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Abstract

I provide a complete characterization of Nash implementable allo-
cations of spending in prevention by judgement-proof injurers. This
characterization is used to identify the optimal rule that allows for the
maximum total spending in prevention. The optimal rule amounts to
apply the negligence rule to the “deep-pocket” (or the “victim”), that
is the injurer who responds the most to monetary incentives under the
strict liability rule, and the strict liability rule to everybody else.
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1 Introduction

In this paper, I provide a complete characterization of Nash implementable
allocations of spending in prevention by judgement-proof injurers (hereafter
players). This characterization is used to identify the rule that allows for
the maximum total spending in prevention. Models of liability rules for
two players go back to Brown (1973). Liability rules for more than two
heterogeneous players can be found in Shavell (1987) and Emons and Sobel
(1991). In a series of papers, Kornhauser and Revesz (1989, 1990, 1994) have
pointed out that the characterization of liability rules for many judgement-
proof injurers, that is injurers with a limited liability, is problematic. Limited
liability is a real concern in liability cases involving life or environmental
matters where the magnitude of damages can quickly skyrocket well beyond
the actual capacity of paying of injurers. A liability rule designed to provide
incentives to players to undertake due care must take into account these
constraints.

Kornhauser and Revesz’ analysis is restricted to two-player situations.
They consider the equilibria induced by ad hoc liability rules that have been
proposed in law and economics or that are actually used in real life legal
disputes. By contrast, the number of players here is arbitrary and I cast the
problem as one of mechanism design so that the whole set of feasible rules
can be analyzed in a single step.

My analysis is related to that of Bergstrom, Blum and Varian (1986,
1992) who study the voluntary private provision of a public good by players
with different wealth endowments. These authors show how the voluntary
provision to a public good is affected by a redistribution of wealth when the
redistribution modifies the subset of net contributors. In the present context,
liability plays the role assigned to wealth in the public good problem.

My main result states that to achieved the maximum total spending in
prevention, it is strictly efficient to make all players strictly liable except one
that I call the “deep-pocket” or the “victim”. This player is identified as the
one who is the most responsive to monetary incentives under the strict liabil-
ity rule. He is to be subjected to the negligence rule: he shall evade liability
only if he has undertaken a due amount of spending in effort. Actually, the
money gathered from the strictly liable players is used to provide additional
monetary incentives to the deep-pocket. Under that regime, all spending in
effort are undertaken by the deep-pocket only.

This is a striking result. The typical analysis of liability rules deals with
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the problem of disciplining a single player and leads to the conclusion that
the negligence rule is strictly better than the strict liability rule when the
player has a low solvency. The analysis here shows that when a group of
potential players is involved, the negligence rule should be applied only on
a single subsidized player; all the others should be subjected to the strict
liability rule.

Who shall be that subsidized player is problematic: on one hand, since
monetary incentives are scarce, we would like him to be highly responsive
under the negligence rule. Players who are the more responsive under the
strict liability rule are also those who are the most responsive under the
negligence rule. Yet, these players are also the ones who have the highest
solvency, hence the ones who would provide more monetary incentives under
the strict liability regime. I show that the first effect will dominate favoring
the deep-pocket.

The rest of this paper is structured as follows. In the next section, I
present the formal model. In section 3, I show that implementation in dom-
inant strategy is not possible with judgement-proof players. This justify the
focus on Nash implementation. In section 4, I recast the classical result of
the dominance of the negligence rule over the strict liability rule to disci-
pline a judgement-proof player. In section 5, I generalize this result to the
multiplayer setting by characterizing the set of allocations of spending that
can be achieved under Nash implementation. With this characterization at
hand, I identify the rule that provides the maximum incentives to spend in
prevention. This is done in the last section which also provides two interpre-
tations of this rule depending on whether the subsidized party is perceived
as a “victim” or as a “deep-pocket”.

2 The Model

There are N players indexed with i. These players spend in prevention to
reduce the probability of an accident. If an accident occurs, the courts applies
a liability rule that specifies the different compensating damages to be paid
or received by the players.

