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1 Introduction

It is common to assert that poverty is a multi-dimensional phenomenon, yet most em-
pirical work on poverty uses a one-dimensional yardstick to judge a person’s well-being,
usually expenditures or inconpeer capitaor per adult equivalent. When more than one
indicator of well-being is used, poverty comparisons are either made for each indicator
independently of the others, or are performed using an arbitrarily-defined aggregation of
the multiple indicators into a single index. In either case, aggregation across individuals
of individual poverty statuses requires a poverty index, and no single such index has been
devised that has received unanimous approval. Multidimensional poverty comparisons
also require estimation of multidimensional poverty lines, a procedure which is ethically
and empirically problematic even in a unidimensional setting.

Taking as a starting point our belief that multidimensional poverty comparisons are
theoretically attractive, our purpose in this paper is to address some of their methodologi-
cal, empirical, and statistical difficulties. In particular, we show how to determine whether
truly multidimensional poverty comparisons are robust to the aggregation of multiple indi-
cators, robust to the selection of multidimensional poverty lines and of multidimensional
poverty indices, and robust to the presence of sampling variability in the estimators used.

We start in sectiof2 by considering poverty comparisons that involve two or more
measures of well-being, and by asking whether poverty is lower in population A than
in population B. One can think of poverty being defined on many dimensions, along the
lines of Sen’s "capabilities” approach to poverty (see for instance Sen (1985)), and we test
jointly along all of them. Here, we make an important distinction betwatrsection
andunion definitions of poverty. In one of the few papers on multidimensional poverty
measurement, Bourguignon and Chakravarty (1998) argue that, if we measure well-being
in the dimensions of income and height, say, then a person should be considered poor
if her income falls below the income poverty lie if her height falls below the height
poverty line. We may define this asuaion definition of multidimensional poverty. An
intersectiordefinition, however, would consider a person to be poor only if she falls below
bothpoverty lines. The tests that we develop are applicable to both definitions.

Section3 presents a different approach to multidimensional poverty comparisons.
Rather than asking "Is poverty lower for A than B over all reasonable poverty lines in
all dimensions?” we ask, "What is the range of poverty lines in all dimensions over which
we can be sure that poverty is lower for A than for B?” This approach eliminates the need
to make an arbitrary choice of "reasonable” limits for the range of poverty lines.

In section4, we show how our methodology specializes to cases in which one of
the measures of well-being is discrete. For example, we might consider literacy as one
indicator of well-being, and believe for instance that literate people are better off than
illiterate people of the same income level. In such cases, we can split the total population
into sub-groups using the value of the discrete variable of well-being, and compare the
levels of a continuous variable of well-being such as income within and across subgroups.
This turns out to be just a special case of the methods derived in s@:tigxactly



the same method applies to poverty comparisons in which a dimersigniicomes)
contributes to well-being, but does so differently for those belonging to different sub-
groups of the population. Group membership defines the other dimension of well-being.
Again, the rationale for this is that each sub-group can reasonably be expected to have
a different level of total well-being for the same amount of income. Atkinson (1991)
and Jenkins and Lambert (1993) (and more recently in Chambaz and Maurin (1998) and
Duclos and Makdissi (2000) for instance) developed this type of analysis for poverty
comparisons in the presence of household heterogeneity in order to avoid relying on the
choice of one particular set of equivalence scales when making poverty comparisons.
Throughout, we follow the dominance approach to poverty comparisons, as initially
developed in Atkinson (1987) and Foster and Shorrocks (19884, blcjs well-known
that one important advantage of this approach is that it is capable of generating poverty
orderings that are robust to the specification of poverty lines over broad ranges. Given the
sensitivity of most poverty measures to the poverty line, this is an important consideration.
As we show, this approach can also ensure robustness to the choice of a multidimensional
poverty index over broad classes of indices, as well as robustness over the manner in
which multidimensional indicators interact in generating overall individual well-being. A
further goal of the paper is to derive the sampling distribution of estimators of various
useful tools for multidimensional poverty analysis, in such a way that one may infer from
sample estimates the true population value of poverty measures.

2 Multiple indicators of well-being

2.1 Poverty lines and poverty indices in two dimensions

Let 2 andy be two indicators of individual well-beifg These could be, for instance,
income, expenditures, caloric consumption, life expectancy, height, body mass, the extent
of personal safety and freedoetc. Denote the set of poverty lines for the indicators of
well-beingz andy asz,(y) and z,(x), respectively. The formulation,(y) allows for
the poverty line in the dimension af to depend on well-being in the dimension wf
and conversely fog,(z). This allows different dimensions of well-being to be at least
partial substitutes in the attainment of an overall level of individual well-being, and thus
in determining whether someone is poor or not. In such cases, we will expect that the
poverty line in ther dimension should not increaseasicreases, andce-versathat is,
zg(cl)(y) <0 andzl(,l)(x) < 0, where a superscrigil) indicates the first-order derivative
of the function with respect to its arguméniWe thus make this assumption from now

1Atkinson and Bourguignon (1982,1987) first used this approach in the context of multidimensional social
welfare.

2For expositional simplicity, we focus on the case of two dimensions of individual well-being. We will
illustrate later in sectio@.6 the extension to more than two dimensions.

3Note here that we implicitly assume thép(y) zf,l)(:c) exist everywhere. This assumption, which is made



onwards.

We can think of(y, z,(y)) and(z,(x), =) aspoverty frontiersalong which the overall
well-being of an individual is precisely equal to the poverty level of well-being, and below
which individuals are in poverty. In other words, the frontier definedy.(y)) and
(zy(x),x) can be interpreted as an indifference curve along which well-being precisely
equals the poverty level of "utility”. Within that perspective, the inverse,df)) is simply
zy(z): * = zx(2y(x)). Thus, if we knowz,(y), we also knowz, (z) by inversion, and
conversely.

Assume for expositional simplicity that the joint distribution function oxesindy
is differentiable with respect to each variable, and denote the joint density function by
f(x,y). For analytical simplicity, we focus in this paper on classes of additive multidi-
mensional poverty indices. An additive poverty index that combines the two dimensions
of well-being can be defined generally Bz, (y), z,):

2y [za(y)
Pz(y), ) = /0 /0 Y e,y 20(y), 2(@)) (o, y) dx dy )

wherez, is an upper limit of poverty lines in thgdimension (which can tend to infinity)
and wherer(z, y; 2, (y), 2y (z)) is the contribution to poverty of an individual with well-
being indicators: andy, such that:

> 0if 2 < 2z (y) andy < zy(z),
= ( otherwise

(@, y; 22 (y), 2y(2)) { 2)

For expositional convenience, we will sometimes refer (o, y; 2, (v), z,(x)) simply as
w(x,y).

Depending on the shape of the functief(y), the above formulation allows for a
mixture of both anintersectionand aunion approach to measuring multidimensional
poverty. To see why and how, consider Figlrelf z, = ¢, andz,(y) = ¢, where
¢y andc, are constants, therd)(is an intersection poverty index: it considers someone to
be in poverty only if she is poor ibothof the two dimensions aof andy, and therefore
if she lies within the dashed rectangle of Figdirdf, however,z, (y) = z2(y) in Figurel
(the L-shaped, dotted line), with, — oo, then (1) is a union poverty index: it considers
someone to be in poverty if she is pooreither of the two dimensiong,e., if z < ¢,
orif y < ¢y, and therefore if she lies below or to the right of the dotted line of Fidure
Finally, the bi-dimensional set of poverty lines'(y) in Figurel provides an intermediate
approach, for which the poverty line in thedimension is a decreasing function gf
Someone can be poor evenyit> ¢, if, in the other dimension, her well-being indicator
is such thatr < z2*(y).

for expositional simplicity, is not strictly necessary, so long#g,) is non-increasing ovey. This includes the
possibility thatz, (y) not be continuous and not be differentiable everywherg in



2.2 Poverty dominance in two dimensions

Before making comparisons that are robust across a broad class of poverty indices, it
is helpful to introduce one particular example of the multidimensional poverty indices
in equation 1), a bi-dimensional extension of the FGT (Foster, Greer, and Thorbecke
(1984)) index:

