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Abstract

The usual Condorcet Criterion says that if an alternative is ranked ahead of all other
alternatives by an absolute majority of voters, it should be declared the winner. The
following partial extension of this criterion to other ranks is proposed: If an alternative
is consistently ranked ahead of another alternative by an absolute majority of voters, it
should be ahead in the final ranking. The term "consistently" refers to the absence of
cycles in the majority relation involving these two alternatives. If there are cycles, this
criterion gives partial orders that can be completed with the Kemeny rule. An algorithm
to construct Kemeny orders is presented. It is based on a result saying that a complete
Kemeny order over all alternatives can be obtained by splicing together Kemeny orders
on the subsets of an admissible partition of the alternatives underlying the Extended
Condorcet Criterion.

Key words: aggregation, Condorcet Criterion, Kemeny orders, algorithm.

Journal of Economic Literatureclassification: D710, D720.

Résumé

Le critère usuel de Condorcet exige que, si une alternative est classée avant toutes les
autres par une majorité de votants, elle devrait être déclarée vainqueur. Une extension
partielle de ce critère aux autres rangs est proposée: Si une alternative est classée avant
une autre de manière cohérente par une majorité de votants, elle devrait l’être dans le
classement final. La cohérence réfère à l’absence de cycle dans la relation majoritaire
impliquant ces deux alternatives. En cas de cycles, ce critère donne des ordres partiels,
qui peuvent être complétés avec la règle de Kemeny. Un algorithme pour la construction
des ordres de Kemeny est présenté. Il s’appuie sur un résultat affirmant qu’un ordre de
Kemeny peut être obtenu en juxtaposant des ordres de Kemeny sur les sous-ensembles
d’une partition des alternatives sous-jacente au critère de Condorcet généralisé.



1. Introduction

The usual Condorcet Criterion found in the literature says that if an alternative or a candidate is

ranked ahead of all other alternatives by an absolute majority of voters, it should be declared the winner.

Such an alternative may fail to exist because of a cycle in the majority relation. When it exists, it is called

the Condorcet winner.

Condorcet was preoccupied not only with the winner but also with the whole ranking of all

alternatives. This may pose a problem, again because of the possibility of a cycle in the majority relation.

Yet, a partial extension of the Condorcet Criterion to other ranks can be done as follows: If an alternative

is consistently ranked ahead of another alternative by an absolute majority of voters, it should be ahead

in the final ranking. The term "consistently" refers to the absence of cycles involving these two alter-

natives.

A first objective of this paper is to propose a formalization of this idea, called the Extended

Condorcet Criterion (XCC). In essence, it says that if the set of alternatives can be partitioned in such a

way that all members of a subset of this partition defeat all alternatives belonging to subsets with a higher

index, then the former should obtain a better rank than the latter. A partition satisfying the above property

is said admissible for (XCC). If there is a cycle in the weak majority relation and, in particular, if there

is a subset of alternatives that all tie, then this cycle or subset should belong to a same subset of any

admissible partition.

This work was motivated by the comparison of aggregation procedures in figure skating. Ties

could not be neglected despite the complication that they usually bring. Indeed, two skaters may tie even

if the number of judges is odd because a judge may give the same rank to more than one skater. Ties may

create cycles in the weak majority relation and increase the length of existing ones. Many ties and many

cycles of the weak majority relation have actually been found in the data of Olympic Games analyzed in

Truchon (1998).

In the presence of cycles, (XCC) gives a partial order of the alternatives. The question is then:

how to complete this order to obtain a complete ranking? To answer this question while remaining in the

spirit of (XCC), let us turn to another question addressed by Condorcet (1785): which final ranking is most
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likely to be the true ranking of the alternatives? Neglecting the possibility of ties, Condorcet showed that

if the pairwise ranking of the alternatives under the majority rule does not involve any cycle, then it yields

a complete order that has maximum likelihood of being the true order, under the assumption that every

voter chooses the best of two alternatives with a probability larger than one half and that this judgment

is independent between pairs and voters.

