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I consider the problem of the design of an optimal self-selecting contract scheme for a principal who is

buying a good from an agent which has the opportunity of making a cost-reducing unobservable investment

prior to the contracting stage. Because of a hold-up problem, the agent will randomizes on his investment

level. This forces the principal to spend informational “rents” to achieve screening. In equilibrium, these

“rents” match the investment costs and the resulting contract yields a price schedule such that the marginal

revenue of the agent equals his long run marginal cost curve. Since the agent’s “type” is an endogenously

determined characteristic, I argue that informational “rents” should be interpreted as quasi-rents that stand

as a payment factor for investment.
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1. Introduction

Consider a firm that must sink an investment in order to produce a good. The profitability of such a venture

depends on whether the firm expects or not to recover its sunk costs from future sales. Once the investment

is sunk, the firm is exposed to the risk that its clients reduce their demand or the price they are willing to pay.

Even if the good is very valuable, it may still be advantageous for the clients to never pay the firm more than

its variable costs. When the good and the investment are specific to a client, and have a lesser intrinsic value

outside the relationship, the firm has little option but to accept such a proposal. There is then less incentive

for the firm to invest in the first place and the social benefits of investment may be lost.

This is an illustration of Williamson’s (1983) classic “hold-up” problem. There are two sets of cir-

cumstances when the hold up problem can generally be solved; vertical integration and commitment with

binding contracts. If the client and the firm vertically integrate, the issue of who shall absorb the investment

costs becomes economically irrelevant. But vertical integration is often an unrealistic option. It creates

problems of its own by substituting internal management of resources, which can be subject to costly moral

hazard effects, for market transactions. Hence, the general analysis of investment usually implicitly assumes

that binding contracts are possible. With such contracts, the firm’s clients or possibly some institutions like

banks, can commit themselves to buy today the firm’s future production at a price that internalizes invest-

ment costs.

Efficient investment can then be achieved under various assumptions about the information structure

(Rogerson, 1992). Yet, in many cases, such contracts are unmanageable. For instance, with respect to

international business transactions, it may prove difficult or even impossible for a local firm to efficiently sue

a foreign firm for a breach of contract (Thomas and Worrall, 1994; Choi and Esfahani, 1998). Firms doing

business with the government may reasonably doubt that the return they expect from some specific long-

term project will effectively be paid fully in the future, under all circumstances, because of the government’s

sensitivity to public opinion and its ability to change the law (Vickers, 1993). In other cases, the client may

not even be identified at the investment stage (consider the development of a new product). Even when

binding contracts are effective, enforcing them usually involves the judiciary system and that can have a

very costly and unpredictable outcome. For instance, if the “specific” good involved is a common good of a

“specific” quality that can be observed by the firm and its client but not by the courts. The firm would still

be able to obtain a reduced price from the market but would lose the specific value added in quality.
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One way of looking at the hold-up problem is to point out the wedge between the sharing rules that are

used to distribute investment costs ex ante and investment returns ex post. Another approach to mitigate

the problem is then to identify specific bargaining subgames whose outcomes reduce that wedge. Tirole

(1986) pionneered this route by showing that investment incentives could be increased under asymmetric

information because the ex post sharing rule that results from a bargaining subgame is generally sensible to

the information structure.

In this paper, I highlight the fact that the privacy of the investment decision provides the party who

makes that investment with a sufficient strategic advantage to protect the return on investment from a hold-

up. There is a principal who wants her agent to invest in a costly technology in order to reduce the variable

cost of producing some good. The principal is limited to short-term contracts and cannot sign a binding

contract prior to the investment stage. Under perfect information, the agent would invest too little because

of the hold up problem: he would justifiably fear that the principal would refuse to pay for the investment

cost at the contracting stage. But if the agent invests privately and if that piece of information is valuable to

the principal, then the principal will be willing to yield informational rents to the agent, through a screening

mechanism. These rents, in turn, will indirectly finance investment. My model can be interpreted as a

classical principal-agent model (Guesnerie and Laffont 1984) to which I add an initial investment stage

where the agent has the opportunity of choosing his “type”, at a price (the cost of investment). In equilibrium,

the agent randomizes on his investment support thus inducing a common-knowledge “type” distribution

that is the basis of the subsequent play.1 Being “tough” with the agent is an option for the principal only

when he has good knowledge of the firm’s cost structure. Without this knowledge, she runs the risk of

making an unacceptable offer to the agent that can jeopardize the ex post realization of the gains from trade.

An unobserved mixed strategy allows the agent to “hide” his investment behind a veil of endogenously

created noise. An uninformed principal then has a weaker bargaining position which might reduce the ex

ante incidence of the hold-up problem. In Tirole’s model, the principal’s reply to this randomization is to

increase the probability of disagreement ex post. My approach extends Tirole’s analysis to the case where

the principal can use the production level as an instrument to screen the agent at the contracting stage. In

equilibrium, the parties always reach an agreement. When the possibility of renegotiating the contract is

added, screening becomes impossible and the probability of disagreement increases.
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The equilibrium contract I obtain has a deceptively simple structure: it amounts to paying the agent a

nonlinear price such that his marginal revenue curve is equal to his long run marginal cost curve (LRMC).

Contrary to most models of asymmetric information cast in a Bayesian framework, the distribution of

“types” is endogenous in my model (the outcome of an equilibrium mixed strategy) so that observable

variables like production and contracts (“prices”) are functions only of taste and technological parameters

like in classical economics.

Laffont and Tirole (1993) have proposed an explanation of the hold-up problem under asymmetric in-

formation that does not involve a mixed strategy for investment. In their model, investment affects the

distribution of variable costs but not their support. Since variable costs depend on an exogenous random

variable, the principal will try to screen the agent ex post. But they make the implicit assumption that

it is not possible to contract after investment has taken place but prior costs are realized. One can show

(González, 1997) in that context that it is always optimal for the principal to screen agents with respect to

their ex post variable costs but to pool them with respect to their investment level. Since the agent’s pay-

off function is strictly concave in investment and all investment levels are treated equally (pooled) by the

principal, the agent will then play a pure strategy by choosing the unique maximizer on his investment set.

