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Abstract

The rule used by the United States Figure Skating Association and the International Skating Union,
hereafter the ISU Rule, to aggregate individual rankings of the skaters by the judges into a final
ranking, is an interesting example of a social welfare function. This rule is examined thoroughly
in this paper from the perspective of the modern theory of social choice.

The ISU Rule is based on four different criteria, the first being median ranks of the skaters.
Although the median rank criterion is a majority principle, it is completely at odd with another
majority principle introduced in this paper and called the Extended Condorcet Criterion. It may be
translated as follows: If a competitor is ranked consistently ahead of another competitor by an
absolute majority of judges, he should be ahead in the final ranking. Consistency here refers to the
absence of a cycle in the majority relation involving these two skaters. There are actually many
cycles in the data of four Olympic Games that were examined. The Kemeny rule may be used to
break these cycles. This is not only consistent with the Extended Condorcet Criterion but the latter
also proves useful in finding Kemeny orders over large sets of alternatives, by allowing
decomposition of these orders.

The ISU, the Kemeny, the Borda rankings and the ranking according to the raw marks are then
compared on 24 olympic competitions. The four rankings disagree in many instances. Finally it is
shown that the ISU Rule may be very sensitive to small errors on the part of the judges and that
it does not escape the numerous theorems on manipulation. Some considerations are also offered
as to whether the ISU Rule is more or less prone to manipulation than others.

Résumé

La règle utilisée par la United States Figure Skating Association et l’International Skating Union,
ci-après la règle de l’ISU, pour agréger les classements des patineurs par chacun des juges en un
classement final, est un exemple intéressant de fonction de bien-être social. Cette règle est
examinée en détail dans cet article du point de vue de la théorie moderne des choix sociaux.

Cette règle repose sur quatre critères, le premier étant le rang médian des patineurs. Bien que ce
critère soit en fait un principe majoritaire, il va à l’encontre d’un autre principe majoritaire introduit
ici et appelé le Critère de Condorcet généralisé. Il peut être traduit ainsi: Si un compétiteur est
classé avant un autre de manière cohérente par une majorité de juges, il devrait l’être dans le
classement final. La cohérence réfère à l’absence de cycle dans la relation majoritaire impliquant
ces deux compétiteurs. De fait, plusieurs cycles ont été rencontrés dans les données de quatre Jeux
olympiques qui ont été examinées. La règle de Kemeny peut être utilisée pour briser ces cycles.
Non seulement cette règle est-elle cohérente avec le Critère de Condorcet généralisé mais ce
dernier s’avère utile dans la recherche d’ordres de Kemeny sur un grand nombre d’alternatives, en
permettant la décomposition de ces ordres.

Les classements des patineurs selon les règles de l’ISU, de Kemeny, de Borda et selon les notes
brutes sont ensuite comparés pour 24 compétitions olympiques. Les quatre classements sont
souvent différents. Finalement, il est démontré que la règle de l’ISU peut être très sensible à de
petites erreurs de la part des juges et qu’elle n’échappe pas aux nombreux théorèmes
d’impossibilité sur la manipulation. Quelques remarques sont aussi offertes sur la plus ou moins
grande susceptibilité de cette règle à la manipulation par rapport à d’autres règles.



1. Introduction

An extensive literature has been devoted to the design of social welfare functions, i.e. rules for

aggregating individual preferences or rankings on a set of alternatives into a collective preference or a final

ranking. Yet, there are not very many instances in real life where the preoccupation is to arrive at a

collective preference, as opposed to merely choosing an alternative or a subset of alternatives. A notable

exception is professional sport, where a wide variety of methods are used to aggregate individual rankings

into a final ranking. These methods are especially prominent in judged sports such as diving, synchronized

swimming, gymnastics, and figure skating, but we also find examples of their use in some professional

sports where ranking could be made from objective data. See for instances Jech (1983), Benoit (1992),

and Levin and Nalebuff (1995).

Among judged sports, figure skating has probably become the most popular. Almost everybody

knows that skaters are ranked from the scores that they receive from a panel of judges. However, very few

people know exactly how the aggregation procedure works. Given the complexity of this procedure, this

is quite understandable. Bassett and Persky (1994), hereafter BP, analyze the rule used by the United

States Figure Skating Association (1992) and the International Skating Union (1994), hereafter the ISU

Rule, to come up with a final ranking of the skaters. They stress the fact that figure skating uses median

ranks for determining placement. This is indeed what paragraphs 1, 2, and 6 of Rule 371 of the ISU,

reproduced in the Appendix, amount to.

BP show that this system responds positively to increased marks by each judge and respects the

view of a majority of judges when this majority agrees on a skater’s rank. They also demonstrate that the

Median Rank Principle is the only one to possess these two properties. Moreover, they claim that this

principle provides strong safeguards against manipulation by a minority of judges. Finally, in a Monte

Carlo study, they find that the ISU Rule outperforms the simple aggregation of raw marks in picking the

true winner, when judges’ marks are subject to errors and significantly skewed toward an upper limit.

BP’s analysis is mostly confined to the Median Rank Principle. Yet, there are three other

principles that are also used by the ISU Rule to break ties left by the Median Rank Principle. One of them

is the mean rank, which is equivalent to the Borda (1784) principle or Borda Count. The latter has
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received much attention in the literature. The ISU also uses a weighted sum of the ranks to aggregate the

rankings in the different programs of a competition into a final ranking. This is similar to using the Borda

rule. This paper examines more thoroughly all aspects of the ISU Rule from the perspective of the modern

theory of social choice. It also compares four different ranking rules on the data of 24 olympic

competitions: men, women, and couple, short and free programs, for 1976, 1988, 1992 and 1994.

Since the ISU Rule combines many ranking principles, which are characterized by different

properties, it is not surprising that, as a whole, it violates many properties that are often judged desirable

for social welfare functions. This paper shows which properties the ISU Rule satisfies and which it

violates. In particular, like most social welfare functions encountered in the literature, the ISU Rule does

not satisfy the monotonicity condition usually found in the theory of social choice. This is why BP use

a weaker monotonicity condition, namely the positive response of the rule to increased marks by each

judge, to characterize the Median Rank Principle.

The median rank of a skater being the best rank that he or she obtains from a majority of judges,

clearly the Median Rank Principle translates a majority principle. As compelling as this majority principle

may seem, it is completely at odds with another prominent majority principle advocated by Condorcet

(1785), who was a colleague of Borda at the French Académie des sciences. This principle prescribes that

if a competitor is ranked ahead of another competitor by an absolute majority of judges, he should be

ahead in the final ranking. Unfortunately, this principle may fail to give a consistent ranking because of

a cycle in the majority relation, a possibility that Condorcet was well aware of. For example, A may be

judged better than B by a strict majority of judges, who may be judged better than C, who may be judged

better than D, and D may be judged better than A. This probably explains why the Condorcet Criterion

that we find nowadays in the literature simply says that if a competitor is ranked ahead of all other

competitors by an absolute majority of judges, he should be first in the final ranking. Again such a

competitor may fail to exist because of a cycle. When it exists, it is called the Condorcet winner.

Despite the possibility of cycles, there is still something to be drawn for other ranks from

Condorcet’s prescription. A more general criterion, called the Extended Condorcet Criterion, is proposed

in this paper. Loosely speaking, it says that if a competitor is ranked consistently ahead of another
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competitor by an absolute majority of judges, he or she should be ahead in the final ranking. Consistency

here refers to the absence of cycle involving these two skaters.

What is the probability of encountering cycles? We find many computations and estimations of

the fractions of profiles of votes leading to cycles. Computer simulations by Campbell and Tullock (1965)

give an estimate of .305 for 7 voters and 7 alternatives. This fraction increases with the number of voters.

It is .342 for 9 voters. It also increases with the number of alternatives, going to .464 with 9 voters and

11 alternatives. However, one must be cautious not to interpret these fractions as probabilities applicable

to real life situations since the different profiles might not be equiprobable. When the number of the voters

becomes large, there can be strong correlations in their rankings, thus reducing the probability of cycles.

For more on this topic, see Fishburn (1973) and Kelly (1986).

In figure skating, if the judges abide by the ISU Rules and try to be as objective as possible, we

should expect a strong correlation between their rankings of the skaters and thus no or few cycles. Thus

it was somewhat surprising to find 15 cycles in the data of the 24 olympic competitions. Note that many

of these cycles occurred for the weak majority relation instead of the strict one, i.e. they involved some

ties between skaters. Ties could not be neglected despite the complication that they usually bring. Indeed,

two skaters may tie even if the number of judges is odd because a judge may give the same rank to more

than one skater. Ties may create cycles in the weak majority relation and increase the length of existing

ones.

The cycles that have been found in the olympic games involved as many as nine skaters. These

were often middle ranked skaters, as if the disagreements between the judges occur mainly for competitors

who are not medal contenders. However, in one case these were famous skaters. In another case, one of

the skaters in the cycle actually obtained the third place in the ISU ranking. These cycles never prevented

the occurrence of a Condorcet winner, except in one instance where two skaters tied for this title.