Condorcet gave indications on how to break cycles that might occur. However, his prescription

is not completely clear. Young (1988) shows that a correct application of Condorcet’s maximum likelihood

approach leads to an order that has the maximum pairwise support from the voters. Such an order is often

called a Kemeny order because it involves the minimum number of pairwise inversions with the individual

rankings. Kemeny (1959) proposes this number as a distance between an order and a profile of individual

rankings. Such a ranking is also a median ranking for those composing a profile. In this sense, it

represents a best compromise between the possibly conflicting views of the voters.

It is shown in this paper that a Kemeny order satisfies (XCC). This is a good justification for

(XCC) and its name. Conversely, the Kemeny-Young approach is a natural complement to (XCC). Indeed,

a complete Kemeny order over all alternatives can be obtained by splicing together Kemeny orders on the

subsets of an admissible partition for (XCC). This is a very useful result since the Kemeny-Young

approach may become prohibitive when the number of alternatives is large. Note that in the finest possible

admissible partition for (XCC), many of the subsets may be singletons, which eases the task considerably.

A second objective of this paper is to present an algorithm, based on the above result, to construct

complete Kemeny orders. The key to this algorithm is the construction of an admissible partition. Actually,

if some alternatives tie within a subset of such a partition, then this subset can possibly be further

partitioned, thus enhancing the performance of the algorithm.

The paper is organized as follows. Section 2 introduces the notation including the formal

description of (XCC). For the sake of completeness, Section 3 first presents the Kemeny-Young approach

with sufficient details. It then develops the results on which the algorithm is based. This algorithm is

presented in Section 4. In Section 5, it is explained how we can deal with the multiplicity of Kemeny

orders. A brief conclusion makes up Section 6.
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2. Notation

Let X be the set of alternatives, with cardinalityX = m, andN be the set of voters, withN =

n, an odd number. Each voterj is assumed to have aweak orderor ranking rj of the alternatives inX. The

elementr j
s of this vector is the rank of alternatives. A ranking with no tie for a rank is anorder on X. An

order can be represented alternatively as a sequences1s2..., wheres1 ands2 are respectively the alternatives

with ranks 1 and 2, etc.

Let ℜ be the set of all possible rank vectorsr. A profile of rankingsis an m × n matrix R =

(r1, ..., rn) ∈ ℜn. A ranking rule is a mappingFR : ℜn → ℜ. FR(R) is the final ranking resulting from

profile R. In the language of the theory of social choice,FR is also asocial welfare function.

Next, let us defineνst(R) = { j ∈ N : r j
s < r j

t} and the complete binary relationM on X by

sM t ⇔ νst ≥ νts. We write M for the asymmetric component ofM, i.e. the relation defined by

sM t ⇔ νst > νts andT for the symmetric component ofM, i.e. the relation defined bysTt ⇔ νst = νts. They

are respectively themajority relation, thestrict majority relationand theex aequo relationon X. We can

readsM t ass defeatst andsTt ass ties with t.

A cycle of M is a subset {x1, ..., xk} ⊂ X such thatxi M xi+1, i = 1, ...,k − 1, andxkM x1. One defines

similarly cycles ofM andT. Equivalently, a cycle ofT is a subsetS ⊂ X such thatsTt ∀ s,t ∈ S. Cycles

of M andT are obviously cycles ofM.

The usual Condorcet Criterion reads as follows:

Condorcet Criterion (CC)

∀ s ∈ X, ∀ t ∈ X, t ≠ s : sM t ⇒ FRs(R) = 1 andFRt(R) > 1

An s satisfying (CC) may not exist because of a cycle in the majority relationM. When there

exists ans ∈ X satisfying (CC), thiss is called theCondorcet winner. Note that there may exist a

Condorcet winner even if there are cycles over some subsets of alternatives.

