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Abstract

The usual Condorcet Criterion says that if an alternative is ranked ahead of all other
alternatives by an absolute majority of voters, it should be declared the winner. The
following partial extension of this criterion to other ranks is proposed: If an alternative
is consistently ranked ahead of another alternative by an absolute majority of voters, it
should be ahead in the final ranking. The term "consistently" refers to the absence of
cycles in the majority relation involving these two alternatives. If there are cycles, this
criterion gives partial orders that can be completed with the Kemeny rule. An algorithm
to construct Kemeny orders is presented. It is based on a result saying that a complete
Kemeny order over all alternatives can be obtained by splicing together Kemeny orders
on the subsets of an admissible partition of the alternatives underlying the Extended
Condorcet Criterion.

Key words: aggregation, Condorcet Criterion, Kemeny orders, algorithm.
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Résumé

Le critére usuel de Condorcet exige que, si une alternative est classée avant toutes les
autres par une majorité de votants, elle devrait étre déclarée vainqueur. Une extension
partielle de ce critére aux autres rangs est proposée: Si une alternative est classée avant
une autre de maniére cohérente par une majorité de votants, elle devrait I'étre dans le
classement final. La cohérence référe a I'absence de cycle dans la relation majoritaire
impliguant ces deux alternatives. En cas de cycles, ce critére donne des ordres partiels,
qui peuvent étre complétés avec la regle de Kemeny. Un algorithme pour la construction
des ordres de Kemeny est présenté. |l s'appuie sur un résultat affirmant qu'un ordre de
Kemeny peut étre obtenu en juxtaposant des ordres de Kemeny sur les sous-ensembles
d’'une partition des alternatives sous-jacente au critére de Condorcet généralisé.



1. Introduction

The usual Condorcet Criterion found in the literature says that if an alternative or a candidate is
ranked ahead of all other alternatives by an absolute majority of voters, it should be declared the winner.
Such an alternative may fail to exist because of a cycle in the majority relation. When it exists, it is called

the Condorcet winner.

Condorcet was preoccupied not only with the winner but also with the whole ranking of all
alternatives. This may pose a problem, again because of the possibility of a cycle in the majority relation.
Yet, a partial extension of the Condorcet Criterion to other ranks can be done as follows: If an alternative
is consistently ranked ahead of another alternative by an absolute majority of voters, it should be ahead
in the final ranking. The term "consistently” refers to the absence of cycles involving these two alter-

natives.

A first objective of this paper is to propose a formalization of this idea, called the Extended
Condorcet Criterion (XCC). In essence, it says that if the set of alternatives can be partitioned in such a
way that all members of a subset of this partition defeat all alternatives belonging to subsets with a higher
index, then the former should obtain a better rank than the latter. A partition satisfying the above property
is said admissible for (XCC). If there is a cycle in the weak majority relation and, in particular, if there
is a subset of alternatives that all tie, then this cycle or subset should belong to a same subset of any

admissible partition.

This work was motivated by the comparison of aggregation procedures in figure skating. Ties
could not be neglected despite the complication that they usually bring. Indeed, two skaters may tie even
if the number of judges is odd because a judge may give the same rank to more than one skater. Ties may
create cycles in the weak majority relation and increase the length of existing ones. Many ties and many
cycles of the weak majority relation have actually been found in the data of Olympic Games analyzed in

Truchon (1998).

In the presence of cycles, (XCC) gives a partial order of the alternatives. The question is then:
how to complete this order to obtain a complete ranking? To answer this question while remaining in the

spirit of (XCC), let us turn to another question addressed by Condorcet (1785): which final ranking is most



likely to be the true ranking of the alternatives? Neglecting the possibility of ties, Condorcet showed that
if the pairwise ranking of the alternatives under the majority rule does not involve any cycle, then it yields

a complete order that has maximum likelihood of being the true order, under the assumption that every
voter chooses the best of two alternatives with a probability larger than one half and that this judgment

is independent between pairs and voters.

Condorcet gave indications on how to break cycles that might occur. However, his prescription
is not completely clear. Young (1988) shows that a correct application of Condorcet’s maximum likelihood
approach leads to an order that has the maximum pairwise support from the voters. Such an order is often
called a Kemeny order because it involves the minimum number of pairwise inversions with the individual
rankings. Kemeny (1959) proposes this number as a distance between an order and a profile of individual
rankings. Such a ranking is also a median ranking for those composing a profile. In this sense, it

represents a best compromise between the possibly conflicting views of the voters.

