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Abstract

In this paper, I consider the problem of designing an optimal
screening contract for a principal facing an agent whose type comes as
a sequence that unfolds through time. Formally, the agent has a pri-
vate ex ante type that stands for the expected value of his private ex
post type. Under full commitment, the principal will first try to sepa-
rate agents with respect to their ex ante type and will subsequently try
to separate them with respect to their realized ex post type. While at
the last period a traditional instrument is used to separate optimally
the agent types, it is shown that such separation is achieved by resort-
ing to a more or less efficient ex ante contracting scheme in the first
period. Under no commitment, pooling always occurs with respect to
ex ante types while in the case of commitment with renegotiation, the
introduction of an ex ante adverse selection problem is shown to have
a non trivial effect on the possibility of interim renegotiation in the
second period.
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1 Introduction

In this paper, I address the normative question of designing optimal screen-
ing complete contracts when agents have sequential types, that is, types that
unfold dynamically as a sequence. The analysis is made under the assump-
tion that, at any point in time, the agent behavior is resumed by a single
dimensional characteristic.

The economic analysis of screening contracts with sequential types is a
useful generalization of the standard model where all private information is
resumed by a single static characteristic. Assuming sequential types allows
for situations where the private information has a more complex nature. The
celebrated trade-off between efficiency in production space and informational
rent extraction, in the single static type set up, is transposed, for sequential
types, in a trade-off between efficiency in contract space and informational
rent extraction.

With sequential types, screening is achieved using the direct mechanism
proposed by Myerson [10], for which he demonstrates that a form of revelation
principle holds. This mechanism requires that players announce privately
their type sequence as it unfolds and that they follow a proper action after
each announcement. In the initial stages of the mechanism, these actions will
take the form of a choice of a binding contract to be followed afterward. In my
set-up, it is only in the final stage of the mechanism that a particular choice
of a physical action (consumption, production, etc.) takes place. Transfers
are usually conditioned on the whole history of type announcements.

I limit myself to two-stage sequences: this is enough to analyze issues like
ex post vs. ex ante pricing or the effect of lack of commitment on screening
contracts. A more serious restriction of this paper is that most of the results
are derived for situations where the players only have two possible types at
each stage of the game.

Sequential types screening contracts have been explored before by Baron
and Besanko [1] in a principal-agent framework. The hypotheses I make in
my model are closely related to that of their Theorem 3. The main difference
between both papers lies in the scope of the analysis. In particular, Baron
and Besanko recognize but bypass the issue of global incentive compatibility
(that is, the fact that no player should be tempted to misreport his type
ex ante) while I handle it in a systematic fashion. All the results presented
in Theorem 3 of their paper are based on the heroic assumption that global
incentive compatibility constraints do not bind at the optimum and they give



an example of a type distribution for which this is the case. In most of the
examples I study here, some of these incentive constraints are binding at the
optimum.

An assumption that explains these differences is that consumption and
production take place in each period in Baron and Besanko’s model while all
such activities are relegated at the end of the second period in my model. As
a result, in their model, there are much stronger incentives for the principal
to induce type revelation in the first period since that has, loosely speaking,
a “first-order” effect on first-period production. This, in turn, relaxes the
“second-order” incidence of global incentive compatibility constraints.

The economic interpretation of sequential screening contracts is very dif-
ferent in both papers. Baron and Besanko emphasize the trade-off, when
sequential types are correlated, between inducing information revelation ex
post or ex ante. I emphasize that at each period, there is a trade-off between
efficiency in the contract space and rent extraction. While their model can
be seen as a useful multi-period generalization of the one-period model, it is
unsatisfactory with respect to the analysis of the combination of incentives
one can expect when information is more complex by nature.

There are but a few papers where some form of sequential screening is
developed. An early contribution is that of Gales and Holmes [5] who model
the optimal pricing and refund policy for airline tickets. In their model, the ex
post incentive compatibility constraints turn out to be non binding. Problems
of sequential screening have also been identified in the pricing of calling plans
in the telecommunication industry [3, 9]. A more recent contribution is that
of Courtny and Hao [4] who also apply their model to the problem of airline
tickets. Like that of Gale and Holmes, their analysis is made in a continuous
type setting but involves consumers with a unitary demand and separation
of consumers is achieved by the way of varying the probability of delivery.

In my model, I consider the relationship between a principal and an agent
that has private costs. The analysis is restricted to discrete type supports but
I do have full menus of pairs of actions and transfers. The main contribution
of this paper is in the resolution strategy. The previous papers transform the
dynamic problem into a static multi-product price discrimination problem.
All incentive constraints are thus handle at once. I choose the dynamic pro-
gramming approach, that is to solve first the ex post problem for some level
of utility expected by the agent and then the ex ante problem with respect to
these utility levels. Incentives constraints are thus handle sequentially. As it
turns out, this strategy makes easier the analysis of commitment issues like
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renegotiation in this context. Sequential screening contracts are very likely
to be constrained by renegotiation issues: as time goes by, the distortions in-
duced in the contracting process to achieve early separation loose their initial
value to both parties and renegotiation is unavoidable. This is particularly
the case with random delivery rules where the surplus between the seller
and the buyer still exists ex post in the event of a non delivery. This paper
present new results with respect to the effect of renegotiation on sequential
screening contracts. In particular, I show that the effect of renegotiation on
the qualitative nature of these contracts critically depends on the moment
when the possibility of renegotiation is considered.

The rest of this paper is divided as follows. The model is presented in the
next section. In section 5, the analysis is completed under the assumption
that the agent has two possible ex post types. Section 6 describes the optimal
contract under various commitment assumptions. The conclusion follows.

2 The Model

I consider a principal-agent relationship in a two-period economy with in-
complete information. Ex ante, in period 1, the agent has a private type
m € M ={m,...,m} where M has M elements. Ex post, in period 2, the
agent is in a random state § € © where © is an ordered set of N elements,
independent of m. At times, I will refer to the agent’s individual state as his
ez post type. The type m of the agent characterizes his distribution proba-
bility f(m) over O, represented as a N x 1 vector f(m) = [fg(m)]e, and his
ex ante reservation utility (best external opportunity) u(m).! The state @
affects the ex post cost function ¢(z, #) of the agent to produce some good in
quantity > 0. c is assumed strictly convex and the lower the 6, the lower
the cost:

—cp(z,0) <0 (1)

where the equality stands only when x = 0. Furthermore, the Lh.s. of (1),
that is the marginal saving of having a better type, is assumed a decreasing
strictly concave function of x:

—C9 <0 and — ¢y <O. (2)

1Tn section 6, I address the issue of defining ex post reservation utility. It is subsumed
here by the certainty equivalent of the expected ex post opportunities.