To extend (CC) to other ranks, let℘0(X) be the class of partitionsX = {X1, ..., Xp} of X,

satisfying:
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∀ Xα , Xβ ∈ X with α < β, ∀ s ∈ Xα , ∀ t ∈ Xβ : sM t

Notice that, if there is a cycle ofM over some subset of alternatives, then these alternatives must belong

to a same subsetXα of any partition in℘0(X). In particular, this must be the case for two alternativess

and t such thatsT t. In the finest partition of this class, the setsXα are cycles of maximal length ofM or

singletons.X1 is also called thetop cycleof M or theCondorcet set, a solution concept introduced by Good

(1971) and Schwartz (1972) for the strict majority relation.X2 is the top cycle onX\X1, etc.

Extended Condorcet Criterion (XCC)

For any partitionX ∈ ℘0(X), the following must hold:

∀ Xα , Xβ ∈ X with α < β, ∀ s ∈ Xα , ∀ t ∈ Xβ : FRs(R) < FRt(R)

If M = M and if M contains no cycles, then allXα of the finest partition of℘0(X) are singletons

and a final rankingFR(R) satisfying (XCC) is a complete order. WhenM contains a cycle, (XCC) does

not say how to rank alternatives within anXα of the finest partition in℘0(X). In particular, it does not

imply that FRs = FRt if sTt. In other words, (XCC) yields only a partial order in these circumstances.

A complete final ranking, consistent with (XCC), can be obtained with the maximum likelihood or

Kemeny approach.

3. Kemeny orders

Assuming that the rankingsrj in some profileR are independent evaluations of the true ranking

of the alternatives, an interesting question is: which final rankingFR(R) is most likely to be the true

ranking of the alternatives. This is precisely the question addressed by Condorcet (1785). His objective

was to justify the majority principle. Condorcet’s approach is one of the first applications of statistical

hypothesis testing and maximum likelihood estimation. He assumes that every voter chooses the best of

two alternatives with a probabilityp satisfying 1/2 <p ≤ 1, and that this judgment is independent between

pairs and voters. If the binary relationM is an order onX, then it is the solution to his problem, i.e. the

most probable order onX. If M contains a cycle, Condorcet’s prescription is to eliminate some of the

propositions (sM t is a proposition), starting with the one with the weakest majority and so on until the

cycle disappears. This works fine ifm = 3 but may give ambiguous results or a partial order form ≥ 4.
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Young (1988) develops a correct application of Condorcet’s maximum likelihood approach. In the

casem = 3, it goes as follows. If the true order on the set {a, b, c} is abc, then, neglecting a multiplicative

constant and the argumentR in νst(R), the conditional probability of observing a profile of votesR is given

by:

pνab(1 p)νbapνac(1 p)νcapνbc(1 p)νcb pνab νac νbc(1 p)νba νca νcb

The probability of observing the same profile, conditional on the true order beingacb, is given by:

pνac(1 p)νcapνab(1 p)νbapνcb(1 p)νbc pνac νab νcb(1 p)νca νba νbc

Hence ifp > ½, abc is more probable thanacb as on order if and only ifνab+νac+νbc > νac+νab+νcb.

More generally, let:

K(r, R)
s∈X t∈X

rs<r t

νst(R).

An orderr* on X is a solution of Condorcet’s problem or amaximum likelihood orderif it is a solution

of maxr ∈ ℜ K(r, R). The value ofK(r, R) may be seen as the total number of pairwise supports forr in

profile R, i.e. the total number of voters who rank pairs of alternatives as inr. A maximum likelihood

order is thus one that has the maximum total support from the voters as expressed inR.

This problem may be given a different expression using a notion of distance for orders proposed

by Kemeny (1959). It is presented here in a slightly modified form to accommodate the fact that weak

orders may be found in profiles of rankings. Given an orderr, a weak orderrj ∈ ℜ, and two alternatives

s, t ∈ X, define:

δst(r, r j )







1 if rs < rt and r j
t ≤ r j

s

0 otherwise

and∆(r, rj) = ∑s∈ X∑t ∈ Xδst(r, rj)

