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Abstract

We construct a model of valuation to assess the �nancial fragility of a set of �rms
in a closed economy. A �rm is identi�ed with a possibly in�nite random sequence
of bene�ts. Firms with negative bene�ts in a given period are said to be in distress
and need liquidity to re�nance their projects. Those liquidities must be obtained from
�rms with positive bene�ts (which represent excess liquidities). Distressed projects are
re�nanced to the extent that their need for liquidity does not exceed their endogenous
continuation value. This value is, in turn, a�ected by current and future re�nancing
possibilities. We provide a recursive procedure to compute this value when there is an
aggregate liquidity constraint. We compare the allocation under a centralized coalition
of �rms with that of a decentralized competitive liquidity market. We show that the
competitive market is more fragile because it does not value the possibility that a
currently distressed �rm could become a provider of liquidity some period in the future.
That is, the market value of a �rm can diverge from its social value due to externalities
involving the ability of that �rm to re�nance other distressed �rms in the future.

1 Introduction

A system is �nancially fragile relative to another when its expected value in the steady state

is lower due to an inability to manage liquidity in the system in a manner that is dynamically
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e�cient. We show that a decentralized mechanism for allocating liquidity is more fragile than

a centralized system due to the divergence in social and market values of �rms when there

is a potential for aggregate liquidity constraints to bind in any period. That is, a market

mechanism is unable to correctly value �rms in terms of their ability to provide liquidity

to the system in the future, and hence can allow a �rm to go bankrupt even though it is

socially more valuable than another �rm that is re�nanced. This is because this potential to

be a liquidity supplier in the future increases the values of other �rms but this externality is

not accounted for in the market value of �rms.

Correctly valuing a �rm (or a project) is a central issue in �nance. The value of a �rm

is typically equal to the expected discounted value of its future bene�ts, conditioned on its

survival. In the autarkic case where no re�nancing is available, the �rm will eventually go

bankrupt when there is a positive probability of distress, and the computation of its value

takes this probability into account. The probability of bankruptcy enters into the �e�ective�

discount rate. The di�culty in the computation of the value arises when re�nancing is poten-

tially available but subject to an endogenous liquidity constraint. In this dynamic context,

the �ow of future bene�ts in the �rm is conditioned by the possibility of �nancial distress and

its ability to obtain re�nancing in future periods, should it become distressed. Bankruptcy

is then endogenous to current and future re�nancing possibilities, and the computation of

the �rm's value becomes a non-trivial exercise.

In an environment of perfect �nancial markets, there are no liquidity constraints facing

the �rm as long as its value, net of its liquidity needs, remains positive. Firms are easy to

value in this world, and bankruptcy, when it occurs, is e�cient. We present a model of �rm

valuation when �nancial markets are imperfect. We focus on a limited aggregate supply of

liquidity as a source of market imperfection. A �rm may not be able to obtain �nancing even

though it would be pro�table to do so because the aggregate supply of liquidity is bounded.

This assumption can limit the extent of re�nancing a �rm can obtain, and a�ect its current

value. In addition, current and potential liquidity constraints create a divergence in a �rm's

social and market value, which causes a decentralized market for liquidity to be dynamically
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ine�cient, or, �nancially fragile.

In this model, a �rm is identi�ed with an in�nite random sequence of bene�ts, conditional

on its survival. Each period, a �rm realizes a net bene�t. For example, this bene�t is its

cash �ow consisting of revenues minus costs net of any new investment requirement. If this

bene�t is below a threshold level (normalized to zero), the bank is in distress and needs

re�nancing to pursue its activities. Without re�nancing, it must declare bankruptcy. If this

bene�t is positive, the �rm can choose to either consume its bene�ts, or use it to re�nance a

distressed �rm. We obtain a procedure for valuing �rms when there is a potential aggregate

shortage of liquidity. We suppose that there is no deep-pocket �nancier that could re�nance

all �rms whenever it is optimal to do so. Instead, we have a �nite number of �rms which

can provide �nancing to each other when they have the liquidity to do so. As long as a the

value of a �rm is greater than its liquidity needs, it is optimal to re�nance it. This may not

be possible, however, if the other existing �rms do not generate enough liquidity to re�nance

the distressed �rm. A �rm may become �nancially vulnerable because the aggregate supply

of liquidity in the economy is low, and not because its net value falls below zero.