In a recent paper, Gul (1997) analyzes a model of bargaining between a seller and a buyer in an environ-

ment very similar to the one presented here. In Gul’s paper, the buyer has the opportunity ex ante to make

an investment that increases the gains from trade ex post. By allowing the investment to be made privately

by the buyer and by considering a sequential bargaining subgame of offers and counter-offers, Gul comes

to a surprising conclusion. Not only does the unobservability create a need for the seller to screen the buyer

using time as an instrument, but the outcome of the whole game will come arbitrarily close to efficiency as

the delay between offers goes to zero even if the seller gathers all the surplus. In my model, the principal will

also screen the agent because of the equilibrium induced randomized strategy and will gather all the surplus

realized in the relationship, but I do fall short of efficiency. Not only does the agent invest suboptimally but

he generally chooses an inefficient level of production given his investment.

In Bayesian models, where the distribution of types is exogenous, unobservability of the agent char-

acteristics usually diminishes social welfare as parties engage in wasteful rent-seeking behavior. When the

distribution is endogenous, unobservability actually prevents the distribution of types to collapse on the least

efficient type – an even worse outcome – so that unobservablity actually helps to maintain social welfare.
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The rest of the paper is divided as follows. The model is presented in the next section and solved in

section 3. Three analytical examples are proposed in section 4 to illustrate the links between the agent’s cost

function and his equilibrium mixed strategy. In section 5, I adress the welfare implications of the unobserv-

ability of investment. In section 6, I add the possibility of renegotiation. The last section concludes with a

discussion about the empirical predictive power of principal-agent models based on incomplete information

gamesvsthoses, like the one in this paper, that rely on games of complete but imperfect information.

2. The model

Consider a two-period relationship between two risk-neutral players. There is a firm (hereafter, the agent)

which produces a good that can be sold at a unit price ofp 2 (0; 1) on the market and a potential client (the

principal) with linear preferences. I assume that the firm can produce two varieties of the good, one being

tailored to the specific needs of the principal.

Let qM and qP be the quantities produced by the firm for the market and the principal whereqP is

composed only of the variety preferred by the principal. Both varieties would be perceived as identical on

the market and would sell at pricep < 1 but the principal values each unit ofqM atp and each unit ofqP at

one. I assume that there is little if no chance that the principal could procure himself at pricep through the

market the good of the specific variety he values the most.2

I assume that there are limited economies of scope in using the firm’s installed capacity for a joint

production of both varieties by letting the total variable cost of producingqM andqP be a function of their

sumq = qM + qP alone.

To reduce production costs, the agent has the opportunity of making an investmente � 0. The cost of

producing the joint outputq is thenc(q; e) wherec is a strictly convex function with3 cq > 0. Investment

e is irreversible; hence, once undertaken, total costsc(q; e) can be decomposed in fixed costsc(0; e) and

variables costsc(q; e) � c(0; e). I also assume thatce(q; e) � ce(0; e) < 0 andcee(q; e) � cee(0; e) > 0 for

all q so that investment reduces variable costs at a decreasing rate.

I will also need a natural sorting conditioncqe < 0 which says that investment decreases marginal cost at

any given level of production (that is, investment increases capacity) and two technical conditions:cqqe < 0

andcqqq � 0. The first one insures that the second order conditions for the principal’s program are always

satisfied while the second one allows us to disregard stochastic contracting schemes.
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The game. The principal observes neither investment nor costs, but is aware of the production set of the

agent; that is, he knowsc. I also assume that he cannot sign binding contracts prior to the investment stage

and that it is common knowledge that he holds all of the bargaining power during the entire game.

Because both varieties of the good have a market value, there always exists an incentive for the agent to

invest. Nevertheless, efficiency requires that the agent deals with the principal who has a higher valuation

than the market for a specific variety that is a perfect substitute in output to the common variety. If the

agent expects a fair deal with the principal to be difficult, he might focus his attention only on the market

and invest suboptimally. The problem is then to provide the agent with incentives to invest optimally. More

precisely, I want to show to what extent the unobservability of investment does provide such incentives.

The course of events is as follows: in the first period, the agent privately investse. Oncee has been sunk,

the agent is said to be of “type”e and both players enter the second stage4 where they must agree, through

some bargaining subgame, on an allocation that includes a production planq 2 Q and a monetary transfer

t 2 T from the principal to the agent (the setsQ andT are non negative values ofq and the real line forT ).

The precise bargaining subgame that is played at that stage is of crucial importance in determining the

equilibrium of the entire game and, in particular, the investment strategy that will be played by the agent.

For instance, if the agent expects that he will be able to make a take-it-or-leave-it offer to the principal at

the second stage, it is easy to see that he will undertake the socially optimal amount of investment and that

he will offer to produce the socially optimal level of the good for a transfer that will cover both fixed and

variable costs and all the gains from trade.

In that case, the player that invests reaps all the ex post gains from trade and will thus optimally equalize

the marginal cost of investment to its marginal return on these gains when making ex ante his investment

decision. A hold-up problem occurs when the bargaining procedure does not share the ex post gains from

trade commensurately to the ex ante investment costs that have to be born by the players.

The bargaining subgame beginning in the second stage is an integral part of the game and cannot con-

ceptually be modelled as an endogenous choice.5 Hence, the ex post bargaining procedure is given exo-

geneously here by way of the class of contracts that the principal can offer on a take-it-or-leave-it basis.