The value ofδst(r, rj) indicates whether there is a disagreement in the relative ranking ofs andt between

r andrj. ∆(r, rj) is the total number of such disagreements betweenr andrj. The function∆ is a distance

on the setℜ, with the restriction that its first argument must be an order. One can then define a "distance"

d between an orderr and a profileR by: d(r, R) = ∑n
j =1∆(r, r j). In plain words,d(r, R) is the total number

of disagreements between an orderr and all the rankings in profileR.
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A Kemeny orderfor a profileR is an orderrK solving minr ∈ ℜ d(r, R), i.e. an order that is closest

to the given profile according to the "distance"d or an order that has the minimum number of

disagreements with the profile. A Kemeny order is also a median order for the rankings in the profile. As

such, it represents the best compromise between the different opinions of the voters.

The following lemmas and corollaries give some of the properties of this order. The first one

asserts that a Kemeny order is a maximum likelihood order. From this lemma, we can reassert that a

maximum likelihood order is one that has the maximum number of agreements with the profile.

Lemma 1: A Kemeny order for a profileR is an order solving maxr ∈ ℜ K(r, R).

Proof. d(r, R)
s∈X t∈X

n

j 1

δst(r, r j)
s∈X t∈X

rs<r t

(n νst(R)) m(m 1)n
2 s∈X t∈X

rs<r t

νst(R),

hence the result.

Lemma 2: SupposerK = (1, 2, ...,m) is a Kemeny order for a given profileR. Thenνs, s+1(R) ≥ νs+1,s(R),

s = 1, ...,m − 1, or, equivalently, 1M 2M ...M m.

Proof. For anys = 1, ...,m − 1, consider the orderr = (1, 2, ...,s − 1, s + 1, s, s+ 2, ...,m). By the proof

of Lemma 1,d(rK, R) − d(r, R) = νs, s+1 − νs+1,s, which cannot be negative ifr is a Kemeny order.

Corollary 3: Given a Kemeny order for a given profileR, if there exists a Condorcet winner under this

profile, it must be the alternative ranked first in the Kemeny order.

Proof. Let rK = (1, 2, ...,m) be a Kemeny order. From Lemma 2,νs−1,s(R) ≥ νs, s−1(R), s = 2, ...,m. Thus

none of the alternativess = 2, ...,m may be a Condorcet winner, leaving 1 as the Condorcet winner.

Corollary 4: A Kemeny orderrK satisfies (XCC).

Proof. SupposerK violates (XCC), i.e. there exists a partitionX ∈ ℘0(X), Xα , Xβ ∈ X with α < β, s ∈ Xα

andt ∈ Xβ such thatrK
t ≤ rK

s. By definition of ℘0(X), we must havesM t. Thus, by Lemma 2, there must

exist other alternatives, saya, ..., k, betweent ands in the Kemeny order. Using Lemma 2 again, we must

have t M aM...M kM s. Since we also havesM t, there is a cycle over the set {t,a, ..., b,s}. Using the
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definition of ℘0(X) again, {t,a, ..., b,s} should belong to the same set of the partitionX. We thus have

a contradiction since, at the outset,s and t belonged to differentXα andXβ.

The next result provides an easy way to find complete Kemeny orders. In essence, it says that the

latter can be constructed by the concatenation of Kemeny orders on each of the sets of a partition

X ∈ ℘0(X). Recall that an order can take the formx or r, wherexi is the alternative whose rank isi while

rs is the rank of alternatives.

Theorem 5: Take any partitionX = {X1, ..., Xp} ∈ ℘0(X) and a vectorx* = (x1, ..., xp) wherexα is a

Kemeny order onXα under profileR restricted toXα , α = 1, ...,p. Thenx* or equivalently the correspon-

ding r* is a Kemeny order onX.

Proof. Suppose that there exists an orderr on X such thatK(r, R) > K(r*, R). Thenr cannot be different

from r* in respect only to alternatives who belong to the sameXα since this would violate the assumption

that xα is a Kemeny order onXα. Thus there existXα , Xβ ∈ X with α < β, s ∈ Xα and t ∈ Xβ such that

rt ≤ rs instead ofrs < rt as inr* . By Corollary 4,r cannot be a Kemeny order since it violates (XCC). If

there were ordersr such thatK(r, R) > K(r*, R), there would be a Kemeny order among them. Thus there

is no such order andr* is a Kemeny order.