All players are assumed to have quasi-linear preferences. Player i’s utility
in the no accident state is Vi. The indexes are chosen so that

V1 ≤ V2 ≤ . . . ≤ VN .
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I assume that the last inequality is strict so that VN > Vi for i < N . Player
i’s utility in the accident state is a measure of the value of his seizable assets.
It is denoted Ui. I assume that Ui ≥ 0 and strictly so for at least one player
j. The cost of an accident is thus Ci = Vi −Ui. I assume that an accident is
bad for all players (Ci ≥ 0) and strictly so for at least one player. Because
of player j above, it follows that VN ≥ Vj ≥ Uj > 0; hence VN > 0.1

After an accident, player i must pay compensatory damages Li. This
raises his cost of an accident to Ci + Li. This payment could actually lead
to a reduction of that cost if Li < 0; that is, if i is a “victim” that gets
compensated.

Player i’s strategy amounts to choose a level of spendingXi ≥ 0 in preven-
tion to decrease the likelihood of the accident state. Let X = [X1, . . . , XN ]
denotes the strategy profile. I use the standard game-theoretic notation for
alternate profiles

X−i = [X1, . . . , Xi−1, Xi+1, . . . , XN ],

[X−i, χ] = [X1, . . . , Xi−1, χ,Xi+1, . . . , XN ].

Beside, x =
∑

Xi is the total sum of spending in accident prevention and
x−i = x−Xi is the share of this sum supported by the players other than i.
A similar notation is used for the variables Ui, Vi, Ci and Li. For instance,
it was assumed above that V ≥ U ≥ 0 (the null vector) and that u > 0 and
c > 0.

The higher x, the lower the probability P (x) of an accident. Hence
the spending of all players are perfect substitutes in the prevention tech-
nology. To account for decreasing marginal returns in prevention, P is as-
sumed to be differentiable, strictly decreasing, strictly convex and to satisfy
the standard Inada conditions: limx→0 P

′(x) = −∞, limx→∞ P ′(x) = 0 and
limx→∞ P (x) = 0.

Define player i’s (expected) private cost as

φi(X,Li) = P (x)(Ci + Li) +Xi.

Private cost strictly increases with Li. Prevention is a public good whose
provision may be problematic: Notwithstanding its effect on the allocation
of liabilities, a raise by player i of his contribution Xi reduces not only his
(expected) private cost of an accident – his private benefit – but it reduces
that of the other players as well – an external effect.

1The same implication results from VN > Vi ≥ Ui ≥ 0 for i < N .
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I assume that the accident state entails an additional external cost a to
society. Expected social cost is defined as the expected sum of private costs
plus a and minus the sum of transfers

P (x)(a− l) +
∑

φi(Xi, Li) = P (x)(a+ c) + x.

Notice that, given x, social cost is independent of X.
Consider the function P (χ)K+χ where K is a parameter. This function

is strictly quasiconvex: If K > 0, it is strictly convex; if K ≤ 0, it is strictly
increasing. In both cases, strict quasiconvexity follows. Private and social
costs are special cases of this function with respectively K = Ci + Li and
K = a + c. We shall repeatedly encounter the case where K = Vi so it is
worthwhile to define

ψi(χ) = P (χ)Vi + χ,

which is also strictly quasiconvex by the same argument. Strict quasiconvex-
ity ensures a unique minimum; hence define

ψ∗
i = min

χ≥0
ψi(χ) = ψi(ξi).

The value ξi is player i’s maximum level of spending. Indeed, should player i
expect to be fully liable (Li = Ui) and to spend alone in prevention (x−i = 0),
his cost of an accident would be Ci = Vi and he we would choose to spend ξi
to minimize his private cost. A straightforward application of the envelope
theorem establishes that ξi increases with Vi, hence with i: player N has
the highest maximum level of spending. Furthermore, since VN > 0 and
P ′(0) → −∞, that level is strictly positive: ξN > 0. I call player N the deep-
pocket or the victim (both interpretations are discussed in the conclusion).

Applying again the envelope theorem to the minimization of social cost
above, we see that, as the external cost a changes, any level x ≥ 0 may be
rationalized as socially efficient.