This is the familiar marginal rate of substitution ordering (single crossing)
condition (see Matthews and Moore [8]).

The principal does not observe neither the ex ante type m, nor the ex
post state @, nor the actual costs borne by the agent. Nevertheless, he has a
strictly positive Bayesian prior p(m) about the probability that the agent is
of ex ante type m. Both all the p(m) and the f(m) are common knowledge
to both players. I assume that the principal has all the bargaining power
over the duration of the relationship. Various commitment capabilities, that
of full commitment, no commitment and commitment with renegotiation are
explored in the analysis.

The agent can communicate freely with the principal at all times. Since
new information about 6 is revealed to the agent at the end of period 1, I
model this economy as a two-stage game with communication [10]. More
specifically, the course of the game is as follows. At the beginning of period
one, the principal offers a contract (to be defined later) to the agent. The
agent then accepts or refuses the contract. If he refuses, then the game
ends and both players get their reservation utility (normalized to zero for the
principal). If he accepts, the game moves to period 2 once the uncertainty
about # has been resolved. There, depending on the commitment assumption,
the contract may be renegotiated. After that, production and exchange take
place according to the provisions of the final contract. The economic problem
is to compute the optimal contract that will be offered to the agent by the
principal under these various commitment assumptions.

Both the agent and the principal are assumed to be risk-neutral with
respect to income. If we normalize the price of the good to 1, the principal’s
payoft is x — t, where ¢ is a transfer from the principal to the agent, while
the agent gets u = t — ¢(x,0). I decompose the transfer ¢ into actual cost
and utility u for the agent so that the principal’s ex post payoff becomes
z —c(z,0) — u.

A set of behavioral strategies for the agent is a binary rule, to accept
or to refuse the initial contract and a choice of messages to be sent to the
principal about his ex ante type and the state 6 that will be realized. These
communication possibilities are resumed by invoking the revelation principle
for multistage games under which the agent truthfully announces his type,
at each stage, and is then asked to follow the prescriptions of a (possibly
randomized) history-dependent scheme. I also assume that the agent accepts
any contract that is individually rational. A strategy for the principal is an
offer of a complete contract at the beginning of period one. Ultimately, a



contract should specify a production level and a monetary transfer.

Under these hypotheses, the agent accepts any contract that leaves him
with at least his reservation utility and truthfully reveals his type m and
the state 0 he is in, if the contract satisfies the usual incentive compatibility
constraints. The principal’s payoff out of a contract evaluated at the initial
contracting stage is thus E(z — ¢(z, 0) — u) while the agent expects E(u|m).

3 The equilibrium

Our solution concept is to look for a Perfect Bayesian Equilibrium (PBE)
where the principal offers the contract that maximizes his payoff, under the
relevant participation and incentive constraints. In the appendix, I show that
we can restrict our attention to non randomized schemes. Because utility is
transferable, a contract in that class is simply a pair of functions that map
the type space M x © into the production and utility spaces. These functions
will be represented by pairs of N x 1 vectors, one for each m, that is,

(z,u) = {(z(m), u(m)) }merm

where z(m) and u(m) are vectors of dimension N. For now on, (z, u) will refer
to a contract, that is, a collection of such pairs of vectors z(m) and u(m).
One such pair of vectors (£,v) will be referred to as an ex post contract;
hence, a contract is a collection or a menu of ex post contracts.

Let I' be the set of contracts that satisfy global incentive compatibility
(to be defined later). Under full commitment, the optimal contract solves?

max_ E(z — ¢(z,0) — u) (3)
(z,u)el
subject to  E(u(m)|m) >u(m) Vm e M.

%I use the following convention: E(z) where z is a vector means E(Z) where Z is a
random variable whose support are the elements of z. In what follows, unconditional
expectations are taken with respect to p and f while conditional expectation (on m) are
taken with respect to f. More precisely:

E(w)= Y p(m) Y fo(m)ug(m) and E(ulm) =Y fo(m)us(m).

meM 0cO 0cO



I will take the less direct approach of dynamic programming first suggested
by Townsend [11]. More specifically, I rewrite (3) as

max E(s(u, ) — u), (4)
subject to u(m) e U VYm € M,
E(u(m) — u( Nm) >0 V(m,m') € M? (5)
E(u(m)|m) > u(m) Vm e M. (6)

Here, the notation 7 emphasizes that the agent’s ex ante type is random
from the principal perspective; U is the set of vectors of payoffs v feasible
under ex post incentive compatibility (see the next section) and

s(v,m) = max E(£ — ¢(¢,0)|m). (7)

zeX (v)

There, X (v) is the set of vectors £ that are feasible under ex post incentive
compatibility once the vector of payoffs v has been promised to the agent
(see the next section). Hence, this problem accepts a recursive formulation
where we first associate a vector ¢ of production plans to every possible v
and we then choose the optimal collection u of such vectors v. In the next
section, I characterize U, X (v) and s(v, m), so that I can pursue the analysis
in the reduced contract space RM*¥N where the optimal menu u lies.

4 The Reduced Contract Space

Let 7;i(2) = ¢(2,6;) — c(2,0;) be the rent function. Because of assumption
(2), each rent function is strictly monotonous and r;; = —rj;. A vector of
payoffs v € R¥ is defined to be feasible ex post if there exists a vector £ € RV
such that the ex post incentive compatibility constraints are satisfied. These
constraints can be written as

v; > vy +15(&) V(i j) € I (8)

Here the indices ¢ and j in [ = {1... N} refer to the elements of the N x 1
vectors v and ¢. From then on, I assume that 6; increases with i. X (v) is
then the set of £ that satisfy (8). A vector of payoffs v is feasible if X (v) is
not empty.

The constraints (8) have the usual interpretation: they state that an agent
of ex post type 6; prefers to truthfully announce his type, in which case he

7



produces &; and ends up with transfer ¢; = v; +c(;, 0;), than to announce 6;
for which transfer ¢; was devised, given that he would then have to support
the cost differential 7;;(&;) = ¢(§;,6;) — c(&;,0;) to produce &;.

Since each of the constraints (8) that define X (v) is monotonous in each
&;, all the constraints are quasi-concave in £; this makes X (v) a convex set.
Since the maximand of program (7) is strictly concave, its associated argmax
is a well defined function of u(m) into the space of production vectors. Since
that relation will hold at the optimum of (4), there is no loss of generality in
considering only contracts for which £ solves (7). Since these contracts are
completely defined by u, I can talk of u as a contract and of u(m) as an ex
post contract intended at type m.