If M ≠ M, we can go one step further in partitioningX. Given a partitionX ∈ ℘0(X), if there exists

anXα ∈ X and a subsetS ⊂ Xα such thatsM t ∀ s ∈ S, ∀ t ∈ Xα , thenXα can be further partitioned into

{ S, Xα\S} to give another (finer) partition ofX. Note that if S > 1, thensTt ∀ s,t ∈ S. This refinement

can possibly be repeated onXα\S and so on. Call thisenlarged class of partitions℘(X).

Similarly, given a partitionX ∈ ℘(X), if there exists anXα ∈ X and a subsetS ⊂ Xα such that

t M s ∀ s ∈ S, ∀ t ∈ Xα, thenXα can be further partitioned into {Xα\S, S} to give another (finer) partition

of X and so on. Let these finer partitions also belong to℘(X). The class℘(X) will be actually larger

than℘0(X) only if M ≠ M. The cycles ofM andT still belong to a same subset of any partition of℘(X).

However, some cycles ofM may have been broken in the refining process that leads from℘0(X) to ℘(X).

The following theorem justifies the above enlargement of the class of partitions.
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Theorem 6: Given a partitionX = {X1, ...,Xp} ∈ ℘(X) and someXα ∈ X, if there exists a subsetS ⊂ Xα

such thatsM t ∀ s ∈ S, ∀ t ∈ Xα , then there exists a Kemeny order onXα in which the elements ofS

occupy the first S ranks in any order we wish. Similarly, if there exists a subsetS ⊂ Xα such that

t M s ∀ s ∈ S, ∀ t ∈ Xα, then there exists a Kemeny order onXα in which the elements ofS occupy the

last S ranks in any order we wish. Thus, in either case, a Kemeny order onXα can be obtained by

splicing any order onS with a Kemeny order onXα\S.

Proof. Consider the case where someXα can be partitioned into {S, Xα\S} and let rα be any Kemeny order

on Xα. Take anys ∈ Sand suppose that it does not occupy the first rank inrα. Let t be the alternative just

befores in rα. Combining the assumption onS and Lemma 2, we must haveνst = νts. Hences can be

moved up one rank without decreasingK(rα , Rα). This gives us another Kemeny order. This argument may

be repeated untils reaches the first position. If we apply this argument to all elements inS in the reverse

order in which we want them, we will end up with a Kemeny order in which the elements ofS will

occupy the first S ranks in the chosen order. The other case (the element ofS in the last positions) is

handled in a similar way. The last affirmation follows at once.

Combining Theorems 5 and 6 yields the following corollary.

Corollary 7: Take any partitionX = {X1, ..., Xp} ∈ ℘(X) and a vectorx* = (x1, ..., xp) wherexα is a

Kemeny order onXα under profile R restricted toXα , α = 1,..., p. Then x* or equivalently the

correspondingr* is a Kemeny order onX.

4. An algorithm for the construction of Kemeny orders.

First, a partitionX = {X1, ..., Xp} ∈ ℘(X) must be constructed. This can be done with the

following two stage procedure. In the first stage, the subsets are constructed from the beginning, i.e. in

the orderX1, X2, etc. In the second, they are constructed from the end, i.e. in the orderXp, Xp-1, etc. The

algorithm attempts to construct a partition as fine as possible. However, there may remain a large residual

subset when the procedure stops.

There is a non-negative and integer parameterγ in this procedure to be set by the user. It controls

the fineness of the partition, including the size of the residual subset. The choice of a value forγ is a
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matter of compromise. Withγ = 0, the partition belongs to the subclass℘0(X) ⊂ ℘(X). The greater the

value ofγ the finer the partition. On the other hand, some Kemeny orders may escape us with too high

a value ofγ. This will be illustrated after the presentation of the algorithm.

