can refine this solution concept by iteration. Let UC?(X,T) = X and, for all integers t > 1,
let:

UCHX,T)=UC (UC™ X, T),PlUC*" (X, T))

Let k be the smallest integer such that UC** (X, T) = UC*(X,T) and let UC(X,T) = UC* (X, T).
Clearly, UC(X,T) C UC(X,T) for any tournament.

Dutta (1988) proposes another solution concept, the minimal covering set, also based on the
covering relation C(T'). First, he defines a covering set of a tournament (X,7T’) as a subset A C X
satisfying:

UC(X,T|A)=Aand Vb ¢ A: b¢ UC (X, T|AU{b})

We can reformulate these two conditions as stability conditions. The first is an internal stability
condition:

Vx,y € A, notxC(T)y relative to A and not yC(T)x relative to A

14



i.e. no option in A is covered relative to A. The second is an external stability condition:

Vb ¢ A, Jy € A:yC(T)b relative to AU {b}

It is easy to see that UC(X,T) is a covering set. We also define a weak covering set of a
tournament (X,7) as a subset A C X such that Vo ¢ A, Jy € A : yC(T)x on AU {z}. A
weak covering set satisfies external stability but not necessarily internal stability. Clearly, a weak
covering set is a WGSP of the corresponding tournament game.

Next, Dutta defines a minimal covering set of a tournament (X,T’) as a covering set of (X, T)
that does not contain other covering sets of (X, T). Since UC(X,T) is a covering set and since X is
finite, minimal covering sets do exist. Dutta proves that there is in fact a unique minimal covering

set that will be denoted M C(X,T). Thus, we have the following definition.

Definition 7 The minimal covering set MC(X,T) of a tournament (X, T) is the unique covering

set of (X,T) that does not contain other covering sets of (X,T).

Duggan and Le Breton (1996) show that M C(X,T) is the weak saddle of the tournament game
induced by (X,T). The last C'1 solution to be introduced in this subsection is due to Laffond,
Laslier, and Le Breton (1993). It is transposed from the solution of the corresponding tournament

game.

Definition 8 The Bipartisan set of a tournament (X,T) is the support BP(X,T) of the unique
Nash equilibrium in mized strategies of the tournament game (X, X, ur) induced by this tournament.
2.4 Plurality Games and C2 Choice Correspondences

As for tournaments, a 0-weighted tournament (X, M) induces a symmetric two-player zero-sum
game (X, X, ups) where:

up(x,y) = m(z,y) for all z,y € X.
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We call this game the plurality game induced by (X, M). The relation between 0-weighted
tournaments and plurality games is clearly one-to-one. The plurality game has a unique saddle
and, in contrast to the tournament game, the saddle may be a proper subset of X. We shall not
discuss this set in this paper, to keep a symmetric treatment of the two kinds of games.

The result concerning the mixed saddle of the tournament game suggests the following definition,

for which there is no obvious intuition.

Definition 9 The weighted top cycle TCy(X, M) of a 0-weighted tournament (X, M) is the mized

saddle of the plurality game induced by (X, M).

We now transpose the covering relation of the previous subsection to 0-weighted tournaments.

We define the weighted covering relation Cy, (M) relative to a subset Y C X as follows:

Va,y € X, xCy(M)y relative to Y C X if m(x,y) > 0 and if m(x, z) > m(y, 2),Vz €Y

Definition 10 The weighted uncovered set UC,, (X, M) of a 0-weighted tournament (X, M) is the

set of mazximal elements of the weighted covering relation Cy, (M) relative to X :

UCy (X,M)={ac X: Bbc X :bCy,(M)a relative to X}

The weighted covering relation is also the transposition, to 0-weighted tournaments, of the
weak dominance relation of the corresponding plurality game. Thus, the weighted uncovered set of
a 0-weighted tournament (X, M) can also be defined as the set of weakly undominated strategies
(relative to X) in the corresponding plurality game (X, X, upy).