A liability rule is a function R that maps the courts’ available information
into a vector of liabilities L to be imposed to the players in the accident state.
In this paper, I assume that the courts have ex post perfect information but
I shall only make explicit the liability rule dependence on X by writing
L = R(X). A liability rule is separable (with respect to X) if Li depends on
X through Xi alone. It is admissible if, for all X ≥ 0, it satisfies the limited
liability constraints

R(X) ≤ U,
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and budget balance
∑

Ri(X) ≥ 0,

so that the courts are not a net contributor2.
All the relevant information (a, P , U , etc) is common knowledge among

the players when they choose their strategy profile X. In particular, they
commonly know which rule R will be applied in the accident state. A liability
rule is then a mechanism that structures the prevention game through the
payoff functions −φi(·, Ri(·)).

In this paper, I characterize the admissible rule that provides the best
incentives to minimize expected social cost. The choice of an optimal mech-
anism depends on the solution concept assumed to give a good description of
how the game will be played. Among the solution concepts encountered in
the literature, those of (weakly) dominant strategy equilibrium and of Nash
equilibrium are the most common place.

An allocationX may be implemented in dominant strategies (DS) if there
exists a rule such that Xi is a (weakly) dominant strategy for each player i.
An allocation X is Nash implementable (NI) if there exists a rule such that
Xi is a best reply to X−i for each player i. An admissible NI allocation is a
NI allocation that can be implemented with an admissible rule.

3 Implementation in dominant strategy

If the limited liability constraints are discarded, any allocation X may be
implemented in DS as follows. Let fi be any function such that

fi(χ) ≥ φi([0−i, χ], 0),

and that reaches its minimum at Xi. Define the rule

Ri(X) =
fi(Xi) −Xi

P (x)
− Ci,

so that player i’s private cost becomes

φi(χ,Ri([X−i, χ])) = fi(χ).

2When this inequality is strict, the money collected is used to restore the resource
and/or is redistributed among the general public.
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By construction, whatever the value x−i, spending Xi in prevention mini-
mizes his private cost. Notice that budget balance is ensured since

Ri([X−i, χ]) ≥
P (χ) − P (x−i + χ)

P (x−i + χ)
Ci ≥ 0.

However, this rule does not satisfy the liability constraints. If player i
believes that the other players will invest a lot so that the probability of
an accident becomes small, he knows that in any event his liability will be
bounded at Ui. Since he does not expect the accident state to occur anyway,
he will invest zero. But players are similar and investing a lot and not
investing can’t concurrently be dominant strategies. This result is generalized
in the next proposition (all proofs are in the appendix).

Proposition 1. The set of allocations that can be implemented in dominant
strategies by an admissible rule is empty.

The scope of proposition 1 goes beyond stating that it is difficult to
handle the crowding out problem (giving player i incentives to invest reduces
the same incentives for the other players). It emphasizes that there is also
a coordination problem since no equilibrium in dominant strategies would
exist even if no liability was imposed (R ≡ 0).

Proposition 1 relies a lot on the Inada conditions imposed on the pre-
vention technology. Arguably, in less stringent environments, one could find
allocations implementable in DS with an admissible rule. But since exis-
tence of such allocations is not guaranteed, DS is not an attractive concept
to study liability rules. On the other hand, existence is not an issue with
Nash implementation. Besides, the set of NI allocations obviously includes
that of allocations implementable in DS. Identifying the set of NI allocations
is thus an important step to devise a sensible liability rule (see footnote 3).

4 The strict liability and negligence rules

Suppose that R implements X as a Nash equilibrium:

Xi ∈ argmin
χ≥0

φi([X−i, χ], Ri([X−i, χ])), ∀i. (1)

Then we can always define the separable rule

R′
i(χ) = Ri([X−i, χ]),

7



that implements X as well. Furthermore, if R is admissible, so is R′. Hence,
without loss of generality, we can focus on separable rules3.