First stage: SupposeX1, X2, ..., Xi-1 have been constructed.

Stepi : Let Xi = X\ (X1∪X2∪...∪Xi-1).

If Xi = ∅, stop the procedure. {X1, X2, ..., Xi-1} is the desired partition.

If Xi ≠ ∅, let S = {s ∈ Xi : sM t ∀ t ∈ Xi};

If 0 < S ≤ γ or if [ S > γ andsM t ∀ s ∈ S, ∀ t ∈ Xi\S],

setXi = S and go to stepi + 1;

Otherwise, go to the second stage.

Second stage: SupposeX1, X2, ..., Xi have been constructed in the first stage andXp, Xp-1, ...Xk+1 in this

second stage.

Stepk : Let Xk = X\ (X1∪X2∪...∪Xi∪Xp∪Xp-1∪...∪Xk+1) andS = {s ∈ Xk : t M s ∀ t ∈ Xk}

If 0 < S ≤ γ or if [ S > γ and t M s ∀ s ∈ S, ∀ t ∈ Xk\S],

setXk = S and go to stepk − 1;

Otherwise, setXk = Xk and stop the procedure.

{ X1, X2, ..., Xi, Xk,..., Xp-1, Xp} is the desired partition.

Except for the residualXk, the subsets of the partition constructed by the algorithm are either

singletons or cycles ofT. If there are no cycles ofM other than those ofT, then only the first stage of the

algorithm is used and there is no residual subset. Moreover, withγ = 0, we get the finest possible partition

of ℘0(X) but not necessarily of℘(X).

Still with γ = 0, if there is a unique cycle inM other than those ofT, then the algorithm gives

again the finest possible partition of℘0(X) and the residual subsetXk is made up of this cycle. If there

is more than one cycle inM other than those ofT, then the residual subset contains all these cycles and

all alternatives that are between those of the different cycles according to the majority relation.

Once a partition is obtained, a Kemeny order on each subset must be found and these orders are

spliced together to yield a complete Kemeny order onX. For singletons, this is trivial. For cycles ofT,
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any order will do. For this reason, it will be argued below that the members of these subsets could be

declared ex aequo. Finally, the Kemeny orders on the residual subsetXk can be found by simple

enumeration. When performing the latter, most orders are quickly eliminated because they do not satisfy

Lemma 2. Yet, the size of the residual subset may pose some difficulty, hence the need to keep it as small

as possible.

If the residual subset is made up of cycles ofM (no ties), the algorithm presented here is unable

to reduce its size whatever the value ofγ, even if there are many disjoint cycles (with other alternatives

between them) in this subset. However, raising the value ofγ may help in diminishing the size of the

residual subset if some of the cycles that it contains are cycles ofM but not ofM, i.e. contain ties. Note

that allowing for ties may increase the frequency of cycles as well as their length. As a compensation, we

obtain this possibility of reducing the size of the residual subset even if it is made up of a single cycle

in M. This is illustrated with real examples taken from the data of Olympic Games analyzed in Truchon

(1998).

The first example comes from the men free program of the 1992 olympic games. The residual

subsetXk , with γ = 0, contains 11 skaters, namely skaters ranked 4 to 14 according to their raw marks.

The reason is that there is a cycle ofM on the subset {4, 5, 6, 7, 8} and another one on the subset

{12, 13, 14}, which the algorithm does not identify. However, withγ = 1 the residual subset is split into

{{4}, {5, 6, 7, 8}, {9}, {10}, {11}, {12}, {13}, {14}}. This is possible, thanks to Theorem 6, since

4M t ∀ t ∈ {5, ..., 14} and t M 14 ∀ t ∈ {4, ..., 13}. Once 14 is removed from the original residual

subset, 13, 12, ..., 9 can be removed in turn to form singletons in a new partition. The new residual subset

{5, 6, 7, 8} cannot be broken further since there is a cycle ofM on this subset.

