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Abstract

The question addressed in this paper is the order of magnitude of the difference between the Borda rule

and any given social choice function. A social choice function is a mapping that associates a subset of

alternatives to any profile of individual preferences. The Borda rule consists in asking voters to order all

alternatives, knowing that the last one in their ranking will receive a score of zero, the second lowest a

score of 1, the third a score of 2 and so on. These scores are then weighted by the number of voters that

support them to give the Borda score of each alternative. The rule then selects the alternatives with the

highest Borda score. In this paper, a simple measure of the difference between the Borda rule and any

given social choice function is proposed. It is given by the ratio of the best Borda score achieved by the

social choice function under scrutiny over the Borda score of a Borda winner. More precisely, it is the

minimum of this ratio over all possible profiles of preferences that is used. This "Borda measure" or at

least bounds for this measure is also computed for well known social choice functions.

Résumé

Cet article se penche sur la distance entre la règle de Borda et n’importe quelle autre fonction de choix

social. Ces dernières associent un sous-ensemble d’options possibles à tout profil ou configuration de

préférences individuelles. La règle de Borda consiste à demander aux votants d’ordonner les options

possibles, en leur disant que la dernière dans leur ordre recevra un score nul, l’avant-dernière un score égal

à 1, celle qui vient au troisième pire rang un score égal à 2 et ainsi de suite. Ces scores sont ensuite

pondérés par le nombre de votants qui les supportent pour donner le score de Borda de chaque option. La

règle choisit les options qui ont reçu le score le plus élevé. Dans cet article, une mesure simple de la

différence entre la règle de Borda et n’importe quelle autre fonction de choix social est proposée. Elle est

donnée par le rapport du meilleur score de Borda obtenu par les options que sélectionne la fonction de

choix social considérée sur le score de Borda d’un gagnant de Borda. De façon plus précise, c’est le

minimum de ces rapports, sur l’ensemble des profils de préférences, qui est utilisé. Cette mesure de Borda

ou, à tout le moins, un intervalle pour cette mesure est calculé pour un certain nombre de fonctions de

choix social bien connues.



1. Introduction

The controversy between Borda (1784) and Condorcet (1785) is certainly the oldest in social

choice theory. Young (1988, 1995) gives one of the most interesting account of this controversy.

Condorcet advocated the selection of a candidate or alternative that defeats all others in a pair-wise

majority vote, although he was aware of the possibility that a cycle in this majority relation prevent the

use of such a procedure. When this happens, a more elaborate rule must be called to the rescue to break

these cycles. Any social choice function or voting rule that selects a Condorcet winner, when it exists, is

called a Condorcet social choice function.

Borda has been the protagonist of a rule that consists in asking voters to order all alternatives,

knowing that the last one in their ranking will receive a score of zero, the second lowest a score of 1, the

third a score of 2 and so on. These scores are then weighted by the number of voters that support them

to give the Borda score of each alternative. The winners are the alternatives with the highest Borda score.

One obtains other scoring methods by using a different sequence of non-decreasing scores. These methods

are also called positional voting methods.

The modern axiomatic approach permits the understanding of the respective features of the two

voting rules advocated by these two eighteenth century scientists. Moulin (1988) gives an account of the

respective strengths and weaknesses of the two kinds of rules. Using an innovative geometric approach,

Saari (1995) also puts into perspective the radically different properties of the two methods.

In two fundamental papers, Young (1974, 1988) proves that the scoring voting rules are the only

social choice functions that satisfy an axiom called reinforcement and some extra mild axioms.

Reinforcement requires that, if two different electorates select the same alternative, then the union of the

two should also selects this alternative. This result provides an important argument in defense of the Borda

rule.
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On the other hand, it is well known that the scoring rules behave badly with respect to

modifications in the choice set. This makes them prone to manipulation by large coalitions. They can also

give rise to all kind of paradoxes. However Saari (1989) shows that, of all the scoring methods, the Borda

rule or an extension of the latter is the one least susceptible to these paradoxes. Saari (1990) shows that

it is the least susceptible to manipulation by small coalitions. In the same vein, Gehrlein et al. (1982) show

that, among scoring rules, the Borda one is least likely to change the winner when a non-winner is

removed from the list of alternatives.

Given the respective strengths of the Borda and Condorcet social choice functions, an institution

that would opt for a Condorcet function would be well advised to choose one that is as close as possible

to the Borda rule. In this paper, we propose a simple measure of the difference between the Borda rule

and any given social choice function. This measure is given by the ratio of the best Borda score achieved

by the social choice function under scrutiny over the Borda score of a Borda winner. More precisely, we

take the minimum of this ratio over all possible profiles of preferences.

This "Borda measure" of a given social choice function is in the spirit of the Copeland measure

of Laffond, Laslier, and Le Breton (1994). It is a measure that focuses on the worst profiles under which

the alternate social choice function could operate when compared to the Borda rule. It gives a first

indication as to how far from the Borda rule the alternate social choice function can be.

Instead, one could have opted for some average ratio, given some probability measure on the set

of profiles. Such an approach would have been in the spirit of Condorcet’s work. But it would have posed

the problem of selecting the probability measure on the set of profiles and it would have required more

complex computations, because of the combinatorial nature of the problem. This is why we opt for the

simpler measure proposed here.

We also compute this "Borda measure" or at least bounds for this measure for well known

Condorcet social choice functions. Most of them are reviewed by Levin and Nalebuff (1995). The

remainder of the paper is organized as follows: The main definitions are given in section 2. In section 3,
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we compute the "Borda measure" of the Condorcet rule by obviously considering only profiles for which

a Condorcet winner exists. In section 4, we consider a familiar social choice function named after Kemeny

(1959). We provide a close interval for the "Borda measure" of this rule. It turns out that the Kemeny rule

almost achieves the "Borda measure" of the Condorcet rule. Young (1995) promotes the Kemeny rule

because it is a natural extension of the maximum likelihood approach developed by Condorcet. Our result

confirms this fact.

In sections 5 and 6, we focus on quite different social choice functions proposed by Copeland

(1951), and Simpson (1969). We provide upper bounds for the "Borda measure" of these rules. They

indicate that these rules do not do as well as the Kemeny rule. Saari and Merlin (1996) show that a Borda

winner and a Copeland winner can be as far apart as one can imagine in terms of their relative rankings.

Our results supplement theirs in showing how far from the Borda winner a Copeland winner can be in

terms of the Borda scores.

In Sections 7 and 8, we study the top cycle introduced by Good (1971) and the uncovered set

proposed by Fishburn (1977) and Miller (1980). The top cycle does as well as the Condorcet rule. We

conjecture that this is also the case for the uncovered set. Section 9 concludes with a more detailed

comparison of these functions in terms of their Borda measures.

2. Notation and preliminary results

Throughout this paper,N is the set of individuals or voters andX the set of alternatives. Their

cardinality is respectivelyN = n ≥ 3 and X = m ≥ 3. Each individuali ∈ N is assumed to have a

transitive strict preference, i.e. a linear orderPi on X. Let L represent the set of linear orders onX.

A profile is a P = (P1, ..., Pn) ∈ Ln.

Given a profile P ∈ Ln and a pair (x, y) ∈ X, let nxy(P) = { i ∈ N : xPiy} . By convention,

nxx(P) = 0, ∀ x ∈ X. The following lemma follows from transitivity of the preferences. It is stated without

proof.
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Lemma 1: For any profileP and anyx, y, z∈ X, nxy(P) ≥ nxz(P) + nzy(P) − n.

For a given profileP, a binary relationM(P) on X is defined byxM(P)y if and only if

nxy(P) > nyx(P). A profile P ∈ Ln induces atournament on X wheneverM(P) is complete. Obviously,

whenn is odd, anyP induces a tournament onX.

A social choice function (SCF)or voting rule or simply a rule for the pair (X, N) is a mapping

Γ : Ln → 2X \{ ∅}, where 2X represents the family of all subsets ofX. Γ(P) is the set of alternatives selected

by the SCF.

An alternativex ∈ X is a Condorcet winner for a given profileP if nxy(P) > nyx(P) ∀ y ≠ x.

A SCFΓ is aCondorcet type function if Γ(P) = {x} wheneverx is the Condorcet winner. If the majority

relationM yields an order over all alternatives, then this order is theCondorcet order.

Given anx ∈ X and a profileP ∈ Ln, let R(x, Pi) = {y ∈ X : xPiy} . The Borda scoreof x is

defined as:B(x, P) = ∑n
i =1R(x, Pi). Let B*(P) = maxx ∈ XB(x, P). Any x ∈ argmaxx ∈ XB(x, P) is a Borda

winner. Bor(P) is the set of Borda winners for profileP. The following useful lemma is well known and

will not be proven.

Lemma 2: B(x, P) = ∑ y ∈ Xnxy(P).

Given a SCFΓ, we propose the following measure for the discrepancy betweenΓ and the Borda

SCF, which we call theBorda measure ofΓ:

BΓ(n, m) min
P∈Ln

max
x∈Γ(P)

B(x, P)

B (P)

In plain words, this measure is given by the ratio of the best Borda score achieved by an

alternative chosen byΓ over the Borda score of a Borda winner. More precisely, we take the minimum

of this ratio over all possible profiles of preferences. This measure is invariant with respect to a linear

transformation of the functionR( , ). However, it is not invariant with respect to affine transformations.
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Adding any positive constant to theR(x, Pi), x ∈ X, would increase the value of our measure toward 1.