Zy Zr(y)
P(20(y), 23 s @) = /0 /0 (2(y) — 2)° (2(z) — )™ f(2,9) dzdy  (3)

for a; > 0 anday,, > 0. This index plays an important role in the robust comparisons
that we introduce below. The parametersand o, capture the aversion to inequality
in poverty in thexz and in they dimensions, respectivelyP(z,(y), zy; 0,0) gives a bi-
dimensional poverty headcount, namely, the proportion of individuals with both of their
well-being indicators in the poverty domain defined as in FiglireP(z,(y), zy; 1,0)
sums the poverty gaps in (given bymax(z,(x) — y,0)) for those that are poor ip,
and then normalizes this sum by the size of the total populaft§n, (y), z,; 1, 1) sums
the product of the poverty gaps inand iny, again normalized by the size of the total
population, and can therefore be thought of as a bidimensional average poverty gap index,
with the weights on the poverty gaps in one dimension being the poverty gaps in the other
dimension. Analogous interpretations exist for other combinations, @ndc«, values.
Instead, however, of relying on the ranking of one or a few arbitrary poverty indices
and using one or a few poverty frontiers, we will investigate the ranking of poverty over
areas of poverty frontiers and classes of poverty indices, classes that are defined in terms
of the reactions ofr(z, y; 2. (v), zy(x)) to changes in: andy. This approach will gener-
ate tests of whether multidimensional poverty rankings are robust to the index and frontier
chosen, that is, tests that are valid for every one of a variety of ways of aggregating in-
dividual well-being indicators into indices of aggregate poverty over an area of poverty
frontiers. These tests of multidimensional poverty robustness can be carried out at differ-
ent orders of poverty dominance in each dimension of well-being.
To consider poverty dominance at a combination of two separate orders of dominance,
s, for z ands, for y, we need to definki-dimensional stochastic dominansarfaces,
denoted byD**»%v (2, z,):

Dr(z) = [ [T -0 9 S dody (@)

wherec = ((s; — 1)!(sy — 1))~ is a constant which plays no role in the interpretation
and in the comparisons of poverty in which we are interested, and which will therefore
generally be ignored. When (y) = z,, itis clear fromB8) and @) that the bi-dimensional
dominance surface)*>*v(z,, z,), is equal to the bi-dimensional FGT poverty index,
P(2y, zy; 0p = 5, — 1,y = 5, — 1), times the constant Otherwise, the two differ.



We assume that the general poverty indextig left differentiablé over the regions
of [0, z;(y)] and [0, z,] up to the relevant orders of dominancg, for derivatives with
respect tar ands,, for derivatives with respect tg. Denote by the first derivative of
m(z,y; 22 (), zy(x)) with respect tar; by 7Y the first derivative ofr(z, y; 2, (y), zy(x))
with respect tay; by 7*Y the derivative ofr(x, y; 2, (), 2,(z))) with respect tor and to
y; and treat similar expressions accordingly.

We first assume that the poverty indices over which we want to assess the robustness
of poverty comparisons are continuous along the poverty frontier, namely;(thdt ), v;
z2(y),y) = 0 for all values ofy. This excludes the multidimensional poverty headcount,
which is discontinuous at the poverty frontier; we will come back to the case of this par-
ticular index below. We then define the following cld$s' (2. (y), z,) of bidimensional
poverty indices:

) M) <o,
I (22(y), 29) = § Pz2(y), 2y) | 7(20(y), 45 22(y),y) = 0, Vy (5)
™ < 0,7Y <0andn®¥ >0, Vz,y.

The first assumption irbj says that the poverty frontier,(y) is weakly decreasing in:

this was discussed above in Seciibd. The second assumption is the above-mentioned
continuity assumption at the poverty frontier. The third assumptions say that indices that
are members of™:! are weakly decreasing in and iny, and that they are also more
affected by a change in the lower is the value of. These assumptions imply that an
increase in eithet or y is good for poverty reduction, and also that the marginal poverty
benefit of an increase in eitheror y decreases with the value of the other variable.
These implications would seem to be ethically unproblematic. For the indices to be non-
degenerate, we must have thét< 0, 7¥ < 0 and7®¥ > 0 over some ranges aofandy.

6

Denote byAF = F,4 — Fg the difference between a functiqﬁ for A and forB.
The class of indices defined iB)(then gives rise to the followingl!>! bi-dimensional
dominance condition:

Theorem 1 (II'! poverty dominance)

AP(C(y),Gy) > 0, VP(Ge(w), &) € T (Ga(w), &)
andVv¢, € [0, z,] andV¢, (y) € [0, 2:(y)]
iff ADM (z,y) >0, Vy € [0, z,] andVz € [0, z.(y)]. (6)

4This differentiability assumption is made for expositional simplicity. It could be relaxed.

®The derivatives include the effects @fn the termz, (y) and ofz in the termz, (z).

5Note also that the inequalities iB)(are weak, which is different from the strong inequalities that are often
found in the literature. This is consistent, however, with the way in which we will proceed to test dominance —we
will test for strict ordering of the dominance surfaces, instead of the weak orderings often tested in the empirical
literature.



Proof: See the appendix.

If condition (6) is met, Theoreni says that poverty will be unambiguously higher in
A than in B for all of the poverty indices that are membersIbf! and for all poverty
frontiers for which¢, € [0, z,] and{,(y) € [0, z,(y)]. Because of its generality, this is a
powerful ordering of multidimensional poverty acro$andB.

Condition ©) requires that the dominance surfabe:!(z, y) be higher forA than
for B for all pairs of intersection poverty frontier&y, y), for whichx € [0, z,(y)] and
y € [0, 2,]. To see more clearly what this implies, return to Figlirend consider first
an intersection poverty definition. In this casg,andz,(y) are upper bounds that can
be set to the constantg andc, respectively, and the relevant domain for the test is the
rectangle defined by the axes and the upper bo(nds,). Thus, to establish a robust
poverty comparison on this domain, we must check tiatdominance surface is above
B’s at every point over this rectangle. Note, however, that once this is established, we are
assured of a robust poverty ordering not only at the precise intersection poverty frontier,
(¢cz, ¢y), but also for all other poverty frontie(g, 2, (y)) of bi-dimensional poverty lines
which "fit” into the rectangle. These alternative poverty frontiers would inchitlef the
intermediate frontiergof the type ofz**(y) in Figurel) that could fit in the rectangle
defined by(0,0) and(c,, ¢y).

For a union estimator, the test domain of these poverty frontiers is the L-shaped region
defined in Figurdlby x € [0, z%(y)] andy € [0, oo]. Again, condition/6) requires that the
dominance surface be higher tdrithan for B for all pairs ofintersectiorpoverty frontiers
over that region. If that is established, we are assured of a robust poverty ordering for all
other union, intersection, or intermediate poverty frontiers:,.(y)) which are included
in that testing area. The extension to more general functions suel@p follows
naturally.

Theoremll is convenient because it does not require comparing all of the (infinitely
numbered) possible poverty indices that are membei§!df just the dominance sur-
faces. In addition, it does not require that we test poverty dominance for all possible
frontiers(y, z,(y)), but just for the intersection frontiers that fit within the domain of the
test. A cost of this simplification is th&t'-! poverty dominance does not guarantee that
indices that are discontinuous at the poverty frontier will be greatdrtiman in B for all
poverty frontiers that belong to the test domain, since these discontinuous indices are not
members ofI!1. We will come back to the continuity issue in Sectiin

2.3 Higher order dominance tests

For higher-order dominance, we either increase the order in one dimension or in both
simultaneously. Either approach adds further assumptions on the effects of changes in ei-
therx or y on aggregate poverty, and thus limits the applicable class of poverty measures.
These further assumptions are analogous to those found in the unidimensional dominance
literature, and impose that indices react increasingly favorably to increases in living stan-
dards at the bottom of the distribution of well-being. The assumptions further require that



the reactions of the indices to changes in one indicator be the greater the lower the level
of the other indicator of well-being.

To illustrate this, assume in addition to the above conditiong ot that the first-
order derivativer®(x,y) is continuous at: = z,(y), that is, thatr®(z,(y),y) = 0.
Further suppose that equalizing transfergiat a given value ofy weakly reduce ag-
gregate poverty, and that this effect is decreasing in the valye @e then obtain the
following class of bidimensional poverty indices:

P(Zx(y)’ Zy) € 1:1171('296(3/)7 Zy)
(2 (200 ) = § Plealy). ) | iz 0Y) S0 ™
andn®¥(x,y) <0, Vz,y.