It is shown in this paper that a Kemeny order satisfies (XCC). This is a good justification for
(XCC) and its name. Conversely, the Kemeny-Young approach is a natural complement to (XCC). Indeed,
a complete Kemeny order over all alternatives can be obtained by splicing together Kemeny orders on the
subsets of an admissible partition for (XCC). This is a very useful result since the Kemeny-Young
approach may become prohibitive when the number of alternatives is large. Note that in the finest possible

admissible partition for (XCC), many of the subsets may be singletons, which eases the task considerably.

A second obijective of this paper is to present an algorithm, based on the above result, to construct
complete Kemeny orders. The key to this algorithm is the construction of an admissible partition. Actually,
if some alternatives tie within a subset of such a partition, then this subset can possibly be further

partitioned, thus enhancing the performance of the algorithm.

The paper is organized as follows. Section 2 introduces the notation including the formal
description of (XCC). For the sake of completeness, Section 3 first presents the Kemeny-Young approach
with sufficient details. It then develops the results on which the algorithm is based. This algorithm is
presented in Section 4. In Section 5, it is explained how we can deal with the multiplicity of Kemeny

orders. A brief conclusion makes up Section 6.



2. Notation

Let X be the set of alternatives, with cardinalitt| = m, andN be the set of voters, withN| =
n, an odd number. Each votgis assumed to haveveeak orderor ranking r of the alternatives ixX. The
elementr! of this vector is the rank of alternativge A ranking with no tie for a rank is aarder on X. An
order can be represented alternatively as a sequgsgce, wheres, ands, are respectively the alternatives

with ranks 1 and 2, etc.

Let O be the set of all possible rank vectarsA profile of rankingsis anm x n matrix R =
(r', ...,r") O O" A ranking ruleis a mappingFR : 0" - 0. FR(R) is the final ranking resulting from

profile R. In the language of the theory of social choié® is also asocial welfare function

Next, let us definev(R) = [{j ON: rL<rl}| and the complete binary relatiom on X by
SMt = v,2Vv,. We write M for the asymmetric component afi, i.e. the relation defined by
sMt = v, > v,andT for the symmetric component of, i.e. the relation defined bytt = v = v, They
are respectively theajority relation the strict majority relationand theex aequo relatioron X. We can

readsmt ass defeatst andsTt ass ties witht.

A cycle of M is a subsetX,, ..., x} O XsuchthakMx,,,i =1, ...,k - 1, andx,MX;. One defines
similarly cycles of\f andT. Equivalently, a cycle of is a subsef [J X such thatsTt 0 s,t[J S. Cycles

of M andT are obviously cycles of.
The usual Condorcet Criterion reads as follows:

Condorcet Criterion (CC)
OsOX,0t0X,t#s:smtd FR(R) =1 andFR(R) > 1

An s satisfying (CC) may not exist because of a cycle in the majority relatiowhen there
exists ans 0 X satisfying (CC), thiss is called theCondorcet winner Note that there may exist a

Condorcet winner even if there are cycles over some subsets of alternatives.

To extend (CC) to other ranks, létl ;(X) be the class of partitionX = {X,, ..., X} of X,

satisfying:



O X X O Xwitha <B,0sOX,, 0t0X;: smt

Notice that, if there is a cycle ofl over some subset of alternatives, then these alternatives must belong
to a same subseét, of any partition inl] 4(X). In particular, this must be the case for two alternatises

andt such thatsT t. In the finest partition of this class, the se{sare cycles of maximal length of or
singletonsX; is also called théop cycleof M or theCondorcet seta solution concept introduced by Good

(1971) and Schwartz (1972) for the strict majority relati®p.is the top cycle orX\X,, etc.

Extended Condorcet Criterion (XCC)
For any partitionX O [ (X), the following must hold:

0 Xy, X O X with a < B, Os0 X, 0t0X;: FR(R) < FR(R)

If M =M and if M contains no cycles, then aX, of the finest partition of_] ;(X) are singletons
and a final ranking=R(R) satisfying (XCC) is a complete order. Whencontains a cycle, (XCC) does
not say how to rank alternatives within &Q of the finest partition in[l ;(X). In particular, it does not
imply that FR, = FR, if sTt. In other words, (XCC) yields only a partial order in these circumstances.