Another example comes from the women short program of the 1988 olympic games. In the results

of this competition, there is a cycle ofM over 9 skaters, namely skaters ranked 12 to 20 according to their

raw marks. Withγ = 0, these nine skaters make up the residual subsetXk. Applying the Kemeny rule over

a set of this size is already costly. Withγ = 1, the residual subset is split into {{12}, {13}, {14}, {15, ...,

20}}. This is possible because 12M t for all other t in this subset. Once 12 is removed from this subset,

13 and 14 can be removed in turn. The new residual subset {15, ..., 20} cannot be broken further because

there is a cycle ofM on this subset.
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Why not setγ as high as possible, sayX ? The men short program of the 1976 olympic games

provides a good illustration. The data yield 3T4T6, 5T7T8, 3M t ∀ t ≠ 3, 4; 4M t ∀ t ≠ 3, 4, 6; 5M 6,

5M 8, 7M 6, and 8M 6. Hence, there is a cycle ofM on the subset {3, 4, 5, 6, 7, 8} namely

4T3M 5T7T8T M6 and 6T4. With γ = 1, skater 6 is removed from this subset. Withγ > 1, this subset is

broken further into {{3, 4}, {5, 7}, {8}, {6}}. If all that is wanted is a Kemeny order over {3, 4, 5, 6,

7, 8}, then one should indeed setγ = X to ease up the search of such an order. However, Kemeny

orders are not necessarily unique and we may be interested in knowing all of them. In the case at hand,

consider the subset {5, 7, 8}. There are 3 Kemeny orders on this subset namely: 5 7 8, 7 5 8, and 5 8 7.

With γ > 1, this last order would never show up. Thus, if we are interested in identifying all Kemeny

orders, we should limit ourselves toγ = 0 or 1. This is the choice that has been done for the computations

presented in Truchon (1998). However, there could be circumstances calling for a higher value ofγ.

Notice that, even withγ = 1, some Kemeny orders could formally escape us but the latter are easy

to catch up. Consider the set {a, b, c, d} and suppose that it can be split into {{a}, { b, c, d}} because

aTb, aM c andaM d. If bcd turns out to be a Kemeny order on {b, c, d}, then clearlybacdandabcdare

both Kemeny orders on {a, b, c, d}, which is easy to identify. This case of multiple Kemeny orders is

possible only if there are at least four alternatives in the subset to be partitioned. Indeed, suppose that the

3-element set {a, b, c} is split into {{ a}, { b, c}} with γ = 1 because we have sayaTb andaM c. Then

we should also havecM b. With bM c, the splitting would rather be {{a, b}, { c}} and with bTc, no

splitting would occur. But, withaTb, aM c, andcM b, there is a unique Kemeny order:acb.

From the above examples, we can appreciate the compromise to be made in setting the value of

γ. A good strategy is to start with a low value ofγ, say γ = 0 or 1, and then increase this value if the

residual subset is too large. Increasing this value may be necessary since finding Kemeny order by

enumeration becomes prohibitive as the number of alternatives increases. A procedure written by the

author in Mathematica gives the Kemeny orders on a set of 7 alternatives in less than 3 seconds on a

Pentium 200. Computing time goes to 26 seconds with eight alternatives and to 13 minutes with nine

alternatives. This dramatic increase in time is partly due to a lack of memory. With more alternatives,

finding a Kemeny order directly is almost out of reach. Recall that the number of possible orders on a set

of m objects ism!.
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A more efficient program could be written or a more powerful computer be used but this would

only push the problem to a higher number of alternatives. Another avenue would be to use branch and

bound techniques as in Barthelemy, Guénoche, and Hudry (1989) but these techniques also have their

limits. Hence, whatever the technique, program or computer that are used, working with partitions as fine

as possible and splicing the Kemeny orders on the subsets of this partition is almost inescapable.

We could also do better if we could distinguish all cycles rather than capture them in a single

residual subset. However, this is not an easy task. The algorithm proposed here is far more simple and

probably more efficient. In the men free program of 1992 reported above, it does a lot better than simply

identifying the two cycles. Withγ = 1, it breaks one of them into singletons and reduces the other one to

a shorter cycle ofM. In the women short program of 1988, there is only one long cycle ofM, which is

reduced to a much shorter cycle ofM by the algorithm.