This leads to the following dominance condition:

Theorem 2 (112! poverty dominance)

AP(C(y),Gy) > 0, VP(Ga(w), &) € T (Ga(w), &)
andV(, € [0, z,] andV(;(y) € [0, z5(y)]
iff AD*!(z,y) >0, Vy € [0, z,] andVz € [0, z.(y)]. (8)

Proof: See appendix.
This tests simultaneous dominance of order 24aand of order 1 fory by checking
whether the average poverty gapair(given by D?!(x,y)), progressively cumulated in
the dimension ofy, is greater inA than in B, regardless of which intersection poverty
frontier, (x, y) with € [0, 2z,({y)] andy € [0, z,], is chosen. The ordering properties are
analogous to those of Theoréin

Although it may not prove necessary, we can move to higher orders of dominance
in the  dimension. The classes of poverty indices belongingifol(zx(y),zy) be-
come increasingly restricted as increases. Foﬁ371(zm(y),zy) for instance, poverty
indices must obey the principle of transfer sensiti%ityz, and react more to a favorable
composite transfer the lower the valueyofHigher values ok, imply compliance with
higher-order principles of transfefs

In addition, we can simultaneously increase bgttands,. The procedures, classes
of poverty indices, and dominance relationships are analogous to those described above.
For instance, the conditions for membershidif?(z,(y), zy) require that the poverty
indices be convex in botlh andy, and that they therefore obey the principle of transfers
in both of these dimensions. They also require that this principle be stronger in one
dimension of well-being the lower the level of the other dimension of well-being. Finally,
they also impose that the level of convexity in one dimension of well-being be convex

’For a definition, see for instance Shorrocks and Foster (1987).
8For an illustration of this in the unidimensional setting, see Fishburn and Willig (1984).

7



in the level of the other indicator of well-being. The dominance condition then checks
whether D*2(z,y) is greater inA than in B for all combinations of poverty lines for
whichz € [0, z;(y)] andy € [0, z,].

2.4 Relevance of the methods

The methods that we propose above are more general than two other methods that re-
searchers have used to consider poverty in multiple dimensions. One approach has been
to combine many indicators of well-being into one, unidimensional index, and then com-
pare that index across populations. The best-known example is the Human Development
Index (UNDP, 1990). To see how this method differs from ours, return to Fitjwaich

shows the domain for tests using two well-being variables. If we chose to compare a
single aggregate welfare index of these two variables, the effect would essentially be to
reduce the domain for the test to a single line emanating from the origin and being closer
to the x or y axis according to the weight that x and y receive in the welfare index. Our
proposed tests clearly generalize on this approach.

The second approach is to compare many indicators of well-being independently.
Such univariate comparisons are also a special case of our approach. To see this, re-
call that the dominance surfade’=*v(x,y) is cumulative in both dimensions. Hence,
integrating out one dimension only leaves the univariate dominance curve for the other
dimension of well-being. In terms of Figutk the domain of separate univariate tests
would be a horizontal line up te, atz = oo for they variable, and a vertical line up to
¢ aty = oo for thex variable.

There are then two ways in which our test could differ from this "one-at-a-time” ap-
proach. First, it is possible that the univariate dominance curvd fiags above that for
B at bothx = oo andy = oo for the relevant range of poverty lines, but thdis not
aboveB at one or more interior points in the test domain shown in Figlta this case,
the one-at-a-time approach would conclude that poverty is highdrtiman B, but our
bivariate approach would not. Indeed, the bivariate approach checjarthéistribution
of all indicators of well-being, and it is thus able to show the correlation across such in-
dicators, which is of ethical importance since it helps capture "multiple” poverty — that
is, the joint incidence of deprivation in multiple dimensions. One-at-a-time analysis fails
to do this. Alternatively, it is possible for the dominance surfaces to cross=atoo
and/ory = oo, but for A’s surface to be abov8’s for a large area of interior points in
the test domain. In this case, the one-at-a-time approach would not be able to establish a
ranking of poverty, but our test would for an intersection definition of poverty and some
intermediate definition3.

To visualize these methodological differences, consider Figumdnich graphs a typ-
ical dominance surface. A larger "Tnump” in the middle of the surface corresponds to a

9A union definition, however, would include the margins of the surface in its test domain and would therefore
not find a robust ordering of poverty.



larger positive correlation between the two well-being variables. Also, the univariate dom-
inance curve for one dimension is found at the upper extreme of the dominance surface’s
other dimension. On Figu/2 the univariate curve for the log of household expenditures
lies on the extreme right of the surface, while that for the height-forzagmore (to which

we return below) is behind it.

When we make dominance comparisons, we test for the difference between two sur-
faces like the one shown in FiguB: Figurel3 depicts such a difference for the case in
which one surface has highly correlated welfare variables while the second does not (the
difference in these surfaces "bulges” in the middle). Although differences in the univari-
ate dominance curves in both dimensions clearly cross the origin (at the extreme left and
right of the figure), there is a significant interior section where the first surface is entirely
above the second. Hence, there are poverty frontiers for which the first distribution has
more poverty than the second. Conversely, we could think of shifting Figuewn
such that the univariate differences were all negative. The first distribution would then
dominate the second in both dimensions individually, but there would still be a section in
the middle where the first surface would lie above the second. Thus, there would be no
bivariate poverty dominance due to the first distribution showing two much incidence of
multiple deprivation. We will give further examples of this in secfié.

2.5 Estimation and inference

We now consider the estimation of the tools derived above for multidimensional poverty
analysis. In this, we generalize to more than one dimension some of the results of David-
son and Duclos (2000).

Suppose first that we have a random sampl&/ahdependently and identically dis-
tributed observations drawn from the joint distributionaofindy. We can write these
observations of:“ andy”, drawn from a populatio, as(z¥,y*),i = 1,...,N. A
natural estimator of the dominance surfaé¥s-*v(z,, z,) (seed) is then:

bzmsy (Zz, Zy)
= Jo' Jo" (zy —y) N zp —2)*= L dFL (2, y)
= & S (zy —yb) T (2 — 2f) T (< 2)1(af < zp)

N -1 -1
=y i —u)Y (2 — )Y

(9)

where F' denotes the empirical joint distribution functiof(:) is an indicator function
equal to 1 when its argument is true and O otherwise, fard) = max(0,x). A more
general case 0] is that of the multidimensional FGT and other additive indices with
an arbitrarily-defined poverty frontier, a case which we consider in the proof of Theorem
3 in the Appendix. For arbitrary, ands,, (9) has the convenient property of being a
simple sum of 1ID variables, even allowing for the fact thaindy and will generally be
correlated across observations.



The following theorem allows us to perform statistical inference in the case in which
we have a sample from each of two populatioAgnd B, that may or may not have been
drawn independently from each other.

sy—1

Theorem 3 Letthe joint population moments of order 2(ef—y4)y ™ (z,—24)% !
and(z, —yB)ir1 (2 —2B)% ! e finite. TherV!/? (ﬁi{”’sy(zx, zy) — D7 (2, zy))
and N'1/2 (bg’Sy(zm, zy) — D5 (2, zy)) are asymptotically normal with mean zero,
with asymptotic covariance structure given iy (4 = A, B):

limpy_,o NCOV (ﬁff’sy (2s 2)s D32 (20, zy)>
=c’E ((Zy - yL)ifl (20 — xL)jf_l (zy — yM)j}ﬁ1 (22 — $M>j-z_1) ' (19)

—D7 " (24, 2y) D37 (2, 2y)

Proof: See the appendix.

When the samples from the populatioAsand B are independent, the variance of each

of D7 (2, 2,) and D3*™ (2., z,) can be found by usindL0) and by replacingV by

N, and Ng respectively. The covariance between the two estimators is then zero. The
elements of the asymptotic covariance matrix can be estimated consistently using their
sample equivalents.

2.6 Examples

As a first example, consider the question: are rural people poorer than the urban ones in
Viet Nam? Many studies, of Viet Nam and elsewhere, find that people living in rural areas
tend to be poorer when judged by expenditures or income alone. However, it is possible
that people are better nourished in rural than urban aoedstis paribusbecause they

have tastes for foods that provide nutrients at a lower cost, or because unit prices of com-
parable food commodities are lower. In such cases, including an indicator of nutritional
status may change the relative well-being of rural and urban residents. To test this, we
measure welfare in two dimensionger capitahousehold expenditures and nutritional
status, as measured by a childs’ gender and age standardized height, transformed into
standard deviation or z-scores. Stunted growth in children is widely used as an indicator
of malnutrition and poor health. The sample comes from the Viet Nam Living Standards
Measurement Survey carried out in 1393This is a nationally representative household
survey that collected detailed expenditure and anthropometric data. The latter, however,
are available only for children younger than 60 months, so our sample is actually these
children only, rather than for all of the members of the households interviewed.