Yet, there is much to be said in favour of the scores originally proposed by Borda as we did. Indeed,

according to Lemma 2, the Borda score of alternativex is the total number of other alternatives defeated

by x in all pairwise comparisons. Our measure is a ratio of such totals numbers, which have a natural

interpretation.

The precise value of this measure or the bounds for this value that will be obtained for different

SCFs will often depend on whethern or m is odd or even. Thus they will often involve the function

ν : → {1, 2} defined by:

ν(n)




1 if n is odd

2 if n is even

3. Condorcet

In this section, we restrict ourselves to the subset of profiles for which there exists a Condorcet

winner and we find the Borda measureBCon of the SCFs selecting this winner.

Lemma 3: If n ≤ mν(n)/(m − 2), i.e. for (n, m) = (3, 3), (4, 3), (4, 4), and (6, 3), the Condorcet winner

is a Borda winner.

Proof. Without any loss of generality, let us concentrate on the profiles such that 1 is the Condorcet

winner. The latter requires profiles such thatn1j(P) ≥ (n + ν(n))/2, j = 2, ...,m, which implies

nj1(P) ≤ (n − ν(n))/2, j = 2, ...,m. For any P such that 1 is the Condorcet winner, we thus have

B(1, P) ≥ (m − 1)(n + ν(n))/2 andB(j, P) ≤ (m − 2)n + (n − ν(n))/2 = ((2m − 3)n − ν(n))/2,

j = 2, ...,m. If n ≤ mν(n)/(m − 2), we haveB(j, P) ≤ ((2m − 3)n − ν(n))/2 ≤

(m − 1)(n + ν(n))/2 ≤ B(1, P), j = 2, ...,m.
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Theorem 4:

BCon(n, m)









1 if n ≤ mν(n)
m 2

(m 1)(n ν(n))
(2m 3)n ν(n)

if n > mν(n)
m 2

Proof. From Lemma 3,BCon = 1 whenevern ≤ mν(n)/(m − 2). For the other case, we have, without any

loss of generality:

BCon(n, m) min
P∈Ln

B(1, P)
B(2, P)

subject to alternative 1 being the Condorcet winner and 2 a Borda winner. From the proof of Lemma 3,

for 1 to be the Condorcet winner, we needB(1, P) ≥ (m − 1)(n + ν(n))/2 and

B(2, P) ≤ ((2m − 3)n − ν(n))/2. These bounds are reached for profileP1 defined by:

(1, 2, ...,m) for (n + ν(n))/2 individuals,

(2, 3, ...,m, 1) for the remaining (n − ν(n))/2 individuals.

Thus BCon(n, m) B(1, P 1)

B(2, P 1)

(m 1)(n ν(n))
(2m 3)n ν(n)

.

Corollary 5: lim
n→∞

BCon(n, m) m 1
2m 3

, lim
m→∞

BCon(n, m) 1
2

ν(n)
2n

, and lim
n→∞
m→∞

BCon(n, m) 1
2

.

BCon(n, m) is compiled in Table 1 form ≤ 15 andn ≤ 40. The limits ofBCon with respect ton and

m appear respectively in the bottom row and the last column.

From now on, we shall allow for all profiles of preferences. Hence the existence of a Condorcet

winner will not be guaranteed. The SCFs that we shall examine all pick the Condorcet winner when it

exists but differ in their choice of a set of alternatives when there is no Condorcet winner.
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4. Kemeny

Kemeny (1959) proposes a principle to order all alternatives, which works for any profile. This

order agrees with the Condorcet order when the latter exists. A Kemeny order is closest to the given

profile in the following sense. Given two linear ordersP1 and P2 ∈ L, and two alternativesx, y ∈ X,

define:

δxy(P1, P2)




1 if xP1y and yP2x

0 otherwise

and∆(P1, P2) = ∑x ∈ X∑y ∈ Xδxy(P1, P2).

The function∆ is a distance on the setL. One can then define a "distance"d between an orderO and a

profile P by:

d(O, P) = ∑n
i =1∆(O, Pi).

A Kemeny order for a profileP is an order belonging to argminO ∈ L d(O, P). A Kemeny winner

is a top element of a Kemeny order. The Kemeny SCF,Ke, selects the Kemeny winners.

Young (1988) shows that the principle advocated by Kemeny is very much in the spirit of

Condorcet’s endeavour. Take a situation where there is some sense in saying that an alternative is

objectively better than another one. Suppose that the ranking of these two alternatives by each voter is his

or her evaluation of the true ranking and that the probability that each voter be right is greater than 1/2.

Then the Kemeny order is the one that has the maximum likelihood of being the true ranking over all

alternatives. This is precisely what Condorcet was after. The following lemmas and corollaries list some

of the properties of a Kemeny order.

Lemma 6: A Kemeny order for a profileP is an order belonging toargmax
O∈L x∈X y∈X

xOy

nxy(P).

9



Proof. d(O, P)
x∈X y∈X

n

i 1

δ(O, Pi)
x∈X y∈X

xOy

nyx(P)

hence the result.
x∈X y∈X

xOy

(n nxy(P)) m(m 1)n
2 x∈X y∈X

xOy

nxy(P),

Lemma 7: SupposeO = (1, 2, ...,m) is a Kemeny order for a given profileP. Thennj, j+1(P) ≥ nj+1, j(P),

j = 1, ...,m − 1.

Proof. For anyj = 1, ...,m − 1, consider the orderO* = (1, 2, ...,j − 1, j + 1, j, j + 2, ...,m). By the proof

of Lemma 6,d(O*, P) − d(O, P) = nj, j+1 − nj+1, j , which cannot be negative ifO is a Kemeny order.

Corollary 8: SupposeO = (1, 2, ...,m) is a Kemeny order for a given profileP. Then, if there exists a

Condorcet winner under this profile, this winner must be alternative 1.

Proof. From Lemma 7,nj, j−1(P) ≤ n/2, j = 2, ..., m. Thus none of the alternativesj = 2, ...,m may be a

Condorcet winner.

Lemma 9: If x is a (unique) Kemeny winner for a profileP, then∑ y ∈ X nxy(P) ≥ (m − 1)n/2 ( > ).

Proof. Without any loss of generality, supposeO = (1, 2, ...,m) is a (unique) Kemeny order and consider

the order O* = (2, ..., m, 1). By the proof of Lemma 6, d(O*, P) − d(O, P) =

∑m
j =2n1j(P) − ∑m

j =2nj1(P) = ∑m
j =2(2n1j(P) − n) = 2∑m

j =2n1j(P) − (m − 1)n ≥ 0 ( > ).

Lemma 10: (m − 1)n/((2m − 3)n − ν(n)) ≤ BKe(n, m) ≤ BCon(n, m).

Proof. From Corollary 8, the Kemeny SCF always selects the Condorcet winner when it exists. Hence

BKe(n, m) is bounded above byBCon(n, m). Turning to the lower bound, let us restrict ourselves, without

any loss of generality, to profiles that yield alternative 1 as a Kemeny winner and 2 as a Borda winner.

According to Lemma 9, for alternative 1 to be a Kemeny winner, we must haveB(1, P) ≡

∑m
j =2n1j(P) ≥ (m − 1)n/2. We must also haven2j(P) ≤ (n − ν(n))/2 for at least onej ≠ 2. Otherwise 2 would

be a Condorcet and a Kemeny winner. Thus, we must haveB(2, P) ≤ (m − 2)n + (n − ν(n))/2 =
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((2m − 3)n − ν(n))/2. Hence any profileP under which 1 is a Kemeny winner and 2 a Borda winner

without being a Kemeny winner gives:

B(1, P)
B(2, P)

≥ (m 1)n
(2m 3)n ν(n)

The right-hand side of the latter inequality is also a lower bound forBKe(n, m).

Corollary 11: limn → ∞ BKe(n, m) = (m − 1)/(2m − 3).

Proof. The limits of the left-hand and right-hand sides of the inequalities in Lemma 10 are both

(m − 1)/(2m − 3).

According to the last corollary, the possible discrepancy between the Condorcet and the Kemeny

SCFs vanishes as the number of voters increases. The next theorem shows that, for finite values of (n, m),

BKe is actually lower thanBCon, except when (n, m) = (3, 3), (4, 3), (4, 4), and (6, 3). The discrepancy is

highest when there are few voters. The exception obtains because the best profiles that we are able to find

in the next theorem toward achieving the Borda measure of the Kemeny rule yield a Kemeny winner that

is also a Borda winner. Recall thatBCon(n, m) = 1 for these pairs of (n, m). We are quite confident that

the upper bounds given in this theorem cannot be improved.

Theorem 12: Let

F11(n, m) (m 1)n ν(m) 3
(2m 3)n (m 3) ν(m)

, F12(n, m) (m 1)n ν(m) 3
2(m 2)n 2

,

F21(n, m) (m 1)n 2
2m(n 1) 3n 2

, F22(n, m) (m 1)n 2
2(m 2)n 2

.