I begin the analysis of admissible separable rules by fixing X−i and the
liabilities Lj = Rj(Xj) for j 6= i. This leaves Xi and the function Ri to be
specified. To ensure that best replies are well defined, I shall restrict Ri to
be lower semi-continuous. Besides, admissibility imposes that

−l−i ≤ Ri(Xi) ≤ Ui. (2)

A classical result in law and economics is the weak dominance of the
negligence rule over the strict liability rule under limited liability (see Shavell,
1986). These two rules differ in the definition of the event in which player
i is liable. Under the negligence rule, player i’s liability is conditional on
the event that he has spent less than some standard of care Xi (see below).
Under the strict liability rule, player i is fully liable for the damage in any
event. When the value of the damage is greater than the value of his assets,
player i’s liability binds at Ui. Because I am interested in cases where there
is under-provision of spending in prevention, that is in cases where player i’s
liability is likely to bind, I associate the strict liability rule with the constant
rule Ri(Xi) ≡ Ui that specifies the same maximum payment regardless of
Xi. Player i’s lost in the accident state is then raised to Ci +Li = Vi and his
expected cost becomes

φi([X−i, Xi], Ui) = ψi(x−i +Xi) − x−i. (3)

That cost is minimized in

X∗
i = max{0, ξi − x−i},

to

φ∗
i = φi([X−i, X

∗
i ], Ui),

=

{

ψi(x−i) − x−i if x−i > ξi,

ψ∗
i − x−i if x−i ≤ ξi.

3 To go back to the issue of robustness provided by DS, if a separable rule R′ induces
X as a Nash equilibrium, then investing Xi is optimal for i given x−i but not if i expects
x′

−i
6= x−i. Proposition 3 states that, generally, there does not exist an admissible rule

that works for all possible deviation x′

−i
but the rule could be made robust against many.

That is, we can enrich R′ by defining a non-separable rule R′′ for which investing Xi is
optimal against many possible deviations x′

−i
. Nevertheless, R′′([X−i, Xi]) = R′(Xi) is

still a necessary condition for R′′ to be implementable.
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That is, either the other players spend more than player i’s maximum level
of spending (x−i > ξi) so that i spends zero and bears the expected cost
P (x−i)Vi = ψ(x−i)−x−i, or player i is willing to contribute X∗

i = ξi−x−i ≥ 0
to raise x to ξi and bears the expected cost P (ξi)Vi +X∗

i = ψ∗
i − x−i. If we

define
ξ∗i = max{x−i, ξi},

then we may write

X∗
i = ξ∗i − x−i and φ∗

i = ψi(ξ
∗
i ) − x−i.

Consider now the constant rule where player i always receives −l−i in the
accident state so that his expected cost is φi(X,−l−i). Let χ∗

i minimize this
cost and define the lower contour set

Xi = {χ ≥ 0 : φi([X−i, χ],−li) ≤ φ∗
i }.

By (2), player i’s cost is reduced under this ruled so that Xi is not empty.
Since φi is quasiconvex and continuous in Xi, the set Xi is a closed interval

Xi = [Xmin
i , Xmax

i ]

where both ends are implicitly defined as the solutions of

φi([X−i, χ],−li) = φ∗
i . (4)

I define the negligence rule as

Ri(χ) =

{

−l−i if (χ−Xi)(Xi − χ∗
i ) ≥ 0,

Ui else.
(5)

Hence, when a high level of care is expected (Xi > χ∗
i ), player i receives l−i

if he has spent at least Xi and pays Ui otherwise4.
Proposition 2 establishes the weak optimality of the negligence rule since

it can implement any level o spending that could be implemented with any
other rule.

4Again, this rule is somewhat different than the classical negligence rule because it
always specifies the maximum amount the player can pay in the event of default, regardless
of the actual damage, and the maximum reward otherwise. Again, this simplification
is made because I am interested in cases where damages are large so that the liability
constraints bind.
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Proposition 2.