O|nformation on the LSMS surveys is available in Grosh and Glewwe (1998). Information about the specific
survey that we use is available at the LSMS website:
http://www.worldbank.org/html/prdph/Isms/country/vn93/vn93bid.pdf.
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The test described in equatidB) fequires comparison of the two dominance surfaces
of urban and rural children in Viet Nam: this is shown in Figdier s, = s, = 1. The
y axis measures the height-for-agscore (stunting); the axis measures thger capita
expenditures for the child’s household; and trexis measures the cumulative proportion
of children that fall below the points defined in tfe, y) domain. The poorest children
are in the front left-hand corner of the graph. If the rural dominance surface is above the
urban surface over the relevant area of poverty frontiers (values of per capita expenditures
and stunting), poverty is higher (more people are below the given well-being levels in
each dimension) in rural areas. This conclusion is then robust to the choice of poverty
indices in the classl™! (2, (y), z,), and robust to the choices of poverty frontiers within
0, 2] and[0, 2, (y)].

In theory, we should test over the entire area defined,§y) andz,, but it is more
practical to choose a grid of points in tfie, y) domain over which to test. Here we use
a grid that is 20x20, spread evenly over #rdire domain of the log of per capita expen-
ditures and the height-for-agescore. Following Howes (1996), we test for a significant
difference in the dominance surface at each point of the grid, and reject the null of non-
dominance ofd by B only if all of the ¢-statistics have the right sign and are significantly
different from O.

Figured indicates clearly that, over almost the entire range of expenditures and stunt-
ing, rural children are poorer than urban. Talilshows whether these statements are
statistically significantly at the 5% level. A negative sign indicates that the urban domi-
nance surface is significantly below the rural one, a positive sign indicates the opposite,
and a zero indicates that the difference is not statistically significant. The negative dif-
ferences are statistically significant for any reasonable pair of poverty lines (except at the
very bottom right of Tabld. Hence, by Theorelt, the conclusion that rural children are
poorer than urban ones is valid for almost any intersection, union or intermediate poverty
frontier.

Our second example tests for first-order poverty dominance in three dimensions. We
ask whether poverty declined in Ghana between 1993 and 1998, using data from the
Demographic and Health Surveys. The three welfare variables that we consider are for
children under five years old: their survival probability, their height-for-age z-score (stunt-
ing), and an index of their household’s asgétsVe compare dominance surfaces for these
three measures in 1993 and 1998, the two years for which DHS data exist. While we can-
not graph the resulting four-dimensional surface, Fidglisemmarizes the results of the
statistical test. We use a 20x20x20 grid of test points, and each horizontal layer in Figure
5 is similar to Tablel in the previous exampi€. A light gray point indicates that the
1998 surface is significantly above the 1993 surface; a darker gray point indicates that the
1998 surface is significantly below the 1993 surface; and a black point indicates that they
are statistically indistinguishable at the five-percent significance level. Itis clear from the

Mnformation on the estimation of survival probabilities and the asset index may be found in Sahn, Stifel, and
Younger (1999) and Sahn and Stifel (2000).
2\We have excluded some of the horizontal layers to make the graph more legible.
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figure that there is no robust poverty dominance result. Over some of the domain, poverty
does seem to have declined between 1993 and 1998. But in significant areas, particularly
for low values in the asset dimension, the reverse is true.

In addition to showing that our tests are possible in more than two dimensions, this
example shows the importance of checking for the robustness of poverty comparisons
using tests such as those we employ. For the intersection headcount, shown by points on
the dominance surfaces, a judicious choice of the poverty lines could lead one to conclude
that poverty worsened, improved, or did not change, depending on the specific choice.
None of these results would be robust, but any would seem plausible if it appeared on its
own.

The next two examples highlight the difference between using bivariate dominance
testsvs. one-at-a-time univariate tests on the same variables. Pailes the results for
tests of the differences in the dominance surfaces for stunting and child survival proba-
bility in Cameroon and Madagascar. The data come from the 1997 Demographic Health
Surveys (DHS) in those countrié%. The "one-at-a-time” dominance curves are given
in the last row of the table (for survival probability) and in the last column (for stunt-
ing). It is clear that these univariate comparisons would conclude that poverty is worse
in Madagascar than in Cameroon, whether measured by stunting or survival probability.
Nevertheless, the bivariate comparison shows several internal points where the surfaces
are not significantly different, including two where the point estimate of the difference is
in fact positive. So our method would not come to the same conclusion, finding instead
that there is no statistically-significant first-order poverty ordering of these two popula-
tions.

Table 3 shows the other possibility for different conclusions. These results are also
for tests of the differences between first-order dominance surfaces for stunting and child
survival probability, in Colombia and the Dominican Republic, and come from the DHS
surveys for those countries, carried out in 1995 and 1996 respectively. In this case, there
is dominance on one margin (for survival probability), but not the other (stunting), so the
one-at-a-time approach would not find poverty to be necessarily lower in one population
than the other. However, Colombia’s dominance surface is significantly below the Do-
minican Republic’s over a very large range of the interior points, suggesting that under
an intersection definition of poverty, and several intermediate ones as well, poverty was
robustly lower in Colombia than in the Dominican Republic.

3 Bounds to multidimensional dominance

Implementing the approaches to multidimensional poverty dominance developed in sec-
tion2 requires specifying the position of the upper frontigfy) andz,. Although there
may be some intuitive feel that extreme values:pfy) and z, are not sensible, there

BInformation on these surveys is available at http://www.measuredhs.com. The child survival probability is
estimated as in Sahn, Stifel, and Younger (1999).
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is rarely reliable empirical evidence about what the precise value of these upper bounds
should be. Specifying their valug priori is thus necessarily subject to some degree of
arbitrariness. An alternative approach that gets around such arbitrariness is to estimate
directly from the samples the upper limit of the poverty frontiers for which multidimen-
sional poverty dominance holds in the sample. These upper bounds can beddtitedd
poverty frontiers since they will determine the area of poverty frontiers which may not be
exceeded for a robust multidimensional ordering of poverty to be possible. The researcher
can then judge whether these limits are sufficiently high to justify a conclusion of poverty
dominance.

To develop this idea further, assume that these critical poverty frontiers exist in the
two populations of multidimensional well-being being compared. Assume therefore that
B initially dominatesA but that their dominance surfaces eventually cross and that the
ranking of the dominance surfaces is thus eventually reversed. Hence, for a given value
of y, let ¢ (y) then be the first crossing potitof the surfaces in the dimension, with
D™ (G (y),y) = D™ (¢ (y),y). Carrying out this exercise for a ranffe z,] of y
leads to the estimation of a critical poverty frontier in thelimension. By the results
derived in sectioi, this procedure will provide an estimate of the spfte,(y)] and
[0, z,] in which we can locate all of the possible poverty frontiers (union, intersection, or
intermediate) for which there is necessarily more poverty ithan in B for all poverty
indices that are members Bf=»sv. This procedure can be applied for any desired orders
of bi-dimensional dominance, ands,, and can be generalized to more dimensions.

To summarize, the critical poverty fronti€t (y) limits the poverty frontiers for which
poverty inA can be said to be robustly above thatinFor poverty frontiers lying above
¢ (y), it would always be possible to find a poverty index withifr-*» that would show
more poverty inB than in AL, The frontier¢; (y) also locates thantersectionpoverty
frontiers for which the bi-dimensional FGT poverty indices would be exactly the same in
the two distributions. In other words, a social-decision maker using the multidimensional
intersection FGT index as a social evaluation function would be indifferent between the
two distributions at any pair of poverty lines along that frontier.