Then,BKe(n, m) ≤ F11(n, m), for n = 3 and 5. Forn ≥ 7 and odd,BKe(n, m) ≤ min(F11(n, m), F12(n, m)).

For (n, m) ≠ (4, 3) andn even,BKe(n, m) ≤ min (F21(n, m), F22(n, m)).

Proof. For n odd, consider profileP11 defined by:

(1, 2, ...,m) for (n − 1)/2 voters,

(2, 3, ...,m, 1) for (n − 1)/2 voters,

11



(m − 2 + ν(m), ..., 6, 4, 1, 2, 3, 5, ...,m + 1 − ν(m)) for the remaining voter.

Under this profile, (1, 2, 3, ...,m) is the unique Kemeny order, alternative 2 a Borda winner (ex-aequo

with 1 for m = n = 3, unique otherwise) andB(1, P11)/B(2, P11) = F11(n, m). ThusF11(n, m) is an upper

bound forBKe(n, m) whenn is odd, the best that we could find forn = 3 and 5.

For n ≥ 7 and odd, consider profileP12 defined by:

(1, 2, 3, ...,m) for (n − 7)/2 voters,

(1, 3, 2, 4, ...,m) for 3 voters,

(3, 2, 4, 5, ...,m, 1) for (n − 3)/2 voters,

(2, 4, 5, ...,m, 1, 3) for 1 voter,

(2, 4, 6, ...,m − 2 + ν(m), 1, 3, 5, 7, ...,m + 1 − ν(m)) for the remaining voter.

Under this profile, (1, 3, 2, 4, ...,m) is now the unique Kemeny order, alternative 2 remains the unique

Borda winner ifm > 3, andB(1, P12)/B(2, P12) = F12(n, m). ThusF12(n, m) is another upper bound for

BKe(n, m) whenn is odd andm > 3. It is smaller thanF11(n, m) if and only if n < m − 5 + ν(m). Since

one must haven ≥ 7 for P12 to be defined, this last condition impliesm > 12.

For n even, consider profileP21 defined by:

(1, 2, ...,m) for n/2 voters,

(2, m, ..., 5, 4, 3, 1) for (n − 2)/2 voters,

(3, 4, 5, ...,m, 1, 2) for the remaining voter.

and profileP22 defined by:

(1, 2, 3, ...,m) for (n − 4)/2 voters,

(1, 3, 2, ...,m) for 2 voters,

(3, 2, 4, 5, ...,m, 1) for (n − 2)/2 voters,

(2, 4, 5, ...,m, 1, 3) for the remaining voter.

Note thatB(1, P21)/B(2, P21) = F21(n, m) and B(1, P22)/B(2, P22) = F22(n, m). The unique Kemeny order

is (1, 2, 3, ...,m) underP21 and (1, 3, 2, 4, ...,m) underP22. For (n, m) = (4, 3), both profilesP21 andP22

yield alternative 1 as the unique Borda winner as well as the Kemeny winner. Thus the bound given
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BCon(4, 3) = 1 cannot be improved with any of these two profiles. Form = 3, and any evenn, alternative

1 is the unique Borda winner underP22 but, forn ≠ 4, alternative 2 is a Borda winner underP21 (ex-aequo

with 1 for n = 6, unique otherwise). Thus, form = 3 andn ≠ 4, F21(n, m) is an upper bound forBKe(n, m).

For m > 3, bothP21 andP22 make alternative 2 a Borda winner (ex-aequo with 1 form = n = 4, unique

otherwise). Thus, forn even and (n, m) ≠ (4, 3), F21(n, m) and F22(n, m) are two upper bounds for

BKe(n, m). We have F21(n, m) > F22(n, m) ⇔ m > (n + 4)/2.

Remark 13: From the proof of the last theorem,F11(n, m) > F12(n, m) andF21(n, m) > F22(n, m) whenm

is sufficiently large with respect ton. Thus, whenm becomes large andn takes fixed values other than

3 and 5, the best upper bound forBKe is given byF12 or F22. Since limm→ ∞ F12(n, m) = limm→ ∞ F22(n, m) =

1/2,BKe is bounded above by 1/2 whenm increases. Also note that limm→ ∞ F11(n, m) = limm→ ∞ F21(n, m) =

n/(2n − 1). In particular, limm→ ∞ F11(3, m) = 3/5 and limm→ ∞ F11(5, m) = 5/9. The limit with respect ton

for BKe has been established in Corollary 11. It is an exact value.

The best upper bounds forBKe(n, m) are compiled in Table 2 form ≤ 15 andn ≤ 40. The limits

of BKe with respect ton andm appear respectively in the bottom row and the last column. Bold numbers

are given byF12 or F22. All others byF11 or F21.

We are quite confident that the upper bounds given in Theorem 12 cannot be improved. Actually,

we can be more affirmative in the casem = 3. Forn odd, profileP11 reduces to:

(1, 2, 3) for (n + 1)/2 voters,

(2, 3, 1) for (n − 1)/2 voters.

This is clearly the best that can be done in order to give alternatives 1 and 2 respectively the lowest and

highest possible Borda scores under the constraint that alternative 1 is a unique Kemeny winner.

For n even, profileP21 reduces to:

(1, 2, 3) forn/2 voters,

(2, 3, 1) for (n − 2)/2 voters,
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(3, 1, 2) for the remaining voter.

By having one voter of type (3, 1, 2) instead of one more of type (1, 2, 3), one obtains a lower value for

the B(1, P)/B(2, P) ratio. But one cannot have more voters of the last type without making alternative 3

a Condorcet winner. This is again the best that can be done.

5. Copeland

Copeland (1951) proposes a different and simple way of selecting winning alternatives.

The Copeland SCF is the functionCop that selects the alternatives that defeat a maximum number of

other alternatives. Lets(x, P) = {y ∈ X : nxy(P) > nyx(P)} . This is the Copeland scoreof x. Cop is

defined by:Cop(P) = argmaxx ∈ X s(x, P).

For any tournament, the following holds:

y∈X
y≠x

s(y, P) m(m 1)
2

.

Thus, if an alternativex is a Copeland winner under a profileP that induces a tournament, we must have

s(x, P) ≥ (m − 1)/2. However, if this condition is satisfied with equality, then all other alternatives are also

Copeland winners. The next lemma gives a necessary condition for an alternative to be a unique Copeland

winner.

Lemma 15: Given a profileP that induces a tournament onX, if an alternativex is a unique Copeland

winner, thens(x, P) > m/2, i.e.s(x, P) ≥ (m + ν(m))/2.

Proof. Supposes(x, P) ≤ m/2, i.e.s(x, P) ≤ (m + ν(m) − 2)/2. Then

y∈X
y≠x

s(y, P) m(m 1)
2

s(x, P) ≥ m(m 1)
2

m ν(m) 2
2

which implies which implies∃ y ∈ X : s(y, P) ≥ m
2

m ν(m) 2
2(m 1)

s(y, P) ≥ m 1
2

.

This in turn impliess(y, P) ≥ m ν(m) 2
2

≥ s(x, P).
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Corollary 16: For m = 3 or 4, a unique Copeland winner under a profile that induces a tournament is a

Condorcet winner.

Using Lemma 15, it is easy to establish a lower bound forBCop(n, m). This is the object of the next

theorem.

Theorem 17: Let G(n, m) (m ν(m))(n ν(n))
m(3n ν(n)) n(ν(m) 4) ν(m)ν(n)

.

For any profileP that induces a tournament,G(n, m) ≤ BCop(n, m).

Proof. Without any loss of generality, consider a profileP such that alternative 1 is a unique Copeland

winner while 2 is a Borda winner. From Lemma 15,

We must also haves(2, P) ≤ (m + ν(m) − 2)/2, from whichB(1, P) ≥ (m ν(m))
2

(n ν(n))
2

.

B(2, P) ≤ (m ν(m) 2)n
2

(m ν(m))
2

(n ν(n))
2

.

Combining these two inequalities yields the result.

From Corollary 16, we know thatBCop(n, m) = BCon(n, m) for m = 3 or 4. The value ofBCon(n, m)

has been established exactly in Theorem 4. We thus have an exact value ofBCop(n, m) for m = 3 or 4. In

the next theorem, we establish upper bounds forBCop(n, m) that will be lower thanBCon(n, m) for larger

values ofm and large enough values ofn. We are again confident that it is not possible to lower the value

of the lowest of these bounds when it is already smaller thanBCon(n, m). We actually show that the upper

bound that is given for the subset of profiles that induce a tournament onX, and in particular forn odd,

becomes exact when we take the limit with respect tom or n.

Theorem 18: Let E(n, m) = 2(m + n − 1)/(mn − 2) and

whereD(n, m) m(n 3ν(n)) nν(m) ν(n)(ν(m) 4)
(3m ν(m) 4)(n ν(n)) 4α(m)ν(n)

α(m)




0 if m < 8

1 if m ≥ 8.