In the presence of cycles, the Extended Condorcet Criterion gives only a partial ranking of the

competitors. A partial ranking may be completed in different ways but there is one method to accomplish

this task that is perfectly in line with Condorcet’s quest. The best way to introduce this method is to turn

to an interesting question raised by BP.
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Are judging systems such as the one that prevails in figure skating intended to reconcile the

conflicting views of the judges or are they intended to furnish a final ranking that is most likely to be the

true ranking of the competitors, based on their relative merits? Obviously, the answer depends on whether

the rankings of the judges represent their preferences or an evaluation of the relative merits of the

competitors according to given criteria. The regulations of the ISU are very clear in this respect. The

judges are supposed to give an objective evaluation of the relative merits of the competitors in terms of

scores. The different scores attributed to the different elements of the competition are then aggregated and

the ranking of each judge is determined from these aggregated scores.

Of course, these instructions do not preclude cheating by judges who may hope that their marks

will result in their most preferred ranking. For instance, Campbell and Galbraith (1996) find strong

evidence of the presence of a small national bias in the results of the 24 olympic competitions analyzed

in this paper. Yet, if we take the rankings of the different judges as independent evaluations of the true

ranking of the competitors according to the established rules, we are led to the question: which final

ranking is most likely to be the true ranking of the competitors? This is precisely the question addressed

by Condorcet (1785), whose objective was to justify the usual majority principle.

If the pairwise ranking of the competitors under the majority rule does not involve any cycle, then

Condorcet showed that it yields a complete ranking that has maximum likelihood of being the true

ranking, under the assumption that every judge chooses the best of two competitors with a probability

larger than one half and that this judgment is independent between pairs and judges. This makes the

Condorcet majority principle more compelling than the ISU principle.

Condorcet gave indications on how to break cycles that might occur. However, his prescription

is not completely clear. Young (1988) shows that a correct application of Condorcet’s maximum likelihood

approach leads to a ranking that has the maximum pairwise support from the voters (judges). Such a

ranking is often called a Kemeny ranking because it involves the minimum number of pairwise inversions

with the individual rankings. Kemeny (1959) proposes this number as a distance between an order and

a profile of individual rankings. Such a ranking is also a median ranking for those composing a profile.

In this sense, it represents a best compromise between the possibly conflicting views of the judges. This

paper examines the Kemeny-Young approach and advocates this method in the context of figure skating.
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Not only does a Kemeny order satisfy the Extended Condorcet Criterion but the latter turns out to be of

great help in constructing Kemeny orders. The precise method is described in Truchon (1998).

Would the use of a different rule by the ISU, such as the Kemeny or the Borda rule, give

significantly different rankings of the skaters in real competitions? Levin and Nalebuff (1995), using data

from 30 British Union elections, find that many different electoral systems would not have given different

top choices. The systems differed in the ranking of the lower candidates. They suggest that, when voters’

preferences are sufficiently similar, a variety of voting systems lead to similar choices, and these choices

have desirable properties. The difficulties in aggregating preferences would arise when there is a lack of

consensus. In this case, the choice of an electoral system can make the greatest difference.

In the case of skating, many disagreements have been found between the ISU, the Borda, the

Kemeny rankings and the ranking according to raw marks for the 24 olympic competitions. The

differences between the ISU and the Kemeny rankings include the conflicts between the Extended

Condorcet Criterion and the Median Rank Principle. A summary of these comparisons appears in Table

4. The measure of the disagreement between two rankings is the number of pairs of competitors for which

the relative ranks are inverted. For example, there are two inversions between the orderscab and abc

namely one for the pair {a, c} and another one for the pair {b, c}. If two competitors obtain the same rank

in one ranking and different ranks in another ranking, this is counted as half a difference.

Many of the differences occurred for middle places but disagreements for these places may be

important since participation in future competitions may depend on being ranked in the first ten places.

In one case, the ISU Rule gave a fourth place while the Kemeny rule gave a third place. In two instances,

the Kemeny rule gave a tie for the first rank instead of ranks 1 and 2. In one instance, it gave a tie for

the second place instead of ranks 2 and 3. Finally, in four instances, it gave a tie for the third place instead

of ranks 3 and 4. Thus the choice of a rule is not merely a theoretical question. It can have a real impact

on the results.

The last issue treated in this paper is manipulation, or the misrepresentation of one’s true ranking

by a judge in order to change the final ranking for one that he or she prefers. For example, a judge may

prefer rankings that favour a particular competitor. There is a famous impossibility theorem in this context,

due to Gibbard (1973) and Satthertwaite (1975), which says that all social choice functions, i.e. functions

that select a winner, are manipulable. More generally, a judge may prefer a ranking to another, not just
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because of the winner, but because of the whole ranking. Bossert and Storcken (1992) extend the Gibbard-

Satthertwaite theorem to this context, i.e. to social welfare functions or ranking rules.

The ISU Rule does not escape these theorems. This paper shows, by means of examples, how the

different principles on which rests the ISU Rule, including the Median Rank Principle, are prone to

manipulation. It also shows that the ISU Rule may be very sensitive to small errors on the part of the

judges. This is troublesome if we are after the best evaluation of a true ranking.

Some ranking rules may be more prone to manipulation than others. The question is then whether

or not the ISU Rule does well in this respect. Some considerations on this matter are offered, drawing on

recent work by Saari (1990). However, the present state of research does not permit a clear-cut answer

on this subject.

The paper is organized as follows. Section 2 introduces the notation including the formal

description of the ISU Rule. Section 3 presents BP’s characterization of the Median Rank Principle, shows

that the last steps of the ISU Rule consist in applying the Borda criterion and examines the whole ISU

Rule from the perspective of properties that are often encountered in the theory of social choice. It shows

which ones are satisfied by the ISU Rule and which ones are violated. Section 4 defines the Extended

Condorcet Criterion and shows that this criterion as well as the ordinary Condorcet Criterion are at odds

with the ISU Rule. Section 5 illustrates the possible conflicts between the Condorcet principle, the Borda

criterion and the ISU Rule. The quest for a true ranking, which culminates in the Kemeny rule, is the

object of Sections 6 and 7. The comparison of four different rules on olympic data is done in Section 8.

Manipulability is taken up is Section 9. A summary of the paper and concluding remarks on the choice

of a ranking rule are offered in Section 10.

2. Notation

Let X be the set of competitors, skaters or alternatives, with cardinalityX = m, andN be the

set of judges or voters, withN = n, an odd number. The terms competitor, skater and alternative will

be used interchangeably, depending on the context. The first two are more appropriate to our context while

the term alternative is more usual in the theory of social choice. This term will often be used when

referring to this theory. The same kind of remark applies to the terms judge and voter.
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From the scores given to the competitors by judgej, we obtain aweak orderor ranking rj of the

competitors inX. The elementr j
s of this vector is the rank of skaters. A ranking with no tie for a rank

is an order on X. An order can be represented alternatively as a sequences1s2..., wheres1 and s2 are

respectively the competitors with ranks 1 and 2, etc.

Let ℜ be the set of all possible rank vectorsr. A profile of rankingsis an m × n matrix R =

(r1, ..., rn) ∈ ℜn. A ranking rule is a mappingFR : ℜn → ℜ. FR(R) is the final ranking resulting from

profile R. In the language of the theory of social choice,FR is a social welfare function.

Next, let us define:

Nis(R) = { j ∈ N : r j
s ≤ i}, nis(R) = Nis(R) , n̄is(R) = { j ∈ N : r j

s = i } ,

ρs(R) = min i ∈ {1, ..., m} such thatnis(R) > n/2.

For the sake of simplicity, let:

Nρs(R) = Nρss(R) and nρs(R) = nρss(R).

Next, let:

Bρs(R) = ∑j ∈ Nρs
r j

s, Bs(R) = ∑j ∈ Nr j
s,

νst(R) = { j ∈ N : r j
s < r j

t} .

Nis(R) is the set of judges who rank skaters at ranki or better,nis(R) their number and̄nis(R) the

number of those placing skaters exactly at ranki. ρs(R) is the median rank of skaters, Bρs(R) is the sum

of the ranks thats obtains from the judges who gave him or her the median rank or better,Bs(R) is the

sum of the ranks thats obtains from all judges, andνst(R) is the number of judges who rank skaters ahead

of skatert. Note thatBs(R)/n is the mean rank ofs.

Finally, we define the complete binary relationM on X by sM t ⇔ νst ≥ νts. We write M for the

asymmetric component ofM, i.e. the relation defined bysM t ⇔ νst > νts and T for the symmetric

component ofM, i.e. the relation defined bysTt ⇔ νst = νts. They are respectively themajority relation,

the strict majority relationand theex aequo relationon X. We can readsM t ass defeatst andsTt ass

ties with t. A cycle of M is a subset {x1, ..., xk} ⊂ X such thatxi M xi+1, i = 1, ..., k − 1, andxk M x1. One

defines similarly cycles ofM andT. Equivalently, a cycle ofT is a subsetS ⊂ X such thatsTt ∀ s,t ∈ S.

Cycles ofM andT are obviously cycles ofM.
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Rule 371 of the ISU Regulations, which prescribes how the final ranks of the competitors are

determined, is reproduced in the Appendix. TheISU ranking rule, as we shall call it, can be formally

defined as follows. Its definition involves five steps incorporating four principles or criteria. When a

principle has been applied, the next one is used only if there remain ties between some competitors.