3.1 Estimation and inference

To establish the sampling distribution of estimators of the critical froqti€ ), assume
that within some bottom area € [0, ¢,] and at a given value af, the population dom-
inance surface for lies above that fo3, but that these surfaces cross (exactly) in the
population at some higher critical poitit (y). For a fixed value ofj, a natural estimator

¢ (y) of the location of that point can be defined by the first point abpaewhich the
sample ordering of the dominance surface changes. If the sample dominance surface for

14Note that(;" (y) will depend on the orders of dominange,, s, ) considered, and should formally be written
as¢; (y; s, sy)). For expositional simplicity, however, we do not make this dependence explicit.
15This is by the necessity part of conditioi@) and 8).
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A were to lie always above that fd? apovey, then we could saf;(y) to an arbitrarily
large value (denote it by;"). Formally,(;F () is then defined &:

CF(y) = sup {x\A]s(a:,y; Sg — 1,8y —1) > 0andx < z:{} (11)

Applying this estimator over a range gfleads to an estimator of the critical frontier
¢ (y). Under these conditions, the sampling distributioﬁ;b(y) is given by the follow-

ing theorend. For this, however, it is expositionally convenient to define an FGT index
with anegativen, as:

P(zg,2y5—1,0y) = /Ozy(zy — )M f(ylz = z2)dy fo(2z) (12)
= F [(Zy - y)?mx = Zm] fe(2z) (13)

wheref,(z,) is the marginal density of at z, and f(y|z) is the conditional density af
atz. This leads to the following theorem.

Sz—1 Sy—1
Theorem 4  Let the joint population moments of order Z(C’IfA)( )(yA)( vl and

B (51_1) B (sy_l) . .
x Y exist. If the samples from and B are independent, assume that

the ratior = N,4/Np of their respective sample size tends to a constanYf asnd Np
tend to infinity. Under the conditions mentioned above (in particular, ¢fidy) exists in

the population),N1/2 (f;(y) — C;L(y)) is then asymptotically normal with mean zero,
and its asymptotic variance is given by

dim var (N2 () - ¢ () =
[0+ (Pa(G (), y3 82 — 2,8y — 1) = PG (y), 9350 — 2,8y — 1))]
x (-2 G @) o) Fvar (-0 (@) - )3T
—2cov ((y =y (W) =2 L =P YT (G W) - 2P )] a8
when the samples are dependent, and by

Jim var (N2 (&) - ¢ ) =
(6 (Pa(GH (1), 45 52 — 2.8y — 1) = Pp(CF (y), 43 50 — 2,5, — 1))
< Jvar (=Y G @) - o) v (-0 (G W) 23] 08)
when the samples are independent, and by seitiags, — 1 whens, > 1, andd = 1
whens, = 1.

-2

Proof: See appendix.

1%Recall thatAP = P4 — Pg.
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3.2 Example

Figurel6 shows the critical poverty frontier for which poverty, measured by children’s
weight-for-heightz-score and their survival probability, is lower in Madagascar than in
Egypt. A lower frontier is also drawn 2 standard errors below the estimated one. The
frontier and the standard errors are calculated in the vertical dimension (weight-for-age
z-score). The data come from the DHS surveys for these countries in 1997 and 1992,
respectively. Madagascar’s dominance surface is significantly below Egypt’s for a large
range of interior points, including all negativescores. But the bound drops sharply at
higher values of the survival probability, limiting considerably the range over which union
poverty dominance can be established.

4 Multivariate dominance with discrete indicators
of well-being

We now show in this section how the results of secBapecialize to the case of discrete
distributions. This discrete setting will also help understand better the assumptions made
earlier and the testing procedures involved. Suppose that the population can be split into
K exhaustive and exclusive population subgroups, whose population share is denoted by
o(k),k = 1,.., K. Hence XK | ¢(k) = 1. We can define these subgroups based on
a discrete welfare measure such as literacy, political enfranchisement, access to a public
service, or physical capabilities. Alternatively, we can differentiate households by their
relative needs, based on size and composition, type of activities, or area of residence. In
either case, the important point is that these discrete differences in the characteristics of
households or individuals suggest that, for a given value of the continuous measure(s)
of well-being, certain groups have lower overall well-being than others. This can be be-
cause the discrete variable is itself a measure of well-being (being illiterate is worse than
being literate), or because it indicates differences in needs, prices, or poverty lines. In
addition, we can suppose that there is some uncertainty as to the precise value of these
differences. We will assume below that the subgroups can be ordered in decreasing
value of “needs”, in such a way that at common alternative indicators of well-being, in-
dividuals in subgroup 1 have more needs than individuals in subgroup 2, who have more
needs than individuals in subgroup 3, and so on.

Since the relevant indices are again assumed to be additive, poverty in each of the
population subgroups can be defined as:

z(k)
Plliz() = [ m@)f(@ik)do (16)
0
where f(z; k) is subgroupk’s density of living standards at, andz(k) is subgroupk’s

poverty line in the dimension af. 7, (z; z(k)) is the contribution to subgrougs poverty
of an individual in that subgroup with living standard equaktoSince the non-poor do
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not, by definition, contribute to total poverty, we have thatz) = 0 if © > z(k). Total
poverty in the population is given by:

P(2(1), ., 2(K)) =S4 6(k) 7 mi() f(w; k) da a7
= iy (k) P(k; 2(k)).

For expositional simplicity, we will sometimes dend®&z(1), ..., z(K)) simply by P.
One such poverty index is the sum of FGT indices across subgroups, each with its own
poverty line. Denote the FGT index for subgraupy

Plkiz(k)a) = [ (:(k) = )"z Ry, (18)

The P(k; z(k); «) indices are again closely related to the unidimensional dominance
curves for subgroup, D?(k; z(k)), which are defined as- ¢(k) - P(k; z;a0 = s — 1),
wherec = 1/(s — 1)! is a constant. Total poverty as measured by the FGT index is then:

K
P(z(1), ..., 2(K);a) = Y ¢(k) P(k; 2(k); ), (19)
k=1

Note thatP(z(1),...,z(K);0) is the population headcount, with each subgraupe-
ing assigned its specific poverty linék). Similarly, P(z(1), ..., z(K); 1) is the average
poverty gap in the population, again with each subgrbupeing assigned its specific
poverty linez(k). Other multidimensional additive poverty indices can be defined along
similar lines, extending, for instance, the unidimensional Watts (1968) or Chakravarty
(1983) poverty indices.

We assume that the poverty lines of the subgroups can be ordered from the highest-
needs to the lowest-needs group as follows:

z2(1) > 2(2) > ... > z(K). (20)

This is the discrete analogue of conditigfy (z) < 0in Sectior2. The ordering in20) is
sensible since we assume that individuals in grbinave lower welfare or greater needs
than those in groug + 1, all else equal. We also suppose for analytical simplicity that
() is left differentiable between 0 andk) up to the relevant order of dominance,
For first-order dominance, we then need an ordering of the first-order derivativg&of

with respect tar, which we denote as,gl):

V@) <P @) <. <7W) <o,va. (21)

Assumption21) says that an increase incauses a greater poverty reduction the greater
the needs of individuals. It is the analoguerdf > 0 in sectior2.
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4.1 Continuous poverty indices

For expositional and analytical convenience, assume that the derivatives of the functions

w,gl)(x) are continuous at the poverty line, up to fae- 1)™ order. For first-order domi-
nance, this requires that:

me(z(k) =0, ¥k =1,..., K. (22)

As in the case of continuous welfare variables, note that the continuity assunfifljos (

not obeyed by the multidimensional poverty headcount. The consequences of this will be
discussed shortly. The clag§!(z(1),. .., z(K)), of multidimensional first-order poverty
indices then includes all of the indices defined in equatiod ) that satisfy assumptions

(20), (21) and R2). This definition then leads to the following equivalence:

Theorem 5 (First-order poverty dominance for heterogeneous populations)

AP(C(1),...,¢(K)) >0
VP(¢(1), ..., ¢(K)) € TH(C(D), ..., C(K))
andv¢(k) € [0,z(k)],k=1,...,K

iff Z AD'(k;¢) >0, V¢ € [0,2(i)] andVi = 1,..., K. (23)
k=1

Proof: See Atkinson (1991) and Jenkins and Lambert (1993). For ease of reference, a
proof is also shown in the appendix.

Recall thatD'(k; () is the headcount in subgroupfor a poverty line¢, times the
population share of subgroup S_%_, D'(k;¢) thus gives as a proportion of the total
population the number of individuals belaivin subgroups 1 ta, that is, in the; most
deprived, or neediest, subgroups._, D' (k; ¢) canthen be termed the cumulative head-
count index at, for thei neediest subgroups. The first-order dominance condifh (
requires that this cumulative headcount be greatet than in B, whatever the number
i of groups we wish to include, and at all common poverty liles ¢ < z(i). Note,
however, that it does not require that each subgrobtjpve independently more poor in
A than inB, nor does it require that the population headcount (with each subgroup being
assigned its own particular poverty line) be greatedithan inB.