ThenBCop(n, m) ≤ D(n, m). Moreover, forn even,BCop(n, m) ≤ E(n, m) < D(n, m).
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Proof. Consider the following profile over 15 alternatives:

(5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 8, 6, 10, 12, 14) for (n − 3ν(n))/2 voters,

(7, 5, 11, 9, 15, 13, 1, 2, 8, 10, 12, 14, 6, 3, 4) forν(n) voters,

(2, 14, 12, 10, 6, 8, 4, 3, 15, 13, 11, 9, 7, 5, 1) for (n − 3ν(n))/2 voters,

(2, 8, 10, 12, 14, 4, 6, 3, 5, 9, 7, 13, 11, 15, 1) forν(n) voters,

(1, 3, 4, 6, 15, 13, 14, 11, 12, 9, 10, 7, 5, 2, 8) for the remainingν(n) voters.

For n = 9, it yields the majority matrix of Table 5. To get the general matrix, replace 4 by (n − ν(n))/2,

5 by (n + ν(n))/2, 8 byn − ν(n) and 9 byn. This profile can be extended or reduced in an obvious way

to any number of alternatives. Call the general profileP31. For anym and forn odd, it yields a tournament

in which 1 is the unique Copeland winner and 2 the unique Borda winner. MoreoverB(1, P31)/B(2, P31) =

D(n, m), hence the first statement of the theorem.

For n even, consider profileP32 defined by:

(1, 2, ...,m) for one voter,

(2, 3, ...,m, 1) for (n − 2)/2 voters,

(4, ...,m, 1, 2, 3) for one voter,

(m, ..., 4, 1, 2, 3) for the remaining (n − 2)/2 voters.

It givesn12 = n13 = (n + 2)/2,n23 = n, n1j = 1, andn2j = n/2, j = 4, ...,m, andnij = n/2, j > i, i = 3, ...,m.

Thus 1 is a unique Copeland winner and 2 a Borda winner. Form = 3, alternative 1 is also a Condorcet

winner. MoreoverB(1, P32)/B(2, P32) = E(n, m), hence the second statement of the theorem.

Corollary 19: Forn even, lim
n→∞

BCop(n, m) ≤ lim
n→∞

E(n, m) 2
m

, lim
m→∞

BCop(n, m) ≤ lim
m→∞

E(n, m) 2
n

.

Within the subset of profiles that induce a tournament onX, and in particular forn odd,

lim
n→∞

BCop(n, m) m ν(m)
3m ν(m) 4

, lim
m→∞

BCop(n, m) n 3ν(n)
3(n ν(n))

, lim
m→∞
n→∞

BCop(n, m) 1
3

.

Proof. The first assertion follows from Theorem 18, the second from the combination of Theorems 17 and

18 and the fact that
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lim
n→∞

G(n, m) lim
n→∞

D(n, m) m ν(m)
3m ν(m) 4

,

andlim
m→∞

G(n, m) lim
m→∞

D(n, m) n 3ν(n)
3(n ν(n))

,

lim
m→∞
n→∞

G(n, m) lim
m→∞
n→∞

D(n, m) 1
3

.

Remark 20: For some small values ofm andn, profile P1, which makes 1 a Condorcet hence a Copeland

winner, gives a ratioB(1, P1)/B(2, P1) that is smaller than bothD(n, m) andE(n, m). Thus a least upper

bound forBCop(n, m) is eitherBCon(n, m) or D(n, m) for n odd andE(n, m) for n even. These bound appear

in Table 3. Bold numbers are the same as for the Condorcet rule. Forn even profileP32, for whichE(n, m)

is attained, does not yield a tournament. If we were to restrict ourselves to profiles that induce a

tournament onX, as withP31, thenD(n, m) would be the bound to use instead ofE(n, m). The resulting

numbers would be slightly higher than the ones that can be infered by interpolating from those of Table 3

for n odd. The reason is that the 1 andn − 1 in the majority matrix would become 2 andn − 2 respec-

tively. Two limits with respect ton are given. The first row gives the limit ofD(n, m), which is valid if

we restrict ourselves to tournaments. The second row gives the limit ofE(n, m), which is valid if we

restrict ourselves to evenn and allow for profileP32 that does not induce a tournament.

In a recent paper, Saari and Merlin (1996) show that, form ≥ 5 and any two rankings of the

candidates, there exist profiles where these rankings are, respectively, the Copeland and the Borda

rankings. In particular, for any alternative, there exist profiles such that this candidate is the Copeland

winner but occupies the last position in the Borda ranking. ProfileP32 used in the proof of Theorem 18

is an illustration of this result. Indeed, one can check thatB(1, P32) = m + n − 1 while

B(3, P32) = (n(m − 2) − 2)/2. Thus 2B(3, P32) − 2B(1, P32) = n(m − 4) − 2m > 0 if and only ifm ≥ 5 and

n > 2m/(m − 4). Alternative 3 being the more serious other contender for the last place in the Borda

ranking, this shows that alternative 1 is the Borda looser for values ofm andn satisfying the above ine-

qualities.
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Moreover our results supplement the ordinal finding of Saari and Merlin by showing how far from

the Borda winner a Copeland winner can be in terms of the Borda scores. Given the intrinsic interest in

the Borda scores, this is useful information. Our results show that the Copeland winner can do pretty bad

whenn is even and whenn andm become large, the limit being 0. The problem is less dramatic when

n is odd. For small values ofn andm, the Copeland rule does as most as well as the Condorcet rule when

it does not perform exactly as the latter.

6. Kramer-Simpson

Simpson (1969) proposes a quite different method of avoiding the Condorcet paradox in Euclidean

spaces. Adapting his principle to our finite context gives: The alternatives of voter maximum agreement

should be one where the maximum number of voters wishing to move to any other alternative is as small

as possible over the range of alternatives. It is the democratic hope so to speak, that the number wishing

an alternative other thans is small. If it less than half the voters, democracy is in good luck ands tops

all other alternatives. To be more precise,s should belong to argminx ∈ Xmaxy ∈ Xnyx(P). Kramer (1977)

justifies this principle by showing that the minmax set is the equilibrium of sequential electoral

competition between two parties whose platforms belong to an Euclidean space.

We call this function the Kramer-Simpson SCF and we define it equivalently by

KS(P) = argmaxx ∈ Xminy ∈ X\xnxy(P). An element ofKS(P) is a Kramer-Simpson winner.

Lemma 23: BKS(n, m) ≤ BCon(n, m), ∀ n, m ≥ 3.

Proof. Supposex ∈ X is a Condorcet winner. Thennxy(P) > nyx(P) ∀ y ∈ X\{ x}. Thus clearly x is a

Kramer-Simpson winner, giving the upper bound forBKS.

The next three theorems establish smaller upper bounds for large enough values ofm or n.

Theorem 24: BKS(n, m) ≤ 4(m − 1)/(m2 − m − 4), ∀ m ≥ 6, ∀ n ≥ 2(m − 1) or n = m − 1.
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Proof. Consider them − 1 following orders:

O2 = (2, 3, ...,m − 2, 1, m − 1, m)

O3 = (3, 4, ...,m − 1, 1, m, 2)

...............

...............

Om = (m, 2, ...,m − 3, 1, m − 2, m − 1).

Then let p = n/(m − 1) where a represents the largest integer smaller or equal toa,

k = n − p(m − 1), nj = p, j = 2, ...,m − k, andnj = p + 1, j = m − k + 1, ...,m. Since∑m
j =2nj = n, one

can partition the set of voters intom − 1 subsets containingnj individuals, forj = 2, ...,m. Next, consider

the profileP2 defined by giving preferenceOj to thenj individuals of subsetj, for j = 2, ...,m. In plain

words, each orderOj is shared byp different individuals and thek remaining individuals, if any, are

distributed among the lastk orders. A parameterα appears in the remaining of the proof so that the latter

be reusable for the next two theorems. Setα = 2 for the present theorem. Under profileP2 just

constructed,

min
j ∈X

n1j(P
2) ≥ αp and

max
i ≠1

min
j ∈X

nij(P
2)





p if k 0

p 1 if k > 0

Sincen ≥ (4 − α)(m − 1) impliesp ≥ 4 − α andn = m − 1 impliesp = 1 andk = 0, alternative 1 turns

out to be the unique Kramer-Simpson winner. Turning to Borda scores,B(1, P2) = αn andB(m, P2) =

(m − 1)mp/2 − αp + km − k(k + 1)/2 − max(0,α + k + 1 − m). One can check thatm is the Borda

winner in the set of alternatives {2, ...,m} (unique if and only if k > 0, i.e.p < n/(m − 1)). In the case

wherep = n/(m − 1) andk = 0, we haveB(m, P2) = nm/2 − αn/(m − 1). Hence,

B(m, P 2) B(1, P 2) n








m(m 1) 2α
2(m 1)

α n








m(m 1 2α)
2(m 1)

> 0 ⇔ m > 1 2α.

Thus, in this case,m is a Borda winner andB(1, P 2)

B(m, P 2)

2α(m 1)

m2 m 2α
.
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In the more general case,B(m, P2) ≥ nm/2 − α/(m − 1). Since there is no loss of generality in letting 1

be a Kramer-Simpson winner andm a Borda winner, rather than any other pair of alternatives, we have

BKS(n, m) ≤ 2α(m − 1)/(m2 − m − 2α), ∀ m ≥ 2(α + 1), ∀ n ≥ (4 − α)(m − 1) or n = m − 1.

The next theorem establishes another upper bound onBKS(n, m) for the casem ≥ 8 andn ≥ m − 1.