The ISU Rule: ∀ R ∈ ℜn, ∀ s, t ∈ X,

a) ρs(R) < ρt(R) ⇒ FRs(R) < FRt(R)

b) ρs(R) = ρt(R) andnρs(R) > nρt(R) ⇒ FRs(R) < FRt(R)

c) ρs(R) = ρt(R), nρs(R) = nρt(R) andBρs(R) < Bρt(R) ⇒ FRs(R) < FRt(R)

d) ρs(R) = ρt(R), nρs(R) = nρt(R), Bρs(R) = Bρt(R) andBs(R) < Bt(R) ⇒ FRs(R) < FRt(R)

e) ρs(R) = ρt(R), nρs(R) = nρt(R), Bρs(R) = Bρt(R) andBs(R) = Bt(R) ⇒ FRs(R) = FRt(R)

In plain words, a) skaters are first ranked according to their median ranksρs(R). b) If two skaters,

says and t, tie for a rank, one tries to break the tie according to the respective numbers of judgesnρs(R)

andnρt(R) who gave them their respective median rank or a better rank. c) If criterion b) is not sufficient

to break all ties, one then takes into consideration the sum of the ranks obtained from the judges who gave

the median rank or a better rank to these competitors. d) If there still remains some ties after criterion c)

has been applied, one uses the sum of the ranks obtained from all judges or equivalently the mean rank

as a breaking criterion. e) Finally, if all ties are not resolved after principles a) − d) have been applied,

competitors who tie for a rank obtain the same rank.

As pointed out by BP, principle a), which they call theMedian Rank Principle(MRP), translates

paragraphs 1, 2, and 6 of rule 371. Criteria b), c), and d) translate respectively paragraphs 3, 4, and 5 of

rule 371. Moreover, they take into account paragraphs 7, 8, and 9. Finally, criterion e) translates the first

part of paragraph 10. The second part, which says that if two competitors tie for the first place, the next

place to be awarded is third place (not second) and so on, shall not be formalized.

The example of Table 1, reproduced from the ISU Regulations book, illustrates the application

of the ISU Rule. The final rank, as given by this rule appears under the heading ISU. Note that A is

ranked ahead of B by using principle a) alone. There is a tie between I and J after application of principle

a). It is resolved in favour of I by reverting to principle b). One must go as far as to principle c) to rank
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D ahead of E and to principle d) to rank B ahead of C. However, there remains a tie between K and L

even after applying the first four principles.

3. Properties of the ISU Rule

We start with an interesting characterization of principle a) of the ISU Rule due to Bassett and

Persky (1994). We then show that principles d) and e) consist in applying the Borda criterion to the

skaters that remain tied after steps a) − c). Principle c) is a sort of restricted Borda criterion. Finally, we

examine the whole ISU procedure from the perspective of properties often found in the theory of social

choice.

BP show that (MRP) or step a) of the ISU Rule is the only criterion to satisfy simultaneously a

certain majority principle and a weak monotonicity condition, which they also misname incentive

compatibility. The logical propositions defining these two conditions, as the ones to follow later in this

section, must hold for all profilesR, R̃ ∈ ℜn and all pairss, t ∈ X such thats ≠ t.

Rank Majority Principle (RMP)

[n̄is(R) > n/2, n̄kt(R) > n/2, andi < k ] ⇒ FRs(R) < FRt(R)

Bassett and Persky Monotonicity (BPM)

[ r̃ j
s ≤ r j

s and r̃ j
t ≥ rj

t, ∀ j ∈ N] ⇒

[FRs(R) < FRt(R) ⇒ FRs(R̃) < FRt(R̃) andFRs(R) = FRt(R) ⇒ FRs(R̃) ≤ FRt(R̃)]

(RMP) says that if two skaters obtain a majority for two different ranks, this ought to be reflected in their

relative final ranking. (BPM) says that if all judges were to improve or maintain the ranking of skaters

while diminishing or maintaining the ranking of skatert, then the final ranking of skaters should remain

at least as good as the one of skatert if it was so before the change.

Theorem 1 (Bassett and Persky):(MRP) ⇔ [(BPM) and (RMP)].
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Proof. Suppose (MRP) holds. For anys, t ∈ X, if there exist ranksi andk such thati < k , n̄is(R) > n/2

and n̄kt(R) > n/2, then ρs(R) = i < k = ρt(R), which implies FRs(R) < FRt(R) by (MRP). Thus (RMP)

holds. That (BPM) holds is immediate from the definitions.

Conversely, suppose (BPM) and (RMP) hold but that (MRP) fails, i.e.∃ R ∈ ℜn, s, t ∈ X such thats ≠

t, and positive integersi, k such thati = ρs(R) < ρt(R) = k but FRs(R) ≥ FRt(R). Then consider another

profile R̃ ∈ ℜn such that,∀ j ∈ N, r j
s ≤ i ⇒ r̃ j

s = i , r j
s > i ⇒ r̃ j

s = r j
s, rj

t ≥ k ⇒ r̃ j
t = k, and rj

t < k ⇒ r̃ j
t =

rj
t. This gives n̄is(R̃) = nρs(R̃) > n/2 and n̄kt(R̃) = nρt(R̃) > n/2. Thus, by (RMP), we must have

FRs(R̃) < FRt(R̃). By (BPM), we should also haveFRs(R) < FRt(R), a contradiction.

Remark 2: (RMP) alone does not imply (MRP). Indeed, consider a ranking rule defined in the following

way. First, rank all competitors according to theBs(R). Next, if (RMP) is violated for two competitorss

andt, move the one with the smallest (better) rank according to a majority of judges in front of the other

and adjust the rank of those who were betweens and t accordingly. Applying this rule to the data of

Example 2 in Table 2 would give the ranking headed BC to start with. Applying (RMP) would then

change this ranking for the ISU final ranking. Now, if judge 2 were to interchange her ranking of B and

E, then B would loose the majority for rank 2 and the final ranking would thus be changed back from the

ISU to the BC ranking, in violation of (MRP). This simple interchange also shows that this rule violates

(BPM). Given Theorem 1, this was to be expected.

The ranking of the skaters according to theBs(R), headed BC in the examples, is the Borda

ranking. Indeed, the Borda ranking relies on the Borda scores or counts defined as follows. The last

competitor in a judge’s ranking receives a score of zero, the second lowest a score of 1, the third a score

of 2 and so on. Summing these scores over all judges yields the Borda score of each competitor. These

score are then used to rank the competitors.

In our notation, the score that skaters obtains from judgej in a profileR is given bym − rj
s. The

Borda score of skaters is thus given bymn − Bs(R). TheBorda criterion(BC) is thus equivalently defined

by:

∀ s, t ∈ X, Bs(R) ≤ Bt(R) ⇔ FRs(R) ≤ FRt(R)
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In short, the Borda criterion consists in ranking competitors according to their mean ranks. (BC) is also

equivalent to:

∀ s, t ∈ X, [Bs(R) < Bt(R) ⇔ FRs(R) < FRt(R)] and [Bs(R) = Bt(R) ⇔ FRs(R) = FRt(R)]

The two terms within brackets are the two principles used respectively in steps d) and e) of the ISU Rule.

Principle c) is a variant of the Borda criterion. It compares theBρs(R), which can be seen as the

Borda scores computed from the restricted set of judges who give competitors his or her valueρs(R).

However, these sets are not necessarily the same from one skater to the other.

In the theory of social choice, other kinds of properties are often imposed on ranking rules or

deemed desirable. The most famous are probably the four to follow. We analyze the ISU Rule from their

perspective. The first one is a monotonicity condition that is stronger than (BPM).

Monotonicity (M)

[r j
s < rj

t ⇒ r̃ j
s < r̃ j

t and r j
s = rj

t ⇒ r̃ j
s ≤ r̃ j

t, ∀ j ∈ N] ⇒

[FRs(R) < FRt(R) ⇒ FRs(R̃) < FRt(R̃) andFRs(R) = FRt(R) ⇒ FRs(R̃) ≤ FRt(R̃)]

Binary Independence (BI)

[r j
s ≤ rj

t ⇔ r̃ j
s ≤ r̃ j

t and r j
s ≥ rj

t ⇔ r̃ j
s ≥ r̃ j

t, ∀ j ∈ N] ⇔ [FRs(R) ≤ FRt(R) ⇔ FRs(R̃) ≤ FRt(R̃)]

Weak Pareto (WP)

r j
s < rj

t, ∀ j ∈ N ⇒ FRs(R) < FRt(R)

Non-Dictatorship (ND)

There exists noj ∈ N such thatFR(R) = rj, ∀ R ∈ ℜn

(M) has the same conclusion as (BPM) but a weaker premise. It is thus stronger. (M) says that

if all judges were to maintain or improve the relative ranking of skaters with respect to skatert, then the

final ranking of skaters should remain at least as good as the one of skatert if it was so before the

change. A judge may maintain or improve such a relative ranking by increasing the mark of skaters or
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diminishing the one of skatert, as with (BPM). However, he might also do so while increasing or

diminishing both skaters’ marks, which is permitted by (M).

(BI) says that only the relative rankings of two skaters should matter in establishing the final

relative ranking of these two skaters. (WP) says that if all judges are unanimous on the relative rankings

of two skaters, the final relative ranking of these two skaters should agree with the unanimous view of

the judges. Finally, (ND) prescribes that no judge be able to impose his or her ranking as the final ranking

in all circumstances.

Lemma 3: (M) ⇒ (BPM).