A complete final ranking, consistent with (XCC), can be obtained with the maximum likelihood or

Kemeny approach.

3. Kemeny orders

Assuming that the rankings in some profileR are independent evaluations of the true ranking
of the alternatives, an interesting question is: which final rankRjR) is most likely to be the true
ranking of the alternatives. This is precisely the question addressed by Condorcet (1785). His objective
was to justify the majority principle. Condorcet’s approach is one of the first applications of statistical
hypothesis testing and maximum likelihood estimation. He assumes that every voter chooses the best of
two alternatives with a probability satisfying 1/2 <p < 1, and that this judgment is independent between
pairs and voters. If the binary relatiomis an order orX, then it is the solution to his problem, i.e. the
most probable order oK. If M contains a cycle, Condorcet’s prescription is to eliminate some of the
propositions gMt is a proposition), starting with the one with the weakest majority and so on until the

cycle disappears. This works finerif = 3 but may give ambiguous results or a partial ordernfioe 4.



Young (1988) develops a correct application of Condorcet’s maximum likelihood approach. In the
casem = 3, it goes as follows. If the true order on the set b, ¢ is abg then, neglecting a multiplicative
constant and the argumeRin v (R), the conditional probability of observing a profile of vofess given
by:

p(L-p) bape(L - p) tape(1-p)er = pauYache(q e
The probability of observing the same profile, conditional on the true order lzgibhgs given by:

pvac ( 1 _ p)vca pvab ( 1 _ p)vbapvcb ( 1 _ p)vbc — pvac+vab+vcb ( 1 _ p)vca+vba+vbc

Hence ifp > %, abcis more probable thaacb as on order if and only i9,,+v,+V,. > V,+V + V.

More generally, let:

Kr, B =Y Y v(R.

O

An orderr* on X is a solution of Condorcet’s problem omaaximum likelihood ordeif it is a solution
of max , K(r, R). The value ofK(r, R) may be seen as the total number of pairwise supports for
profile R, i.e. the total number of voters who rank pairs of alternatives as A& maximum likelihood

order is thus one that has the maximum total support from the voters as expressed in

This problem may be given a different expression using a notion of distance for orders proposed
by Kemeny (1959). It is presented here in a slightly modified form to accommodate the fact that weak
orders may be found in profiles of rankings. Given an omder weak order’ O [, and two alternatives

s, tO X, define:

i iyl
1 if ro<r andr. <rg

o (r, rl) =
0 otherwise

I

andA(r, M) = 3oox X iox Ol 1)
The value ofs(r, r') indicates whether there is a disagreement in the relative rankiaguodit between
r andr’. A(r, r') is the total number of such disagreements betweandr’. The functionA is a distance
on the sefd, with the restriction that its first argument must be an order. One can then define a "distance"
d between an orderand a profileR by: d(r, R) = 3 - A(r, r)). In plain wordsd(r, R) is the total number

of disagreements between an ordeand all the rankings in profil&.



A Kemeny ordefor a profile Ris an order® solving min,;,d(r, R), i.e. an order that is closest
to the given profile according to the "distancd"or an order that has the minimum number of
disagreements with the profile. A Kemeny order is also a median order for the rankings in the profile. As

such, it represents the best compromise between the different opinions of the voters.

The following lemmas and corollaries give some of the properties of this order. The first one
asserts that a Kemeny order is a maximum likelihood order. From this lemma, we can reassert that a

maximum likelihood order is one that has the maximum number of agreements with the profile.

Lemma 1: A Kemeny order for a profileR is an order solving max, K(r, R).

Proof. dn R =Y Y Y80 1) =Y Y (0 - v R) - m‘m - Y Y v R,

sOX tOX j=1 sOX tOX sOX tOX
r<r, r<r,

hence the result]

Lemma 2: Suppose™ = (1, 2, ...,m) is a Kemeny order for a given profilR. Thenv, 4,(R) 2 v.,, (R),

s=1, ...m-1, or, equivalently, #12m...Mm m.