We can also define the iterates of this set, namely UCL (X, M) ,UC? (X, M), etc. as we did for
UC(X,T). The limit, UC,, (X, M), of this series is the set of strategies that remain after iterative

elimination of weakly dominated strategies.
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We use the weighted covering relation C, to introduce the weighted equivalent of the minimal
covering set. A weighted covering set of a 0-weighted tournament (X, M) is a subset A C X
satisfying:

UCy (X, M|A)=AandVx ¢ A: x ¢ UC, (X, M | Au{z})

Note that UC, (X, M) is a weighted covering set. We also define a weak weighted covering set of a
0-weighted tournament (X, M) as a subset A C X such that Vo ¢ A, Jy € A : yCy(M)z relative to
AU{z}. Clearly, a weak weighted covering set of (X, M) is a WGSP of the plurality game induced
by (X, M). The following lemma establishes the relation between weak weighted covering sets and

weak covering sets.

Lemma 2 If A is a weak weighted covering set of a 0-weighted tournament (X, M), then A is also

a weak covering set of the tournament (X, TM).

Proof. Let A be a weak weighted covering set of a 0-weighted tournament and take any = ¢ A.
By definition, 3y € A : m(y, z) > m(x,2),Vz € AU {x}. Thus 2TMz = m(x,2) > 0 = m(y,z) >
0 = yT™ 2. This means that yCO(T™)x relative to AU {z}. W

A minimal weighted covering set of a 0-weighted tournament (X, M) is a weighted covering set
that does not contain other covering sets of (X, M). Since UC,, (X, M) is a weighted covering set
and since X is finite, minimal weighted covering sets do exist. In order to justify the next definition,

we need to show the following result.

Lemma 3 A minimal (with respect to inclusion) weak covering set of a tournament is also a
minimal covering set of the same tournament. Similarly, a minimal weak weighted covering set of

a 0-weighted tournament is also a minimal weighted covering set of the same 0-weighted tournament.

Proof. Let A be a minimal weak covering set of a tournament. By definition, A satisfies the
external stability condition. We claim that it also satisfies the internal stability condition. Suppose
not, i.e. dx,y € A : xCy relative to A. Since C is transitive, y can be removed from A without

sacrificing external stability, contradicting the assumption that A is a minimal weak covering set.
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Thus A is a minimal covering set. The same arguments apply to minimal weighted weak covering
sets. W

Since the plurality game induced by a 0-weighted tournament (X, M) has a unique weak saddle,
it has a unique minimal weak weighted covering set, which must also be the unique minimal weighted

covering set of (X, M) by Lemma 3. Thus, we may state the following definition:

Definition 11 The minimal weighted covering set MCy, (X, M) of a 0-weighted tournament (X, M)

is the unique weighted covering set of (X, M) that does not contain other covering sets of (X, M).

Finally, under the additional restriction that the elements m(z,y) of M are odd integer for
all © # y, the plurality game has a unique equilibrium in mixed strategies. The support of this

equilibrium is another solution for 0-weighted tournaments.

Definition 12 The Weighted Bipartisan Set BP,, (X, M) of a 0-weighted tournament (X, M) is

the support of the unique equilibrium in mized strategies of the corresponding plurality game.b

We list the different solution sets for tournament and plurality games in Table 1. Recall that

X is a saddle for a tournament only if there is no Condorcet winner.

Game Tournament | Plurality
Saddle X

Weak Saddle MC MC,,
Mixed Saddle TC TCy
Weakly Undominated Strategies uc UCy
Support of the Unique Equilibrium in Mixed Strategies BP BP,

Table 1: Solution Concepts for Tournament and Plurality Games

This definition has been proposed first by Laffond, Laslier, and Le Breton (1994).
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2.5 Three Other C2 Choice Correspondences

We now present three C2 social choice correspondences that have been widely discussed in the
literature and that are very often used. Their transposition as solutions for weighted tournament
will be immediate.