Nevertheless, the agent always has the external opportunity to use his capacity to sell on the competitive

market at pricep. As p is increased, the specific gains from trade that can be realized with the principal are

decreased and the option value for the agent of going to the market is increased. Hence,p can be viewed as

a measure of the incidence of the hold-up problem in this economy.6
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Strategies and payoffs. A pure strategy for the principal is an offer of a contract� (to be defined later) at

the bargaining stage. Since investment costs are sunk at this stage, only variable costs matter to the agent in

this subgame. If the agent refuses the contract proposed by the principal, the game ends: the principal pays

nothing and receives nothing.7 The agent can use all of his capacity to produce and sell on the market at

pricep. That outcome yields a feasible payoff of

ŵ(e; p) � max
q2Q

(pq � c(q; e)) (1)

to the agent. For all givenp � 0, this is a well defined strictly concave function ofe. Furthermore, since

there is a unique solution to the r.h.s. of (1), we can define theargmax function q̂(e; p). Throughout this

paper, I will use the caret notation to indicate efficient level values; henceq̂(e; b) is the efficient level of

production that equates marginal benefitb (eitherp or 1) to marginal costcq given investment levele. To

insure (and simplify) the construction of an equilibrium, I also assume that,

8b;9�(b) such thatŵ(e; b) < 0;8e > �(b): (2)

Hence, investing a “large” amount can never be an option. To lighten the notation, I will writeŵ(e) =

ŵ(e; 1) andq̂(e) = q̂(e; 1) when no confusion arises. Likewise, I note

ê(q) � argmin
e�0

c(q; e) (3)

the level of investment that minimizes total cost of producingq. Note thatc(q; ê(q)) is the traditionnal long

run cost curve of the firm. Finally, whene andq are simultaneously chosen, I note

w�(b) � max
e�0;q2Q

(bq � c(q; e)) : (4)

and letfe�(b); q�(b)g be the solution to the r.h.s. of (4). Existence and uniqueness of these values is insured

by the global convexity of the program. I assume that for allp > 0, (4) with b = p has an interior solution.

It follows that we have an interior solution inb = 1; that ê(q) > 0 for all q > 0 and it is then straightforward

to verify thate�(b) = ê(q�(b)) andq�(b) = q̂(e�(b); b).
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Without loss of generality, we can assume that the principal will never propose to pay more than an

average price of 1 per unit of the good produced by the agent. It follows that the agent cannot expect to

make a profit greater than̂w(e; 1) for somee. Since the agent can forego the expected relationship with the

principal and guarantee himself a market payoff ofŵ(e; p) > 0, he will never invest more than�(1). Hence,

it is common knowledge that the agent will invest somee 2 [0; �(1)] � E.

Suppose now that the agent has invested privately and consider the subgame that begins in the second

stage when the principal, holding all the bargaining power, negociates a contract with the unidentified agent.

Let ~F be the Bayesian prior of the principal about the level of investment made by the agent overE. By the

Revelation principle, the equilibrium outcome of any Bayesian rational communication subgame played by

the principal and the agent can be reached by the take-it-or-leave-it offer of a direct mechanism that satisfies

individual rationality (IR) and incentive compatibility (IC).

Formally, one should define a contract� as a mapping from the “type” (message) spaceE into the

general class of stochastic contracts, that is the space�(Q � T ) of distribution functions overQ � T . A

mixed strategy can then be defined as a randomization into this space. I restrict the scope of the analysis by

constructing an equilibrium where the principal plays a pure strategy in the contract space.8 These contracts

can be represented as pairs�(e) of functions(q(e); t(e))E and form a menu in which the agent may select

a particular allocation�(m) = (q(m); t(m)) after having sent a messagem about his typee. If allocation

�(e) is selected, then the principal getsq(e)� t(e).

Following the offer made by the principal, the agent either accepts or refuses. In both cases, he may

proceed to the market where he can sell at will at unit pricep. Once the contract negociation has been

settled and once the agent has completed the booking of orders on the market, production and exchange take

place. Since refusing the contract and going to the market can be replicated with a contract that specifies

zero production and no transfer, any agent that has investede would behave rationally by accepting any

contract that satisfies the followingIR constraint for typee:

r(e) � t(e)� ŵ(e; p) + max
q2Q

(pq � c(q(e) + q; e)) � 0: (IR)

Here,r(e) is the “rent” gathered by an agent of typee from a self-selecting contract with respect to his best

alternativeŵ(e; p).9 This formulation encompasses the case where the agent accepts the principal’s contract

but still wishes to sell the output of his remaining capacity on the competitive market.
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The agent accepts any self-selecting contract that satisfies (IR) given his typee. For these contracts, the

IC constraints are summarized by

r(e) � t(m)� ŵ(e; p) + max
q2Q

(pq � c(q(m) + q; e)) ; 8e 2 E and8m 2 E: (IC)

Whenever an agent is left with an excess capacity (q(e) < q̂(e; p)), he will choose to be active on the

market. By doing so, the agent will equalize his marginal rate of substitutionMRSbetweenq and money

to p; it follows that theMRSis constant for these types and the sorting condition (that theMRSdoes not

decrease withe) is trivially satisfied. Whenq(e) � q̂(e; p), the solution in the r.h.s. of (IC) is zero and the

agent produces only for the principal. In this case, the sorting condition is given by

�q0(e)cqe(q(e); e) � 0:

This condition is always satisfied provided thatq(e) is non-decreasing. Because the agent’s payoff function

is quasi-linear, the sorting condition is also sufficient to insure globalIC. It follows that the local approach

for IC can be applied, which yields

r0(e) =

8>>><
>>>:
0 if q(e) < q̂(e; p);

ce(q̂(e; p); e) � ce(q(e); e) � 0 if q(e) � q̂(e; p):

(5)

In the second regime, the agent is left with no excess capacity for the market; accordingly, his rent pattern

reflects the (variable) cost savings that can be achieved with a better type (adjusted for the fact that his

reservation payoff would be modified).

To interpret the first case (excess capacity), suppose that the principal is locally paying a fixed price~p for

each of theq(e) units produced for him by the agent, that ist(e) = ~pq(e); for dq = q0(e)de = 1, marginal

transfer is thus~p; differentiating (IR) on both sides and using (5) we get~p = cq(q̂(e; p); p) = p; that is, the

principal must pay the market price for each unit he buys. Obviously, as the next lemma shows, that regime

is never played as the principal will always prefer that an agent of typee produce at least̂q(e; p).
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Lemma 1. In an optimal self-selecting contract, we can assume that the agent produces only for the prin-

cipal, that isq(e) � q̂(e; p);8e 2 E.