Proof. Foranys =1, ...,m — 1, consider the order= (1, 2, ...,s— 1,s+ 1, s, s+ 2, ...,m). By the proof

of Lemma 1,d(r*, R) — d(r, R) = Vg 41 = V4.1 s, Which cannot be negative ifis a Kemeny order]

Corollary 3: Given a Kemeny order for a given profilRR if there exists a Condorcet winner under this

profile, it must be the alternative ranked first in the Kemeny order.

Proof. Let r® = (1, 2, ...,m) be a Kemeny order. From Lemma\,, (R) 2 v, .4(R),s=2, ...,.m. Thus

S, S-

none of the alternatives= 2, ...,m may be a Condorcet winner, leaving 1 as the Condorcet winner.
Corollary 4. A Kemeny order” satisfies (XCC).

Proof. Suppose* violates (XCC), i.e. there exists a partitignd [ ,(X), X,, X O Xwitha <B,s0 X,
andt O X, such that!{ < rf. By definition of L] (X), we must havesnt. Thus, by Lemma 2, there must

exist other alternatives, say ..., k betweert andsin the Kemeny order. Using Lemma 2 again, we must

havetmam..MkmMs. Since we also havewmt, there is a cycle over the setd, ..., b,$. Using the



definition of U ,(X) again, ¢,a, ..., b,$ should belong to the same set of the partitiinWe thus have

a contradiction since, at the outsstandt belonged to differenk, andX;. [

The next result provides an easy way to find complete Kemeny orders. In essence, it says that the

latter can be constructed by the concatenation of Kemeny orders on each of the sets of a partition
X O U 4(X). Recall that an order can take the foror r, wherex is the alternative whose rankiisvhile

r. is the rank of alternative.

Theorem 5: Take any partitionX = {X,, ..., X;} [ U o(X) and a vectox* = (x,, ..., X,) wherex, is a
Kemeny order orX, under profileR restricted taX,, a = 1, ...,p. Thenx* or equivalently the correspon-

ding r* is a Kemeny order oiX.

Proof. Suppose that there exists an ordem X such tha(r, R) > K(r*, R). Thenr cannot be different
from r* in respect only to alternatives who belong to the sagnsince this would violate the assumption
thatx, is a Kemeny order oiX,. Thus there exisK,, X; 0 X with a < 3, s 0 X, andt 0 X, such that

r, < rqinstead ofr, < r, as inr*. By Corollary 4,r cannot be a Kemeny order since it violates (XCC). If
there were orderssuch thak(r, R) > K(r*, R), there would be a Kemeny order among them. Thus there

is no such order andt is a Kemeny order]

If M # M, we can go one step further in partitioniXgGiven a partitionrX O [ ,(X), if there exists

anX, 00 X and a subse$ [0 X, such thasmt Os0 S Ot O X,, thenX, can be further partitioned into

{S X,\S} to give another (finer) partition oK. Note that if|S| > 1, thensTt 0 s,t 0 S This refinement

can possibly be repeated og\S and so on. Call thienlarged class of partition&] (X).

Similarly, given a partitionX O [1 (X), if there exists aX, (0 X and a subse® [I X, such that
tMs Os0O S 0Ot 0OX,, thenX, can be further partitioned into{,\S S} to give another (finer) partition
of X and so on. Let these finer partitions also belond t¢X). The clasd] (X) will be actually larger
than] o(X) only if M # M. The cycles ofr andT still belong to a same subset of any partition[6f(X).
However, some cycles of may have been broken in the refining process that leads ffigyix) to L1 (X).

The following theorem justifies the above enlargement of the class of partitions.



Theorem 6: Given a partitionX = {X,, ..., X;} O 1 (X) and someX, O X, if there exists a subs& X,
such thatsmt 0 sO0 S Ot O X,, then there exists a Kemeny order ¥pin which the elements of
occupy the first|S| ranks in any order we wish. Similarly, if there exists a sul8ét X, such that
tms OsOS Ot O X, then there exists a Kemeny order ¥nin which the elements of occupy the
last |S| ranks in any order we wish. Thus, in either case, a Kemeny ordef,aran be obtained by

splicing any order ors with a Kemeny order oiX,\S

Proof. Consider the case where soiXgcan be partitioned into§ X,\S and letr, be any Kemeny order
on X,. Take anys [0 Sand suppose that it does not occupy the first rank il.ett be the alternative just
befores in r,. Combining the assumption d@and Lemma 2, we must hawg, = v,.. Hences can be
moved up one rank without decreasii@@,, R,). This gives us another Kemeny order. This argument may
be repeated untd reaches the first position. If we apply this argument to all elemen&imthe reverse
order in which we want them, we will end up with a Kemeny order in which the elemenguvali
occupy the first|S| ranks in the chosen order. The other case (the eleme8irothe last positions) is

handled in a similar way. The last affirmation follows at onice.