I note U the set of feasible contracts. It is never empty: consider, for
instance, v such that v; = w — ¢(Z, 6;), where T and u are positive numbers
that satisfy u — ¢(z,0y) > 0; it is straightforward then that v satisfies (8)
for 7.

Multiplying (8) by (6; — 6;) and using (1), I get the following obvious
property of feasible contracts

(vi —v;)(0: — 0;) <O V(i,5) € I?,i # j; (9)

with equality only when {; = zo. Hence, all non trivial feasible contracts
must guarantee that utility decreases with the ex post type.
The set of self-selecting constraints (8) can be rearranged by pairs:

rji(&) > vi—v; > (&) Vie I Vjel, (10)

where I; = I\ {1...:}. Using (1) and (9), it is obvious from (10) that &
decreases with 6; (with 7).
Rearranging (10), a necessary condition for v to be feasible is thus

’Ui—UjZ’Uj—’Uk VZEI\;,V‘]EL,VI{IEIJ (11)

I say that a vector of payoffs v is internally consistent if it satisfies these
constraints. I then show the following.

Proposition 1. A wvector of payoffs v is feasible if and only if it decreases
with 6 and it is internally consistent. The set U of feasible vector of payoffs
(contracts) is a convex cone.

Proof. All missing proofs are in the appendix. O
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Let £* be the vector of efficient production values that, for each state ¢,
equates marginal cost c;(x}, 6;) to marginal (unitary) benefit for the principal
and let U* C U bet the set of feasible contracts that allow efficient produc-
tion £*. When money is no object, we can always implement the efficient
allocation &* and induce truth telling from the agent as it is established in
the following proposition.

Proposition 2. U* is closed, convex and of non empty interior.

Let (v, m) be the value to the principal of a feasible vector of payoffs v
offered to some ex ante type m. This value is the expected difference between
the maximal ex post expected surplus s(v,m) he might gain from v and the
expected utility compensation E(v|m); hence,

m(v,m) = s(v,m) — E(v|m). (12)

Working ex ante with function 7 is useful since it gives us the principal’s
ex post valuation of any ex ante promise of a vector of payoffs v. Arbitrage
between informational rent extraction and efficiency can then be made ex
ante in the space of contracts. Put differently, given any level of utility
E(v|m) the principal may wish to confer to some agent m, the principal
will have the choice to offer a set of more or less efficient ex post contracts
{u(m)}merm as the next proposition shows.

Proposition 3. For any ezpected utility level E(v|m), there ezists a v* € U*
such that E(v*|m) = E(v|m). Likewise, for any expected utility level T =
m(v,m), we can find a contract v* € U* that yields T to the principal.

Given the decomposition (12) of the principal’s expected utility from
any contract v, I get the following insight on the form of the principal’s
indifference surfaces over U.

Proposition 4. Let T = w(vg, m) for some feasible contract vy € U and let
I'z = {v € Ulr(v,m) =7} be the set of feasible contracts among which the
principal is (ex post) indifferent. By proposition 3, we know that U* N 'z
s not empty. Let v* be a point in that intersection. Then, for all v € Tz,
E(v|m) < E(v*|m) and the equality stands only if v € U*.

Corrolary 4.1. If vy € argmax, w(v,m), subject to E(v|m) > u(m), then
Vo € U*.
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45° h v(uPm)
U

Figure 1: Efficient contract.
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Proposition 4 simply states that the indifference surface I'xz associated to
some utility level 7 is everywhere below the hyperplane {v| E(v — v*|m) =
0,m(u*,m) = 7} is common with that hyperplane everywhere on I'z N U*.
Corollary 4.1 states that if a contract maximizes the principal’s payoff under
only an ex ante participation constraint of the agent, then it is efficient.
Such an indifference surface (curve) is represented in figure 1, when N = 2.
It bends inward, outside U*, because these contracts are distorted and cannot
achieve the optimal level of social surplus. For any given level of utility 7
for the principal, that distortion must be compensated by a reduction in
the expected payment to the agent, hence in his expected consumption level
E(v|m). That distortion is minimized to zero for efficient contracts in U*.

5 Ex Ante Contracting Under Full Commit-
ment

I now considerably restrict the scope of the analysis by assuming that m
and 6 can take only two values, that is M = {m,m} and © = {6,6,}.
That simplification is made to avoid having to establish a set of sufficient
conditions under which function 7 is quasi-concave on a relevant portion of
its domain.? Let f(m) = Prob(#;|m) such that f(m) > f(m). Hence, m is
the “good” ex ante type since he is most likely to have a “good” ex post type
f1. The proportion of ex ante good type m is simply noted p and the rent
function ry; is simply noted 7.

When N = 2, internal consistency is satisfied if v; > vy (where the index
i = 1 refers to the ex post type 6;); hence U amounts to the cone under
the 45° line in the non-negative orthant of R2. Consider now U*; that set is
given by all v € U that satisfy (8) at £*, that is,

r(&) = v1 —v2 2 7(&)- (13)

Hence, U* is the set delimited by the hyperplanes h and h

3Remember that the analysis of adverse selection models is usually done under some
assumption about the probability distribution of the types (for instance, the monotone
likelihood ratio assumption in the continuous case); such kind of assumption is needed here
for higher dimensional setting. This will be the object of future research. See footnote 4.
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is the ex post rent function. U is thus composed of three disjoint sets: U’,
between the 45° line and h, U* and U”, outside U* on the h’s side (see figure
1). Contracts in U’ are those where the ex post type 6, is asked to produce
inefficiently; those in U” require that the good ex post type 6; produces
inefficiently. This leads us to the following proposition.

Proposition 5. When N = 2, w is quasi-concave over U' U U* and strictly
quasi-concave over U’ for all distributions f.