Within this context, we study two speci�c environments. In the �rst, we assume that all

�rms are part of a coalition in which �nancing decisions are centralized to maximize the value

of this coalition. In each period, the set of surviving �rms is chosen to maximize the future

value of the coalition of surviving �rms. If there is an aggregate liquidity constraint, some

�rms cannot be re�nanced and must be shut down. The decision about which �rms should

survive in this case depends on the marginal contribution of �rms to the future value of the

coalition. This contribution depends on the ability of a given �rm to �rescue� some other

�rms in the future. We compute a speci�c two-�rm example to illustrate our results. In the

second environment, we assume that, instead of a centralized decision-making mechanism,

there exists a market for liquidity and distressed �rms must borrow on this market at the

equilibrium rate of interest. For each period, we characterize the equilibrium interest rate

that determines which �rms are re�nanced. These are the �rms that have the highest market

value net of re�nancing costs.
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We then compare the e�ciency of these two organizations. For each case, we show that

the economy converges to a stable coalition of �rms, a set in which no bankruptcies can

occur. This limit set may be history dependent. More interestingly, we show that the

two organizations can produce di�erent sets of stable coalitions. Any stable coalition in a

decentralized market is also stable in the centralized organization, but the converse is not

true. In a decentralized market, the �rms with the highest market value net of re�nancing

costs are re�nanced. This value, however, does not include the impact that the �rm may have

on the future re�nancing possibilities of other �rms. When there is an aggregate liquidity

constraint that is expected to be binding in some future period, each �rm has a shadow

value that depends on its potential for rescuing other �rms in that period. That is, each �rm

has an externality on the value of other �rms.1 The market for liquidity cannot take this

externality into account while a centralized organization can. For example, suppose that �rm

A has a higher net market value than �rm B today, but that �rm B is more likely to �rescue�

from bankruptcy �rm C in the future (maybe because its returns are negatively correlated

with those of �rm C). Suppose there is an aggregate liquidity constraint that prevents the

re�nancing of both �rms A and B. A central planner may prefer to rescue �rm B than �rm

A if this increases the value of �rm C su�ciently. However, a decentralized market does take

this externality into account when computing �rms' value. In this sense, the market is not

dynamically e�cient. This is why the market is more fragile than a centralized organization.

We use a simple numerical example to show how the market may fail to correctly compute

�rm's true value while a centralized coalitional organization would perform e�ciently.

The issue of endogenous bankruptcy has already been studied in the literature on optimal

capital structure. Using a no-arbitrage argument, Merton (1974) computes the value of a

�rm's equity when its bene�ts follow a di�usion-type stochastic process. Merton (1974)

assumes that the �rm issues a zero-coupon bond with maturity at time T . If the assets'

value is less than the debt's face value at T , the �rm is bankrupt and the equity is worth

0. This makes the equity value resemble a European call option, which is valued using the

1This externality vanishes when there is no aggregate liquidity constraint.
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Black and Scholes' (1973) formula. Merton's formula per se does not consider bankruptcy as

an endogenous event. It can be used, however, to price any claim on a �rm whose bene�ts

are described by a di�usion process.

Leland (1994) considers a more complex type of debt with a continuous coupon, and

computes the equity value when bankruptcy is either exogenous or endogenous. Bankruptcy

is exogenous when it is triggered by the assets' value falling below a predetermined exogenous

target level. Bankruptcy is endogenous when it is triggered by the impossibility to pay the

coupon by issuing additional equity. In this case, there is a minimum value VB of the �rm's

assets below which equity is worth 0 and the �rm is bankrupt. The �rm chooses this lower

bound to maximize the total value of the �rm. On the one hand, the lower bound VB must

be low enough to minimize the occurrence of bankruptcy; on the other hand, it cannot be

too low since equity must remain positive for assets' value above the bound. Leland (1994)

�nds that the lower bound VB on the assets' value that triggers bankruptcy is proportional

to the debt coupon, independent of current assets' value, increasing in the risk-free rate of

interest and decreasing in the volatility of the assets' value process. Leland (1994) assumes

that the �rm can always re�nance on the market as long as its equity value is positive. This

translates into an environment of perfect �nancial markets. In this model, bankruptcy is

said to be e�cient.

Den Haan, Ramey and Watson (1999) also study the fragility of an economic system in

which there is an aggregate liquidity constraint. Borrowers and lenders are matched and,

in each period, lenders get a random liquidity endowment. The realized endowment a�ects

the viability of a match. The main di�erence of this paper from our approach is that they

assume that there is no short-run market for liquidity. Assuming that liquidities can �ow

across agents is a main feature of our analysis. We show that an economy may still be fragile

despite having a short-run competitive market for liquidities.