To see this more clearly, consider the case of poverty comparisons involving only two
groups of individuals X' = 2, with z(1) being the poverty line of the neediest group
and z(2) the poverty line of the less needy individuals. Multidimensional dominance
is checked first by comparing the headcount of the poor in group 1 for povertydlines
between 0 and(1), and then by comparing the combined poverty headcounts of the two
groups at all common poverty lines between 0 af2)). This is illustrated in Figure
7, where((1) and ((2) denote the poverty lines at which poverty in each of the two
subgroups is assessed. HbI(z(1),z(2)) dominance, we need to compare the global
poverty headcount at all of the combinations of poverty lines on(the axis (up to
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z(1), that is, up to point G) and on the 45 degree line (until point E). Comparing poverty
for the combination of poverty lines on tlg1) axis amounts to checking the sign of
AD(1;¢) for ¢ € [0, 2(1)]. Comparing poverty for the combination of poverty lines on
the 45 degree line (until point E) amounts to checking the sigitpf , AD'(k; ¢) for

¢ €10,2(2)].

If the dominance conditions i128) are met, then we obtain a very robust ordering of
multidimensional poverty. Indeed, we can then assert with confidence that all of the multi-
dimensional poverty indices containedIih(¢(1),. .., ((K)) will show more poverty in
Athan inB, and this, regardless of the selection of any particular combination of poverty
lines, so long as they belong to the set defined @y € [0, z(k)],k=1,..., K.

4.2 Discontinuous poverty indices

The dominance condition becomes more stringent, however, if we include in the analysis
the headcount and other indices that are discontinuous at the poverty line (in the man-
ner, for instance, of Bourguignon and Fields (1997)) and replace assun2jdoy(the
following:

mi(x) > m(x) > ... > wg(z) > 0,Ve. (24)

A larger classIT' (z(1),...,z(K)) of additive poverty indices then includes all tiie
indices defined in equatiod) that satisfy assumption20@), (21) and 24). The “tra-
ditional” headcount index, by which total poverty is measured by assigning each sub-
group itsown poverty line, belongs taI! but not toII'. We thus expect the dom-
inance conditions fofI' to be correspondingly more demanding. The definition of
I'(z(1),...,2(K)) leads to the following equivalence:

Theorem 6 (First-order poverty dominance without continuity)

AP(z(1),...,2(K)) >0,
VP(2(1),...,2(K)) € I'(2(1),..., 2(K))

» { S 1AD1(k ¢)>0,Y¢el0,z(i)]andVi=1,..., K (25)
and 3% _; ADY(k; 2(k)) >0, Vi=1,..., K.

Proof: See the appendix.

The first condition in25) is identical to the one already discussed23)( In addi-

tion, we must check that the cumulative headcounts are positive when eachignasp

its specific poverty line set to(k). That is the second condition i2%). In the two-

group case of Figur@, this adds to the previously-discussed test locations on more test

at point F on the figure. The dominance conditions are thus more demanding than be-

fore. More importantly, however, note also that the combinations of poverty lines over

which thell!(z(1),..., z(K)) ranking is robust are far more restricted than for the pre-

vious result: in fact, dominance b2%) ensures robustness only at the exact combination
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of lines {z(1),...,z(K)}. To extend the results to all of the poverty lingg:) con-
tained in[0, z(k)] as in 23), we must also check the sign of the cumulative headcount
when each subgroup is assigned its specific poverty line, instead of a commomr value
This new condition would need to be checked for all combinations of poverty lines (other
than{z(1),..., z(K)}) for which we would wish the poverty orderifg' to be robust.
For the 2-group case, this requires checking for dominance at all of the combinations of
poverty lines defined by the shaded area of FigurEhis is clearly a much more stringent
condition than that stated in Theor&n

As in the continuous case of sectignit is possible to extend the above reasoning to
any arbitrary order of dominance. For a given order of dominaneee would assume
continuity at the poverty line up to the — 1)™ order. We would also require conditions

on thes" order derivativen,(j) (y; z(k)), and on the ranking of these derivatives across
population subgroups. For second-order dominance, this would require?that >

. > 7% (y) > 0,Vy. Indices inII? would then be convex iy and thus decreasing
in mean-preserving equalizing transfers of living standards. They would thus obey the
Pigou-Dalton principle of transfers within each group. The convexity;df), and thus
the importance of the Pigou-Dalton principle of transfers, would also be assumed to be
decreasing irk and hence increasing in the needs of the subgroups. At a gividre
greater the needs of a subgroup of individuals, the greater the beneficial poverty effect of
a mean-preserving equalizing transfer within that subgroup.

The dominance conditions would then uBé(k; ¢) — which is the average poverty

gap in subgroup for a poverty line;, times the population share of subgraul . _, D?(k; ()
— and would cumulate it across th@eediest subgroups. When this cumulative average
poverty gap is greater i than in B, whatever the numberof neediest subgroups in-
cluded, and at all common poverty lines< ¢ < z(i), poverty in A is unambiguously
greater than inB for all of the indices inlI?(¢(1),...,¢(K)) and at all of the poverty
lines¢ € [0,z(7)]. For the 2-group case, the graphical combinations of poverty lines
over which this condition must be tested are the same as in the discussion of Figure
condition 23)17,

4.3 Estimation

As for section3.1 in the case of continuous indicators of well-being, suppose that we
have a random sample 8f independently and identically distributed observations drawn
from the joint distribution of membership in grodpand indicator of well-being:.. We
can write these observations, drawn from a populafioas (k*, z*),i = 1,...,N. A

natural estimator of the sum of the dominance cuivgs , D*(k; z) is then:

1 J .
& 2 (e — @)k <), (26)
1=1

"The details of this and extensions to higher-order dominance can be found in Duclos and Makdissi (2000).
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Expression26) has again the convenient property of being a simple sum of IID vari-
ables. We can therefore use the result of The@amshow its asymptotic sampling dis-
tribution simply by replacingz, (%) —y*)$ (zz (%) —2)% by (2,0 —yL) L I(KE < 5)
in (10), for L = A, B. An exactly analogous exercise can be done for the sampling dis-
tribution of critical poverty frontiers indexed over the subgrokps

4.4 Examples

Our first example for this section handles the equivalence scale problem with the method
first suggested by Atkinson (1991). We ask the question, "which type of transfer payment
reduces poverty more in Romania, child allowances or social security pensions?” Because
the answer can easily be influenced by the choice of equivalence scale, we will avoid that
choice altogether. Instead, we use bivariate dominance tests where the second variable is
household size, an indicator of greater needs. The neediest group is households with six
or more peoplé8 the next neediest contains households with five pe@te, The data

come from the Romania Integrated Household Survey (Government of Romania, 1994).
The other well-being variable is household income, plus the relevant transfer payment
(child allowances or social security pensions). We have standardized these payments so
that they have the same mean, thus ensuring that the tests do not merely reflect that fact
that one program is very large relative to the other.

Table4 gives thet-statistics for the differences in the dominance curves of the neediest
group, the two neediest groupstc, up to the entire sample, as required by theorem
5. The difference is the dominance curve for income plus child allowances minus that
for income plus social security pensions. For large households, child allowances clearly
reduce poverty by more than social security payments, but this result is reversed abruptly
once we include households with two people, where the dominance curves now cross,
and where social security payments appear to be more beneficial to poorer households.
The same pattern holds fer= 2 ands = 3 (involving the "poverty gap” and "poverty
severity” curves, respectively), suggesting that we cannot make any robust statement as to
the poverty reducing impact of these two transfer payments without excluding households
of 2 and 1 persons.

Our second example in this section considers a case in which poverty is measured
on two dimensions, household expenditures per capita and literacy, the latter of which is
discrete. We consider the change in poverty in Peru between 1985 and 1994, as measured
by the Encuesta Nacional deivgles de Vida in those two years. Taldés similar to
Table4, but the groups are now defined by literacy. We assume that, for a given level of
expenditure, those who cannot read and write have lower well-being than those who can.
Thus, the first group is the illiterate population. Thstatistics are for the 1985 domi-
nance curve minus the 1994 curve. Except for the first ordinate for group 1, which just
misses the five percent significance level (and for which there are very few observations

18There are very few households with more than six people in the sample.
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in the sample), there is a clear worsening of poverty as measured by expenditures and
literacy.