Proof. [ r̃ j
s ≤ r j

s and r̃ j
t ≥ rj

t, ∀ j ∈ N] ⇒ [r j
s < rj

t ⇒ r̃ j
s < r̃ j

t and r j
s = rj

t ⇒ r̃ j
s ≤ r̃ j

t, ∀ j ∈ N] ⇒

[FRs(R) < FRt(R) ⇒ FRs(R̃) < FRt(R̃) andFRs(R) = FRt(R) ⇒ FRs(R̃) ≤ FRt(R̃)].

That (M) is stronger than (BPM), i.e. that the inverse implication does not hold follows from the proof

of Theorem 4.

Theorem 4: The ISU ranking rule satisfies (ND), (WP), (RMP) and (BPM) but neither (M) nor (BI).

Proof. That the ISU Rule satisfies (ND), (WP), (RMP) and (BPM) can be checked readily from the

definitions. It is not difficult to find instances of violations of (M) and (BI). In Example 2, if judge 2 were

to change the ranks given to A, B, and C for respectively 4, 3, and 2, then their final rank would become

respectively 2, 3, and 1. Thus B, who was originally ranked before A, would move after this competitor

despite the fact that her relative position with respect to A has not changed in any of the judges’ opinion.

This is a violation of (M) and (BI). In the ISU Example, if judge 9 were to interchange his ranking of B

and E, this would not change his ranking of C relative to B. Yet, C would move ahead of B in the final

ranking. This is another violation of (M) and (BI).

There is a famous impossibility theorem in the theory of social choice due to Arrow (1951), which

says that there is no ranking rule that satisfies (BI), (ND), (WP) and (M). This theorem has been

reinforced in many ways by weakening some of the conditions imposed on the ranking rule. As put by

Kelly (1978, p.3), for each of Arrow’s conditions, there is now an impossibility theorem not employing
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that condition. One of them, due to Muller and Satterthwaite (1977), asserts that there is no ranking rule

that satisfies (ND), (WP) and (M). Since the ISU Rule satisfies (ND) and (WP), we could not expect (M)

to hold. This explains the use of the weaker condition (BPM) by BP. Since (M) and (BI) have much in

common, the violation of (BI) also comes as no surprise.

4. Which majority principle ?

Paragraphs 1, 2, and 6 of rule 371, which translate into (MRP), clearly reflect a majority principle.

The notion of median rank itself is based on a majority condition. Moreover, Theorem 1 states a clear

relationship between (MRP) and (RMP), a majority principle. However, (RMP) and thus (MRP) conflict

with the following well known criterion:

Condorcet Criterion (CC)

∀ s ∈ X, ∀ t ∈ X, t ≠ s, sM t ⇒ FRs(R) = 1 andFRt(R) > 1

In plain words, if a competitor is ranked ahead of all other competitors by an absolute majority

of judges, he or she should be ranked first. Ans satisfying (CC) may not exist because of a cycle in the

majority relationM. This is the case in Example 3 of Table 3. There is a cycle ofM over the whole set

X. When there exists ans ∈ X satisfying (CC), thiss is called theCondorcet winner. Note that there may

exist a Condorcet winner even if there are cycles over some subsets of competitors. There is an instance

of this in the ISU Example. That (MRP) and (RMP) are completely at odds with (CC) may be seen from

Example 2. Competitor A obtains the first rank according to (CC) but is ranked after B according to

(MRP).

Condorcet was preoccupied not only with the winner but also with the whole ranking of the

alternatives, i.e. the competitors in our context. This may pose a problem since the majority relation may

contain cycles. Yet, a partial extension of (CC) to other ranks can be done as follows: If a competitor is

consistently ranked ahead of another competitor by an absolute majority of judges, he should be ahead

in the final ranking. The term "consistently" refers to the absence of cycles involving these two

competitors. Formally, let℘0(X) be the class of partitionsX = {X1, ..., Xp} of X, satisfying:

∀ Xα , Xβ ∈ X with α < β, ∀ s ∈ Xα , ∀ t ∈ Xβ : sM t
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Notice that, if there is a cycle ofM over some subset of alternatives, then these alternatives must belong

to a same subsetXα of any partition in℘0(X). In particular, this must be the case for two alternativess

and t such thatsT t. In the finest partition of this class, the setsXα are cycles of maximal length ofM or

singletons.X1 is also called thetop cycleof M or theCondorcet set, a solution concept introduced by Good

(1971) and Schwartz (1972) for the strict majority relation.X2 is the top cycle onX\X1, etc.

Extended Condorcet Criterion (XCC)

For any partitionX ∈ ℘0(X), the following must hold:

∀ Xα , Xβ ∈ X with α < β, ∀ s ∈ Xα , ∀ t ∈ Xβ : FRs(R) < FRt(R)

It will be shown below that a maximum likelihood or a Kemeny order satisfies (XCC). Recall that it was

precisely Condorcet’s objective to show that the majority principle leads to a maximum likelihood order.

Hence, this justifies calling the above principle anExtended Condorcet Criterion.

If M = M and if M contains no cycles, then allXα of the finest partition of℘0(X) are singletons

and a final rankingFR(R) satisfying (XCC) is a complete order. WhenM contains a cycle, (XCC) does

not say how to rank alternatives within anXα of the finest partition in℘0(X). In particular, it does not

imply thatFRs = FRt if sTt. In other words, (XCC) yields only a partial order in these circumstances. We

shall see in section 6 how a complete final ranking can be obtained with the maximum likelihood

approach.

In the different examples of this paper the (possibly partial) final ranking obtained from the

extended Condorcet criterion is headed by XCC. Competitors who belong to a sameXα and who cannot

be ranked by (XCC), because they belong to a same set of the finest possible partition ofX, are simply

marked by a "?". This is the case with the set {I, M, L, K} in the ISU Example and with the whole set

X in Example 3. There is a cycle IM M M L M K M I over the set {I, M, L, K} in the ISU Example and

a cycle ofM over the whole setX in Example 3.
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5. Condorcet versus Borda versus ISU

Since (XCC) implies (CC), the conflict between (CC) and (MRP) of Example 2 is also a conflict

between (XCC) and (MRP). There is another violation of (XCC) by the ISU Rule in the ISU Example:

Competitor J should be ranked ahead of I according to (XCC) but the ISU Rule ranks them in the reverse

order.

(XCC) and (BC) may also conflict as can be seen from Example 2. This possibility of conflict has

been known since the lifetime of Borda and Condorcet, who debated passionately over the respective

merits of their rules. Nonetheless, it is well known that a Borda winner (loser) can never be a Condorcet

loser (winner).

Finally, the ISU Rule may violate (BC) despite the fact that principle d) is based on this criterion.

There are instances of such conflicts in all three examples. Worse, a Borda winner can be a loser

according to the ISU Rule. In Example 3, if the rankings of judges 4, 5, and 6 were changed for

respectively (6, 3, 4, 1, 5, 2), (6, 3, 4, 2, 5, 1), and (6, 3, 4, 2, 5, 1), then none of the criteriaρs andnρs

would be modified and thus the ISU final ranking would remain the same. Yet E, who comes last in the

ISU final ranking, would become the Borda winner. The reason for these conflicts is precisely that (BC)

is called to the rescue only when the other three principles fail in ranking two competitors.

It would be interesting to know why the ISU seems reluctant to use exclusively the Borda criterion

to aggregate the rankings of the judges. Surprisingly, it does not hesitate to use a similar criterion to

aggregate the rankingsFRS obtained for the short program,FRI for interpretive program andFRF for free

skating into a single ranking. Indeed, the final ranking is established according to a weighted sum of the

ranks in the differentFR. For example, if the three programs just mentioned are present in a competition,

the final ranks are determined according to the values of the components of the vector

.3FRS + .2FRI + .5FRF. This is equivalent to supposing that there are 3 judges with the rankingFRS, 2

with FRI, and 5 withFRF, and using the Borda Criterion to aggregate them. More will be said on this

criterion in the final section.
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6. The quest for a true ranking

An interesting question that arises in relation to the judging systems such as the one that prevails

in figure skating is whether a profileR represents thepreferencesof the judges on the setX or an

evaluation of the relative merits of the competitors according to given criteria. The regulations book of

the ISU is very clear in this respect. The judges do not furnish a ranking per se but scores for the different

elements of the competition. They are instructed on how to subtract points for different types of mistakes.

The intent of the rules is clearly to have judges furnish an evaluation of the relative merits of the

competitors in terms of scores. The different scores attributed to the different elements of the competition

are then aggregated and the rankingrj of each judge is determined from these aggregated scores.

Assuming that the rankingsrj in some profileR are independent evaluations of the true ranking

of the competitors according to the established rules, an interesting question is: which final rankingFR(R)

is most likely to be the true ranking of the competitors? This is precisely the question addressed by

Condorcet (1785). His objective was to justify the majority principle. On this, he was certainly inspired

by Rousseau (1762) in hisSocial Contract, for whom the opinion of the majority is legitimate because

it expresses the "general will."