Corrolary 5.1. Suppose v ¢ U" and let v* € U* such that E(v|m) = v*.
Let v, be any convex combination of v and v*,

Vo =av+ (1 —a)v* «a€(0,1).
Then m(va, m) > m(v, m) with equality if and only if v € U*.A

Corollary 5.1 implies that the valuation of contracts is well behaved in U’:
if we keep the expected transfer constant, then contracts become more and
more valuable to the principal as they get closer to U*. The principal has
strictly concave indifference curves over U’. This makes him locally behave
ex ante like a risk averse player although such behavior was ruled out on the
basis of preferences alone. This is because the principal prefers to pay the
agent any given expected transfer with a non-degenerated lottery (based on
6) than with a sure amount of money; for lotteries, contingent on the agent’s
performance, allow provisions for ex post efficient incentives. Put differently,

4Proposition 5 and corollary 5.1 are used in proposition 7 to show that, given any
expected level of utility F(v|m) that contracts must yield to the agent, the principal will
always prefer contracts that are closer to U*. Quasi-concavity of 7 is obviously sufficient
for that purpose but it is by no mean necessary and it is difficult to establish when N > 2.
All that is needed to get the required result on the principal’s preferences, is to show that
the function s of equation (7) satisfies a weak form of uniform monotonicity. Uniform
monotonicity (see Kranich [7]) of a function s : U — R over some domain U C R states
that, for any (v',v) € U2,

s(') > s(v) = s(V')>as(v)+ (1-a)s(v), Vael0,1]. (14)

Assume that the function s reaches a maximum on U and let U* C U be the points were
that happens. Then relax the criteria of uniform monotonicity to functions such that, for
any v € U, there exists a v* € U* such that (14) is satisfied. Showing that the function s
of equation (7) belongs to that class is then a sufficient step to generalize proposition 7 to
higher dimensional cases.
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the principal is willing to pay a positive premium to get rid of a lottery and
thus behaves like a risk averse agent.

Once a value 7(u(m)|m) has been assigned to any contract offered (and
chosen) by an agent of ex ante type m, computing the best self-selecting ex
ante contract amounts to solve program (4):

max E(7(u(m),m)) (15)

u

subject to u(m) € U Vm € M and

IC: E(u(m)—u(m')|m) >0 V(m,m')e M? (16)
IR: E(u(m)m)>u(m) VYme M. (17)

where the expectation in the maximand is based on the principal’s prior p
about the ex ante type population and w(m) is the reservation utility level
of agent m.

Ex ante informational asymmetries do not necessarily command the use
of inefficient contracts. When the ex ante efficient agent has a high reserva-
tion utility, the efficient allocation may be implemented despite the agent’s
capacity of mimicking the bad type. This is illustrated in figure 1. There,
the ex ante participation constraint of the efficient agent IR(m) is so high
that it crosses that of the inefficient agent, I R(7m), within U*. Hence, the
principal can optimally offer a single ex ante pooling contract u? at that
point, and achieve efficiency. That contract leaves no expected informational
rent to any agent. The link between pooling contracts and U* is exposed in
the following proposition.

Proposition 6. If the optimal contract u is pooling ex ante types, that is,
u(m) = u(m) = vP, then it is efficient: vP € U*.

It should be noted that the pooling contract associated to v? is pooling
types ex ante but not ex post. Since vP € U*, then ex post types are asked
to produce at their own efficient level, hence the contract is separating types
ex post. In fact, what proposition 6 tells us is that if it is optimal to pool ex
ante types, then it must be that we are separating efficiently ex post types.

As long as the reservation utility of the ex ante good type m is not too
high with respect to that of type m, he will be offered an efficient contract
as the following proposition shows.
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Figure 2: Sequential Screening Contracts.

Proposition 7. When M = N = 2 and the individual rationality constraints
of both agents do not cross in U", then agent m is offered an efficient contract.
Furthermore, IR(m) is binding at an optimum.

The following corollary extend the scope of proposition 6 when M = N =
2.

Corrolary 7.1. Assume that the individual rationality constraints of both
agents do not cross in U". Then if the optimal contract (u(m),u(m)) is
efficient, there exists an efficient pooling contract vP € U* that is optimal as
well.

When u(m) is sufficiently low, so that IR(m) is not binding at an opti-
mum, the optimal ex ante contract realizes the marginal trade off between
rent extraction and efficiency so familiar in the one period setting except that
it takes place here in the contract space. Such a contract is represented in
figure 2. If IR(m) is not binding, then /C(m) must be binding; hence, given
that the efficient agent is offered an efficient contract, the program becomes

max pr(u(m), m) + (1 = p)r(u(m), m)

s.t. E(u(m) — u(m)|m) =0
E(u(m)|m) = 0.
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After substituting for the constraints and taking the constant term p(s*(m)—
u(m)) out of the maximand, the principal is maximizing

max —pb(u(m)) + (1 - p)s(u(i), 7). (18)
where b(u(m)) = E(u(m)|m) — u(m) is the ex ante expected rent left to
agent m. Increasing the ex post efficiency s(u(m),m) of the bad ex ante
type contract u(m) increases the rent E(u(m)|m) — u(m) that must be left
to the good type. If the reservation utility of the efficient agent is low, that
process is costly and the inefficient agent is offered a very inefficient contract,
that is a contract, close to the 45° line, that involves little risk, hence, little
ex post type separation.’ Program (18) trades off these rents in the first
period because the the information revealed can then be used to devise an
optimal self-selecting scheme in the second period (at least for type m).
Under such contract, an agent who is inefficient ex ante (type m) but efficient
ex post (type 01) will be offered to produce inefficiently. The traditional trade
off between informational rent extraction and efficiency applies here to the
extent that efficiency is measured with respect to contracts, not production.5

6 Contracting Under No Commitment

The analysis so far was performed under the assumption that the principal
and the agent could commit themselves to a long-term contract. In some
cases, the players cannot credibly commit themselves ex ante to abide by any
contract. Even when such commitment is possible, ex ante contracting might

51 do not provide a full characterization of what is going on when the IR curves cross
in U"”. This case will generally result in the agent m being offered and efficient contract
while the ex ante efficient type m will be offered an inefficient contract that involves, ex
post, overproduction to a point where marginal cost is higher than marginal utility.

6The analysis is made under the implicit assumption that the principal never wishes to
shut down the ex ante inefficient agent. That is ensured if the proportion of ex ante type
™ is not too low, that is,

7 (u(m), m)
m(u(m), m) + b(u(m))’

where u(7T7) is the optimal separating contract for type m. Otherwise, (in the case where
the reservation utilities are the same for both ex ante types) the principal will maximize
his payoff by offering the efficient agent m an efficient contract in U* that sets him on his
participation constraint.

p <
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leave the players ex post in a position where Pareto improving amendments
of the original contract are available. These are the cases of non commitment
or default and of commitment with renegotiation. Both cases will be treated
by imposing additional constraints on the set of feasible ex ante contracts.
Contracts robust to the possibility of default must satisfy ex post individual
rationality (or participation constraints) while those robust to renegotiation
must be renegotiation-proof. 1 examine the impact of these constraints in
turn.”