5 Conclusion

In this paper, we have shown that it is possible to make sensible comparisons of poverty
when poverty is measured in multiple dimensions. These comparisons have several at-
tractive features:

1. In the spirit of the stochastic dominance literature, they can be tested for robustness
over broad classes of poverty indices. A special consideration for the multivariate
case is whether poverty is defined as the intersection or union of poverty in each
dimension. The methods that we describe are valid for both, as well as for interme-
diate cases in which the poverty line in one dimension is a non-increasing function
of well-being in other dimensions.

2. The poverty comparisons can be tested for robustness over a broad choice of fron-
tiers of poverty lines in each dimension. Alternatively, one can estimate a criti-
cal poverty frontier up to which multidimensional poverty dominance necessarily
holds.

3. Poverty comparisons are possible for a mixture of discrete and/or continuous wel-
fare variables.

4. The comparisons involve statistical tests, that make use of the sampling distribution
of multidimensional poverty estimators.

The importance of these methods rests on two considerations. The first is ethical and
rests on the widespread acknowledgement that well-being and poverty are multidimen-
sional in nature. We take this as given, based either on Sen’s philosophical arguments
that poverty should be viewed in terms of capabilities and functionings, or on the more
narrow recognition that a person’s well-being has dimensions that cannot be purchased
and that transcend levels of income. The second consideration is practical: to what extent
will multidimensional comparisons differ from unidimensional ones? Given the relatively
weak correlations that are often observed between income and other welfare variables, it
should not be surprising to find cases where poverty comparisons in multiple dimensions
differ from comparisons in only one of those dimensions, something that we found re-
peatedly in preparing the examples for this paper.

More generally, we have shown that our multidimensional comparisons can also differ
from univariate comparisons in each dimension in two ways. One could find dominance
in each dimension separately if the margins of the dominance surfaces differ in each
dimension, but may not find multidimensional dominance if the surfaces cross in the
surfaces’ interiors. This draws attention to the importance of capturing the incidence of
multiple deprivation. Alternatively, the one-dimensional dominance curves may cross,
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ruling out univariate dominance, but the interiors of the multidimensional surfaces may
be uniformly different, allowing multivariate dominance for intersection or intermediate
poverty definitions. How important empirically these two possibilities are remains to be
firmly established. Our admittedly limited experience based on comparisons of the DHS
surveys is that the first is rare, while the second is fairly common. But a firm sense of the
importance of our more general methods must await further practice with other samples
and other variables.

6 Appendix

Proof of Theorem1. 1
We proceed by first integrating equatid) by parts with respect to. This gives:

H%@xw::/%[m%%@awm Flaly)] [ () dy
[ ), @) Feln ) dy @)

The first term on the right-hand-side &7) is zero sinceF'(z = 0|y) = 0 and since we
assumed that(z,(v), y; z=(v),y) = 0. (Hence, it is here that the continuity assumption
at the set of poverty lines is technically useful.) To integrate by parts with respgthéo
second term, define a general functi@ry) = Og(y) h(z,y)l(z,y)dx and note that:

dlfl;y) = gWWh(a(®),y) W), v)
9®) Oh(x,y)
/0 dy l(z,y)dx
9(y) T

Reordering28) and integrating it from 0 te, we find:

c rg(y) 6l(x y)
- h(z, Y) dwd
/0 /O (z,y) oy Oy

— K+ K0 + [ gV w)hls(v). ) 1s(w). »)dy
c rg(y) 8h(1"y)
+/0 /0 Tyl(x,y)d:ndy. (29)

Now replace in29) ¢ by 2, g(y) by zz(y), h(x y) by © (z, y; 22 (y), 2y (), Uz, y) by
F(x,y) andK (y) by its definitionK (y) = f h(a: y) l(z,y)dz. This gives:
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Zr(zy)
P(z(y)z) = — /0 7 (2, 253 2 (), 2 (@) DY (3, 2,) da
o %) *(2a(y), 93 22(9), ) DM (2 (w), ) dy
+ / / (2, y; 2(y), 2(2)) DV (2,y) dz dy.  (30)

For the sufficiency of conditiorgj, recall thatzg(cl)(y) <0, 7% <0, and7®¥ > 0,
with strict inequalities for either of these inequalities over at least some inner ranges of
z andy. Hence, ifADV!(z,y) > 0, forally € [0, z,] and for allz € [0, z,(y)], then
it must be thatA P({,(y), ¢,) > 0 for all of the indices and of the sets of poverty lines
specified in Theorert.

For the necessity part, assume tiab!:!(x,3) < 0 for an area defined over ¢
[c;,ci]l andy € [c,,¢f], with ¢f < 2z, andc¢) < z(y). Then any of the poverty
indices inlT>! for which7®¥ < 0 over that area and for whict? (z, z,; 2.(2,), 2, (2)) =
7 (2 (y), y; 22(v),y) = 0 will indicate either thatA P = 0 or thatAP < 0. Condition
(6) is thus also a necessary condition for the ordering specified in Thehrem

|

Proof of Theorem2. 1

Integrating [80) once more by parts with respect 19 and imposing the continuity
conditions characterizing the indicB-' (z,.(y), z,) in (7), we find:

Zz(zy)
P(z:(y),2y) = /0 wa(:n,zy)DQ’l(w,zy)dm
* /Zy” y(zx( );y) D> (2:(y), y)dy
— / / 7 (x,y)D?Y (z, y)dxdy. (31)

The rest of the proof is as for Theoréin
|
Proof of Theorem3.
A natural estimator of the multidimensional FGT indides:,. (v), zy; o, cy) iS given

by:

PL(ZI(y)azy;amay) X
= I fozf(y) (@) = ) zaly) — 2) dF ()
= ¥ S (@) = ) Galud) — o) 1y < 2@ 6f < 2 (00)
= LSV (o (eh) — yB)2 (i) — 2P -
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A special case 0132) is the estimator of the dominance surface9h pbtained simply
by specifyingz, (y) = 2z, 2y(z) = 2y, anda, = s, — 1 anday, = s, — 1.

For each distribution, the existence of the appropriate population moments of order 1
lets us apply the law of large numbers®2), thus showing thaPx (z (y), Zy; O, Oy) IS @
consistent estimator dfx (2, (v), zy; ax, o). Given also the existence of the population
moments of orde2, the central limit theorem shows that the estimato(3#) {s root-V
consistent and asymptotically normal with asymptotic covariance matrix giveth@y (
When the samples are dependent, the covariance between the estimat@nfdifor B
is also provided byX0).

Theorem3 thus provides the formula needed to estimate the sampling variability of
any point on the dominance surfaces and for any choice of multidimensional poverty
lines in the multidimensional FGT poverty indices. Extension of the result of The8rem
to any additive multidimensional poverty indices is straightforward, and simply requires
substituting inL0) the relevant functions(x, y; 2 (y), 2, (z)) for (2, (2)—y) 3 (22(y)—

Qg

x)<
]

Proof of Theorem4.

The proof can be established along the lines of the proof of Theorem 3 in Davidson
and Duclos (2000). To see this, note that the conditions of Thedrassume that the
appropriate joint population moments exist, and that the critical frogfiéy) also exists
in the population. Furthermore, since this frontier is assumed to be where the dominance
surfacesexactlycross, we have thak P*((; (y),y; ss — 1, s, — 1) < 0. Note that this
derivative is given by - (Pa (¢ (y), y; sz — 2,8y — 1) — Pe((F (y), ¥; Sz — 2,8y — 1)),
with § = s, — 1 whens, > 1, andé = 1 whens, = 1. Whens, = 1, we also have
PLG W)y —1rsy = 1) = B [y —y") Vo = GF )] (G (), L= A, B.