The first concept is due to Kemeny (1959). Given a situation (X, P), this correspondence first
chooses the linear orders that are as close as possible to P in a sense to be made precise below and
then takes the top elements of these orders as the choice set. Given a set X and two linear orders

O and O' on X, let
§(0,0") = #{(z,y) € X2 x +#+y,x0y and yO'z} .

In words, 6(0,0’) is the numbers of inversions in the two orders O and O'. Clearly ¢ is a distance
over the set of orders on X. Kemeny then defines a “distance” between a linear order O and a

profile P as :

d(0,P)= > 6(0,P)

P,eP

Definition 13 A Kemeny order for a situation (X, P) is a linear order O* € arg minper, d(O, P).
The Kemeny set Ke(X, P) of a situation (X, P) is the set of the top elements of the Kemeny orders

for the situation.

The following simple and well known lemma gives a useful characterization of the Kemeny

choice correspondence.

Lemma 4 O* is a Kemeny order for a situation (X, P) if and only if

O argmax > np(z,y)

reX yeX
Oy

It follows from this lemma that the Kemeny social choice correspondence is C2. This lemma

inspires the following definition for weighted tournaments.
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Definition 14 A Kemeny order for a q-weighted tournament (X, N) is a linear order O* €

argmaxoer, ». . n(z,y). The Kemeny set I/(\e(X, N) of a g-weighted tournament (X, N) is the
zeX yeX
Oy

set of the top elements of the Kemeny orders for the weighted tournament.

Since argmaxoper, Y., . np(z,y) =argmaxoer, », », mp(x,y), the following relation holds

reX yeX reX yeX
zOy zO0y
for all situations:
Ke(X,P) = Ke(X, Np) = Ke(X, Mp) (1)

Since there is no risk on confusion, we shall write Ke(X, N) instead of I/(\e(X , ) in the remaining
of the paper.

The Kemeny rule has been axiomatized by Young and Levenglick (1978). Young (1988) also
provides a very nice foundation for this procedure. Suppose that there is a true ordering O of the
alternatives in X and that, in any pairwise comparison, each voter chooses the better candidate
with some fixed probability p (the competence parameter), where % < p < 1 and p is the same for
all voters. Assume also that every voter’s judgment on every pair of candidates is independent of
his judgment on every other pair and that judgments are independent from one voter to another.
Under these assumptions, it can be shown that O* is a Kemeny order if and only if it maximizes
the likelihood of being the true order O given the pattern of pairwise votes in the profile P. This
is precisely the statistical framework used by Condorcet to justify his criterion.

Slater (1961) proposes a choice correspondence that may be seen as the C'1 counterpart of the
Kemeny rule. Indeed the Slater rule uses only the information in Tp. For this reason, we may
define the concept directly for tournaments. A Slater order for a tournament (X,7’) is an order
O* € argminper, 6(0,T). The Slater set SI(X,T) for a tournament (X, T") is the set of top elements
of Slater orders for the tournament.

Simpson (1969) and Kramer (1977) propose to take the set of outcomes whose maximal op-
position is the weakest as the solution of a situation. Kramer (1977) shows that this set is an

attraction point of a sequential electoral competition between two parties when platforms belong
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to some Euclidean space. Also, as pointed out by Young (1988), if instead of estimating the “true”
ranking of candidates, we focus on the determination of which candidates are likely to be the best,

then the Kramer-Simpson winners emerge when the competence parameter p is close to 1.

Definition 15 The Simpson-Kramer set or the minmax set SK (X, P) of a situation (X, P) is:

SK (X,P)=argmin max np(y,x)
cex yeX\{z}

This social choice correspondence is also C2. We can thus transpose its definition to weighted
tournaments as we did with the Kemeny rule and a relation similar to (1) holds for the minmax
sets.

The last choice correspondence to be introduced is the Borda rule, a well-known scoring method.
Given a situation (X, P), we first define: VP, € P, Vo € X, R(x,P;) = #{y € X : Py}. The

Borda score of an element z € X is then defined as B (z, P) = ) pp R (7, P;).