The non commitment hypothesis does not trivialize ex ante contracting.
On the agent’s side, it means that we must deal with as much participation
constraints as there are ex post states # since the ultimate decision to abide
by the contract will be taken ex post. The expected individual rationality
constraints (17) are replaced by

IR: wu(m)>d(m) Yme M.

where 7(m) is the N x 1 vector of best payoffs an agent of ex ante type m
can gain by leaving the relationship in period 2. Geometrically, the effect
of such constraints is to replace each half-space E(u(m)|m) > u(m) by a
perpendicular convex cone whose vertices are given by @ (m). The literature
on how to deal with these constraints is still in its infancy and is beyond
the scope of this paper® so I will restrict myself to the specific familiar case
where o (m) is a vector composed of a single constant %(m). In that case,
the cone points on the 45° line. When N = 2, imposing ex post participation
constraints amounts to rotate back to the horizontal the ex ante participation
constraint of the agent. This will restrict the set of contracts available to the
principal. Obviously, it must be assumed that the principal bears the same
commitment incapacity or that the agent has serious liquidity constraints for
that restriction to be effective. Otherwise, the principal can simply post a
bond, whose payments are contingent on the agent’s ex post behavior, that
the agent will buy ex ante.

"The possibility of default or renegotiation introduces new nodes in the course of the
game. Care must be taken in handling the players beliefs at these nodes while constructing
a PBE. But PBE are not very restrictive with respect to the admissible ex post beliefs off
equilibrium paths: to pin down an equilibrium, I assume that if the agent initially refuses
the contract or if he proposes an unexpected renegotiation at the interim stage, then the
principal is therefore convinced that the agent is of the most efficient type ex ante and in
the most favorable state 6.

8See Julien [6].
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Figure 3: The Classical Principal-Agent Problem.

In figure 3, for instance, I represent the classical principal-agent problem
when there is a single ex ante type m and N = 2 where ¢ = f(m). When
a full commitment contract is available, then full efficiency can be achieved
with a contract v*, anywhere along the intersection between I R and U* where
the utility of the principal is maximized at 7(v*, m). But if the contract has
to be individually rational ex post or, equivalently, if we assume that the
initial contract is not binding, then, in effect, we are restricting the contract
space to contracts above the horizontal line IR, . In this case, the principal’s
utility is maximized at ©(¢) yielding® 7(6(4),m)) < m(v*,m). This contract
gives an expected informational rent of R to the agent and is not efficient
since it lies outside U*. Contract 0(¢) is easily identified by solving the
first-order condition 71 (0(¢), m) = 0, that is,

(1= 8)(1 = ca(€(0(¢)), 62)) 5> (2(9)) — 6 =0,

where £ is the inverse of the rent function (see the proof of proposition 5).
Its derivative will equal the inverse of the derivative of the rent function so

9 Actually noted 4(f(m)) on the figure.
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that

(1= @) (1 — cx(E(D(8)), 02) — Bca(€(D(9)), 2) — cul(€(D(9)), 61)) = O.

Hence, contract 0(¢) realizes the familiar trade off between marginal expected
production inefficiency (1 —¢)(1 —c,(£(9(¢)),02) and the marginal expected
informational rent to be left to ex post efficient type 61, ¢(c.(£(0(d)),02) —
c.(£(0(9)),01)). As ¢ increases — say, from f(m) to f(m)) — the contract is
pushed away from U* along IR, :

0ty 1

—(¢) = —— <. 19

&;s() A= é)m (19)
with d9(¢) = u. If there are many ex ante types and commitment is a
problem, the principal will not try to separate ex ante types as the following
proposition shows.

Proposition 8. Suppose that M = 2, u(m) = u(m), N = 2 and that both
players can’t credibly commit themselves in the long run. Then the optimal
contract (u(m),u(m)) is a pooling contract (vP,vP) where vP is inefficient
and lies somewhere between O(f(m)) and O(f(m)).

Full commitment contracts achieve higher levels of efficiency by using
ex post penalties as an instrument to induce ex ante type separation, while
keeping expected transfers low. These penalties are no longer available under
no commitment so that separating ex ante types is no longer an interesting
option.

The difference between contracts O(f(m)) and 0(f(m)) lies in the amount
of distortion that is put on the production plan of the ex post type 6, (the
distance from the 45° line). As usual, that distortion is imposed in order to
separate the ex post types while minimizing the expected rent to be left to
the ex post efficient type ;. The distortion is greater for the ex ante type m
because he is more likely to be ex post of type 6. If both ex ante type are
present, at least one ex ante type m will obviously be offered a contract v? on
IR, . Strict ex ante separation could then be achieved by offering a contract
u(m') to the other ex ante type that lies above I R, and his indifference curve
going through v?. All these contracts yield less utility to the principal than
vP 80 that (vP,vP) is to be expected as an ex ante pooling contract. Hence,
ex ante separation does not occur not because it is infeasible but because it
does not maximize the principal’s payoff.
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The contract v? does separate ex post types 6. It is efficient with respect
to weighting the need for ex post efficiency in production and ex post rent
minimization under ex post revelation constraints. The weight used to locate
vP is the unconditional probability of facing an ex post efficient type

fo=pf(m) + (1 —p)f(m)

which lies between f(m) and f(m). In effect, the absence of commitment
yields a similar outcome to the one we would get by postponing the con-
tracting date once the uncertainty about # had resolved. Then, both ex ante
types m and m would be behaviorally equivalent, regardless of their ex post
type, and the principal would offer a single menu based on his unconditional

prior fp.

7 Renegotiation-proof Contracts

In this section, I explore the issue of renegotiation in my framework. I assume
that any offer of renegotiation is to be made by the principal and that it
only needs to provide the agent as much utility as he can expect under the
status quo (the ex ante contract) to be accepted. Since the principal has no
private information, offers of renegotiation won’t carry any signalling feature.
Renegotiation may be considered at different points in time in my model:

interim-m: just after the contract has been signed ex ante but prior to the
agent announcing his type m;

ex post-m: just after the agent has announced his type m but before the
ex post type 6 is realized;

interim-6: just after 6 is realized but before the agent has announced his ex
post type;

ex post-0: just after the agent has announced his ex post type but prior to
production taking place.

The first and the last forms of renegotiation are of lesser interest here since
they don’t affect the nature of the final contract once all the proper incentives,
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induced by the common knowledge possibility of renegotiation, have been
incorporated in the analysis'.