When in the popular assembly a law is proposed, what the people is asked is not exactly

whether it approves or rejects the proposal, but whether it is in conformity with the

general will, which is their will. Each man, in giving his vote, states his opinion on that

point; and the general will is found by counting votes. When therefore the opinion that

is contrary to my own prevails, this proves neither more nor less that I was mistaken, and

that what I thought to be the general will was not so. [Rousseau (1913), p. 93]

Condorcet’s objective was to formulate this proposition rigorously, using the calculus of

probability, which was new at that time. There is a best alternative, a second best, etc. Voters may have

different opinions because they are imperfect judges. However, if they are right more often than they are

wrong, then the opinion of the majority should yield the true order of the alternatives.
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Condorcet’s approach is one of the first applications of statistical hypothesis testing and maximum

likelihood estimation. He assumes that every voter chooses the best of two alternatives with a probability

p satisfying 1/2 <p ≤ 1, and that this judgment is independent between pairs and voters. If the binary

relationM is an order onX, then it is the solution to his problem, i.e. the most probable order onX. If M

contains a cycle, Condorcet’s prescription is to eliminate some of the propositions (sM t is a proposition),

starting with the one with the weakest majority and so on until the cycle disappears. This works fine if

m = 3 but may give ambiguous results or a partial order form ≥ 4.

Young (1988) develops a correct application of Condorcet’s maximum likelihood approach. In the

casem = 3, it goes as follows. If the true order on the set {a, b, c} is abc, then, neglecting a multiplicative

constant and the argumentR in νst(R), the conditional probability of observing a profile of votesR is given

by:

pνab(1 p)νbapνac(1 p)νcapνbc(1 p)νcb pνab νac νbc(1 p)νba νca νcb

The probability of observing the same profile, conditional on the true order beingacb, is given by:

pνac(1 p)νcapνab(1 p)νbapνcb(1 p)νbc pνac νab νcb(1 p)νca νba νbc

Hence ifp > ½, abc is more probable thanacb as on order if and only ifνab+νac+νbc > νac+νab+νcb.

More generally, let:

K(r, R)
s∈X t∈X

rs<r t

νst(R).

An orderr* on X is a solution of Condorcet’s problem or amaximum likelihood orderif it is a solution

of maxr ∈ ℜ K(r, R). The value ofK(r, R) may be seen as the total number of pairwise supports forr in

profile R, i.e. the total number of voters who rank pairs of alternatives as inr. A maximum likelihood

order is thus one that has the maximum total support from the judges as expressed inR.

This problem may be given a different expression using a notion of distance for orders proposed

by Kemeny (1959). It is presented here in a slightly modified form to accommodate the fact that weak

orders may be found in profiles of rankings. Given an orderr, a weak orderrj ∈ ℜ, and two competitors

s, t ∈ X, define:
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δst(r, r j )







1 if rs < rt and r j
t ≤ r j

s

0 otherwise

and∆(r, rj) = ∑s∈ X∑t ∈ Xδst(r, rj)

The value ofδst(r, rj) indicates whether there is a disagreement in the relative ranking ofs andt between

r andrj. ∆(r, rj) is the total number of such disagreements betweenr andrj. The function∆ is a distance

on the setℜ, with the restriction that its first argument must be an order. One can then define a "distance"

d between an orderr and a profileR by: d(r, R) = ∑n
j =1∆(r, r j). In plain words,d(r, R) is the total number

of disagreements between an orderr and all the rankings in profileR.

A Kemeny orderfor a profileR is an orderrK solving minr ∈ ℜ d(r, R), i.e. an order that is closest

to the given profile according to the "distance"d or an order that has the minimum number of

disagreements with the profile. A Kemeny order is also a median order for the rankings in the profile. As

such, it represents the best compromise between the different opinions of the judges or voters.

The following lemmas and corollaries give some of the properties of this order. The first one asserts that

a Kemeny order is a maximum likelihood order. From this lemma, we can reassert that a maximum

likelihood order is one that has the maximum number of agreements with the profile.

Lemma 5: A Kemeny order for a profileR is an order solving maxr ∈ ℜ K(r, R).

Proof. d(r, R)
s∈X t∈X

n

j 1

δst(r, r j)
s∈X t∈X

rs<r t

(n νst(R)) m(m 1)n
2 s∈X t∈X

rs<r t

νst(R),

hence the result.

Lemma 6: SupposerK = (1, 2, ...,m) is a Kemeny order for a given profileR. Thenνs, s+1(R) ≥ νs+1,s(R),

s = 1, ...,m − 1, or, equivalently, 1M 2M ...M m.

Proof. For anys = 1, ...,m − 1, consider the orderr = (1, 2, ...,s − 1, s + 1, s, s+ 2, ...,m). By the proof

of Lemma 5,d(rK, R) − d(r, R) = νs, s+1 − νs+1,s, which cannot be negative ifr is a Kemeny order.
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Corollary 7: Given a Kemeny order for a given profileR, if there exists a Condorcet winner under this

profile, it must be the competitor ranked first in the Kemeny order.

Proof. Let rK = (1, 2, ...,m) be a Kemeny order. From Lemma 6,νs−1,s(R) ≥ νs, s−1(R), s = 2, ...,m. Thus

none of the alternativess = 2, ...,m may be a Condorcet winner, leaving 1 as the Condorcet winner.

Corollary 8: A Kemeny orderrK satisfies (XCC).

Proof. SupposerK violates (XCC), i.e. there exists a partitionX ∈ ℘0(X), Xα , Xβ ∈ X with α < β, s ∈ Xα

andt ∈ Xβ such thatrK
t ≤ rK

s. By definition of ℘0(X), we must havesM t. Thus, by Lemma 6, there must

exist other skaters, saya, ..., k, betweent ands in the Kemeny order. Using Lemma 6 again, we must

have t M aM...M kM s. Since we also havesM t, there is a cycle over the set {t,a, ..., b,s}. Using the

definition of ℘0(X) again, {t,a, ..., b,s} should belong to the same set of the partitionX. We thus have

a contradiction since, at the outset,s and t belonged to differentXα andXβ.

The next result provides an easy way to find complete Kemeny orders. In essence, it says that the

latter can be constructed by the concatenation of Kemeny orders on each of the sets of a partition

X ∈ ℘0(X). Recall that an order can take the formx or r, wherexi is the competitor whose rank isi while

rs is the rank of competitors.

Theorem 9: Take any partitionX = {X1, ...,Xp} ∈ ℘0(X) and an orderx* = x̃1...x̃p wherex̃α is a Kemeny

order onXα under profileR restricted toXα, α = 1, ...,p. Thenx* or equivalently the correspondingr*

is a Kemeny order onX.

Proof. Suppose that there exists an orderr on X such thatK(r, R) > K(r*, R). Thenr cannot be different

from r* in respect only to competitors who belong to the sameXα since this would violate the assumption

that xα is a Kemeny order onXα. Thus there existXα , Xβ ∈ X with α < β, s ∈ Xα and t ∈ Xβ such that

rt ≤ rs instead ofrs < rt as inr* . By Corollary 8,r cannot be a Kemeny order since it violates (XCC). If

there were ordersr such thatK(r, R) > K(r*, R), there would be a Kemeny order among them. Thus there

is no such order andr* is a Kemeny order.
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If M ≠ M, we can go one step further in partitioningX. The details and an algorithm based on such

a partition can be found in Truchon (1998). For the time being, let us stay with the class℘0(X). The

finest partition of℘0(X) for the ISU Example is:

{{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {J}, {K, I, M, L}, {N}, {O}}.

The subset {I, K, L, M} cannot be broken because of a cycle on this subset. There are 4!, i.e. 24, possible

orders over this subset. However, using Lemma 6, one can eliminate all orders involving the terms LI, IK,

KL, LM, MI, and MK. This leaves the five orders given in the table below together with their values

K(r, RIKLM) whereRIKLM is the restriction ofR to the set {I, K, L, M}.

Order r K(r, RIKLM)

KIML

IMLK

ILKM

LKIM

MLKI

30

29

29

27

26

Hence the unique Kemeny order over the set {I, K, L, M} is KIML. Thus, according to Theorem 9, the

complete and unique Kemeny order over all competitors is ABCDEFGHJKIMLNO. The corresponding

r appears in the last column of Table 1. Within this order, we have JKIML. This is quite different from

IJKLM (KTL) given by the ISU Rule. The Borda rule gives: JIMKL.

Example 3 is a more striking illustration of the conflict that could exist between the ISU and the

Kemeny rules. There is a cycle over the whole set of competitors: EM A M B M C M D M F M E. The

Kemeny rule gives EABCDF as the unique final order while the ISU Rule gives ABDCFE. E is the

Kemeny winner but the worst competitor according to the ISU Rule.
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A Kemeny order is not necessarily unique. The following rule can be applied to handle the

occurrence of multiple Kemeny orders. Given a set {r1, ..., rk} of Kemeny orders, consider the weak order

rm defined by:

∀ s,t ∈ X : rm
s ≤ rm

t ⇔ ∑k
q=1rq

s ≤ ∑k
q=1rq

t

This weak order is a ranking according to the mean ranks of alternatives over all Kemeny orders. It will

be called themean Kemeny rankingif it weakly agrees with at least one order in {r1, ..., rk}, i.e. if there

exists an orderrq ∈ { r1, ..., rk} such that:

∀ s,t ∈ X : rq
s < rq

t ⇒ rm
s ≤ rm

t

If rm
s < rm

t , this means that there are more Kemeny orders in whichs is ranked ahead oft than

Kemeny orders in whichs is placed aftert. Thus, if a Kemeny order is chosen at random, the probability

that s be ranked ahead oft is higher than the probability that it be ranked aftert. In rm, alternatives are

thus ranked according to these probabilities. In particular, two alternatives obtain the same rank ifrm
s = rm

t .