Definition 16 A Borda winner for a situation (X, P) is any x* € arg maxzex B (z, P). The Borda

set Bor(X, P) of a situation (X, P) is the set of Borda winners for this situation.
The following lemma, is well known.
Lemma 5 For any situation (X, P), Bor(X, P) = arg max,cx Zyex/{x} np(z,y)

Thus, the Borda correspondence is C2. As for the Kemeny rule and the Kramer-Simpson rule,
the definition of the Borda rule can be transposed to weighted tournaments and a relation similar
to (1) holds for the Borda sets.

Many justifications have been given for the Borda rule. One of them emerges from the statistical
framework of Condorcet. If, instead of searching the “true” ranking of the candidates, we focus on
the determination of which candidates are likely to be the best, then as pointed out by Condorcet
(1785) himself and by Young (1988) the Borda winners turn out to be these best candidates when

the competence parameter p is close to %
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Condorcet (1785) showed that the Borda choice correspondence does not always select the
Condorcet winner when it exists. The Borda rule is not the only choice correspondence studied
here not to be Condorcet consistent. The following example shows that UC,, is not Condorcet

consistent. Consider the 0-weighted tournament defined by the following table:

d{-1 5 -5 0

It is easy to see that {a} is the Condorcet winner and that UC,, (X, M) = {a,b,c,d}. All other

solutions defined in this section are Condorcet consistent.

3 Set-Theoretical Comparison of Solution Concepts

In this section, we examine the relationships between the eleven solutions for 0-weighted tourna-
ments introduced in the previous section. Table 2 summarizes the results of these set-theoretical

comparisons.

e A Cin a cell indicates that, for any 0-weighted tournament (X, M), the solution set of the

corresponding row is contained in the solution set of the corresponding column.

e A N means that, for any O-weighted tournament (X, M), the solution set of the corresponding
row intersects the solution set of the corresponding column but that there exists a voting
tournament (X, M) such that none of the solution sets of the row or the column is a subset

of the other.

e A () means that there exists voting tournament (X, M) such that the intersection of the

solution sets of the row and the column is empty.
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Tc |10, | UC, | MC, | BP, | UC | MC | Ke | SK | BP
TC, || <
UCy, | N N
MCy, || N N C
BP, | € | C C C
ucC C 0 - N 0
MC | €| 0 C C 0 | ¢
Ke C 0 c 0 0 0 0
SK 0 0 N N 0 0 0 0
BP c 0 c c 0 c C 0 0
Bor 0 0 C 0 0 0 0 0 0 0

Table 2: Comparison of Solution Concepts

Remark 1 The chain of inclusions BP C MC C UC C TC is well known from the literature on
tournament solutions. Fishburn (1977) shows that Ke C T'C' and Laffond, Laslier and Le Breton
(1994) prove that we may have BP N BP,, = 0. The possible empty intersection of Bor with TC,
TCy, MCy, BP,, UC, MC, Ke, SK, and BP follows from the fact that these nine solutions are

Condorcet consistent and that a Condorcet winner may fail to be a Borda winner.”

The remaining of this section deals with the other entries in the table. Many of the inclusion
results may be deduced from a glance at Table 2. These deductions are left to the reader. Except
when dealing with BP,,, results such as S C S’ and SN S’ # (), where S and S’ are two solution
sets, hold for any O-weighted tournament. On the other hand, when showing that there exists a
tournament such that S € S’ or SN S’ = (), we do it by exhibiting a voting tournament. Since,

by Debord’s theorem, there always exists a voting situation underlying a voting tournament, these

"See the proof of Theorem 4 in Le Breton and Truchon (1997) for a general example.
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results can be transposed to social choice correspondences. The two examples that follow will be

used to establish some of these results.

Example 1 Consider the following voting tournament (X, M):

el-1 -1 -1 -1 0

One can check that TC(X,T™) = {a,b,c,d}, TCyw(X,M) = {b,c,d}, UCu(X,M) = {b,c,d,e},
Ke(X,M) = Bor(X,M) ={c}, and SK (X, M) = {e}.