Proof. Consider first the following functions and its derivative with respect to�:

s(�; e) � p� +max
q2Q

(pq � c(� + q; e)) ;

s�(�; e) =

8>><
>>:
0 if � < q̂(e; p);

p� cq(�; e) � 0 otherwise;

� 0; so thats is non-increasing in�.

Then assume we have an optimal self-selecting contract that satisfiesIR andIC and for whichq(e) <

q̂(e; p) for some typee. Consider raisingq(e) to q̂(e; p) andt(e) by p(q̂(e; p)� q(e)) for typee. That mod-

ification can only increase the payoff to the principal while keeping the agent’s payoff constant. Clearly, to

disprove the lemma, for some optimal self-selecting contract, this type of modification should be impossible.

In other words, it must disrupt theIC constraint (IC) for at least some typee0. Yet, for anye0, the r.h.s. of

that constraint is decreased by

s(q(e); e0)� s(q̂(e; p); e0) > 0;

so that the constraint is actually relaxed, a contradiction. Q.E.D.

Because of lemma 1, we know that equation (5) simplifies to

r0(e) = ce(q̂(e; p); e) � ce(q(e); e)

for an optimal self-selecting contract.
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3. The equilibrium

Even if we assume that the principal plays a pure strategy in a Nash equilibrium, it is easy to see that the

agent will be randomizing over his investment set. To show this, suppose the agent plays a pure strategy

e 2 E in equilibrium. Anticipating this strategy to be~e, the principal will invite the agent to produce

q̂(~e; 1) > q̂(~e; p) but will be willing to pay only the market pricep for the first q̂(~e; p) units (the revenue

the agent could get on the market) plus a premium no more than the excess in variable costs needed to

accomodate the higher marginal value of the principal:

t(~e) = pq̂(~e; p) + c(q̂(~e; 1); ~e)� c(q̂(~e; p); ~e):

Anticipating this contract, the agent can choose to minimize the cost of producingq̂(~e; 1) by setting his

investment level tôe(q̂(~e; 1)) or he can plan to deviate on the market and to sete according toe�(p).

To obtain an equilibrium in pure strategies where the contract is accepted, we need~e = e�(1) so that

ê(q̂(~e; 1)) = ê(q̂(e�(1); 1)) = ê(q�(1)) = e�(1);

and the expectation of the principal matches the actual strategy played by the agent. But then, whenever

p < 1, a deviation would give the agent̂w(e�(p); p)� ŵ(e�(1); p) > 0, and the equilibrium would not hold.

Since, in equilibrium, the agent randomizes on his investment level, the principal will find it profitable to

try to screen the agent with respect to his variable cost structure using the production level as an instrument.

The easiest way to construct a Nash equilibrium is to check whether a given pair of strategies are best replies

one to another. Following that route, I construct the following equilibrium.

Proposition 1. There exists a Nash equilibrium where the agent randomizes withF overE� = [e�(p); e�(1)]

and the principal offers a non stochastic contract� = (q(e); t(e))e2E� whereq(e) solves

ce(q(e); e) = 0; (6)
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transfers cover total costs and provide an equivalent to the market payofft(e) = c(q(e); e) + w�(p); andF

is a continuous distribution function onE� given by

F (e) = 1� exp

 
�
Z

e

e�(p)

(1=h(~e))d~e

!
(7)

where

h(e) = �
1� cq(q(e); e)

cqe(q(e); e)
: (8)

Proof. Let E� � E be the actual bounded support of the distribution played by the agent and lete be

its lower bound (obviously,e > 0 since the agent can always produce for the market). Define a mixed

behavioral strategy for investment as a (right-hand continuous) distribution functionF whereF (e) = 0,

for all e < e. As in Gul (1997), definee = supfejF (e) = 0g to be an extremum ofE� and lete be an

increasing pointof F if eitherF is discontinuous ine or, for all � > 0, F (e + �) > F (e). We havee 2 E�

iff e is an increasing point ofF and alle 2 E� must yield the same expected return. By construction,e is a

point of increase ofF .

Let � be the contract offered in equilibrium by the principal. The ex post return from� to an agent that

has investede is given by (IR) and evolves withe according to (5).

In any right-hand neighborhood[e; e + �] of e we can find a point of increasee (perhapse itself) that

is played in equilibrium. By lemma 1, we can assume that the agent will only produce for the principal; it

follows that his ex ante payoff (relative to his best ex ante alternative) when investinge is

t(e)� c(q(e); e) � w�(p) = r(e)� (w�(p)� ŵ(e; p)) � 0: (9)

This payoff is the difference between the ex post rentr(e) from the contract, which compensates better types

for the marginal variable cost savings they could appropriate for themselves by lying about their type, and

the ex ante opportunity cost of investmentw�(p)� ŵ(e; p). This payoff must be non negative otherwise the

agent would simply choose to produce for the market. For any decreasing sequence of(e) that converges
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toward e, the corresponding sequence(r(e)) must converge tor(e) = 0 otherwise, since rents are non

decreasing withe, the principal could increase her payoff by augmenting� with a fixed strictly positive

payment no less thanr(e) which would not disrupt anyIC or IR constraint. It follows that the non negative

sequence of differences(w�(p)� ŵ(e; p)) must converge to zero, which impliese = e�(p).

I will establish later thate = e�(1). For the time being, assume thatF is a continuously differentiable

distribution function onE� = [e�(p); e] with densityf . I compute the optimal contract� given that the

agent randomizes withF onE� (Guesnerie and Laffont, 1984).

Ex post IC requires thatq(e) be a non decreasing function and we know by lemma 1 thatr0(e) =

ce(q̂(e; p); e) � ce(q(e); e). The optimal contract then solves

max
�

Z
e

e�(p)

(q(e)� r(e)� c(q(e); e))f(e)de

subject to the monotonous conditionq0(e) � 0 and

r0(e) = ce(q̂(e; p); e) � ce(q(e); e);

r(e�(p)) = 0:

Leaving aside the monotonous condition for the moment, the Hamiltonian function of this program is

H(e) = (q(e) � r(e)� c(q(e); e))f(e) + �(e)(ce(q̂(e; p); e) � ce(q(e); e)):

The first-order conditions forH(e) are:

@H(e)

@q(e)
= f(e)(1� cq(q(e); e)) � �(e)cqe(q(e); e) = 0 (10)

�0(e) = �
@H(e)

@r(e)
= f(e) (11)

where�(e) � 0 is the shadow cost of increasing the rent of agente.