Theorem 25: BKS(n, m) ≤ 6(m − 1)/(m2 − m − 6), ∀ m ≥ 8 and∀ n ≥ m − 1.

Proof. Raise alternative 1 by one position in all orders of profileP2 and setα = 3 in the proof of

Theorem 23.

The next theorem establishes another upper bound forBKS(n, m), which, although larger than the

ones obtained in the last two theorems, is smaller thanBCon for some (n, m) such thatm ≥ 7 and

n < m − 1.

Theorem 26:BKS(n, m) ≤ 8/(2m − n − 1 − 2max(0,n − m + 5)/n), for m = 7 andn = 3,m = 8 andn ≤ 5,

or m ≥ 9 andn ≤ m − 2.

Proof. Set α = 4 in the proof of Theorem 23 and raise alternative 1 by two positions in all orders of

profile P2. We are left with ordersOk, ..., Om only in this profile, wherek = n in this case. CallP42 the

modified profile. It yieldsB(m, P42) = (2m − n − 1)n/2 − max(0,n − m + 5) and one can check that this

score is larger thanB(1, P42) for the values ofm andn given in the statement of the theorem and only

for these values. Hence the result.

Remark 27: The proofs of Theorems 24 and 25 give upper bounds onBKS that are smaller than the ones

given in the statement of these theorems. The general formula for these upper bound is:

αn/((m − 1)mp/2 − α p + km − k(k + 1)/2 − max(0,α + k + 1 − m)), with α = 2, 3 or 4 according to

whethern ≥ 2 (m − 1) (orn = m − 1),m − 1 < n < 2(m − 1) orn < m − 1. Forα = 2 or 3, the restriction

on m may also vary slightly from the one given in Theorems 24 and 25. Table 4 gives the best of the four

bounds established in Lemma 23 and Theorems 24, 25, and 26.
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Remark 28: From Theorem 26, Sincep > n/(m − 1) − 1, the upper bound givenlim
m→∞

BKS(n, m) 0.

in Remark 27 forα = 2 is bounded above by

4n

(m2 m 4)




n
m 1

1




(2m 1)k k 2 2 max(0, 3 k m)

which is equal to

4(m 1)

(m2 m 4)








1 m 1
n

(m 1)
n

((2m 1)k k 2 2 max(0, 3 k m))

.

Hence lim
n→∞

BKS(n, m) ≤ 4(m 1)

(m2 m 4)
.

7. The Top Cycle

The SCFs examined in the previous sections propose different ways of breaking cycles inM(P).

Instead of breaking these cycles, we might settle for a cruder SCF that leaves us with a set of alternatives

that form a cycle and defeat all other alternatives under the relationM(P). Such a set is called the top

cycle. The name of Schwartz (1972) is often associated with this concept because of the axiomatization

he makes of this rule. However, Good (1971) is probably the first to introduce this concept, which he calls

the Condorcet set, in the literature. Miller (1980) calls it the minimal undominated set.

For a given profileP, let M*(P) be the transitive closure ofM(P), i.e. xM*(P)y if there exists a

sequencex = x0, x1, ..., xk = y such thatxi M
*(P)xi+1, i = 0, ...,k − 1. Thetop cycle of X with respect to

P is defined byTC(P) = {x ∈ X : xM*(P)y, ∀ y ∈ X\{ x}}. It always exists by transitivity ofM*.

Lemma 29: Ke(P) ⊆ TC(P).

Proof. Let x ∈ Ke(P). From Lemma 6,xM*(P)y, ∀ y ∈ X\{ x}. Thus x ∈ TC(P).
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Corollary 30: BKe(n, m) ≤ BTC(n, m) ≤ BCon(n, m).

Actually we can do better and show thatBTC(n, m) = BCon(n, m). We begin with the following

lemma, the contain of which is well known. See Moulin (1988, Exercise 9.10) or Miller (1980). Parts b

and c give the substence of this concept.

Lemma 31: a) TC(P) = {x} ⇔ x is the Condorcet winner;

b) TC(P) is the smallest subsetY ⊆ X such thaty ∈ Y, x ∈ X\Y ⇒ yM(P)x;

c) TC(P) ≠ 2;

d) If TC(P) ≥ 3, then one can orderTC(P) as {x1, ..., xk} such that xi M(P)xi+1, i = 1, ...,k − 1,

xkM(P)x1 and such that this cycle is of maximal length.

Lemma 32: For m = 3 and 4, the Borda winners belong to the top cycle whenever the latter is not a

singleton.

Proof. Obvious form = 3 from Lemma 31. Form = 4, let {1, 2, 3} be the top cycle with 1M2, 2M3, and

3M1. In order that the Borda score of all members of the top cycle be as small as possible, supposen12 =

n23 = n31 > n/2. This impliesn21 = n32 = n13, n12 + n13 = n21 + n23 = n31 + n32 = n, n14 = n24 = n34 > n/2, and

n41 = n42 = n43 < n/2. Thus {1, 2, 3} is the set of the Borda winners.

Theorem 33: BTC(n, m) = BCon(n, m).

Proof. For m = 3 and 4, the result follows from Lemma 32. Form ≥ 5, consider a profileP such that

TC(P) = {1, ..., k} with k ≥ 3. By Lemma 31, nij(P) ≥ (n + ν(n))/2 for i ≤ k < j , which implies

nji(P) ≤ (n − ν(n))/2 for i ≤ k < j . Since ∑k
i =1 ∑k

j =1 nij(P) = (k(k − 1)n)/2, we have

maxi ∈ TC(P) ∑k
j=1 nij(P) ≥ (k − 1)n/2. LetB1(P) = maxx ∈ TC(P) B(x, P) andB2(P) = maxx ∉ TC(P) B(x, P). From what

precedes, B1(P) ≥ (k − 1)n/2 + (m − k)(n + ν(n))/2 and B2(P) ≤ k(n − ν(n))/2 + (m − k − 1)n.

If B1(P) ≥ B2(P), thenB*(P) = B1(P) andB1(P)/B*(P) = 1 ≥ BCon(n, m). Otherwise let

A (k 1)n (m k)(n ν(n))
k(n ν(n)) 2(m k 1)n
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C (k 1)ν(n) (k 1)n (m k)(n ν(n))
n ν(n) (k 1)(n ν(n)) (k 1)(n ν(n)) 2(m k 1)n

D (k 1)(n ν(n)) (m k)(n ν(n))
n ν(n) 2(k 1)n 2(m k 1)n

E (m 1)(n ν(n))
n ν(n) 2(m 2)n

and recall thatBCon is attained for profileP1 and thatn1j(P
1) = (n + ν(n))/2, j = 2, ...,m, n21(P

1) =

(n − ν(n))/2, andn2j(P
1) = n, j = 3, ...,m. Thus we haveB1(P)/B*(P) = B1(P)/B2(P) ≥ A > C = D = E =

B(1, P1)/B(2, P1) = BCon(n, m). The first inequality follows from the definition ofB1(P) and B2(P). As for

A > C, let a be the numerator ofC, b its denominator,α = (k − 1)ν(n) andβ = (k − 1)(n + ν(n)). Then

A = (a − α)/(b − β) andA > C follows from the fact thatα/β < 1/2 < a/b.

8. The Uncovered Set

Unfortunately, the top cycle is in general very large and may contain Pareto-inefficient alternatives.

It is not difficult to find example where it is the whole setX. For these reasons, Fishburn (1977) and

Miller (1980) have independently come up with a more decisive SCF called the uncovered set.

For a given profileP, let us consider the binary relation defined onX by xC(P)y if xM(P)y and

if yM(P)z implies xM(P)z, ∀ z ∈ X. It is called the covering relation ofX with respect toP. The un-

covered setUC(P) of X with respect toP is the set of maximal elements of the covering relation, i.e.

UC(P) = {x ∈ X : y ∈ X : yC(P)x}. This set always exits since the covering relation is transitive.

Throughout this section we shall confine ourselves to profiles that induce tournaments onX. We have the

following lemma the content of which can also be found in Moulin (1988, Exercise 9.11) or Miller (1980).

Lemma 34: a) x ∈ UC(P) ⇔ ∀ y ∈ X, xMyor ∃ z ∈ X : xMz andzMy.

b) UC(P) = {x} ⇔ x is the Condorcet winner.

c) UC(P) ≠ 2.
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d) Cop(P) ⊆ UC(P) ⊆ TC(P).

Corollary 35: For m = 3, the Borda winners belong toUC(P) whenever the latter is not a singleton.

Lemma 36: For n = 4, UC(P) is a singleton for any profileP that induces a tournament onX.

Proof. Consider anyx ∈ UC(P). If UC(P) is not a singleton, then, by Lemma 34 b), there must exist a

y ∈ X such that notxMy, i.e. nxy ≤ 1. Then, by Lemma 34 a), there must exist az ∈ X such thatxMzand

zMy, i.e. nxz ≥ 3 andnzy ≥ 3. By Lemma 1, this impliesnxy ≥ 2, a contradiction.

Corollary 37: BUC(4, m) = BCon(4, m).

Conjecture 38: BUC(n, m) = BCon(n, m).