Thus, choosingrm over other Kemeny orders makes sense ifrm weakly agrees with one Kemeny order.

However, it would be inconsistent with the Kemeny-Young approach to chooserm if it is not a Kemeny

order, since it is then less probable than any Kemeny order. In this case, a Kemeny order could be chosen

at random or according to some other criterion.

With this approach, we look for Kemeny orders but we may end up with a weak order as a final

choice. An alternative approach would consist in working with the set of weak orders instead of orders

at the outset but this would be costly. For example, there are 75 weak orders on a set of four alternatives

compared to 24 orders. The above approach is thus more practical.

One case in whichrm gives the same rank to two alternativess and t is whenνst = νts and when

in additions andt are adjacent in any Kemeny order. Indeed, in this case, for any Kemeny order in which

s is ahead oft, there is another one in which the only difference is that the positions ofs and t are

interchanged. In particular, all competitors of a cycle inT will be declared ex aequo underrm.
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There are other instances in which some competitors could be declared ex aequo. In Example 3,

if judge 3 were to interchange her ranking of C and F, there would then be three Kemeny orders:

EABFCD, EABDFC, and EABCDF. This means that CDF, DFC and FCD have the same likelihood. Not

surprisingly, with this change, there is a cycle CM D M F M C over the set {C, D, F}. There is good

ground here to declare these three competitors ex aequo since they have the same likelihood of being in

any of the last three positions and this is what happens withrm.

The modification of Example 3 introduced in Section 5, by changing the rankings of judges 4, 5,

and 6 for respectively (6, 3, 4, 1, 5, 2), (6, 3, 4, 2, 5, 1), and (6, 3, 4, 2, 5, 1), provides another example

of multiple Kemeny orders. There are six Kemeny orders: EADFBC, EADBCF, EABCDF, DFEABC,

DEAFBC, DEABCF. Here, there is no mean Kemeny order sincerm does not agree weakly with any of

the Kemeny orders.

Interestingly, in this case, the Borda criterion would rank the competitors in the following way:

(4, 2, 6, 2, 1, 4). Thus B and D would tie for the second rank and A and F would tie for the fourth rank.

Moreover, only one point in the Borda scores separates adjacent ranks, thus confirming the close

competition between all skaters. Recall that the ISU ranking in this case is (1, 2, 4, 3, 6, 5), completely

at odds with the Borda and the six Kemeny orders.

7. Other properties of the Kemeny Rule

As expected, the Kemeny rule does not satisfy (BI) and (M). In Example 3, if A and B had not

shown up for the competition or equivalently if all the judges had ranked them in the last two places

without changing the marks of all other competitors, then the unique Kemeny and Condorcet order would

become CDFE. Hence E would become the Condorcet loser, in violation of both (BI) and (M).

However, Young and Levenglick (1978) show that the Kemeny rule satisfies a weaker

independence condition that they calllocal independence of irrelevant alternatives(LIIA). Its definition

involves the concept of interval for orders. Aninterval for an orderis any subset of alternatives that

occurs in succession in that order. For example,abcd, bcd, bc, cd, cdeare intervals of the orderabcde.

(LIIA) requires that the ranking of alternatives within any interval be unaffected by the presence of
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alternatives outside this interval. This condition implies that the ranking of alternatives toward the top of

the list is unaffected by the removal of those at the bottom, etc.

The Kemeny rule is alsosymmetric(it puts all judges on an equal footing),neutral (it treats all

skaters in the same way). Moreover, it satisfies (WP) andreinforcement(whenever two distinct groups

of judges both reach the same ranking of the skaters, this ranking is also the consensus for the two groups

of judges merged together). The Borda rule and more general positional methods to be defined in Section

9 also satisfy these properties but the Kemeny rule is the only one to satisfy (LIIA) as well. In Example

3, if B was dropped from the list, then C would take the first place from A in the Borda ranking. In

Example 2, we have an illustration of the violation of (LIIA) by the ISU Rule. Dropping D from the list

causes A to move ahead of B in the ISU ranking.

The ISU Rule may come far from giving the most probable ranking because of its extreme

sensitivity to the data. In Example 3, the ISU Rule gives E the last rank because 4 judges out of 7 gave

E rank 5. Yet it gives A the first rank while 3 judges gave this competitor rank 6. It appears that the ISU

Rule may be very sensitive to small perturbations and thus to errors in the judges’ rankings or attempts

at manipulation. For instance, in Example 3, suppose that judge 7 made a mistake and gave a ranking of

1 to A and 5 to E instead of the other way around. The effect of this error on the final ranking is

dramatic. It gives A the first rank and E the last rank, just the reverse of what would have happened

without this error. If one adheres to the point of view that judges try to evaluate all competitors as

objectively as possible but may err in doing so, this sort of sensitivity should be avoided.

This extreme sensitivity of the ISU Rule to the data is due to an incomplete use of available

information by (MRP). For example, a skater has the same median rank 3 whether he obtains ranks

(3, 3, 3, 3, 6, 6, 6) or (1, 1, 1, 3, 3, 3, 3) from a panel of seven judges. If he is alone with this median

rank, he will be ranked according to this median rank and will possibly obtain the same final rank with

any of the two profiles. In these circumstances, a change in the rank given by the middle judge in any of

the two rankings could have a big impact on the median rank of this skater and hence on his final ranking.
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8. Comparison of Four Ranking Rules in 24 Olympic Competitions

The ISU, the Borda, the Kemeny rules have been applied to the data of the 24 olympic

competitions: men, women, and couples, short and free programs, for 1976, 1988, 1992 and 1994. The

rankings of the judges were constructed from the raw marks and the three rules were then used to

aggregate these individual rankings into a final ranking. Summing the raw marks of all the judges provided

a fourth ranking. The Kemeny orders were found with the algorithm described in Truchon (1998). In the

case of multiple Kemeny orders, the mean Kemeny orderrm was chosen when it existed. Otherwise, the

Kemeny order closest to the ISU ranking was retained so as to minimize the disagreement between the

two.

The result of applying the four ranking rules to these competitions is summarized in Table 4 with

a measure of the disagreement between the rankings. This measure is essentially the Kemeny measure with

the difference that a tie between two competitors in a ranking instead of a strict relation in the other is

counted as half a complete reversal. More precisely, given two rankings, i.e. two weak ordersr and

r* ∈ ℜ and two competitorss, t ∈ X, define:

γst(r, r )













1 if rs < rt and rt < rs

1
2

if rs rt and rt < rs

1
2

if rs < rt and rt rs

0 otherwise

The measure of the disagreement betweenr and r* is defined by:G(r, r* ) = ∑s∈ X∑t ∈ Xγst(r, r* )

The last column of Table 4 complements this measure by giving some details on the presence of

cycles and on the disagreements between the Kemeny and the ISU orders. Ak-cycle is a cycle overk

competitors. All ties that are mentioned in these remarks are those found in the mean Kemeny rankings.

These results have been summarized in the Introduction. More can also be found in the Conclusion. Note

that all the computations needed for each pair of competitions (short, free) or each row of Table 4 have

taken less than 8 seconds on a Pentium 200 running Mathematica and a procedure written by the author.
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Finally Table 5 gives the details of the women short competition of the 1988 Olympic Games. The

names have been changed for A, B, C, ... The majority relation contains a cycle over the subset {O, P,

Q, R, S, T}. The unique Kememy order over this subset is quite different from the other three orders. But

there are differences involving other skaters as well, for instance skater L.

9. On the Manipulability

BP contend that "Median ranks provide strong safeguard against manipulation by a minority of

judges." Manipulation means misrepresentation of one’s true ranking by a judge in order to change the

final ranking for one that he or she prefers. A judge might be interested only in the winner of a

competition and could thus try to manipulate the ranking procedure with this objective in mind. We could

then see the ranking procedure as asocial choice function, i.e. a function that selects a winner.

There is another famous impossibility theorem in this context, due to Gibbard (1973) and

Satthertwaite (1975), which says that all non-dictatorial (ND) social choice functions are manipulable.

Muller and Satthertwaite (1977) also establish that a social choice function is not manipulable if and only

if it satisfies (M), a condition violated by the ISU, the Borda and the Kemeny rules. There is a strong link

between these impossibility results and the one of Arrow.

A judge may prefer a ranking to another one, not just because of the winner, but because of the

whole ranking. One way to formalize this preference would be to use the Kemeny distance between two

rankings defined in Section 6 to represent the preference of a judge over the set of all possible rankings.

Bossert and Storcken (1992) extend the Gibbard-Satthertwaite theorem to this context. The ISU Rule does

not escape these theorems.

For instance, in the ISU Example, judge 9 could improve the final ranking of his most favourite

competitor C by simply interchanging his ranking of B and E, without changing anything else in the final

ranking. In this case, the possibility of manipulation rests upon the use of the (BC) criterion or principle

d). However, (MRP) or principle a) lends itself to manipulation. In Example 2, if judge 5 were to

interchange his ranking of A and C, he would make A move ahead of B in the final ranking, which would

agree with his own relative ranking of the two competitors.
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Some ranking rules may be more prone to manipulation than others. For instance, the Borda rule

has been considered as highly manipulable for a long time, mainly because it violates (BI). Many authors

have constructed examples showing that a coordinated action by many voters may have a dramatic impact

on the final Borda ranking. Already in the 19th Century, the French mathematician Laplace (1812) pointed

out that even honest voters could be tempted to give the last ranks to the strongest candidates in order to

favour their own candidate. This, in his opinion, would give a great advantage to mediocre candidates.