Example 2 Consider the following voting tournament (X, M):

Fl1 -1 3 =3 1 0

One can check that TC(X,TM) = TCy(X,M) = {a,b,c,d, f},
UO(X7 TM) = {6767 d?f}? UC’U](X7 M) = {b7 c7d7€7f}7
MC(X,T™) = BP(X,TM) = BP,(X, M) = {b,c,d}, MCy(X,M) = {b,c,d, e},

Ke(X,M) = Bor (X,M) ={d}, and SK(X,M) = {e}.
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3.1 The Weighted Top Cycle (7C,,)

Proposition 1 TC,, (X, M) C TC(X,TM) for any 0-weighted tournament (X, M).

Proof. Consider the plurality game induced by (X, M) restricted to TC(X,TM). Since the value
of this game is zero, we deduce from the minmax theorem that there exists a p € A(TC(X,TM))
such that > .o p(z)m(z,y) > 0 for all y € TC(X,TM). Next take a z ¢ TC(X,TM). From the
definition of TC(X,TM), we have m(z,y) < 0 for ally € TC(X,TM). Combining the two sets of in-
equalities, we deduce that z is strictly dominated in the mixed sense relative to TC(X,T™). If there
are no other strategies that are strictly dominated in the mixed sense relative to TC/(X, T™) then
TC(X,TM) is a MGSP. Otherwise, TC (X, TM) contains the MGSP. In any case, since TC,, (X, TM)

is the unique mixed saddle, we therefore have TC,, (X, M) C TC(X,T™). &
Remark 2 Ezample 1 shows that one can have TCy(X, M) C TC(X,TM).

Proposition 2 There exists a voting tournament (X, M) such that TCy (X, M) N BP(X,TM) =

TCW(X,M)NMC(X, TM) = TCW(X,M)NUC(X, TM) = ()

Proof. Consider the following voting tournament (X, M), which Laffond, Laslier and Le Breton

(1994) use to prove that we may have BP N BP,, = {:
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The reader can check that BP(X,TM) = MC(X,T™™) = UCX, T™) = {a,b,c} and

BP,(X,M) =TCyw(X,M) = {z,y,2}5. &

3.2 The Weighted Uncovered Set (UC,,)

It has been shown that the top cycle is a superset of the weighted top cycle. This order of inclusion

is reversed for the uncovered set.
Proposition 3 UC(X,TM) C UC,(X, M) for any 0-weighted tournament (X, M).
Proof. The proof is straightforward and left to the reader. W

Remark 3 Example 2 shows that there exists a wvoting tournament (X,M) such that
UC(X, TM) c UC,(X,M).

Proposition 4 o) UC,, (X, M)NTC (X,TM) %0 for any 0-weighted tournament (X, M).
b) There exists a voting tournament (X,M) such that UCy, (X,M) ¢ TC(X,T™) and

TC(X, TM) ¢ UC, (X, M).

Proof. a) Ke(X, M) is a subset of both UC,,(X, M) and TC(X,TM) by respectively Proposition
10 below and Remark 1.

b) This follows from Example 2. B
Proposition 5 Bor(X, M) CUC(X, M) for any 0-weighted tournament (X, M).

Proof. If UC,(X, M) = X, there is nothing to prove. Suppose UC,, (X, M) # X and take any
y ¢ UCw(X,M). By transitivity of Cy, there must exist an x € UC, (X, M) such that zCyy
relative to X, i.e. such that m(z,y) > 0 and m(z,z) — m(y,z) > 0,Yz # x,y. This implies

> m(x,z) > >, m(y,z) and thus y is not a Borda winner. W
zeX zeX

8a is strictly covered in the mixed sense relative to {z,y, z} by p(z) = 0, p(y) = 3/10, p(z) = 7/10.

b is strictly covered in the mixed sense relative to {z,y, z} by p(z) = 7/10, p(y) =0, p(z) = 3/10.
¢ is strictly covered in the mixed sense relative to {z,y, z} by p(z) = 3/10, p(y) = 7/10, p(z) = 0.
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Remark 4 Ezamples 1 and 2 both show that there exists a voting tournament (X, M) such that
Bor(X,M) C UCy(X,M).
3.3 The Weighted Minimal Covering Set (MC,)

We now show that the order of inclusion between the weighted and unweighted minimal covering

sets is the same as for the top cycle.
Proposition 6 MC(X,T™) C MCy(X, M) for any 0-weighted tournament (X, M).