Combining Theorems 5 and 6 yields the following corollary.

Corollary 7: Take any partitionX = {X,, ..., X;} [ [l (X) and a vectox* = (x,, ..., X,) wherex, is a

Kemeny order onX, under profile R restricted toX,, a = 1,..., p. Then x* or equivalently the

corresponding* is a Kemeny order oix.

4. An algorithm for the construction of Kemeny orders.

First, a partitionX = {X;, ..., X} O [ (X) must be constructed. This can be done with the
following two stage procedure. In the first stage, the subsets are constructed from the beginning, i.e. in
the orderX,, X,, etc. In the second, they are constructed from the end, i.e. in the Xyd¥y,, etc. The
algorithm attempts to construct a partition as fine as possible. However, there may remain a large residual

subset when the procedure stops.

There is a non-negative and integer parametarthis procedure to be set by the user. It controls

the fineness of the partition, including the size of the residual subset. The choice of a values far

10



matter of compromise. With = 0, the partition belongs to the subcldds(X) O L (X). The greater the

value ofy the finer the partition. On the other hand, some Kemeny orders may escape us with too high

a value ofy. This will be illustrated after the presentation of the algorithm.

First stage SupposeX,, X,, ..., X.; have been constructed.
Stepi : Let X' = X\(X,OX,0...0X,,).
If X' =0, stop the procedureX, X,, ..., X.;} is the desired partition.
If X'20,letS={sOX :smtOt0OX"Y
IfO< |S|<yorif[|S|>yandsmt OsOS,0t0X\g,
setX; = S and go to step + 1,

Otherwise, go to the second stage.

Second stageSupposeX;, X,, ..., X; have been constructed in the first stage akd X, ;, .. X, in this
second stage.
Stepk : Let X* = X\(X,0X,0...0X0X,0X,,0...0X,,,) andS={sO X : tms O t 0 X'}
IfO< |S|<yorif[|S|>yandtMmsOsOS,0t0X"g,
setX, = S and go to stefk — 1;
Otherwise, seKX, = X* and stop the procedure.

{Xp X5 ooy Xy Xiyoony X0, X} is the desired partition.

Except for the residuaX,, the subsets of the partition constructed by the algorithm are either
singletons or cycles df. If there are no cycles aofl other than those of, then only the first stage of the
algorithm is used and there is no residual subset. Moreover ywwith, we get the finest possible partition

of [J o(X) but not necessarily df] (X).

Still with y = 0, if there is a unique cycle im other than those of, then the algorithm gives
again the finest possible partition &f ,(X) and the residual subs¥{ is made up of this cycle. If there

is more than one cycle im other than those of, then the residual subset contains all these cycles and

all alternatives that are between those of the different cycles according to the majority relation.

Once a partition is obtained, a Kemeny order on each subset must be found and these orders are

spliced together to yield a complete Kemeny orderxorior singletons, this is trivial. For cycles of

11



any order will do. For this reason, it will be argued below that the members of these subsets could be
declared ex aequo. Finally, the Kemeny orders on the residual sipsean be found by simple

enumeration. When performing the latter, most orders are quickly eliminated because they do not satisfy
Lemma 2. Yet, the size of the residual subset may pose some difficulty, hence the need to keep it as small

as possible.

If the residual subset is made up of cycleswotno ties), the algorithm presented here is unable
to reduce its size whatever the valueykven if there are many disjoint cycles (with other alternatives
between them) in this subset. However, raising the valug mfay help in diminishing the size of the
residual subset if some of the cycles that it contains are cycleskft not ofw, i.e. contain ties. Note
that allowing for ties may increase the frequency of cycles as well as their length. As a compensation, we
obtain this possibility of reducing the size of the residual subset even if it is made up of a single cycle
in M. This is illustrated with real examples taken from the data of Olympic Games analyzed in Truchon

(1998).