The boundary condition ate = e is unconstrained, hence�(e) = 0. Integrating (11) I get

��(e) = �(e)� �(e) =

Z
e

e

�0(~e)d~e =

Z
e

e

f(~e)d~e = 1� F (e): (12)

13



The optimal quantityq(e) for typee is thus implicitly given by

f(e)(1� cq(q(e); e)) + (1� F (e))cqe(q(e); e) = 0 (13)

which implicitely identifiesq(e).

Onceq(e) is determined, the necessary rents can be computed:

r(e) =

Z
e

e�(p)

(ce(q̂(~e; p); ~e)� ce(q(~e); ~e))d~e: (14)

Finally, ase! e, the term1� F (e) vanishes so that (13) becomes

f(e)(1 � cq(q(e); e)) = 0

which implies

q(e) = q̂(e; 1); (15)

that is, the classical efficiency-at-the-top result.

I now impose equilibrium conditions to determine the value ofe and to characterize completely the

equilibrium contract. ForF to be played in equilibrium overE�, I need (9) to hold with equality overE�

(this implies the transfer equation directly). Hence, differentiating (9), I must have

�ce(q(e); e) = 0 overE�. (16)

To reconcile this equilibrium condition with (15) I neede = e�(1) so thatE� = [e�(p); e�(1)]. Equation

(16) givesq(e) as a function ofe. Differentiating it yields

q0(e) = �
cee(q(e); e)

cqe(q(e); e)
> 0;

which is positive under our convexity assumptions. Hence, the monotonous condition is satisfied in equilib-

rium. Substituting the implicit equilibrium solutionq(e) of (16) in (13) yields an ordinary linear differential
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equation of the form

h(e)y0 + y = 1; (17)

wherey = F (e), y0 = f(e), the functionh(e) (the inverse of the hazard rate) is given by (8) and with initial

conditionF (e�(p)) = 0. Note thath vanishes only ate�(1). This implies that (17) has a unique solution,

over any subset[e�(p); e�(1) � �], � > 0, given by (7) which is continuous and differentiable. Taking then

the limit of F (e�(1)� �) as�! 0 yields 1, soF is a cumulative distribution function onE�. Q.E.D.

Given the equilibrium strategyF for the agent, the contract offered by the principal is the standard

screening contract à la Guesnerie and Laffont (1984) which yields the best possible weighting for the princi-

pal between efficiency in production and (ex post) “rent” extraction. Since all pure strategies in the support

of the mixed strategy played by the agent must yield the same payoff, these rents must match the investment

cost of having a more or less ex post efficient type. I shall talk ofquasi rents, in the Marshallian sense, since

these rents are nothing more than a minimum fair return on past investment in capital.

The equilibrium contract has a simple and very intuitive structure which is illustrated in figure 1 with

the traditional envelope representation (Viner, 1952) of short-run average costs (AC) curves.10 It amounts

to paying the agent a marginal price ofp for each of the firstq�(p) units he agrees to produce, and equating

marginal revenue (MR) to the agent’s long run marginal cost (LRMC) for all additional units. To see this,

consider equation (6) which defines the optimal production plans, that is, the functionq(e). This equation is

the first-order condition of program (3) that is related to points on theLRMCandLRACcurves. The average

revenue curve of the agent, that is, the unit price he will receive for his production, is then increasing fromp

atq�(p) and is below hisMRcurve. With such a scheme, the agent will produce until his ex post (short-run)

marginal cost curveMC(e) crosses hisMR curve. This happens atq(e) where his short-run average cost

curveAC(e) is tangent to hisLRACcurve; hence, the agent’s chosen production plan is cost efficient. At

that point, the agent’s payoff (average revenue minus average cost times his production level; that is,the sum

of the two darker areas) is equal to his market payoff (the sum of the two lighter areas). Hence, from an

ex ante point of view, the agent gets the same payoff from each investment level in[e�(p); e�(1)], and this

induces him to randomize on that support.
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Since the equilibrium contract guarantees the market payoff to the agent, no hold-up will occur and the

agent can invest with confidence. The complex part of the contract lies in the purchase policyq(e) that

prescribes lowering the principal’s demand from a poorly capitalized firm (e < e�(1)). It is given by (6) and

manages to equate ex ante marginal opportunity cost of investment and ex post marginal savings on variable

costs. Under full commitment, the optimal contract would equate marginal utility (1) of the principal to

the long-run marginal cost atq�(1). That point is both ex ante and ex post efficient. In the absence of

commitment and under full observability of the investment decision, the agent would simply refuse to invest

more thane�(p). Efficient bargaining would yield an ex post efficient production level atq̂(e�(p); 1). If the

investment decision is kept private, then the equilibrium contract allows the agent to choose any production

level in [q�(p); q�(1)], sayq(e), and to receive a unit price ofAR(e). It is easy to see that this contract is ex

post self-selecting since the most economical way to produceq(e) and to realize sales ofAR(e)q(e) is to be

of typee so that costs are minimized as the (short-run) average cost curveAC(e) reaches theLRACcurve in

q(e). Keeping investment private and producing at anyq(e) is both ex ante inefficient with respect toq�(1)

and ex post inefficient with respect tôq(e; 1) but it is cost efficient.

Simple static comparative analysis reveals that if the good has no value outside the relationship (p = 0)

or if the market is competitive so that the agent’s reservation payoff is achieved at the minimum of hisLRAC

curve, the contract (theARcurve) will follow theLRACcurve so that the transfer will match only total costs.