1. Xi can be implemented with a rule bounded by (2) if and only if Xi ∈ Xi.

2. Any Xi ∈ Xi may be implemented with the negligence rule.

By construction, player i’s expected cost is minimized in Xi with the
negligence rule. Hence, his liability is given by Li = Ri(Xi) = −l−i. (Notice
though that when −l−i = Ui, the negligence rule and the strict liability rule
are confounded.) Proposition 2 is illustrated in Figure 1. There, the two
constant rules where player i always pays Ui or −li induce two U-shaped
expected cost functions φi([X−i, χ], Ui) and φi([X−i, χ],−li). Any other ad-
missible rule R̃ induces an expected cost function between those two. Hence,
the minimum cost with such rule is necessarily reached within a set Xi de-
limited by the lower contour set of φi([X−i, χ],−li) at φ∗

i . By construction,
the negligence rule induces an expected cost function that is discontinuous
at Xi (the thick line). When Xi ≥ X∗

i , it follows φi([X−i, χ], Ui) for χ < Xi

and φi([X−i, χ],−li) thereafter. It is minimized in Xi, a value that may be
set anywhere in Xi.

5 Nash Implementation

Up to now, X−i and L−i were assumed fixed. I now consider the case where
all players choose their level of spending simultaneously given a liability rule
R. Proposition 2 states that for any player i, and given X−i and L−i, there
is no loss in generality in imposing the negligence rule to that player. Hence,
the only unknowns to be specified are the allocation X of standards and the
liabilities L. Hence, in what follows, I resume the description of a liability
rule by the vector L where it is understood that, given X and L, R is given
by (5).

With many players, there is a dilution of incentives. Suppose that all
players are liable under the strict (constant) liability rule; L = U . In that
case, each player minimizes (3)

min
χ≥0

ψi(x−i + χ) − x−i

Let M be the subset of m players who spend in prevention in a Nash equi-
librium. Since player N ’s maximum level of spending ξN is strictly positive,
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we know that m ≥ 1 because if nobody else would spend, player N would.
Then

x =
∑

i∈M

Xi =
∑

i∈M

(ξi − x−i) ,

=
∑

i∈M

(ξi − x+Xi) ,

=
∑

i∈M

ξi − (m− 1)x,

=
1

m

∑

i∈M

ξi. (6)

The only way (6) may hold is if M ≡ {N}, m = 1 and x = ξN ; that is,
if player N is the only one who spends in prevention. In what follows, I
note X i(x) such allocation where player i alone spends the total amount x
in prevention:

X i(x) = [0, . . . , 0, x, 0, . . . , 0],

with x in the ith position. Hence, under the strict liability rule, the spending
in prevention by player N crowds out the incentives for the other players
to spend as well. This rule generates excess liability since l = u > 0. This
suggests a better rule where that money could be used to provide additional
incentives to player N . I will show that such a rule is indeed optimal.

To get this result, we need to define the function F : R
N
+ → R+,

F (X) =
∑

ψi(ξ
∗
i ).

Notice that F is a continuous function. Because all players have quasi-linear
preferences, we get the following characterization of admissible NI allocations.

Proposition 3. An allocation X is NI with an admissible rule if and only if

P (x)c+Nx ≤ F (X). (7)

Besides, if (7) holds, then

L+
i = Ui −

ψi(x) − ψi(ξ
∗
i )

P (x)

is admissible and implements X as a Nash equilibrium.
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Proposition 3 gives a characterization of admissible NI allocations that
does not depend on the rule actually used to implement them. As we shall
see, not all levels of spending x can be achieved with an admissible NI al-
location and two allocations that provide the same level of total spending
x, hence the same level of expected social cost, may not be both admissible
NI allocations because the distribution of spending among players matters
for implementation. Inequality (7) makes a clear distinction between the
total level of spending on the l.h.s. and the distribution of spending on the
r.h.s. In particular, it is clear that given x, (7) is easier to satisfy when F is
maximized.

The liabilities L+ are set so that (1) holds (Xi is a best reply for each
player). The rule induced by L+ is admissible by construction:

• If ξi ≥ x−i, then ψi(ξ
∗
i ) = ψ∗

i and L+
i ≤ Ui since ψi has ψ∗

i for minimum.

• If ξi < x−i, then ψi(ξ
∗
i ) = ψi(x−i). Both x and x−i are two values to

the right of the minimum ξi of ψi. Since that function is quasiconvex,
the difference ψi(x) − ψi(x−i) is positive. It follows that L+

i ≤ Ui.