For a contract to be robust to the possibility of renegotiation, it should
always prescribe allocations that are on the Pareto frontier at any node where
renegotiation is assumed possible. Consider first the possibility of ex post-m
renegotiation. The contract pairs I derive in section 5, when the IR curves
cross in U’, are not renegotiation-proof when they prescribe an inefficient
contract for type m, that is u(m) ¢ U*. A contract that is robust to ex
post-m renegotiation will thus have to be in U*. By corollary 7.1, for any
such contract, there exists a pooling contract v? in U* that does just as well.
Hence, any optimal ex post-m renegotiation-proof contract (u(m), u(m)) will
solve

B(r(u(i), i) = max  E(r(v?, i),
B(v¥|m) >(m),
VmeM
It is straightforward to see that any such contract, conditionally on belonging
to U* and on satisfying the participation constraints, will in fact minimize

the expected transfers to the agent,

max  E(x(vP,m)) = B¢ —c(¢%,0)) — min  E(vP).

vPeU* vPeU*
E(vP|m)>u(m), E(vP|m)>u(m),
VYmeM VYmeM

The effect of renegotiation constraints is to make separation more costly
or, put differently, rent extraction more difficult to the principal. Hence,
unless his participation constraint is so high that pooling in U* would have
had occurred anyway (when the IR constraints of both agents crosses in
U*), the ex ante efficient agent will gather more surplus when ex post-m
renegotiation is possible.

If a contract is robust to ex post-m renegotiation, it is naturally robust to
interim-6 renegotiation. To the extent that the possibility of renegotiation is
costly ex ante to the principal (it constrains the set of feasible contracts), he
might wish to devote resources to improve his commitment capabilities and
relax the ex post-m renegotiation-proof constraints. Besides, it is plausible
that such commitment decreases over time. This raises the possibility that
the principal can commit himself not to renegotiate the contract in the short

10Tn particular, the possibility of ex post-6 renegotiation is eliminated if we assume that
the announcement of the ex post type is implicitly made by the very irreversible act of
producing. See Beaudry and Poitevin [2].
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Figure 4: Interim-6 Renegotiation.

term (ex post-m type of renegotiation) but not in the long term (interim-6
type of renegotiation).

I define a interim-6 renegotiation-proof contract as a pair of contracts
(u(m), u(m)) such that w(u(m), m) > w(u(m)+t), for all non-negative N x 1
vectors t. The idea is that it should not be possible to improve the principal
utility, once the types m have been separated, simply by giving more utility
to the agent with respect to what he can expect under the original contract he
chose. Equivalently, one can states that u(m) is interim-6 renegotiation-proof
for ex ante type m if

0 € argmax w(u(m) +t, m).
>0

Hence, assuming differentiability of 7 at u(m), m;(u(m)) < 0, for all i € I,
is a necessary condition for u(m) to be renegotiation-proof. When N = 2,
this implies that the indifference curve of the principal at u(m) should not be
upward sloping. Obviously, all contracts U* are interim-6 renegotiation-proof
so that only contracts designed for type m may be subject to that kind of
renegotiation. Hence, to find the best interim-6 renegotiation-proof contract,
I add the constraint M

o, (w(m),m) 2 0
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to program (15). Since!! my = —(1+), for the optimal separating contract,

the interim-6 renegotiation-proof constraint will bind. That is, we will need
to set (M, m) = 0 like we did for the no commitment case.

The effect of ex-post-6 renegotiation is illustrated in figure 4. There, I
assume that the IR curve of the efficient agent is sufficiently low so that
it is not binding. The optimal self-selecting pair of contracts is to offer an
inefficient contract u(m) to type m so that the marginal production distor-
tion cost of that contract equals the marginal informational rent that has
to be left to the efficient type, for any contract u* in the intersection of the
indifference curve that goes through u(m) and U*. But u(m) is not interim-6
renegotiation-proof because the indifference curve of level 7(u(m),m) that
goes through it is upward-sloping at u(m). Once the agent has committed
himself to u(m), the principal would then try to renegotiate at u°(m). That
renegotiation would be anticipated by m and he will pretend to be of type
m because E(u®(m) — u(m)|m) > 0. Contract (u°(m),u’(m)), on the other
hand, is renegotiation-proof and it specifies, for the ex ante inefficient type
m, a similar contract to the non commitment case.

The interim-6# renegotiation constraint is binding for agent m because the
ex ante separation of types m and m distorts the interim efficiency of the
ex post contract offered to him. This does not occur with standard models
of renegotiation since the global incentive compatibility constraints, with
respect to the revelation of the ex ante type, are not present.

The possibility of ex post-m renegotiation implies that contracts should
lie in U* while that of interim-6 renegotiation only implies that contracts
should lie on decreasing portions of the principal’s indifference curves. Since
all contracts in U* satisfy that last property anyway, the effect of ex post-m
renegotiation on the principal expected profit is more stringent than that of
interim-6 renegotiation.

The possibility of interim-6 renegotiation is less harmful to the principal
than that of ex post-m renegotiation because it does not preclude separa-
tion with respect either to the ex ante type or the ex post type. Ex post-m
renegotiation precludes such separation for ex ante types. Unlike the case
of ex post-m renegotiation, interim-6 renegotiation still allows the principal
to devise distortions in production plans to better extract rent from the ex
post efficient agent. In both types of renegotiation, the ex ante type m is
announced to the principal, on the equilibrium path, prior the opportunity

11Gee the proof of proposition 5 in the appendix.
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to renegotiate arises. That announce has a dramatic effect when the oppor-
tunity to choose an ex ante efficient contract in U* is still available but it
only leads to a revision of the ex post principal’s prior with respect to the ex
post type in the case of interim-# renegotiation.'?

8 Conclusion

In this paper, I have sketched a theory of sequential screening contracts in a
principal-agent framework where the agent learns his two-dimensional type
sequentially. Contrary to Baron and Besanko [1], I have handled the global
incentive compatibility constraints at the initial contracting stage. These
constraints turn out to be binding at the optimum. I have shown how the
trade-off between efficiency and rent extraction is transposed in the contract
space with sequential types. The form of the optimal contract depends cru-
cially on the nature of the commitment assumption. Under full commitment,
the optimal contract will often imply ex ante as well as ex post separation
of types. Ex ante pooling will occur only if ex post efficiency in production
can be ensured for all ex ante types. By contrast, under no commitment, the
optimal contract will pool types ex ante and will be inefficient ex post. Two
forms of commitment with renegotiation were analyzed. If the contract can
be renegotiated once the ex ante type has been announced but prior to the
agent learning his ex post type, then the renegotiation-proof contract will be
an efficient contract that pools type ex ante. If the contract can only be rene-
gotiated once the agent has learned his ex post type, ex ante type separation
might still be optimal but the renegotiation constraints will be binding and
that will reduce the set of feasible contracts. The ex ante inefficient agent
will be offered a contract similar to the one of the non commitment case
while the efficient agent will be offered an efficient contract.
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A Appendix

A.1 Non optimality of randomized schemes

In section 3, I state that we can restrict our attention to non randomized con-
tract schemes. According to the revelation principle for multistage games,
the general contractual process should be subject to the outcome of two lot-
teries, one for each stage, whose distributions depend on the history of the
announcements made by the agent and the outcomes of the lotteries. Let L,
and L, be the supports of these lotteries and a; and as their outcome. A
contract is then a set of four functions; two that map history and announce-
ments into the spaces AL; and AL, of distributions onto L; and Ls, while
the last two map into R. Formally, § is represented by

o1 M — ALy

0o : M X Ly x © 5 ALy
& M x Ly xOxLy— R
ts : M X Ly x©O XLy —> R

where d;(m) and d2(m, aq,0) are the lotteries.