The first example comes from the men free program of the 1992 olympic games. The residual
subsetX,, with y = 0, contains 11 skaters, namely skaters ranked 4 to 14 according to their raw marks.
The reason is that there is a cycle @fon the subset {4, 5, 6, 7, 8} and another one on the subset
{12, 13, 14}, which the algorithm does not identify. However, witl 1 the residual subset is split into
{{4}, {5, 6, 7, 8}, {9}, {10}, {11}, {12}, {13}, {14}}. This is possible, thanks to Theorem 6, since
4mt Ot 0O {5, ..., 14} andtm14 Ot 0 {4, ..., 13}. Once 14 is removed from the original residual
subset, 13, 12, ..., 9 can be removed in turn to form singletons in a new partition. The new residual subset

{5, 6, 7, 8} cannot be broken further since there is a cyclevobn this subset.

Another example comes from the women short program of the 1988 olympic games. In the results
of this competition, there is a cycle ofover 9 skaters, namely skaters ranked 12 to 20 according to their
raw marks. Withy = 0, these nine skaters make up the residual sufyséipplying the Kemeny rule over
a set of this size is already costly. Witr 1, the residual subset is split into {{12}, {13}, {14}, {15, ...,

20}}. This is possible because 12 for all othert in this subset. Once 12 is removed from this subset,
13 and 14 can be removed in turn. The new residual subset {15, ..., 20} cannot be broken further because

there is a cycle o on this subset.

12



Why not sety as high as possible, saX| ? The men short program of the 1976 olympic games
provides a good illustration. The data yield#436, 51778, 3mt O t# 3, 4; 4mt O t # 3, 4, 6; 576,
5m8, 7M6, and 816. Hence, there is a cycle ofi on the subset {3, 4, 5, 6, 7, 8} namely
AT3M5T7T8T M6 and 4. With y = 1, skater 6 is removed from this subset. Wtk 1, this subset is
broken further into {{3, 4}, {5, 7}, {8}, {6}}. If all that is wanted is a Kemeny order over {3, 4, 5, 6,
7, 8}, then one should indeed set= |X| to ease up the search of such an order. However, Kemeny
orders are not necessarily unique and we may be interested in knowing all of them. In the case at hand,
consider the subset {5, 7, 8}. There are 3 Kemeny orders on this subset namely: 57 8,758,and 58 7.
With y > 1, this last order would never show up. Thus, if we are interested in identifying all Kemeny
orders, we should limit ourselves yo= 0 or 1. This is the choice that has been done for the computations

presented in Truchon (1998). However, there could be circumstances calling for a higher walue of

Notice that, even witly = 1, some Kemeny orders could formally escape us but the latter are easy
to catch up. Consider the sea{b, ¢, ¢ and suppose that it can be split intod}, { b, ¢, d} because
aTh, amc andawmd. If bcdturns out to be a Kemeny order ob {c, &, then clearlybacdandabcdare
both Kemeny orders ong{ b, ¢, ¢, which is easy to identify. This case of multiple Kemeny orders is
possible only if there are at least four alternatives in the subset to be partitioned. Indeed, suppose that the
3-element setd, b, ¢ is split into {{ a}, { b, ¢} with y =1 because we have sayb andamc. Then
we should also havewmb. With bwc, the splitting would rather be {, b}, { ¢}} and with bTc, no

splitting would occur. But, witraTh, amc, andcmb, there is a unigue Kemeny ordexch.

From the above examples, we can appreciate the compromise to be made in setting the value of
y. A good strategy is to start with a low value gfsayy = 0 or 1, and then increase this value if the
residual subset is too large. Increasing this value may be necessary since finding Kemeny order by
enumeration becomes prohibitive as the number of alternatives increases. A procedure written by the
author in Mathematica gives the Kemeny orders on a set of 7 alternatives in less than 3 seconds on a
Pentium 200. Computing time goes to 26 seconds with eight alternatives and to 13 minutes with nine
alternatives. This dramatic increase in time is partly due to a lack of memory. With more alternatives,
finding a Kemeny order directly is almost out of reach. Recall that the number of possible orders on a set

of m objects ism!.