He added that, for this reason, this rule had been abandoned by institutions that had previously adopted

it. Borda’s answer is well known: My method should be used only with honest people.

The last word on this question, for the present time at least, is probably due to Saari (1990). He

shows that, at least form = 3, it is the Borda rule that maximizes the expected strategic impact of

manipulation. However, the impact of manipulation is just one aspect of the question. To have any impact,

manipulation must be successful. The second question is thus opportunity. How often can a judge be

successful at manipulating the final ranking? An analysis of manipulation requires combining both the

impact of manipulation and an accounting of how often manipulation can succeed.

Saari develops a measure of susceptibility to manipulation for positional voting procedures. A

positional voting procedureis one in whichm specified weightsw1, ..., wm, with ws ≥ ws+1, w1 > wm = 0,

are used to tally the ballots. The competitors are then ranked according to the total number of points that

they receive. For example, (1, 0, ..., 0) corresponds to the plurality vote and (m − 1, m − 2, ..., 1, 0) to

the Borda method.

His study is done under the following assumptions. It is equally likely for any pair of alternatives

to be the target of a manipulation attempt; all profiles of rankings are equally likely; and it is equally

likely that a strategic voter or a small coalition of strategic voters has any particular ranking.

His most surprising finding is that, among all positional voting procedures, the Borda rule is the

method that either minimizes, or comes close to minimizing, the likelihood of a successful manipulation

by a small group of individuals. This result is essentially due to the fixed value for the successive

differences between the weightswi used in the Borda method. However, this same property makes this

rule vulnerable to carefully coordinated manipulation by large groups. The worst procedures, i.e. the ones
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most susceptible of being manipulated by a small coalition, are the plurality (1, 0, ..., 0) and the anti-

plurality (1, 1, ..., 1, 0) rules.

What can be said of the ISU Rule in this respect? It can be shown that the ISU Rule is the

combination of many positional procedures. Indeed, we can write the ISU Rule as a (m − 1) iteration

procedure: At iterationi < m − 1, rank all competitors who have not been ranked in previous iterations

according tonis(R) and retain those for whomnis(R) > n/2. If there are ties between some of the

competitors who have just been ranked, try to break the ties using theBρs(R) first and theBs(R) if there

still remain ties. If some of the competitors have not been ranked after this iteration, then go to the next

one, i.e. increasei by one. If iterationm − 1 is reached, retain the ranking given bynis(R). Note that there

can be only one competitor with rankm and that no tie breaking rule is necessary to find him or her.

This iterative process can be seen as an election with runoffs. At the first iteration, the competitors

who get a majority for the first rank are given this rank. The remaining competitors are then ranked in

a new election and so on. Formally, at iterationi, the positional rule defined by (1, ..., 1, 0, ..., 0), i.e. a

vector with the firsti components equal to 1 and all others equal to 0, is actually used in the first step.

Each of these positional rules is an approval voting method: List youri most preferred competitors and

each of them will get one point in the counting process. According to Saari’s findings, each of these

procedures is more susceptible to manipulation than the Borda rule. The procedures used in the first and

last iterations are respectively the plurality and the anti-plurality ones, the worst possible. The restricted

Borda and the Borda procedure itself, which are also two positional procedures, are used only to break

ties. The restricted Borda procedure is a special one in that not all votes are counted.

The ISU Rule is a combination of many procedures that are susceptible to manipulation. Is the

ISU Rule more or less susceptible to manipulation than any of its components? There is probably no clear

cut answer to this question. On the one hand, the fact that manipulation within a positional procedure may

imply the recourse to a different one may reduce the opportunities for manipulation within the first

procedure. On the other hand, this same fact may open additional possibilities to the manipulators.

Whether these additional possibilities will compensate for the lost ones is an open question to me. The

answer probably depends on the circumstances. We would like to know what it gives on average.
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However, in as much as the Borda rule is rarely used in this context, it is safe to assert that the

performance of the whole ISU Rule cannot be as good as that of the Borda rule in terms of susceptibility

to manipulation.

The Kemeny rule does not escape the Gibbard-Satthertwaite and the Bossert-Storcken theorems

either. Whether it is more or less susceptible to manipulation than the ISU Rule or any positional rule

seems to remain an open question. However, the fact that it satisfies the local independence condition

certainly limits the possibilities of its manipulation. Moreover, the fact that it involves complex

computations certainly does not make it easy to manipulate. Susceptibility to manipulation and ease of

manipulation are two different things.

Under (XCC) and the Kemeny rule, if a subset of judges is unable to arrive at a cycle in the

majority relation whatever their way of ranking the competitors, then they are unable to manipulate the

final ranking since the latter will be given by the majority relation alone. Under these circumstances, the

best way for these judges to make sure that the final ranking resembles their own ranking is to report the

latter.

If a subset of judges can produce a cycle by strategically ranking the competitors, thus forcing the

use of the Kemeny rule per se, then this strategic behaviour, to be successful, must at the same time

produce a Kemeny order preferable to the final ranking that would be obtained otherwise. This may be

impossible or would require a lot of sophistication from these judges. Their task would be easier if there

was a cycle in the majority relation before any attempt at manipulation. However, they would have to be

aware of the presence of this cycle before hand.

Of course, this begs the question of the possible lack of objectivity by the judges. In their

empirical study of the results of the 24 olympic competitions analyzed in this paper, Campbell and

Galbraith (1996) find strong evidence of the presence of a small national bias, the latter being more

marked for medal contenders than for less strong competitors.
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10. Conclusion

This paper shows that the occurrence of cycles in the majority relation is not only a theoretical

possibility. It also shows that the choice of a rule is not merely an academic question. Aside from the

sensitivity to manipulation, it can have a real impact on the results. Many disagreements have been found

between the ISU, the Borda, the Kemeny rankings and the one according to raw marks in 24 olympic

competitions. Many of the differences occurred for middle places but in many instances, the Kemeny rule

gave a tie for the first, second and third ranks instead of a strict order.

The choice of a particular ranking rule should be based on its properties. While the ISU puts

forward a majority principle as the basis of its ranking rule, this principle is at odds with the usual

Condorcet criterion, which says that if a competitor is ranked ahead of all other competitors by an absolute

majority of judges, he should be first in the final ranking. The ISU rule also conflicts with an extension

of this principle to other ranks, which goes as follows: If a competitor is ranked consistently ahead of

another competitor by an absolute majority of judges, he or she should be ahead in the final ranking.

Consistency refers to the absence of cycle involving these two skaters.

The Extended Condorcet Criterion defined in this paper may give a complete ranking of all

competitors in ideal circumstances. In the case of cycles, an additional criterion is however needed to

break cycles while retaining Condorcet’s objective in mind, which was to find a ranking with the highest

probability of being the true ranking. The Kemeny rule fulfils this objective if the judges are able to

choose the better of two competitors with a probability larger than one half. It thus seems especially

appropriate when the decision is being taken by a group of experts as is the case in skating.

Young (1995) advocates this rule for social decision purposes. Le Breton and Truchon (1997)

propose a measure of how far from the Borda rule a social choice function may be. They find that the

Kemeny rule fares best, as compared to other rules satisfying the Condorcet criterion. It does almost as

well as the Condorcet rule. This paper shows that, for most practical applications, Kemeny orders can be

found easily with a laptop computer.

Another alternative to the ISU Rule would be to use the Borda rule from the beginning of the

process through the obtention of the global ranking. This rule seems to be used in many local
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competitions. The Borda rule has much to command for itself. It is a positional rule, which satisfies

interesting requirements such as anotherreinforcementcondition (different from the one defined in Section

7) andparticipation. The first one says that, if two distinct panels of judges select the same winner, then

the joint panel should also select this winner. Participation means that if an additional judge succeeds in

changing the winner, it can only be in the sense that he or she favours. There is no rule consistent with

the Condorcet criterion, such as the Kemeny rule, that satisfies these two requirements. The reader is

referred to Young (1974) or Moulin (1988) for more details on these rules. Based on the findings of Saari

(1990), the Borda rule also appears to be less susceptible to manipulation by a minority of judges than

the ISU Rule. Manipulation by a large coalition of judges is not really an issue in rating skating.

In their Monte Carlo experiment, BP contrast the ISU Rule with a method that consists in

summing the raw marks of the judges. They start with true marks for all competitors that result in a

complete ranking, their true ranking. The marks of each judge are then obtained by adding a random term

to the true marks, truncating the result at 6.0. With true marks ranging from 4.8 to 5.8, they find that the

ISU Rule outperforms the simple addition of the raw marks in picking the true winner (54% of the time

versus 46%). It would be interesting to see how the Kemeny and the Borda rules would have performed

in picking the true winner as compared to the ISU Rule. In the olympic data, the Kemeny rankings had,

on a whole, slightly less disagreements and the Borda rankings had significantly less disagreements with

the rankings according to the raw marks than the ISU rankings.