Yet, I claim that the optimal contract won’t be randomized. To see this,
suppose ¢ is an optimal randomized self-selecting contract and let F' be the
joint distribution of m and 6 (dF (8, m) = pmfm(0)). 6 must then satisfy the
following equations:

o€ argmax/ / /(55(777‘70‘1)970‘2) - 6(65(m7a1797a2)70)
ser  JoxmJrJL
—us(m, ay, 8, as))dda(ag; m, ay, 0)dd; (ag;m)dF (0, m) (20)

subject to

IC: m € argmaxU(d,m,m') Vm e M, (21)
m'eM

where
U(é,m,m') :///u&(mlaalaHaaQ)d62(a2;mlaalve)dél(al;ml)fm(e)a
©JLJL

and

IR: maj)\c/tU(é,m,m')Zﬂ(m) Vm € M, (22)
m'e
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I1Cy: 0e€ argmax/(u(;(m,al,e',aQ) + c(&5(m, 01,0, az),0")
oco JL

- C(SJ(ma aq, 0,7 0[2), 0))d62(a2; m, oy, 01) > 0
VmeM, VareL V9eO. (23)

Equation (20) states that § is optimal, (21) and (23) are the ex ante
and ex post incentive compatibility constraints and (22) is the participation
constraint of the agent. Consider the non randomized contract §

&(m,0) ://fé(m,a1,9,02)d52(042;m, ay, 0)dér(ag;m)
LJL

uz(m, 0) ://Ua(m,ab9,042)d52(0¢2;m,041,9)d51(041;m)
LJL

that specifies the expected instruments of § conditional on the agent’s type.
Contract ¢ is strictly preferred, by the principal, to § because of the strictly
convex costs. By simple substitution, it is then straightforward to see that
(21) and (22) are unaffected by switching to 6. Finally, if § maximizes (23) for
all possible values of a;, it does so for any convex combination over L so that,
once I integrate the maximand times dé;(ay;m) over L, € still maximizes it.
Simple substitution then shows that § satisfies the same requirements as
§ for (23). Since any randomized contract is strictly dominated by a non
randomized scheme, there is no loss of generality to restrict our attention to
the latter.

Proof of proposition 1.

I have already shown the necessary part. To see that these two conditions are
sufficient, I only need to find a £ that complies with incentive compatibility.
Consider ¢ such that its elements &;’s solve

rni(&) =v; —uy Vie L

Such a £ unambiguously exists and is unique because of assumption (1). The
incentive compatibility constraints (10) become

v —UN > v —v; >v; —uy VieT\i,VjEIL.
J J

The Lh.s. is trivially true because utility decreases with ¢ while the r.h.s. is
true because u satisfies internal consistency.
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Hence U is completely defined by (9) and by the internal consistency
constraints (11). These are linear weak inequalities so that U is closed and
convex. Clearly, if v and v’ satisfy these conditions, so is their sum v + v/
and av, the product of v by a non negative scalar a. This makes U a convex
cone. U

Proof of proposition 2.
Simply build the set of contracts associated to £* such that

v =b+u+z; —c(&,0:), (24)

where @ is an arbitrary constant and the b;’s belong to an open ball B(e) of
radius € around © € U, that is > ;b? < 2. Take € = 0 so that u* = ¥ and
suppose now that © ¢ U*. Then, at least for some 7, (8) must be violated for
some j. This would yields

é-z* - C(ff, 91) < ’S; - C(§;, ei)v (25)

which is impossible since z* maximizes social surplus so that & should creates
at least as much surplus than &7 for type 6;. Hence, 0 belongs to U*. Suppose
now that there is no ball B(e) around © so that all points in B(e) belong to
U*. Then one of the incentive compatibility constraints has to be binding at
0. But this implies that (25) must hold with equality for some (7, ) which
is also impossible. Hence, such a ball B(e) exists and that makes U* of
non-empty interior. Closeness and convexity comes from the fact that U* is
described by the weak inequalities (8) evaluated at x*.
Finally, if v* € U*, then it accepts decomposition (24) where

b; +u = v + c(&,0;) — .

Hence, equation (24) does completely characterizes all contracts in U*.
Note that if a vector of payoffs v is in U*, then shifting v by a constant

does not affect that property; that is, if v € U*, then v + ue € U* where u

is an arbitrary constant and e is a vector of ones. U

Proof of proposition 3.
Taking the conditional expectation on (24) yields

E(v*|m) = E(blm) +u + s"(m)
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where s*(m) is defined like in equation (28) of proposition 6. It suffices then
to choose b and u so that

E(blm) + u = E(u(m)|m) — s*(m).

Likewise, any utility level of the principal 7w (u(m), m) can be reached through
the use of an efficient contract by setting

E(bjm) +u = —7m(u(m), m).

Proof of proposition 4.
Along the indifference curve I'z, we have

m(u(m), m) = m(v*,m)

s(u(m), m) — E(u(m)|m) = s(v*,m) — E(v*|m).

Il
N

Hence,
E(v*|m) — E(u(m)|m) = s(v*,m) — s(u(m),m) > 0.

Suppose the equality stands and u(m) ¢ U*; then, by proposition 3, there is
au*™* € U* such that E(u(m)|m) = E(v**|m). Since v** is efficient, it must be
strictly preferred by the principal to u(m), hence w(v**,m) > w(u(m),m) =
m(v*,m) but that implies s(u**,m) > s(v*,m) which is impossible.