As p is increased,w�(p) will rise so that all transfers will be shifted by an identical amount. Nevertheless

q(e) is unaffected as long as it is no less thanq�(p). It follows that, for a given variation inp, the unit price

t(e)=q(e) always changes more for low levels of production, that is for lowe. In a sense, high levels of

production orders are relatively more anchored to the principal’s valuation of 1 than to the market price.

4. Analytical examples

The shape of the distributionF depends on the derivative ofh since

f 0(e)

f(e)
= �

1 + h0(e)

h(e)
:

If h0 � �1 for all e, then the distribution will be skewed to the right towarde�(1) and the agent will

invest almost optimally most of the time; since the ex post inefficiency1 � cq(q; e) is reduced ase is
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increased, we will get almost optimal production most of the time. On the other hand, both ex ante and ex

post inefficiencies will be exacerbated ifh0 � �1 as the distribution will be skewed towarde�(p). Other

possibles cases are that ofh0(e) = �1 which implies a uniform distribution over[e�(p); e�(1)] andh0(e)

first lesser (greater) than�1, then equal to�1 at some interior~e, then greater (lesser) than�1 which would

yield a bell-shaped (U-shaped) distribution. Sinceq(e) increases withe, the distribution of quantities will

share the same characteristics.

I present below three analytical examples that illustrate the dependence of the distributionF upon the

cost functionc. In all these examples, the reservation market price is set top = 1=2. For each exam-

ple, I have graphed the Viner representation of the firm’s cost structure for three investment levels, that of

e�(p), e�(1) and the median investment levele such thatF (e) = 1=2. The short-run marginal and average

cost functions (MC andAC) are drawn for these three levels. The contract provision(q(e); t(e)=q(e)) is

represented by the lowest thick line betweenq�(p) andq�(1).

Example 1. Let the cost function be

c(q; e) = exp(E �Q)(exp(q � e)� 1) + exp(e�E)� exp(�E):

With this specification, the parametersE andQ are the ex ante efficient levels of investment and production

ê = E and q̂(E; 1) = q�(1) = Q. If the agent expects to sell only on the market, he will sete�(p) =

E + ln(p) andq�(p) = Q+ 2 ln(p) for a profit ofp2=2.

The firm’s short-run marginal cost function iscq(q; e) = exp(q � Q + E � e) so thatcqe(q; e) =

� exp(q �Q+ E � e). Under observability, the firm would investe�(p) = E + ln(p) and would produce

q�(p) = Q+2 ln(p) to get the market payoff ofw�(p) = pq�(p)�c(q�(p); e�(p)). The optimal equilibrium

contract under unobservability manages to keep this payoff constant over[E + ln(p); E] by havingq(e) =

Q� 2(E � e) and by paying a unit price of

t(e)

q(e)
=

w�(e)

q(e)
+
c(q(e); e)

q(e)
;

=
p(2 ln(p) +Q� 2) + 2 exp(e�E)

Q� 2(E � e)
;

which converges toward theLRACcurve asq(e) is increased. The inverse of the hazard rate resumes to
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h(e) = exp(E � e) � 1 and is decreasing withh0(e) � �1 so that the distribution will be skewed toward

E. Using (7), the equilibrium distribution is given by

F (e) =
exp(e�E)� p

1� p
: (18)

This case is illustrated in figure 2 for parametersE = 1 andQ = 3. At p = 1=2, the price is set higher

than the long-run breakeven point11. If investment were observable, the agent would produce with certainty

q�(1=2) = 3 � 2 ln(2) ' 1:6137 with an investment ofe�(1=2) = 1 � ln(2) ' :3069. From (18), we can

compute the percentile function

�(z) = E + ln((1 � z)p+ z)

where�(z) is the value ofe that solvesF (e) = z. The tick marks on the abcissa represent the tenth

percentiles of production. Hence, the median investment level is ate = ln(3=4) + 1 which yieldsq(e) =

3+2 ln(3=4) ' 2:4246. The skewness of the distribution towardE is apparent as more ticks are concentrated

nearq�(1).

Example 2. In this second example, the cost function is

c(q; e) = q2 � 2eq + 2e2:

With this function, investment decreases costs wheneverq � 2e. The market solution would be for the firm

to produceq�(p) = p with an initial investment ofe�(p) = p=2 and resulting profit ofp2=2. The first best

solution isq�(1) = 1 ande�(1) = 1=2. The equilibrium contract setsq(e) = 2e and a transfer scheme of

t(e)=q(e) = p2=4e + e. The agent then randomizes according toh(e) = 1=2 � e. Sinceh is linear ine,

we haveh0(e) = �1 and the distribution will be uniform withf(e) = 2=(1 � p) over [p=2; 1]. The cost

structure is depicted in figure 3 where the uniform nature of the randomization is apparent by the equidistant

ticks on the abcissa (q is also distributed uniformly since it is a linear function ofe).
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Example 3. In this last example, the distribution will be skewed towarde�(p). Let

c(q; e) =
q2

2e
+
e2

4
:

The inverse of the hazard rate function ish(e) =
p
e� e and has derivativeh0(e) = �1 + 1=(2

p
e) > �1.

It follows that the distribution

F (e) = 1�
�
1�

p
e

1� p

�2

will be skewed to the left. See figure 4.

5. Welfare consequences

Little mention has been made up to now of the consequences of unobservability on expected welfare. We

know that expected investment will rise but so will the incidence of ex post inefficiencies in production.

Under perfect information, the agent inefficiently never invests more thane�(p) < e�(1) but always pro-

duces efficiently givene�(p). Under imperfect information, the agent randomizes overE� and will invest

efficiently some of the time. However he will produce inefficientlyq(e) < q̂(e; 1) most of the time.

Since the agent receives a payoff of zero (net of his market payoff) whether the game is played under

asymmetric or symmetric information and since the principal can insure himself to pay no more than the

market price forq(e�(p)) units of variety 1 of the good (the amount he would get under full observability), it

is clear that unobservability can only increase social welfare. This is in sharp constrast with Bayesian games

of incomplete information where unobservability of types diminishes social welfare as players engage in

rent seeking behavior.