For m = 3 or n = 4, there is nothing to prove. Forn ≠ 4 andm ≥ 4, let

H(n, m) (m 3)(n ν(n)) 2n
(2m 8)n 4(n ν(n))

and consider profileP51 defined by:

(4, 5, ...,m, 3, 2, 1) for (n − 3ν(n))/2 voters,

(2, 4, 5, ...,m, 3, 1) for ν(n) voters,

(3, 1, 4, 5, ...,m, 2) for ν(n) voters,

(1, 2, 4, 5, ...,m, 3) for (n − ν(n))/2 voters.

Under this profile, {1, 2, 3} is the uncovered set, alternative 4 is the unique Borda winner when

(m − 3)n > (m − 1)ν(n)), and B(x, P51)/B(4, P51) = H(n, m), for x = 1, 2. However, one can write

H(n, m) = (a − α)/(b − β) where a is the numerator ofC in the previous section,b its denominator,

α = 2ν(n) and β = n + 3ν(n). Since α/β < 1/2 < a/b, it follows that a/b < H(n, m). Note thata/b =

BCon(n, m) when (m − 3)n > (m − 1)ν(n). When this condition is not satisfied, alternatives 1 and 2 are the

Borda winners giving us a potential value of 1 forBUC(n, m), which again is as least as large asBCon(n, m).

Hence, profileP51 gives us an upper bound forBUC that is as least as large asBCon(n, m).
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We conjecture that it is not possible to improve upon profileP51 if the uncovered set must not be a

singleton. First of all notice that, underP51, the Copeland score of alternative 4 is just one below the one

of alternatives 1 and 2. This gap must be maintained for alternative 4 to remain outside of the uncovered

set. The numbers of votes for alternatives 1 and 2 are as small as possible given the constraint that must

be maintained on the Copeland scores. The numbers of votes for alternative 4 are also as large as possible

in view of the same constraint and Lemma 1.

One will note thatn1j = n2j = (n + ν(n))/2 andn3j = ν(n), j ≥ 4. One might think that interchanging some

of these values could reduce the numerator inH(n, m). Again this is not possible because of the same

constraint or Lemma 1.

A profile yielding an uncovered set larger than 3 would not do any good either. It would reduce the Borda

score of the Borda winner while keeping the largest Borda score in the uncovered set almost unchanged.

Remark 39: From Lemma 34 d),BCop(n, m) constitutes a lower bound forBUC(n, m). A better bound

could be obtained if we hadKe(P) ⊂ UC(P), as with the Top cycle, and this would reinforce the preceding

conjecture and make it easier to prove it. Unfortunately, the following example shows that one may have

Ke(P) ∩ UC(P) = ∅ andKe(P) ∩ Cop(P) = ∅. Let m = 4, n = 9 and consider the profile defined by:

(1, 2, 3, 4) for 4 voters,

(4, 2, 3, 1) for 3 voter,

(3, 4, 1, 2) for 2 voters.

It can be checked that (1, 2, 3, 4) is the unique Kemeny order so thatKe(P) = {1}, that UC(P) =

{2, 3, 4}, and thatCop(P) = {3, 4}.

For the reason explained in the preceding remark, it would be interesting to have a stronger

covering relationC* leading to an uncovered set that would satisfyKe(P) ⊆ UC*(P). Since the Kemeny

and the Condorcet rules are close in terms of our measure, the chance thatBUC* (n, m) = BCon(n, m) should

be better than in the case ofUC or, at least, it should be easier to prove it. Such a relation is introduced

and analyzed in De Donder, Le Breton and Truchon (1996). Actually this relation is so strong that we

haveBor(P) ⊆ UC*(P), ∀ P, and, as a corollary,BUC* (n, m) = 1. This means thatUC* is not a Condorcet
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type function.UC*(P) contains the Condorcet winner when it exists but it may contain other alternatives

as well, namely the Borda winners, any of which need not be the Condorcet winner.

The relationC* is defined byxC*(P) y if and only if xM(P)y andnxz(P) ≥ nyz(P) ∀ z ∈ X\{ x, y}.

Let UC*(P) be the set of maximal elements of the covering relationC*. It always exists sinceC* is

transitive. LetPar(P) be the set of Pareto efficient alternatives. The following lemma is proven in De

Donder et al. (1996).

Lemma 40: a) UC(P) ⊆ UC*(P) ⊆ Par(P);

b) Suposex is the Condorcet winner. Thenx ∈ UC*(P);

c) Ke(P) ⊆ UC*(P);

d) Bor(P) ⊆ UC*(P).

Corollary 41: BUC* (n, m) = 1.

9. Conclusion

The uncovered setUC* analyzed at the end of the last section has a perfect Borda score of 1. This

is because the Borda winners always belong to this set. Unfortunately, this set, which is very interesting

in other respects, may contain alternatives other than the Condorcet winner when the latter exists.

For all other SCFs analyzed in this paper, the Borda measure decreases monotonically with respect

to the numberm of alternatives and the numbern of voters when this last number is odd or even.

However, monotonicity does not hold on the entire set of integers. Thus all rules do best form and n

small, even achieving the maximum value of 1 for very small numbers of alternatives and voters. This

is because there is a Borda winner among the alternatives that win according to the rule under scrutiny.

The rules that fare better are the Condorcet SCF, the top cycle, and possibly the uncovered set.

They all have the same Borda measures. In the case of the uncovered set, this remains a conjecture. The

Borda measure of these rules is 0.5 in the limit with respect to bothm and n. The Kemeny SCF fares
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almost as well as the Condorcet SCF and the top cycle. This is not surprising since the Kemeny rule is

much in the spirit of the Condorcet one. What is more surprising is the fact that the top cycle has the same

measure as the Condorcet one instead of the Kemeny one. Allowing for profiles that yield cycles does not

worsen the Borda measure. One may see the explanation in the fact that the top cycle contains not only

the Kemeny winners but possibly many other alternatives. While Kemeny seeks to break the cycles that

may obtain under the majority relation by picking an order over all alternatives, with the top cycle, one

is left with the largest set of alternatives that defeat all other alternatives without being defeated by the

latter. This is not a very decisive rule. Actually, the top cycle may leave us with the whole set of

alternatives to choose from. The same remarks apply to the uncovered set.

The Copeland and the Kramer-Simpson SCF are two different ways of resolving the presence of

cycles in the majority relation. For small values ofm andn, for example form = n = 5, they seem to do

better than the Kemeny SCF and almost as well as the Condorcet SCF but recall that, except in the limit,

we have only been able to show that the numbers given for these two SCFs are upper bound for their

Borda measure. The performance of these two SCFs deteriorates rapidly as the values of these parameters

increase. The Borda measure of the Kramer SCF goes to 0 asm tends to infinity, whatever the value of

n. The limit of the Borda measure with respect to bothm andn is 1/3 for the Copeland SCF if we restrict

ourselves to profiles that yield a tournament and 0 otherwise. It would thus appear that the Kemeny SCF

is the one that does the best in terms of resolving the presence of cycles in the majority relation and in

terms of the Borda measure that we propose in this paper.
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Table 1: Condorcet

n\m 3 4 5 6 7 8 9 10 11 12 13 14 15 ∞

3 1.00 0.86 0.80 0.77 0.75 0.74 0.73 0.72 0.71 0.71 0.71 0.70 0.700.67
4 1.00 1.00 0.92 0.88 0.86 0.84 0.83 0.82 0.81 0.80 0.80 0.80 0.790.75
5 0.86 0.75 0.71 0.68 0.67 0.66 0.65 0.64 0.64 0.63 0.63 0.63 0.630.60
6 1.00 0.86 0.80 0.77 0.75 0.74 0.73 0.72 0.71 0.71 0.71 0.70 0.700.67
7 0.80 0.71 0.67 0.65 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 0.600.57
8 0.91 0.79 0.74 0.71 0.70 0.69 0.68 0.67 0.67 0.66 0.66 0.66 0.650.63
9 0.77 0.68 0.65 0.63 0.61 0.60 0.60 0.59 0.59 0.59 0.58 0.58 0.580.56