Multiplying L+

i by P (x) and summing over i then yields

P (x)l+ = F (X) − (P (x)c+Nx),

so that budget balance holds if (7) holds.

6 Providing the maximum incentives

Recall that, depending on the external cost a, any x may be rationalized as a
socially efficient amount of spending in prevention when designing a liability
scheme. In this section, I use Proposition 3 to determine the maximum level
of spending x∗ that can be achieved with a NI admissible allocation and the
optimal liability rule that implements this allocation.

As a corollary of Proposition 3, notice that for XN(ξN), inequality (7)
becomes

P (ξN)c+NξN ≤ P (ξN)v +NξN ,

−P (ξN)u ≤ 0, (8)

which is true so that XN(ξN) is NI with an admissible rule (the strict liability
rule for every player) as it has already been suggested at the beginning of
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section 5. It follows that x∗ ≥ ξN . Since both sides of (7) are continuous
functions of X, it is clear that x∗ is reached when (7) holds with equality
and F is maximized given x. As the next lemma shows, F is maximized in
XN(x) when x is sufficiently large.

Lemma 1. For x > ξN , XN(x) uniquely maximizes F subject to
∑

Xi = x.

If (8) did hold with equality, we would have found x∗ but it does not since
u > 0. Hence x∗ > ξN and we may use Lemma 1 in (7) to reach x∗:

P (x∗)c+Nx∗ = F (XN(x∗)),

P (x∗)(CN + c−N) +Nx∗ = ψN (ξN) +
∑

i<N

ψi(x
∗),

P (x∗)(CN + v−N − u−N) +Nx∗ = ψ∗
N + P (x∗)v−N + (N − 1)x∗,

P (x∗)(CN − u−N) + x∗ = ψ∗
N ,

φN(XN(x∗),−u−N) = φ∗
N . (9)

Comparing (9) with (4), we see that x∗ is implemented with the liabilities

L∗ = (U1, U2, . . . , UN−1,−uN);

that is, by providing player N with the maximum level of (admissible) incen-
tives l−N = u−N under the negligence rule and by setting a maximal standard
at the top of XN with these incentives. This important result is formalized
in the next proposition.

Proposition 4. Let x∗ solve (9). Then, within the class of liabilities rules
defined by (5), XN(x∗) and L∗ uniquely implement x∗.

Since −li = Ui for all i < N , the optimal multiplayer liability rule puts
every player under a strict liability regime except player N who stays under
the negligence rule and who actually receives the money collected from the
other players when an accident happens.

It is easy to understand proposition (4) if we relate it to the classical
problem of the private provision of a public good first analyzed by Warr
(1983) and Bergstrom, Blum, and Varian (1986). These authors show that
the amount of public good provided is independent of the distribution of
income unless the set of contributors is affected by the distribution. The
optimal multiplayer rule achieves this by concentrating all the ex post wealth
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(the compensatory damages from the liable agents) into the hands of a single
player. That player is then disciplined through the negligence rule. Because
there is a single player who spends in prevention, there is no dilution of
incentives and a maximum of spending is undertaken.

Under this rule, the deep pocket is expected to undertake all spending.
Again, the comparison with the public good problem helps to understand
the result: if all wealth is to be given to a single player to spend on a public
good and if any player would spend less than the socially optimal amount,
then it makes sense to give the wealth to the player who values the most the
public good. If we concentrate all incentives upon a single player i which
we submit to the negligence rule, then the cost of an accident for this player
becomes

Ci + Li = Vi − Ui + (−u−i) = Vi − u.

Hence, the most responsive player under that rule is the “deep pocket” for
whom the cost of an accident under strict liability (Vi) is the greatest.

I have suggested that there are two interpretations of player N as the
“deep pocket” or as the “victim”. By definition,

Vi ≡ Ci + Ui.