To prove the corollary, let T = 7(vg, m) and suppose that vy ¢ U*. Take
v* € I'z. By proposition 3, we must have E(vg/m) < E(v*|m) but that is
impossible since 7(vg, m) = w(v*, m) and s(v*, m) is maximal. O

Proof of proposition 5. R
For any given v € U, let & (v) and &(v) be the solution to program (7). These
values must satisfies the self-selecting constraints (10) that define X (v), that
is,

r(&(v)) 2 v1 — vz 2 r(&(v)). (26)
By proposition 4, we know that the principal has linear indifference curves

over U* so that 7 is trivially quasi-concave on that portion of its domain. I
want to prove that

m(v) = f(&(v) = c(61(v),01) — v1) + (1 = f)(&a(u) — c(&2(u), 02) — v2),

is strictly quasi-concave over U’.
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By assumption (2), the rent function r is monotonously strictly increasing.
Hence, it has a well defined inverse £ which I apply on constraints (26) to
get: R

(1 — v2) = &(v).
(v1 — v2), the solution of (7) can be of three

&i(v) >
Depending on the value of é = é
types:
€& ifé>¢g wel”)
GE0).60) =4 .8 HG26>8 wer) @D
(&1,€) if&g>¢ (vel)
where the (&5, £3) stands for the unconstrained solution that maximizes social
surplus.
Since £ is a function of the difference v; — vy alone, I can write

% _ 0 _ g
(9’[}1_ 8U2_§>0‘

One can check that the second derivative,

" = — () (Caa(€,02) — cau(€,04)) < 0,

is negative using assumption (2) so that f is a strictly concave function. Strict
quasi-concavity of m can be checked by verifying if its bordered determinant
is positive,
0 1 o
|B| =|m w1 2| > 0.
g To1 722

When u € U’, we have

m=01-F)1-c(é0)E — f

= -1
™1 = _(1 - f)cz:c(ga 02)(5,)2 - (7T1 + f)én
= —T12 = —T91 = T22.

and |B| = —my;. That value is positive since 7+ f = (1— f)(1—co (€, 62))€' >
0 for £ < &, when u e U'.

The proof of corollary 5.1 is trivial if v € U*. Suppose that v € U’ and,
without loss of generality, let v* € h so that va(m) € U’. Since v and v* imply
the same expected payment, it must be that 7(v,m) < 7(v*, m) and since 7
is strictly quasi-concave on U’, this implies that 7(vy, m) > w(v, m). O
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Proof of proposition 6. Suppose that the optimal contract is a pooling con-
tract and that v» ¢ U*. Consider offering with vP an efficient contract
intended at type m. Built that contract by adding payment ¢(m) to v? such
that

tim) = E(P|m) — o + & — (€], 6:) — 5" (m),

where
s*(m) = E(* — ¢(£",0)m). (28)
Such additional transfers worth zero for agent m while they have an expected

value of
s*(m) — s*(m) + E(vf|m) — E(v?|m) (29)

for agent m. If (29) was non-positive, then the contract v” + t(m) could be
offered to agent m without affecting any incentive compatibility constraint.
The contract (vP + t(m), v?) would obviously be preferred by the principal
and that would lead to a contradiction since (v?,vP) was assumed optimal.
Hence, it must be that (29) is strictly as positive. Yet, we could construct a
similar contract intended at type m so that (29) should be strictly negative.
Since both conditions cannot be met by v? at the same time, it must be that
P e U™ O

Proof of proposition 7. The proof is trivial when the IR lines cross in U*.
Besides, if the optimal contract was pooling ex ante type, then agent m
would be offered an efficient contract by proposition 6. Hence, I want to
show that the proposition holds even if the optimal contract separates ex
ante types. Consider first that, for each agent, either his incentive compati-
bility or individual rationality constraint is binding, or both, at the optimum.
Otherwise, reducing his expected payment by the minimum strictly positive
slack value of these two constraints would have no effect on the agent per-
formance, would not create any bad incentive and, yet, would improve the
principal’s payoff so that the original contract would not be optimal after
all. Now, unless the contract is pooling ex ante types, the incentive compat-
ibility constraints for types m and m cannot be binding at the same time
since the 2 x 1 vector u(m) — u(m) can only be orthogonal to a single vec-
tor [f(m),1 — f(m)]. Furthermore, the incentive compatibility constraint of
agent m cannot be binding at an optimum. To see this, suppose that IC(m)
is binding so that IC(m) is free. This implies that «(7m) and u(m) belong to
the same hyperplane that goes through some point v* € U* that yields an
identical payoff to agent . Since IC(m) is free, u(m) is lying between u(m)
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and v*. Corollary 5.1 then tells us that 7(u(m), m) > 7(u(m), m). Hence,
the principal would be better off if 72 would choose contract u(m). Since the
original contract is dominated by a pooling contract that offers u(m), it was
not optimal in the first place. Since IC(m) is free, it must be that I R(m)
is binding. Now, suppose that u(m) is not efficient. Since IC(m) is free
at the optimum, proposition 3 allows us to assign to m a contract v* € U*
that brings him the same expected transfer as u(m) and strictly improves
the principal’s payoff. Hence, u(m) must be efficient. O

Proof of corollary 7.1.

By proposition 7, we know that I R(m) is binding at the optimum and that
IC(m) and IR(m) cannot be free at the same time. Obviously, u(m) must
lie on or below the hyperplane delimited by I R(7) otherwise, choosing u(m)
on TR(m) would be a dominated strategy for m. Suppose that IC(m) is
binding, then the pooling contract such that v = u(m) is optimal as well. If
it is ITR(m) that binds, consider the pooling contract v where both I R(m)
and IR(m) bind. That contract must be in U* otherwise IC(m) could not
be satisfied in the first place. O

Proof of proposition 8.

Since both agents m and m have the same ex post reservation utility, both
contracts u(m) and u(7) must lie on or above the same horizontal hyperplane
IR,. Obviously, at least one of these two contracts, say u(m), must lie on
IR, otherwise the transfers of both contracts could be reduced by a same
amount, at the principal benefit.

Suppose now that, for some m € M, u(m) lies in U” at the optimum,;
then the contract designed for m’ # m would be sought by maximizing
w(u(m'), m') subject to the incentive compatibility constraints and TR,:
u(m') would be set in U* but the resulting separating contract would be
dominated by a pooling contract v* in U* (see figure 5). Now, any incentive
compatible separating contract where u(m) is not in U” is weakly dominated
by a pooling contract that offers u(m) so that we can restrict our search for
an optimum to pooling contracts that lies on /R, . In that class, the optimal
pooling contract (v?, vP) solves,

w(vP,m) = m%XE(W(Up,m)) st. (VP,0P) € IR,.

where the distribution associated to m is f, = pf(m) + (1 — p) f(m). Since
v} is monotonic with respect to f from (19), it must be that v? lies between
contracts 0(f(m)) and O(f(m)) on IR, . O
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Figure 5: Proof of proposition 8.
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