10 0.86 0.75 0.71 0.68 0.67 0.66 0.65 0.64 0.64 0.63 0.63 0.63 0.630.60
11 0.75 0.67 0.63 0.61 0.60 0.59 0.59 0.58 0.58 0.57 0.57 0.57 0.570.55
12 0.82 0.72 0.68 0.66 0.65 0.64 0.63 0.62 0.62 0.62 0.61 0.61 0.610.58
13 0.74 0.66 0.62 0.60 0.59 0.58 0.58 0.57 0.57 0.57 0.56 0.56 0.560.54
14 0.80 0.71 0.67 0.65 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 0.600.57
15 0.73 0.65 0.62 0.60 0.59 0.58 0.57 0.57 0.56 0.56 0.56 0.56 0.550.53
16 0.78 0.69 0.65 0.63 0.62 0.61 0.61 0.60 0.60 0.59 0.59 0.59 0.590.56
17 0.72 0.64 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.56 0.55 0.55 0.550.53
18 0.77 0.68 0.65 0.63 0.61 0.60 0.60 0.59 0.59 0.59 0.58 0.58 0.580.56
19 0.71 0.64 0.61 0.59 0.58 0.57 0.56 0.56 0.56 0.55 0.55 0.55 0.550.53
20 0.76 0.67 0.64 0.62 0.61 0.60 0.59 0.59 0.58 0.58 0.58 0.57 0.570.55
21 0.71 0.63 0.60 0.59 0.57 0.57 0.56 0.56 0.55 0.55 0.55 0.55 0.540.52
22 0.75 0.67 0.63 0.61 0.60 0.59 0.59 0.58 0.58 0.57 0.57 0.57 0.570.55
23 0.71 0.63 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.55 0.54 0.540.52
24 0.74 0.66 0.63 0.61 0.60 0.59 0.58 0.58 0.57 0.57 0.57 0.57 0.560.54
25 0.70 0.63 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.54 0.54 0.540.52
26 0.74 0.66 0.62 0.60 0.59 0.58 0.58 0.57 0.57 0.57 0.56 0.56 0.560.54
27 0.70 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.540.52
28 0.73 0.65 0.62 0.60 0.59 0.58 0.57 0.57 0.57 0.56 0.56 0.56 0.560.54
29 0.70 0.63 0.59 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.540.52
30 0.73 0.65 0.62 0.60 0.59 0.58 0.57 0.57 0.56 0.56 0.56 0.56 0.550.53
31 0.70 0.62 0.59 0.58 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.540.52
32 0.72 0.65 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.56 0.56 0.55 0.550.53
33 0.69 0.62 0.59 0.57 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.530.52
34 0.72 0.64 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.56 0.55 0.55 0.550.53
35 0.69 0.62 0.59 0.57 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.530.51
36 0.72 0.64 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.55 0.55 0.55 0.550.53
37 0.69 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.530.51
38 0.71 0.64 0.61 0.59 0.58 0.57 0.56 0.56 0.56 0.55 0.55 0.55 0.550.53
39 0.69 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.530.51
40 0.71 0.64 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.55 0.550.53

∞ 0.67 0.60 0.57 0.56 0.55 0.54 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.50



Table 2: Kemeny

n\m 3 4 5 6 7 8 9 10 11 12 13 14 15 ∞

3 1.00 0.83 0.78 0.73 0.71 0.69 0.68 0.67 0.67 0.65 0.66 0.65 0.650.60
4 1.00 1.00 0.82 0.73 0.68 0.65 0.63 0.61 0.60 0.59 0.58 0.57 0.570.50
5 0.86 0.73 0.69 0.65 0.64 0.62 0.62 0.61 0.60 0.60 0.60 0.59 0.590.56
6 1.00 0.83 0.76 0.70 0.66 0.63 0.61 0.60 0.58 0.58 0.57 0.56 0.560.50
7 0.80 0.69 0.65 0.62 0.61 0.60 0.59 0.58 0.580.57 0.57 0.55 0.56 0.50
8 0.90 0.76 0.71 0.680.64 0.62 0.60 0.59 0.58 0.57 0.56 0.56 0.55 0.50
9 0.77 0.67 0.63 0.61 0.60 0.58 0.58 0.57 0.57 0.56 0.560.55 0.55 0.50

10 0.85 0.73 0.68 0.65 0.630.61 0.59 0.58 0.57 0.57 0.56 0.55 0.55 0.50
11 0.75 0.65 0.62 0.60 0.59 0.57 0.57 0.56 0.56 0.55 0.55 0.55 0.550.50
12 0.81 0.70 0.66 0.63 0.62 0.610.59 0.58 0.57 0.56 0.56 0.55 0.55 0.50
13 0.74 0.65 0.61 0.59 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.54 0.540.50
14 0.79 0.69 0.64 0.62 0.61 0.60 0.590.58 0.57 0.56 0.56 0.55 0.55 0.50
15 0.73 0.64 0.61 0.58 0.58 0.56 0.56 0.55 0.55 0.55 0.54 0.54 0.540.50
16 0.77 0.68 0.63 0.61 0.60 0.59 0.58 0.570.57 0.56 0.55 0.55 0.55 0.50
17 0.72 0.63 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.540.50
18 0.76 0.67 0.63 0.61 0.59 0.58 0.57 0.57 0.570.56 0.55 0.55 0.55 0.50
19 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.540.50
20 0.75 0.66 0.62 0.60 0.59 0.58 0.57 0.57 0.56 0.560.55 0.55 0.54 0.50
21 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.530.50
22 0.74 0.65 0.62 0.60 0.58 0.57 0.57 0.56 0.56 0.55 0.550.55 0.54 0.50
23 0.71 0.63 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.530.50
24 0.74 0.65 0.61 0.59 0.58 0.57 0.56 0.56 0.56 0.55 0.55 0.550.54 0.50
25 0.70 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.530.50
26 0.73 0.65 0.61 0.59 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.54 0.540.50
27 0.70 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.53 0.53 0.530.50
28 0.73 0.64 0.61 0.59 0.57 0.57 0.56 0.55 0.55 0.55 0.55 0.54 0.540.50
29 0.70 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.53 0.53 0.530.50
30 0.72 0.64 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.54 0.54 0.540.50
31 0.70 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.53 0.53 0.53 0.530.50
32 0.72 0.64 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.540.50
33 0.69 0.62 0.59 0.57 0.56 0.55 0.55 0.54 0.54 0.53 0.53 0.53 0.530.50
34 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.540.50
35 0.69 0.62 0.59 0.57 0.56 0.55 0.54 0.54 0.54 0.53 0.53 0.53 0.530.50
36 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.55 0.54 0.54 0.54 0.540.50
37 0.69 0.62 0.59 0.57 0.56 0.55 0.54 0.54 0.54 0.53 0.53 0.53 0.530.50
38 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.540.50
39 0.69 0.61 0.59 0.57 0.56 0.55 0.54 0.54 0.54 0.53 0.53 0.53 0.530.50
40 0.71 0.63 0.60 0.58 0.57 0.56 0.55 0.55 0.54 0.54 0.54 0.54 0.530.50

∞ 0.67 0.60 0.57 0.56 0.55 0.54 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.50

Bold numbers have been obtained fromF12 or F22.



Table 3: Copeland

n\m 3 4 5 6 7 8 9 10 11 12 13 14 15 ∞

3 1.00 0.86 0.80 0.77 0.75 0.74 0.73 0.72 0.71 0.71 0.71 0.70 0.700.67
4 1.00 1.00 0.89 0.82 0.77 0.73 0.71 0.68 0.67 0.65 0.64 0.63 0.620.50
5 0.86 0.75 0.71 0.68 0.67 0.66 0.65 0.64 0.64 0.63 0.63 0.63 0.630.60
6 1.00 0.82 0.71 0.65 0.60 0.57 0.54 0.52 0.50 0.49 0.47 0.46 0.450.33
7 0.80 0.71 0.67 0.65 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.600.59 0.56
8 0.91 0.73 0.63 0.57 0.52 0.48 0.46 0.44 0.42 0.40 0.39 0.38 0.370.25
9 0.77 0.68 0.65 0.630.61 0.60 0.57 0.58 0.56 0.57 0.55 0.56 0.54 0.50

10 0.86 0.68 0.58 0.52 0.47 0.44 0.41 0.39 0.37 0.36 0.34 0.33 0.320.20
11 0.75 0.67 0.63 0.610.58 0.57 0.54 0.55 0.53 0.53 0.52 0.52 0.51 0.47
12 0.82 0.65 0.55 0.49 0.44 0.40 0.38 0.36 0.34 0.32 0.31 0.30 0.290.17
13 0.74 0.66 0.61 0.60 0.56 0.55 0.52 0.53 0.51 0.51 0.50 0.50 0.49 0.44
14 0.80 0.63 0.53 0.46 0.42 0.38 0.35 0.33 0.32 0.30 0.29 0.28 0.270.14
15 0.73 0.65 0.60 0.59 0.54 0.54 0.51 0.52 0.49 0.50 0.48 0.49 0.470.43
16 0.78 0.61 0.51 0.45 0.40 0.37 0.34 0.32 0.30 0.28 0.27 0.26 0.250.13
17 0.72 0.64 0.58 0.58 0.53 0.53 0.49 0.50 0.48 0.49 0.47 0.48 0.460.42
18 0.77 0.60 0.50 0.43 0.39 0.35 0.33 0.30 0.29 0.27 0.26 0.25 0.240.11
19 0.71 0.64 0.57 0.57 0.52 0.52 0.49 0.50 0.47 0.48 0.46 0.47 0.450.41
20 0.76 0.59 0.49 0.42 0.38 0.34 0.31 0.29 0.28 0.26 0.25 0.24 0.230.10
21 0.71 0.63 0.57 0.56 0.51 0.51 0.48 0.49 0.46 0.47 0.45 0.46 0.450.40
22 0.75 0.58 0.48 0.42 0.37 0.33 0.31 0.28 0.27 0.25 0.24 0.23 0.220.09
23 0.71 0.63 0.56 0.56 0.51 0.51 0.47 0.48 0.46 0.47 0.45 0.46 0.440.39
24 0.74 0.57 0.47 0.41 0.36 0.33 0.30 0.28 0.26 0.24 0.23 0.22 0.210.08
25 0.70 0.63 0.56 0.55 0.50 0.50 0.47 0.48 0.45 0.46 0.44 0.45 0.430.39
26 0.74 0.57 0.47 0.40 0.36 0.32 0.29 0.27 0.25 0.24 0.23 0.22 0.210.08
27 0.70 0.63 0.55 0.55 0.50 0.50 0.46 0.48 0.45 0.46 0.44 0.45 0.430.38
28 0.73 0.56 0.46 0.40 0.35 0.32 0.29 0.27 0.25 0.23 0.22 0.21 0.200.07
29 0.70 0.63 0.55 0.54 0.49 0.50 0.46 0.47 0.45 0.46 0.43 0.44 0.430.38
30 0.73 0.56 0.46 0.39 0.35 0.31 0.28 0.26 0.24 0.23 0.22 0.21 0.200.07
31 0.70 0.62 0.54 0.54 0.49 0.49 0.46 0.47 0.44 0.45 0.43 0.44 0.420.38
32 0.72 0.56 0.46 0.39 0.34 0.31 0.28 0.26 0.24 0.23 0.21 0.20 0.190.06
33 0.69 0.62 0.54 0.54 0.49 0.49 0.46 0.47 0.44 0.45 0.43 0.44 0.420.38
34 0.72 0.55 0.45 0.39 0.34 0.30 0.28 0.25 0.24 0.22 0.21 0.20 0.190.06
35 0.69 0.62 0.54 0.54 0.48 0.49 0.45 0.46 0.44 0.45 0.43 0.44 0.420.37
36 0.72 0.55 0.45 0.38 0.34 0.30 0.27 0.25 0.23 0.22 0.21 0.20 0.190.06
37 0.69 0.62 0.54 0.53 0.48 0.49 0.45 0.46 0.44 0.45 0.42 0.43 0.420.37
38 0.71 0.55 0.45 0.38 0.33 0.30 0.27 0.25 0.23 0.22 0.20 0.19 0.180.05
39 0.69 0.62 0.54 0.53 0.48 0.49 0.45 0.46 0.43 0.44 0.42 0.43 0.420.37
40 0.71 0.54 0.44 0.38 0.33 0.30 0.27 0.25 0.23 0.21 0.20 0.19 0.180.05