Proof. From Lemma 2, we know that MC,, (X, M) is a weak covering set and, from Lemma 3, that
MC(X,TM) is the unique minimal weak covering set of (X, M). Thus MC(X,TM) C MC,(X, M).

|
Remark 5 Ezample 2 exhibits a voting tournament (X, M) such that MC (X, TM) C MCy (X, M).

Remark 6 By definition, MCy, (X,M) C UC,, (X,M) C UCy (X, M). Combining Proposition
6 with MC C UC C TC of Remark 1 yields: MCy (X, M) NUC(X,TM) # 0, MC,, (X, M) N

TC (X, TM) # () for any 0-weighted tournament (X, M).

Remark 7 Ezample 2 shows that MC,, (X, M) ¢ TC (X, TM) and TC (X, T™) ¢ MC,, (X, M).
Ezample ? shows that MCy (X, M) ¢ UC (X, TM) and UC (X, TM) & MC,, (X, M).

3.4 The Weighted Bipartisan Set (BP,)

Most of the results of this subsection are established for voting tournaments with off-diagonal odd

entries.

Proposition 7 If (X, M) is a voting tournament with odd m (x,y) Vx # y, then BP,, (X, M) C

TC, (X, M) and BP, (X, M) C MC,, (X, M).

Proof. From a result of Laffond, Laslier and Le Breton (1997), the game induced by this tour-

nament has a unique Nash equilibrium in mixed strategies and this equilibrium is symmetric.
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BP,, (X, M) is the support of this equilibrium. Using results in Duggan and Le Breton (1997a), we
may assert that, if A; x Ay is a WGSP or a MGSP, then BP,, (X, M) C A; and BP,, (X, M) C A,.
The set T'C,, (X, M) has been defined as a MGSP that contains no other MGSP and, as explained

in subsection 2.4, M Cy, (X, M) is the unique minimal WGSP, hence the results. Bl

Remark 8 Combining Proposition 7 with MCy, (X, M) C UCy, (X, M) of Remark 6, we obviously

have BP,, (X, M) CUCy (X, M) for any 0-weighted tournament (X, M) .

Remark 9 Ezample 2 shows that one can have BP,, (X, M) C TC,, (X, M) and BP,, (X, M) C
MCy (X, M).

Proposition 8 o) TCy(X, M) N MCy(X,M) # 0 for any voting tournament (X, M) with odd
m (z,y) Vo #y.

b) There exists a voting tournament (X,M) such that TCyW(X,M) ¢ MCy,(X,M) and
MCy(X, M) ¢ TCy (X, M).

Proof. a) By Proposition 7, both T'C,(X, M) and M C,,(X, M) contain BP,,(X, M).

b) This follows from Example 2. B

Remark 10 Combining Proposition 8 and MCy, (X, M) C UCy, (X, M) of Remark 6, we obtain
UCw(X, M) NTCW(X,M) # 0 for any voting tournament (X, M) with odd m (x,y) Yz # y.
Ezample 2 shows that there exists a voting tournament (X, M) such that TCy(X, M) € UCy(X, M)

and UC(X, M) € TCy, (X, M).

Remark 11 The example used in the proof of Proposition 2 shows that there exists a voting tour-
nament (X, M) for which BP,(X, M)NUC(X,T™) = BP,(X, M)NMC(X,TM) = BP,(X,M)N
BP(X, TM) = .