This important difference comes from the fact that traditionnal Bayesian models assume that the distri-

bution of types is exogenous so that it is not affected by the observability issue. It follows that going from

unobservable to observable types increases welfare as all inefficiencies associated with bargainning under

asymmetric information are resolved. When types are endogenous, observability would cause the type dis-

tribution to collapse toe�(p) at a great cost in social welfare. Unobservability then allows more types to

be played, so much that the presence of more efficient types overcomes the fact that most types will now

produce inefficiently.
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One may wonder if this overall gain is attributable to the fact the agent now almost always invests a

“little more” (ase � e�(p)) or to the fact that almost efficient investment with almost efficient production is

now possible with some probability ase approachese�(1)? Letw(e) = q(e)� c(q(e); e). With observable

investment, social welfare amounts tôw(e�(p)). With unobservable investment, the agent randomizes on

E� with F . I want to compareEF (w) with ŵ(e). Observe thatw(e�(1)) = ŵ(e�(1)). I then derive the

following

EF (w)� ŵ(e�(p); 1) =

Z
E�

w(e)f(e)de � ŵ(e�(p));

=

Z
E�

((w(e)F (e))0 � w0(e)F (e))de � ŵ(e�(p));

= w(e�(1)) �
Z
E�

w0(e)F (e)de � ŵ(e�(p));

=

Z
E�

(ŵ0(e)� w0(e)F (e))de =

Z
E�

�(e)de; (19)

where

�(e) = ŵ0(e) � w0(e)F (e);

= (1� F (e))ŵ0(e)� F (e)(w0(e)� ŵ0(e)):

One can check that�(e�(p)) = ŵ0(e�(p)) > 0 and�(e�(1)) = 0 but�0(e�(1)) > 0 so that� reaches zero in

e�(1) from below12 and it has at least another zero in the interior ofE�. Since� is positive for low values of

e but negative for high values, the overall positive contribution to welfare of unobservability can be traced

to the fact that the agent now always invests a little more thane�(p).13 Consider the contribution to welfare

of a marginal increase ine under unobservability. Ase is increased, total feasible surplus is increased by

ŵ0(e) each time the agent invests at leaste, that is,1 � F (e) of the time. On the other hand, an increase in

the support ofe implies more distorsions on the production plan of lower types (in proportionF (e)), that

is, a marginal increase in the amount of welfare destructionŵ(e)� w(e) for each of these types in order to

prevent higher types to mimic these types. Whene is low, a little more investment has an important positive

marginal effect (sincee is low) and the negative effect is low since production plans need to be distorted

only a little. Whene is high, the opposite applies and the marginal contribution is negative.�(e�(1)) = 0

since additional distorsions become less necessary at the margin asq(e)! q̂(e) whene! e�(1).
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6. Renegotiation

In this section, I extend the game of section 3 by allowing the agent to propose a take-it-or-leave-it offer of

renegotiation after he has accepted the initial contract� proposed by the principal and committed himself

to some allocation�(e) = (q(e); t(e)) in �. To simplify the analysis, I will assume that the market price

is 0 so that both the ex ante and the ex post reservation payoffs of the agent are always zero with an initial

investment ofe�(0) = 0. As before, a refusal at the initial contracting stage terminates the relationship but

if the principal refuses the renegotiation offer, then allocation�(e) is to be implemented. I will refer to this

game as renegotiation conditional on acceptance (RCA).

If the contract is accepted and�(e) is selected, then the agent can renegotiate to any allocation that

is rationally acceptable to the principal given that�(e) can be costlessly enforced. Assume that the agent

randomizes its investment decision on some subsetE�. Given that the initial contract is accepted and that

the agent has committed himself to some allocation�(m), it is easy to see that an agent that has investede

will propose the new allocation(q̂(e); t(m) + q̂(e) � q(m)) which gives the same payoff to the principal

and is thus accepted. In a self-selecting renegotiation-proof contract, the initial contract is not renegotiated

and the agent tells the truth about his investment level so thatq(e) = q̂(e). Anticipating the outcome of the

renegotiation, the initial contract will be self-selecting if and only if

t(e)� c(q̂(e); e) � t(m) + q̂(e) � q̂(m)� c(q̂(e); e) 8e;m 2 E�:

Since that relation must be true for all types played in equilibrium, it follows that

t(e) � q̂(e) = t(m)� q̂(m) = �� 8e;m 2 E�;

where� is the principal’s payoff in that game when a contract is accepted and carried out. I expect a contract

to be of the form�� = (q̂(e); q̂(e)� �)e2E� . Such a contract is accepted by any agente for which

q̂(e)� � � c(q̂(e); e) = ŵ(e)� � � 0;

that is, whenever the payoff� the principal asks for herself is less than the realizable ex post surplusŵ(e)+

c(0; e) as fixed costc(0; e) are to be paid anyway. I then obtain the following proposition.
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Proposition 2. In the RCA game, there is no equilibrium in pure strategies. There exists a Nash equilib-

rium where the agent randomizes onE� = f0; e�(1)g with F = Prob(e = e�(1)) = w(0)=(w�(1) +

c(0; e�(1))) and the principal randomizes on� = f�w(0); �w�(1)g with 1 � G = Prob(�� = �w(0)) =

c(0; e�(1))=(w�(1) � w(0) + c(0; e�(1))). In equilibrium, both players enjoy the same payoffs that they

would have had investment been observable.