Actually, this algorithm has proved very efficient, withγ = 1, in computing all Kemeny orders

in the 24 olympic games, yielding all the results in matters of seconds. It should be sufficient for most

practical applications involving the construction of Kemeny orders.

5. Dealing with multiple Kemeny orders.

A Kemeny order is not necessarily unique. The following rule can be applied to handle the

occurrence of multiple Kemeny orders. Given a set {r1, ..., rk} of Kemeny orders, consider the weak order

rm defined by:

∀ s,t ∈ X : rm
s ≤ rm

t ⇔ ∑k
q=1rq

s ≤ ∑k
q=1rq

t

This weak order is a ranking according to the mean ranks of alternatives over all Kemeny orders. It will

be called themean Kemeny rankingif it weakly agrees with at least one order in {r1, ..., rk}, i.e. if there

exists an orderrq ∈ { r1, ..., rk} such that:

∀ s,t ∈ X : rq
s < rq

t ⇒ rm
s ≤ rm

t

If rm
s < rm

t , this means that there are more Kemeny orders in whichs is ranked ahead oft than

Kemeny orders in whichs is placed aftert. Thus, if a Kemeny order is chosen at random, the probability

that s be ranked ahead oft is higher than the probability that it be ranked aftert. In rm, alternatives are

thus ranked according to these probabilities. In particular, two alternatives obtain the same rank ifrm
s = rm

t .

Thus, choosingrm over other Kemeny orders makes sense ifrm weakly agrees with one Kemeny order.

14



However, it would be inconsistent with the Kemeny-Young approach to chooserm if it is not a Kemeny

order, since it is then less probable than any Kemeny order. In this case, a Kemeny order could be chosen

at random or according to some other criterion.

With this approach, we look for Kemeny orders but we may end up with a weak order as a final

choice. An alternative approach would consist in working with the set of weak orders instead of orders

at the outset but this would be costly. For example, there are 75 weak orders on a set of four alternatives

compared to 24 orders. The above approach is thus more practical. In Truchon (1998), the mean Kemeny

ranking was actually chosen when it existed. Otherwise, a Kemeny order as close as possible to the official

olympic ranking was retained. The only instances where the mean Kemeny ranking failed to exist were

ones with only two Kemeny orders.

One case in whichrm gives the same rank to two alternativess and t is whenνst = νts and when

in additions andt are adjacent in any Kemeny order. Indeed, in this case, for any Kemeny order in which

s is ahead oft, there is another one in which the only difference is that the positions ofs and t are

interchanged. In particular, all alternatives of a cycle ofT in a partition of℘(X) obtain the same rank

under rm. Consistent with this remark, all elements of each subset of the partition constructed by the

algorithm, other than the residual subsetXk , should be declared ex aequo.

There are other instances in which some alternatives could be declared ex aequo. Truchon (1998)

reports an example where three Kemeny orders are obtained on the set {A, B, C, D, E, F} namely:

EABFCD, EABDFC, and EABCDF. This means that CDF, DFC and FCD have the same likelihood. Not

surprisingly, there were a cycle CM D M F M C over the subset {C, D, F}. There is good ground here to

declare these three alternatives ex aequo since they have the same likelihood of being in any of the last

three positions. This is what happens underrm.

6. Conclusion

An extension of the usual Condorcet Criterion to other ranks has been proposed. This Extended

Condorcet Criterion gives partial orders when there are cycles of the weak majority relation including ties

between alternatives. These partial orders may be completed by reverting to the Kemeny rule. An

algorithm to construct Kemeny orders has also been presented. The latter has proved to be very efficient

on the data of 24 olympic competitions reported in Truchon (1998). There were as many as 24 skaters in

these competitions. A total of 15 cycles of the weak majority relation, some involving 9 skaters, have been

found in these data. It was thus important to have an efficient procedure to find the Kemeny orders.
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