Hence, the cost of an accident and the ex post liability of a player are jointly
identified in this model. The “deep-pocket” interpretation is natural when
there is little variation in the Cis relatively to the Uis. Then, all players
would be similarly careless in absence of a liability regime but player N is
highly motivated to produce the required amount of care once his assets Ui

are at stake. He is then chosen because he is the most responsive to monetary
incentives under the negligence rule.

When there is a lot of variation in the Cis relatively to the Uis, interpreting
player N as a “victim” is more natural. Then, all players have roughly the
same ability to pay ex post but player N has an higher ex ante incentive to
spend in prevention because of his higher cost of an accident.
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A Appendix

The proofs of the propositions and Lemma 1 follow.

Proof of proposition 1. First, define

z(K) = min
χ≥0

P (χ)K + χ.

Because P ′(0) → −∞, z(K) = 0 implies that K ≤ 0.
Suppose that X can be implemented in DS with R. Then either x = 0

(so that X = 0) or x > 0.
Suppose that x = 0 and consider a rule R that implements X = 0. For

Xi = 0 to be dominant when x−i = 0, it must be that

z(Ci +Ri(0)) = 0,

which implies
Ci +Ri(0) ≤ 0, (10)

as above. Summing (10) over i yields

l =
∑

Ri(0) ≤ −c < 0;

a violation of budget balance.
Suppose that x > 0. Then there exists a player i for which setting Xi > 0

is a weakly dominant strategy at least as good as investing nothing:

P (x)(Ci +Ri([X−i, Xi])) +Xi ≤ P (x−i)(Ci +Ri([X−i, 0])), ∀X−i.

Since Ri is bounded above by Ui, as x−i → ∞, the probability of an accident
vanishes on both sides and this inequality yields Xi ≤ 0; a contradiction.

Proof of proposition 2.

1. To prove sufficiency, consider any lower semi-continuous ruleRi bounded
by (2). Notice that φi is increasing in its second argument. Hence, for
any best reply Xi to any lower semi-continuous rule Ri, one has

φi(X,−li) ≤ φi(X,Ri(Xi)) ≤ φi([X−i, χ], Ri(χ)) ≤ φi([X−i, χ], Ui),

for any χ ≥ 0. In particular, for χ = X∗
i ,

φi(X,−li) ≤ φi([X−i, X
∗
i ], Ui) = φ∗

i ,

so that Xi ∈ Xi. To prove necessity, consider point 2 below and the
fact that the negligence rule is a lower semi-continuous rule.
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2. Assume that we want to implement Xi ∈ Xi. We verify that the
negligence rule incites player i to invest Xi.

If Xi = χ∗
i , then Ri(χ) ≡ −li and cost are minimized by setting χ =

χ∗
i = Xi. If Xi > χ∗

i , then

Ri(χ) =

{

−li if χ ≥ Xi,

Ui else.

Playing χ < Xi yields at least φ∗
i while playing χ ≥ Xi minimizes cost

to
min
χ≥Xi

φi([X−i, χ],−li) = φi(X,−li) ≤ φ∗
i .

The minimum is in Xi because the unconstrained solution is χ∗
i < Xi

and φi([X−i, χ],−li) is quasiconvex. If Xi < χ∗
i , a similar argument

applies and cost are also minimized in Xi.

Proof of Proposition 3. Suppose that X is NI and that L implements X.
Then, for all i, Xi ∈ Xi so that

φi(Xi, Li) ≤ φ∗
i ,

P (x)(Ci + Li) +Xi ≤ ψi(ξ
∗
i ) − x−i,

P (x)(Ci + Li) + x ≤ ψi(ξ
∗
i ). (11)

Clearly, if (11) holds for all i then L implements X as a Nash equilibrium.
Summing (11) over i yields

P (x)(c+ l) +Nx ≤ F (X).

From (11), it is clear that if L ≤ U implements X, so does any L′ ≤ L.
Hence if l > 0, we can always find L′ ≤ U that implements X as well and
such that l′ = 0. Hence (7) holds.

For the sufficiency part: given X such that (7) holds, L+ solve (11) with
equality so that X is NI. The discussion in the text establishes that L+ ≤ U .
Besides, since (7) holds, l+ ≥ 0 and L+ is admissible.