Proof. The ex post realizable surplus functionŵ(e)+c(0; e) is strictly increasing with derivative�ce(q̂(e); e)+

ce(0; e) > 0. It follows that it is minimal atw(0). Hence, there is no point for the principal to offer any

contract�� for which � < w(0) since these contracts are strictly dominated by�w(0). Because of assump-

tion (2), the agent never invests more than�. We can then restrict the strategy space of the principal to

contracts�� for which � 2 [w(0); w(�) + c(0; �)]. Given any such contract��, the agent’s ex ante payoff

is given by the maximum between the minimum loss in fixed cost�minE c(0; e) and the maximum gains

from trademaxE (ŵ(e)� �). Depending on�, that payoff is maximized either ine = 0 or in e = e�(1);

it follows that the agent will randomize on the discrete supportf0; e�(1)g with F = Prob(e = e�(1)). If

the agent playse = 0, then the principal should play� = w(0). If the agent playse = e�(1), then the

principal should play� = w�(1) + c(0; e�(1)). It follows that the principal will play in the discrete support

fw(0); w�(1) + c(0; e�(1))g. No pure strategy equilibrium will exist ase = 0 is a strictly best response

(s.b.r) for the agent to� = w�(1) + c(0; e�(1)) which is a s.b.r. toe = e�(1) which is a s.b.r. to� = w(0)

which is a s.b.r. toe = 0. LetG = Prob(� = w�(1) + c(0; e�(1))). Given these numbers, the players must

be indifferent over their best response strategies. This yields the same expected payoffs for the agent and

the principal as under full observability:

�Gc(0; e�(1)) + (1�G)(w�(1)� w(0)) = G � (0) + (1�G) � 0 = 0;

F (w�(1) + c(0; e�(1))) + (1� F ) � (0) = Fw(0) + (1� F )w(0) = w(0);

and these equations solve forF andG. That is, the principal gets all the surplusw(0) that could be created

under full observability and the agent gets none of it (with a market price of zero as an option).Q.E.D.
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Although the nature of the mixed strategies is different, the fact that unobservability has no effect on

welfare in proposition 2 is related to proposition 1 in Gul (1997). The possibility of renegotiation destroys

the power of incentive contracts. Without these contracts, simple bargaining subgames are not sufficient to

provide enough incentives for expected welfare-enhancing investment to take place.

7. Conclusion

My results apply generally to Bayesian principal-agent models with adverse selection. In these models,

transfers are decomposed into “costs” that remunerate factors of production and “informational rents” that

are left to the agent as an incitative to make him reveal his type. Here, I challenge this interpretation by

ackowledging that an agent’s “type” is most likely to be the result of an ex ante maximizing choice. Hence,

we should not talk of “informational rents” but of quasi-rents. This interpretation is important both on

normative and positive grounds. From a normative point of view, the mechanism design strategy followed

here is robust to the endogenous formation of types and requires only a good knowledge of cost functions

to be implemented as a practical compensenting scheme.

From a positive point of view, Bayesian models have very little predictive power since the contracts

they predict are supposed to be functions of an elusive (at least for the econometrician) “type” distribution.

One can express doubts concerning the coherence of the assumption that types are unobservable with the

assumption of a common knowledge distribution of types. The resolution of this paradox is to be found

in Harsanyi’s (1967) classical exposition of incomplete information model where the “type” distribution

emerges as the result of some thought equilibrium process that resolves the discrepancies between the play-

ers’ various beliefs. In a sense, the approach followed in this paper substitutes that process with what can

rationally be expected given factor prices on the market and the available technology. Since the contracts

described in this paper depend only on market data, the theory should have more predictive power.
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Notes

1See Fudenberg and Tirole (1990) for an application of this technique in a moral hazard problem.

2In what follows, the principal is given all the bargaining power so that her participation constraint is

never binding. What matters is that the agent cannot expect to find a customer, other than the principal,

ready to pay a price higher thanp for his production of the specific variety.

3Suscripts denote partial derivatives for functions with more than one argument. For functions with a

single argument, the prime notation will be used.

4The interim stage in the terminology of Holmström and Myerson (1983); that is, when the agent knows

his type.

5One could think of a game where parties choose together initially to play a particular bargaining sub-

game at the interim stage, but that would amount to assuming that commitment is possible.

6The severity of the hold-up problem increases asp decreases. Note that if full enforcement contracts

were available at the investment stage, efficiency would required that all trade be conducted with the princi-

pal. Hence, interestingly, the first best benchmark is unaffected byp.

7Since the principal has linear preferences, there are no wealth effects and the principal purchases on the

market will not depend on whether he contracted successfully or not with the agent.

8Under my convexity assumptions, one can show that stochastic contracts are dominated by non stochas-

tic ones. See Laffont and Tirole (1993).

9ŵ(e; p) includes fixed costs. These are irrelevant ex post, but are cancelled out with the same implicit

fixed costs inc(q(e) + q; e).

10This figure matches the second analytical example discussed below.

11Consider the cost-minimizing investment level for production levelq along theLRACcurve. That level

is given byE � (Q � q)=2 whenever the value is positive and, asq is decreased, by zero otherwise (e � 0

is then binding). Furthermore, given our parametrization, one can show thatB(e) = minq2Q c(q; e)=q
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increases withe. It follows that the breakeven point is given atB(0) = limq!0 c(q; 0)=q ' :1353.

12We have

�0(e) = ŵ00(e)� w00(e)F (e) � w0(e)f(e):

In e = e�(1), F (e�(1)) = 1, w0(e�(1)) = 0 andq̂(e�(1)) = q(e�(1)) = q�(1), it follows that

�0(e�(1)) = ŵ00(e�(1)) � w00(e�(1))

=
(cqe)

2

cqq
+ cqq

(cee)
2

(cqe)2
> 0:

13This heuristic argument, based on the function�, and what follows in the rest of the paragraph,

depends a lot on unspecified accounting conventions. If
R
�(e)de = k, then so does

R
~�(e)de where

~�(e) = 2kf(e) � �(e).
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Figure 1: The equilibrium contract.
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0.5

1
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1.61 1.8 1.98 2.14 2.29 2.42 2.55 2.67 2.79 2.9 3
q

Figure 2: The equilibrium contract of example 1.
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contract

AC(e*(1))

AC(e*(p))
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MC(e)
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q*(1)q(e)q*(p)

0.5

1

0.25

0.375

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
q

Figure 3: The equilibrium contract of example 2.
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contract

AC(e*(1))

AC(e*(p)) AC(e)
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LRAC

MC(e*(1))

MC(e)MC(e*(p))

q*(1)q(e)q*(p)

0.5

1

0.375

0.485

0.75

0.125 0.1965 0.2702 0.3831 0.468 0.5965 1
q

Figure 4: The equilibrium contract of example 3.
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