3.5 The Kemeny Set (Ke)

Proposition 9 There exists a voting tournament (X, M) such that Ke(X, M) N BP(X,TM) =

Ke(X,M)NMC(X,TM) = Ke(X,M)NUC(X,TM) = .
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Proof. Consider the following voting tournament:

dj1 1 -3 0

It is easy to see that UC(X,T™) = {b,c,d}. Using Lemma 4, one can check that (a,b,c,d) is the

unique Kemeny order so that Ke (X, M) = {a}. Since BP C MC C UC, we have the result. W
Proposition 10 Ke(X, M) CUC,(X, M) for any 0-weighted tournament (X, M).

Proof. We prove a stronger claim: xC\,(M)y = xOy for every Kemeny order O. Suppose on the
contrary that there exists a Kemeny order O = ( ...,y,z1,22,23,...,%k, T, ...) and consider the

order O’ obtained by permuting x and y in O. Then,

k k
DD mluw) =YY mluw) = Y (ml@,z) —mly, @) + Y (m(zi,y) — m(@i, x))
ueO’ ve0’ ueO veO i=1 i=1
uOv uOv
k
—l—m(x, y) - m(y7 .I') = 2 Z (m(x, xl) - m(y7 xl)) + m(m, y) - m(y7 x)

Since zCy,(M)y, the first term on the right-hand-side is non negative and the last one is strictly

positive. Therefore, by Lemma 4, O is not a Kemeny order, a contradiction. W

Remark 12 Ezamples 1 and 2 both show that there exists a voting tournament (X, M) such that
Ke(X,M) CUCy(X,M).

Proposition 11 There exists a voting tournament (X, M) such that Ke(X, M)NMC,(X,M) =

Ke(X, M) N BPy(X, M) = 0.
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Proof. Consider the following voting tournament (X, M), which induces the tournament of Propo-

sition 3.1 in Laffond, Laslier and Le Breton (1995):

h{-1 -1 -1 1 -1 -1 -1 0

It can be checked that Ke(X, M) = {e} and MCy(X,M) = BP,(X,M) ={a,c,d}. B
Proposition 12 There exists a voting tournament (X, M) such that Ke(X, M)NTCy(X, M) = (.

Proof. Consider the following voting tournament:

c|l -9 -9 0o 9 11 11 11 11

el 7 7 -11 99 0 9 9 9
fl-11 -11 .11 7 9 0 9 9

g|-11 -11 ‘11 7 9 9 0 9

hi{-11 -11 -11 7 -9 -9 -9 0

It can be checked that TC,, (X, M) = {a,b,c,d} and Ke(X,M) = {e}. R
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3.6 The Simpson-Kramer Minmax Set (SK)

Proposition 13 There exists a voting tournament (X, M) such that SK(X, M) N BP,(X,M) =
SK(X,M)NTCyw(X,M)=SK(X,M)NBP(X,TM) = SK(X,M)NMC(X,TM) = SK(X, M) N

UC(X, TM) = SK(X,M)NTC(X,TM) = SK(X,M) N Ke(X, M) = ().
Proof. This follows from Example 2 and the fact that BP C MC CUC CTC by Remark 1. W

Remark 13 Ezxamples 1 and 2 also show that a Simpson-Kramer winner may be a Condorcet loser,

i.e. it can lose in pairwise comparisons against every other alternative.

Proposition 14 o) SK(X,M)NMC,(X, M) # 0 for any 0-weighted tournament (X, M).
b) There exists a wvoting tournament (X,M) such that MCy, (M) ¢ SK (M) and
SK(X, M) ¢ MCy (M).

Proof. a) Suppose SK(X,M) N MCy(X,M) = (0 and take any k € SK(X,M). Since k ¢
MCy(X,M),3a € MCyw(X, M) : aCy(X, M)k relative to MCy, (X, M) U{k}, i.e. m(X,a,k) >0
and

m(a,z) > m(k,z),Vz € MCy(M)/{a} (2)
We distinguish two cases:
Case 1: Jz € MC,(X, M) Nargmin,cx/1q,y m(a, 2). By (2), m(a,z) > m(k,2z). Thus a €
SK (X, M), a contradiction.
Case 2: MCy(X, M)Nargmin,¢x/1q3 m(a,z) = . Take any x € argmin, ¢ x/(q} m(a, 2). Since x ¢
MCy(X,M),3b € MCy(X, M) : bCy(M)x relative to M C,, (X, M)U{z}. We must have m(a,z) <
0. Otherwise, a would be a Condorcet winner and one would have SK (X, M) = MCy, (X, M) = {a}.