13



A more efficient program could be written or a more powerful computer be used but this would
only push the problem to a higher number of alternatives. Another avenue would be to use branch and
bound techniques as in Barthelemy, Guénoche, and Hudry (1989) but these techniques also have their
limits. Hence, whatever the technique, program or computer that are used, working with partitions as fine

as possible and splicing the Kemeny orders on the subsets of this partition is almost inescapable.

We could also do better if we could distinguish all cycles rather than capture them in a single
residual subset. However, this is not an easy task. The algorithm proposed here is far more simple and
probably more efficient. In the men free program of 1992 reported above, it does a lot better than simply
identifying the two cycles. Witly = 1, it breaks one of them into singletons and reduces the other one to
a shorter cycle ofr. In the women short program of 1988, there is only one long cycle,afhich is

reduced to a much shorter cycle mfby the algorithm.

Actually, this algorithm has proved very efficient, with= 1, in computing all Kemeny orders
in the 24 olympic games, yielding all the results in matters of seconds. It should be sufficient for most

practical applications involving the construction of Kemeny orders.

5. Dealing with multiple Kemeny orders.

A Kemeny order is not necessarily unique. The following rule can be applied to handle the
occurrence of multiple Kemeny orders. Given a sét {., r'} of Kemeny orders, consider the weak order
r™ defined by:

OstOX:risry e Yo risyer

This weak order is a ranking according to the mean ranks of alternatives over all Kemeny orders. It will
be called themean Kemeny rankinif it weakly agrees with at least one order in'{..., r}, i.e. if there

exists an order?® O {r?, ..., r*} such that:
OstOX:rd<rdO rT<r?

If rY <rf, this means that there are more Kemeny orders in whishranked ahead df than
Kemeny orders in whick is placed aftet. Thus, if a Kemeny order is chosen at random, the probability
that s be ranked ahead dfis higher than the probability that it be ranked aftem r™, alternatives are
thus ranked according to these probabilities. In particular, two alternatives obtain the same Tank'if

Thus, choosing™ over other Kemeny orders makes sensg"ifveakly agrees with one Kemeny order.
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However, it would be inconsistent with the Kemeny-Young approach to chdbigdt is not a Kemeny
order, since it is then less probable than any Kemeny order. In this case, a Kemeny order could be chosen

at random or according to some other criterion.

With this approach, we look for Kemeny orders but we may end up with a weak order as a final
choice. An alternative approach would consist in working with the set of weak orders instead of orders
at the outset but this would be costly. For example, there are 75 weak orders on a set of four alternatives
compared to 24 orders. The above approach is thus more practical. In Truchon (1998), the mean Kemeny
ranking was actually chosen when it existed. Otherwise, a Kemeny order as close as possible to the official
olympic ranking was retained. The only instances where the mean Kemeny ranking failed to exist were

ones with only two Kemeny orders.

One case in whiclh™ gives the same rank to two alternativ@andt is whenvg = v, and when
in additions andt are adjacent in any Kemeny order. Indeed, in this case, for any Kemeny order in which

s is ahead oft, there is another one in which the only difference is that the positiorsafdt are
interchanged. In particular, all alternatives of a cycleroh a partition of[] (X) obtain the same rank

underr™. Consistent with this remark, all elements of each subset of the partition constructed by the

algorithm, other than the residual sub¥gt should be declared ex aequo.

There are other instances in which some alternatives could be declared ex aequo. Truchon (1998)
reports an example where three Kemeny orders are obtained on the set {A, B, C, D, E, F} namely:
EABFCD, EABDFC, and EABCDF. This means that CDF, DFC and FCD have the same likelihood. Not
surprisingly, there were a cycle @D M F M C over the subset {C, D, F}. There is good ground here to
declare these three alternatives ex aequo since they have the same likelihood of being in any of the last

three positions. This is what happens undér

6. Conclusion

An extension of the usual Condorcet Criterion to other ranks has been proposed. This Extended
Condorcet Criterion gives partial orders when there are cycles of the weak majority relation including ties
between alternatives. These partial orders may be completed by reverting to the Kemeny rule. An
algorithm to construct Kemeny orders has also been presented. The latter has proved to be very efficient
on the data of 24 olympic competitions reported in Truchon (1998). There were as many as 24 skaters in
these competitions. A total of 15 cycles of the weak majority relation, some involving 9 skaters, have been

found in these data. It was thus important to have an efficient procedure to find the Kemeny orders.
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