Again, the elements of the asymptotic covariance matrix can be estimated consis-
tently by simply using their sample estimates. Estimatitd; (v),y; sz — 2,5y — 1)
is also easily done whes), > 1. Estimating® [(y — yL)Sfrl)\:c = g(y)] I2(¢H(y))
is slightly more complicated, but can be done consistently using non-parametric regres-
sion procedures. In particular, we use in the illustration a Gaussian kétiiel, =

(27) "% exp~ 05, and estimatd | (y — y*) " V|2 = G (v)| £ ) as:

n +(q) — 2k 5y
(nh) 'S K (%) (y—vE)" . (33)
=1

_l’_

|
Proof of Theorem5.
We first use/17) to integrate by parts the differencdeP. We find:

AP =Y (2 (k) AD (k; 2(k))

34
S ™ 7D (@) AD (ks ) ©Y
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Recall the continuity assumption that(z(k)) = 0,Vk. For AP > 0, we thus need to
show that

Z / 0 () AD (ke 2)dr < 0. (35)

Recall thabr,(gl)(x) = 0if z > z(k); combined with 20), we can then rewrite36) as:

/ Z V(@) AD (k; 2)da < 0. (36)

The inner sum in36) can be rewritten as:
Zﬂkl) ko) = (37)

2 x)ZADl(l;x) + (mili(@) - 7 @) Z ADY(1; z) (38)
=1

+... + (77%1)(1‘) - 7r§ )(:L')) ADl(l;x) (39)

Denotingwgll(x) = 0, we can thus rewrite the right-hand-side 86) as

O
/0 lz::l [(m (x) — 7TZ+1 )ZAD (k; x)] dz. (40)

Note that by the definition of the class of indicBS(¢(1), ..., C(K)), =" (x) —
wf+)1( ) <0,Vi =1,..., K, with strict inequality for some values ofver some range
of z € [0,¢(4)] (for the indices to be non-degenerate). Hencé_ jf_; AD(k;¢) >
0, V¢ € [0, z(i)] andvi = 1, ..., K, then it must be thaBg) holds for allP(z(1),. .., z2(K))
€ Im(z(1),...,2(K)). But this alsoimpliesthah P(¢(1),...,¢(K)) > 0, VP(¢(1),...,¢(K))
€ *(¢(1),...,¢(K)), andv(¢(k) € [0, z(k)], k = 1,..., K. This proves the sufficiency
of condition 23).

For the necessity part, it suffices to consider any particular case in \Eﬁglﬂ ADY(k;¢) <
0, for some¢ € [z~ (i), 2" (i)] and for some value af Consider then a poverty index that
belongs tdl!(z(1),...,2(K)) such thabr,(:)( ) — rr,(igl( ) = 0 everywhere, except for
k =i and over that range € [z~ (i), z* (i)] over which>: _; AD'(k;¢) < 0. Then, by
(40), AP < 0 for that index, which therefore shows the necessity of condi@8 (

]
Proof of Theorem6.
Consider again equatio34):

AP =3 17%( ( ))ADl(k z(k))

ST W 20 () AD (ks ) (1)
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The second part of condition (15) guarantees the non-negativity of the second gdajt of (

as shown before in the proof of Theordn Denoting agaim%}rl(y) = 0, rewrite the
first part of 41) as:

K i
D [(@i(2(0) = mira(2(i + 1)) Y AD (k; 2(4)) | - (42)
i=1 k=1

Note that by the definition of the class of indicE$(z(1),...,2(K)), m(z(i)) —
Ti1(2(i4+1)) <0,Vi=1,...,K. Hence, ifY.t_, AD (k; 2(k)) >0, Vi=1,..., K,
then the first part on the right-hand-side 41) is also non-negative. The combination of
the first and of the second parts of conditi@3)(guarantees thak P > 0.

The necessity of condition (15) proceeds as for the proof of The&rem

|
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Figure 1: Union and intersection poverty indices
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Figure 2: Dominance surface for Ghanaian children, 1989
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Figure 3: Example of difference in dominance surfaces, intersection domi-

nance without marginal dominance
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Figure 4: Urban minus Rural Dominance Surface for Viet Nam
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Figure 6: Critical Poverty Frontier, Children’s Wasting and Survival prob-
ability, Madagascar and Egypt
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Figure 7: Domain for dominance testing
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Table 1: Test results for difference between dominance surfaces for urban

and rural children in Viet Nam, 1993
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Table 2: Test results for difference between dominance surfaces for chil-
dren in Cameroon and Madagascar, 1997

Height-for-age z-score \ Survival probability

0.83 0.86 0.88 0.89 0.90 0.91 0.99 1.00
-4.19 -
-3.66
-3.35
-3.13
-2.88
-2.66 - - - - - - - -
-250 - - - - - - - -

o
o
1
1
1
1

oo oo
1
1
1
1
1
1
1

0.46 - - - - - - - -
539 - - - - - - -
Notes:1/ Sx=1, Sy=1
2/ A negative sign indicates that Madagascar's dominance surface is
significantly above Cameroon's, a positive sign indicates the opposite

and a zero indicates that the difference is not statistically significant.
3/ The ellipses indicate that all intervening signs are negative.
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Table 3: Test results for difference between dominance surfaces for chil-
dren in Colombia and the Dominican Republic, 1995 and 1996

Height-for-age z-score \ Survival probability

0.906 0.927 0.938 0.947 0.953 0.985 0.987 0.989 0.991 0.995 1.000
28 - - - - - .. - - - 0 0 o0
236 - - - - - .. - - - - 0 o0
207 - - - - - .. - - - - 0 o0
18 - - - - - .. - - - 0 0 o0
167 - - - - - .. - - - 0 0 o
147 - - - - - .. - - - 0 0 4
133 - - - - - . - - - 0 0 4
T Z 0o+ 4+
104 - - - - - . - - 0 0 + 4+
092 - - - - - . - - - 0 0 4
076 - - - - - - - - 0 + 4+
062 - - - - - - - - 0 + 4
049 - - - - - . - - - 0 + 4
035 - - - - — ..o o+ g
o e S
007 - - - - - . < - - < 0 +
034 - - - - - . - - - < 0 +
068 - - - - - . - - - - 0 +
105 - - - - ..o
502 - - - - - - - < - - 0

Notes:Sx=1, Sy=1
A negative sign indicates that the Domincan Republic's dominance surface is
significantly above Colombia's, a positive sign indicates the opposite,
and a zero indicates that the difference is not statistically significant.
The ellipses indicate that all intervening signs are negative.
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Table 4: t-statistics for difference between household income with child al-
lowancesvs. with social security (Romania)

Household income \ Household size
6ormore 5ormore 4ormore 3or more 2ormore 1or more
36,316 -30.51 -26.01 -20.24 -9.68 21.25 32.80
46,630 -36.27 -30.34 -24.34 -11.96 20.14 31.48
59,874 -41.95 -36.41 -29.30 -15.76 18.02 27.29
76,880 -47.80 -41.96 -34.84 -20.38 13.75 19.26
98,716 -54.91 -47.82 -39.52 -24.29 7.39 9.47
126,750 -57.50 -50.75 -42.30 -27.13 0.45 1.75
162,750 -59.59 -52.29 -45.60 -30.02 -10.08 -8.35
208,980 -47.90 -45.00 -42.05 -29.21 -15.98 -13.77
268,340 -38.35 -36.73 -35.02 -27.07 -17.62 -15.56
344,550 -27.02 -25.99 -25.41 -19.47 -13.52 -11.95
442,410 -17.74 -18.26 -17.04 -13.60 -8.63 -7.41
568,070 -18.13 -11.28 -10.25 -7.50 -4.46 -3.76

729,420 -7.23 -7.55 -7.58 -7.01 -2.68 -2.29
936,590 -4.30 -3.70 -3.26 -1.81 -0.25 -0.23
1,202,600 -10.34 -5.66 -3.48 -1.65 -0.07 -0.06
1,544,200 -7.86 -3.89 -2.17 -1.23 0.37 0.33
Notes: s=1. Results are similar for s=2 and s=3.

A negative sign indicates that income with child allowances dominates
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Table 5: t-statistics for difference between per capita expenditures for liter-
ate and illiterate Peruvians, 1994vs. 1985

Household income\ Literacy
[lliterate  Literate

403 -1.95 -3.21
518 -4.93 -5.76
665 -7.69 -8.35

854 -14.93 -15.33
1,097 -22.37 -24.37
1,408 -28.97 -31.28
1,808 -35.47 -38.95
2,322 -41.48 -46.19
2,981 -46.16 -51.91
3,828 -48.38 -53.91
4,915 -49.63 -55.40
6,311 -46.49 -51.90
8,103 -40.41 -45.30

10,405 -35.02 -39.00
13,360 -26.61 -29.54
17,154 -21.45 -23.74
22,026 -16.02 -17.51

Notes: s1
A negative sign indicates that household
expendituresin 1985 dominate
those in 1994, and vice-versa.
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