Since m(b, z) > 0 and m(a, k) > 0, we thus have b # a and x # k. From (2),

m(a,b) > m(k,b) (3)
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Moreover bC,,(M)zx relative to MC,, (X, M) U {z} implies:

m(b,a) > m(x,a) (4)

Combining (3) and (4) yields m(a,z) = —m(z,a) > —m(b,a) = m(a,b) > m(k,b). Thus a €
SK(X, M), a contradiction.

b) Consider the following voting tournament M:

One can easily check that SK(X, M) = {a,b} and that UC,,(X,M) = MCy(X,M) = {a,c,d}. &

Remark 14 Combining Proposition 14 and MC, C UC, of Remark 6, we get SK(X,M) N
UCy(X, M) # 0 for any 0-weighted tournament (X, M). The voting tournament used in the proof
of Proposition 14 shows that UCy, (X, M) ¢ SK (X, M) and SK(X,M) ¢ UC,, (X, M).

4 Conclusion

In this paper we have introduced three new solutions for weighted tournaments, which are the
weighted equivalents of the Top Cycle, the Uncovered set, and the Minimal Covering set. We have
also performed a comparison of eleven solution sets for weighted and unweighted tournaments in
terms of inclusion, intersection or absence of the latter.

A first conclusion that can be drawn from these comparisons is that the weighted uncovered set
UCy, is a superset of most other solution sets with three exceptions. UC,, always intersects T'C,

TCy, and SK without being a subset or a superset of the latter. UC,, includes the Borda winners
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and the Condorcet winner whenever it exists, despite the fact that it is not Condorcet consistent.
Thus UC,, should rally both Condorcet and Borda advocates as being a set within which the choice
of an alternative should be made.

A second conclusion that can be drawn from these comparisons is that the chain of inclusions
BP C MC CUC C TC established for tournaments is lost when we move to weighted tournaments.
We still obtain BP,, € MC,, C UC\y and BP, C TC,. However, while TC,, and UC,, always
intersect, it can happen that none contains the other. The same is true of M C,, and T'Cy,.

A third conclusion concerns the comparison between tournaments and weighted tournaments.
Since weighted tournaments contain more information than tournaments, one could expect solution
sets for weighted tournaments to refine their tournament counterparts. Surprisingly, this is the case
only for T'C. Indeed T'C,, C T'C and, in many examples that we worked out, T'C, is much smaller
than T'C'. But this order of inclusion is reversed for UC and M C while BP and BP,, might not
even intersect.

With a few exceptions, the results of this paper carry over to weighted weak tournaments. T'C,,,
UCy, and MC,, are still well defined. On the other hand, BP, has to be redefined as the set of
outcomes played with a positive probability in some equilibrium. Dutta and Laslier (1997) prove
that BP, € MCy. The inclusion BP,, C TC,, can be proved in the same way. Duggan and Le
Breton (1997b) prove that BP C MC C UC and BP C T'C. However, TC and MC' are not nested
anymore. Finally, Dutta and Laslier show that UC C UC, and MC C MC,,.

A final conclusion deals with the position of Ke and SK within the family of solutions examined
in this paper. Since Ke and SK are defined without any reference to the solution concepts for the
game induced by a weighted tournament, we might expect the absence of clear relations with the
solution sets that have a relation with solution concepts for games. This is confirmed by our results.
Except for Ke CTC, Ke CUC,,, SKNUCy, # 0, and SK N MCy, # (), the intersection of Ke and
SK with any of the other solution sets may be empty. In as much as the TC,,, MCy, BP,, UC,
and MC' concepts have some significance, this casts some doubt on the pertinence of SK and Ke

but, in this respect, the Borda rule does not fare better.
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