∞ 0.67 0.60 0.50 0.50 0.44 0.45 0.42 0.43 0.40 0.41 0.39 0.40 0.380.33

∞ 0.67 0.50 0.40 0.33 0.29 0.25 0.22 0.20 0.18 0.17 0.15 0.14 0.13 0.00

Bold numbers are the same as the Condorcet numbers.



Table 4: Kramer-Simson

n\m 3 4 5 6 7 8 9 10 11 12 13 14 15 ∞

3 1.00 0.86 0.80 0.77 0.750.67 0.57 0.50 0.44 0.40 0.36 0.33 0.31 0.00
4 1.00 1.00 0.92 0.88 0.860.76 0.62 0.53 0.47 0.42 0.38 0.35 0.32 0.00
5 0.86 0.75 0.71 0.68 0.67 0.66 0.650.57 0.50 0.44 0.40 0.36 0.33 0.00
6 1.00 0.86 0.80 0.77 0.630.74 0.73 0.63 0.53 0.47 0.42 0.38 0.35 0.00
7 0.80 0.71 0.67 0.65 0.63 0.540.62 0.61 0.58 0.50 0.44 0.40 0.36 0.00
8 0.91 0.79 0.74 0.71 0.70 0.69 0.470.67 0.64 0.54 0.47 0.42 0.38 0.00
9 0.77 0.68 0.65 0.63 0.61 0.60 0.60 0.420.59 0.59 0.51 0.44 0.40 0.00

10 0.86 0.75 0.71 0.68 0.67 0.660.63 0.59 0.38 0.63 0.55 0.48 0.42 0.00
11 0.75 0.67 0.63 0.61 0.60 0.59 0.590.56 0.53 0.34 0.57 0.51 0.45 0.00
12 0.82 0.72 0.68 0.660.63 0.64 0.61 0.55 0.51 0.490.32 0.55 0.48 0.00
13 0.74 0.66 0.62 0.600.59 0.58 0.58 0.54 0.49 0.46 0.450.29 0.51 0.00
14 0.80 0.71 0.67 0.650.57 0.54 0.62 0.55 0.49 0.45 0.43 0.420.27 0.00
15 0.73 0.65 0.62 0.600.57 0.51 0.57 0.56 0.49 0.45 0.42 0.40 0.39 0.00
16 0.78 0.69 0.65 0.630.57 0.49 0.47 0.58 0.49 0.44 0.41 0.39 0.37 0.00
17 0.72 0.64 0.61 0.590.58 0.49 0.45 0.56 0.50 0.45 0.41 0.38 0.36 0.00
18 0.77 0.68 0.65 0.630.61 0.49 0.43 0.420.52 0.45 0.41 0.38 0.36 0.00
19 0.71 0.64 0.61 0.590.58 0.49 0.43 0.400.55 0.46 0.41 0.38 0.35 0.00
20 0.76 0.67 0.64 0.620.59 0.51 0.43 0.39 0.380.48 0.42 0.38 0.35 0.00
21 0.71 0.63 0.60 0.590.57 0.54 0.43 0.38 0.360.50 0.43 0.38 0.35 0.00
22 0.75 0.67 0.63 0.610.59 0.52 0.44 0.38 0.35 0.340.44 0.39 0.35 0.00
23 0.71 0.63 0.60 0.580.57 0.51 0.45 0.38 0.35 0.330.46 0.40 0.36 0.00
24 0.74 0.66 0.63 0.610.60 0.50 0.47 0.38 0.34 0.32 0.320.41 0.37 0.00
25 0.70 0.63 0.60 0.580.57 0.50 0.45 0.39 0.34 0.32 0.300.43 0.37 0.00
26 0.74 0.66 0.62 0.600.59 0.50 0.44 0.40 0.34 0.31 0.30 0.290.38 0.00
27 0.70 0.63 0.60 0.580.57 0.52 0.44 0.42 0.35 0.31 0.29 0.280.40 0.00
28 0.73 0.65 0.62 0.600.59 0.54 0.44 0.41 0.35 0.31 0.29 0.28 0.27 0.00
29 0.70 0.63 0.59 0.580.57 0.52 0.44 0.40 0.36 0.32 0.29 0.27 0.26 0.00
30 0.73 0.65 0.62 0.600.59 0.51 0.44 0.39 0.38 0.32 0.29 0.27 0.26 0.00
31 0.70 0.62 0.59 0.580.56 0.51 0.46 0.39 0.37 0.32 0.29 0.27 0.25 0.00
32 0.72 0.65 0.61 0.590.58 0.51 0.47 0.39 0.36 0.33 0.29 0.27 0.25 0.00
33 0.69 0.62 0.59 0.570.56 0.51 0.46 0.39 0.35 0.34 0.29 0.27 0.25 0.00
34 0.72 0.64 0.61 0.590.58 0.52 0.45 0.40 0.35 0.33 0.30 0.27 0.25 0.00
35 0.69 0.62 0.59 0.570.56 0.54 0.45 0.41 0.35 0.33 0.31 0.27 0.25 0.00
36 0.72 0.64 0.61 0.590.58 0.53 0.44 0.42 0.35 0.32 0.32 0.27 0.25 0.00
37 0.69 0.62 0.59 0.570.56 0.52 0.45 0.41 0.36 0.32 0.31 0.28 0.25 0.00
38 0.71 0.64 0.61 0.590.58 0.51 0.45 0.40 0.36 0.32 0.30 0.28 0.25 0.00
39 0.69 0.62 0.59 0.570.56 0.51 0.46 0.40 0.37 0.32 0.30 0.29 0.26 0.00
40 0.71 0.64 0.60 0.590.58 0.52 0.47 0.40 0.38 0.32 0.30 0.29 0.26 0.00

∞ 0.67 0.60 0.57 0.56 0.55 0.54 0.47 0.42 0.38 0.34 0.32 0.29 0.27 0.00

The numbers in the upper-right corner and those in the limit column come from Theorem 26,
underlined numbers and those in the lower-right corner from Theorem 24, and bold numbers from
Theorem 25. All others are the same as the Condorcet numbers.



Table 5: The majority matrix of profileP31 for n = 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 5 5 5 1 5 1 5 1 5 1 5 1 5 1

2 4 0 8 8 4 8 4 9 4 8 4 8 4 8 4

3 4 1 0 5 5 4 5 4 5 4 5 4 5 4 5

4 4 1 4 0 5 5 5 4 5 4 5 4 5 4 5

5 8 5 4 4 0 4 4 5 5 4 5 4 5 4 5

6 4 1 5 4 5 0 5 4 5 4 5 4 5 4 5

7 8 5 4 4 5 4 0 5 4 4 5 4 5 4 5

8 4 0 5 5 4 5 4 0 4 5 4 5 4 5 4

9 8 5 4 4 4 4 5 5 0 5 4 4 5 4 5

10 4 1 5 5 5 5 5 4 4 0 4 5 4 5 4

11 8 5 4 4 4 4 4 5 5 5 0 5 4 4 5

12 4 1 5 5 5 5 5 4 5 4 4 0 4 5 4

13 8 5 4 4 4 4 4 5 4 5 5 5 0 5 4

14 4 1 5 5 5 5 5 4 5 4 5 4 4 0 4

15 8 5 4 4 4 4 4 5 4 5 4 5 5 5 0
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