Proof of Lemma 1. Since F is continuous, it reaches its minimum on the
compact set defined by X ≥ 0 and

∑

Xi = x. Define

θij(χ) = F ([X−i−j, χ,Xi +Xj − χ]).
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Then, for any pair (i, j), the allocation χ of spending Xi +Xj between i and
j should be optimal. It follows that

Xi ∈ argmax
0≤χ≤Xi+Xj

θij(χ) (12)

is a necessary condition for X to maximize F . More in details:

θij(χ) =
∑

k 6=i,k 6=j

ψk(ξ
∗
k)+ψi(max{x−χ, ξi})+ψj(max{x−Xi−Xj +χ, ξj})

The function θ is convex over χ ≥ 0. It is the sum of a constant and two
functions. Recall that ψi is convex. Then the first function is

ψi(max{x− χ, ξi}) =

{

ψi(x− χ) if 0 ≤ χ < x− ξi,

ψ∗
i if x− ξi ≤ χ.

It is convex since ψi(x−χ) decreases toward the minimum ψ∗
i as χ is increased.

The second function is

ψj(max{x−Xi −Xj + χ, ξj})

=

{

ψ∗
j if 0 ≤ χ < ξj − x+Xi +Xj .

ψj(x−Xi −Xj + χ) if Xi +Xj − (x− ξj) ≤ χ.

It is convex since ψj(x−Xi −Xj + χ) increases from the minimum ψ∗
j as χ

is increased. The sum of convex functions is convex so that θij is convex.
It follows that, in our search for an X that maximizes F , we may assume

that, for any pair (i, j), either Xi or Xj equals zero. For this to be true for
every possible pair it must be that X = X i(x). Then, when x > ξN > ξi,

F (X i(x)) = ψi(ξi) +
∑

j 6=i

ψj(x),

=
∑

j

ψj(x) − [ψi(x) − ψi(ξi)] ,

That last expression is maximized when the bracketed term is minimized.
Suppose that i < N ; then

ψi(x) − ψi(ξi) =

∫ x

ξi

(P ′(χ)Vi + 1)dχ.
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To the right of ξi, P
′(χ)Vi + 1 is a positive function; hence,

>

∫ x

ξN

(P ′(χ)Vi + 1)dχ,

>

∫ x

ξN

(P ′(χ)VN + 1)dχ,

= ψN (x) − ψN (ξN).

The inequalities are strict because x > ξN > ξi and VN > Vi. Hence, if we
restrict X to X i(x), F is uniquely maximized in XN(x).

Finally, consider the possibility that X maximizes F and that Xi > 0 for
a group M of more than one player. With x > ξN and for (12) to hold, it
must be that

M ≡ {i : Xi > 0} = {i : x−Xi < ξi}.

To understand this step, go back to the definition of θij for i and j in M .
If x − Xi ≥ ξi, then ψi(max{x − χ, ξi}) has a strictly convex (decreasing)
portion on the left when 0 ≤ χ < x − ξi. If x −Xj ≥ ξj, then ψj(max{x −
Xi−Xj +χ, ξj}) has a strictly convex (increasing) portion on the right when
Xi +Xj − (x − ξj) ≤ χ ≤ Xi + Xj. If any of these two portions is present,
then θij is maximized either in χ = 0 so that Xi = 0, or in χ = X1 +X2 so
that X2 = 0. In both cases we get a contradiction.

Then
F (X) =

∑

i∈M

ψ∗
i +

∑

k/∈M

ψk(x). (13)

Now, for i and j in M , consider lowering Xj to zero and raising Xi to Xi +
Xj. We would still have i ∈ M but j /∈ M . Then F would be raised by
ψj(x) − ψ∗

j > 0. Hence (13) is not a maximum.

Proof of proposition 4. We have already shown that XN(x∗) and L∗ imple-
ments x∗. To get to x∗, we had to maximize F . Since x∗ > ξN , Lemma 1
implies that XN(x∗) uniquely implements x∗. Proposition 2 establishes that
L∗ uniquely implements XN(x∗) with a negligence rule.
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Figure 1: The optimality of the negligence rule.
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