BP’s results raise an interesting theoretical question: Is there a good theoretical basis for throwing

away the raw marks of the judges and retaining only the relative rankings drawn from these marks? BP’s

simulations suggest that neglecting part of the information may play an important role in smoothing out

errors in the judges’ marks. We might also think of a role for this procedure in reducing the scope for

manipulation. However, both contentions would need a firmer theoretical justification.
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Table 1: The ISU Example

s Judges Criteria Final rank

1 2 3 4 5 6 7 8 9 ρs nρs Bρs Bs ISU BC XCC K

A 1 1 1 1 1 3 1 4 4 1 6 17 1 1 1 1

B 3 3 2 2 1 1 2 3 3 2 5 8 20 2 2 2 2

C 2 2 4 3 3 2 3 1 1 2 5 8 21 3 3 3 3

D 6 6 5 6 4 7 5 2 2 5 5 18 43 4 4 4 4

E 4 4 6 4 7 6 8 5 5 5 5 22 49 5 5 5 5

F 4 5 8 7 5 4 4 8 8 5 5 22 53 6 6 6 6

G 8 8 3 9 9 5 6 6 6 6 5 60 7 7 7 7

H 7 7 7 5 6 9 7 7 7 7 8 62 8 8 8 8

I 11 10 12 12 10 11 12 11 11 11 6 100 9 10 ? 11

J 12 9 13 11 8 8 13 9 12 11 5 45 95 10 9 9 9

K 10 12 11 10 13 10 14 10 15 11 5 51 105 11 12 ? 10

L 13 11 14 8 11 13 11 14 10 11 5 51 105 11 12 ? 13

M 9 13 9 14 15 14 9 12 9 12 5 104 13 11 ? 12

N 15 15 10 13 12 12 10 15 13 13 6 115 14 14 14 14

O 14 14 15 15 14 15 15 13 14 14 5 129 15 15 15 15



Table 2: Example 2

s Judges Criteria Final rank

1 2 3 4 5 ρs nρs Bρs Bs ISU BC XCC K

A 1 3 1 3 3 3 5 11 2 1 1 1

B 2 2 2 4 4 2 3 14 1 3 2 2

C 3 4 3 1 1 3 4 12 3 2 3 3

D 4 5 4 2 2 4 4 17 4 4 4 4

E 5 1 5 5 5 5 5 21 5 5 5 5

Table 3: Example 3

s Judges Criteria Final rank

1 2 3 4 5 6 7 ρs nρs Bρs Bs ISU BC XCC K

A 2 2 2 6 6 6 1 2 4 25 1 3 ? 2

B 3 3 3 1 1 1 6 3 6 18 2 1 ? 3

C 4 4 4 4 4 4 2 4 7 26 4 4 ? 4

D 5 5 6 3 3 2 3 3 4 27 3 5 ? 5

E 1 1 1 5 5 5 5 5 7 23 6 2 ? 1

F 6 6 5 2 2 3 4 4 4 28 5 6 ? 6



Table 4: Comparison of Four Ranking Rules in 24 Olympic Competitions

Competition Short Program Free Program Remarks

Men 1976

Kemeny Borda Marks
ISU 4.5 2.5 3.5
Marks 3. 2.
Borda 3.

Kemeny Borda Marks
ISU 2. 0 0
Marks 2. 0
Borda 2.

A 6-cycle, tie for ranks 3-4,
inversions in 5-9 in short pr.

A 3-cycle, tie for 2-3 in free pr.

Men 1988

Kemeny Borda Marks
ISU 2.5 3. 7.5
Marks 7. 4.5
Borda 2.5

Kemeny Borda Marks
ISU 2. 3. 5.
Marks 4. 2.
Borda 3.

Three 3-cycles in short program.

Men 1992

Kemeny Borda Marks
ISU 0.5 1. 2.
Marks 2.5 1.
Borda 1.5

Kemeny Borda Marks
ISU 0 1.5 0.5
Marks 0.5 2.
Borda 1.5

A 3-cycle in short program.

A 5-cycle and a 3-cycle in free
program.

Men 1994

Kemeny Borda Marks
ISU 2. 1.5 3.5
Marks 1.5 2.
Borda 1.5

Kemeny Borda Marks
ISU 1.5 3.5 5.5
Marks 4. 5.
Borda 3.

No cycle.  Tie for ranks 3-4 in
short program.

Women 1976

Kemeny Borda Marks
ISU 2.5 1. 4.
Marks 4.5 3.
Borda 1.5

Kemeny Borda Marks
ISU 1. 3.5 3.5
Marks 2.5 2.
Borda 3.5

No cycle.  Inversion in ranks 3-4,
tie for ranks 5-6, 7-8, 9-10 in
short program.

Women 1988

Kemeny Borda Marks
ISU 8. 5. 8.
Marks 7. 3.
Borda 6.

Kemeny Borda Marks
ISU 2. 2.5 3.
Marks 3. 3.5
Borda 3.5

A 9-cycle (ranks 12-20) in short
program. Inversions starting at
rank 12 in both programs.

Women 1992

Kemeny Borda Marks
ISU 7.5 7. 6.5
Marks 4. 3.5
Borda 5.5

Kemeny Borda Marks
ISU 1.5 4. 3.5
Marks 5. 1.5
Borda 4.5

Two 3-cycles, inversion in ranks
7-8, tie for 3-4 in short program.
A 3-cycle, tie for ranks 1-2, 4-5,
10-11 in free program.

Women 1994

Kemeny Borda Marks
ISU 4.5 3. 4.
Marks 6.5 3.
Borda 4.5

Kemeny Borda Marks
ISU 2. 2. 5.5
Marks 5.5 3.5
Borda 2.

Two 3-cycles,  inversion for
ranks 9-10 in short  program.

Tie for ranks 1-2 in free program

Couples 1976

Kemeny Borda Marks
ISU 2. 1.5 3.
Marks 3. 3.5
Borda 3.5

Kemeny Borda Marks
ISU 1. 0 1.
Marks 2. 1.
Borda 1.

A 4-cycle (ranks 10-13) in short
program.

Couples 1988

Kemeny Borda Marks
ISU 0 1. 0.5
Marks 0.5 0.5
Borda 1.

Kemeny Borda Marks
ISU 0.5 0 2.
Marks 1.5 2.
Borda 0.5

No cycle. Tie for ranks 5-6 in
free program.

Couples 1992

Kemeny Borda Marks
ISU 0 1. 1.
Marks 1. 0
Borda 1.

Kemeny Borda Marks
ISU 1.5 1. 2.
Marks 0.5 1.
Borda 0.5

No cycle. Tie for ranks 3-4 in
free program.

Couples 1994

Kemeny Borda Marks
ISU 1. 2. 2.
Marks 1. 0
Borda 1.

Kemeny Borda Marks
ISU 0.5 1. 2.
Marks 1.5 1.
Borda 0.5

No cycle.

The numbers in the cells are measures of the disagreement between the rankings.



Table 5: Comparison of Four Ranking Rules in the Women Short Program
of the 1988 Olympic Competition

Skater ISU Marks Borda Kemeny

A 1 1 1 1
B 2 2 2 2
C 3 3 3 3
D 4 4 4 4
E 5 5 5 5
F 6 6 6 6
G 7 8 7 7
H 8 7 7 8
I 9 9 9 9
J 10 10 10 10
K 11 11 11 11
L 12 14 14 14
M 13 12 12 12
N 14 13 13 13
O 15 16 15 18
P 16 18 17 15
Q 17 14 15 17
R 18 19 19 20
S 19 17 18 16
T 20 19 20 19
U 21 21 21 21
V 22 22 22 22
W 23 23 23 23



Appendix

Rule 371 of the ISU

Determination of results of each part of a competition

1. The competitor1 placed first by the absolute majority of Judges in a part of the competition is first; he

who is placed second or better by an absolute majority is second and so on.

2. For this purpose, the place numbers 1 and 2 count as second place; place numbers 1, 2 and 3 count as

third place, and so on.

3. If two or more competitors have obtained a majority for the same place, the first among them is he who

has been so placed by the greater number of Judges.

4. If such majorities are equal, then the lowest total of place numbers of those Judges forming the majority

determines between them.

5. If the total of the place number is equal according to paragraph 4, the sum of the place numbers of all

Judges determines the result; if this is also equal the competitors are tied.

6. If there is no absolute majority for a place, the result for such place must be ascertained by seeking the

best majority for the following place; and if there is no such majority then by seeking the best majority

for the next following place and so on.

7. If such majorities are equal under paragraph 6, the systems referred to in paragraphs 4 and 5 must be

applied.

8. The ascertainment of each place must first be made in accordance with paragraphs 1 through 5, and

thereafter according to paragraphs 6 and 7 in the above mentioned order.

9. a) If two or more competitors are temporarily tied with majorities for the same place, the place must

be awarded to one of those competitors on the basis of paragraphs 3, 4 and 5. After awarding the place,

the remaining temporarily tied competitor(s) must be awarded the next following place(s) on the basis of

paragraphs 3, 4 and 5 without considering any additional competitors.

b) In awarding the subsequent places thereafter, the unplaced competitors with a majority for the lowest

numbered place shall be given first consideration.

10. If the foregoing rules fail to determine the award of any place, then the competitors tied for that place

must be announced as tied. If two competitors so tie for first place, the next place to be awarded is third

place (not second). If two skaters so tie for second place, the next place to be awarded is fourth place (not

third) and so on.

1 Rule 371 adds "or the team" after every instance of "competitor". It has been omitted.
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