In section 2, we introduce the model and notation. We then compute the value of a �rm

in two benchmark cases: in autarky and when there is a deep-pocket �nancier who supplies

5



liquidity in each period. In the following sections, we assume that the aggregate supply of

liquidity is �nite and given by the cash �ow realizations of all �rms in the economy (that is,

it is endogenous). In section 3, we develop our centralized coalitional model and illustrate

our results with a two-�rm example. In section 4, we assume a decentralized market for

liquidity in each period, and characterize the market equilibrium. In section 5, we compare

the e�ciency of the two organizations and illustrate our results with a numerical two-�rm

example. The conclusion follows.

2 The model

Consider a multi-period, single good economy where all consumers have (risk-neutral) linear

preferences with respect to random consumption paths. They discount future consumption

by a common factor δ. Consumers are assumed to have rational expectations, that is, they

perfectly anticipate future prices and coordinate on the same equilibrium if many equilibria

can exist.

There is an in�nite random sequence of i.i.d. states (sn)n∈N where n is a time subscript.

Each state sn is drawn from (S,S, µ) where S is a compact set of states, S is a σ-algebra on

S and µ is a probability measure. In what follows, the time subscript is dropped whenever

this does not create any confusion. Hence, s usually refers to the current state.

There are N productive projects, owned by the consumers.2 The number of projects

can decrease in time with the occurrence of bankruptcy. However, we forbid the entry of

new projects. Each period, projects generate random bene�ts measured in units of the

consumption good. A project is described by a measurable continuous function y : S → R

which relates each state, s, to the random bene�t, y(s), the project generates in that state.

A negative bene�t generated by a project represents a temporary shortage of liquidity

that prevents it from investing in its technology in order to continue to create value in the

2In this paper, we use the terms �project� and ��rm� interchangeably.
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future. A negative bene�t that is not re�nanced results in the bankruptcy of the project. We

assume limited liability so that if a project has a negative bene�t and declares bankruptcy,

it forgoes its �nancial liabilities. A bankrupt project can never be reactivated so that if it

goes bankrupt in period n, it brings a bene�t of zero in period n and all subsequent periods.

A positive bene�t, on the other hand, creates excess liquidities that can be used to re�nance

other projects or consumed by the owners of the project. There is no storage technology for

transferring liquidities in the current period to a future period: all positive bene�ts created

in the economy must be used in the same period.

A project is said to be in �nancial distress in state s if y(s) < 0. We say that the project

is solvent in one period if its bene�t is non-negative or if it can obtain re�nancing to survive

until next period. Since there is no storage technology, re�nancing can only be obtained

from positive bene�ts realized by other projects.

Let us denote the current population of N projects by y . For a subset z of the population

y , z(s) is the set of bene�ts generated by each project in z in state s. The sum of the elements

of z(s) is denoted by Σ z(s). Furthermore, z(s)+ is the subset of those bene�ts that are non-

negative, and z+
s is the subset of z obtained using the labels associated with the values of

z(s)+. z(s)− and z−s are de�ned the same way.

Autarky

A project that lives in complete autarky has no access to any re�nancing. It is solvent if

and only if its bene�t is non negative. The value of an autarkic project is then the expected

discounted sum of its current and future bene�ts taking into account that it goes bankrupt

whenever its bene�t y(s) is negative. Up to a bankruptcy episode, bene�ts are stationary.

Hence, the continuation value is either zero if the project is bankrupt or some constant

non-negative expected discounted value if the project is solvent.
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Let us denote by y+ (y−), the set of states in which y(s) ≥ 0 (y(s) < 0), that is,

y+ ≡ {s ∈ S|y(s) ≥ 0}, and y− ≡ {s ∈ S|y(s) < 0}.

We will keep this notation for any other measurable function on S throughout the paper.

Under the assumption of stationarity of the bene�t function y, the value of the project only

depends on the current state, and may be de�ned as a random variable v0(y) : S → R,

v0(y)(s) =

y(s) + δV0(y) if s ∈ y+,

0 if s ∈ y−,
(1)

where δ ∈ (0, 1) is the discount rate. Let us denote V0(y) the expected value of v0(y).

Because bene�ts are stationary, this expected continuation value is constant. Hence, taking

the expectation on (1) yields

V0(y) = E{v0(y)}

= µ(y+)E{y + δV0(y)|y+}

=
1

1− δµ(y+)
µ(y+)E{y|y+}, (2)

where E{y|y+} is the conditional expectation of y given event the set y+. Equation (2) yields

a formula for the valuation of a currently solvent project that has a constant probability µ(y−)

of becoming bankrupt.

Unconstrained re�nancing for a single project

Let us suppose that the project has access to re�nancing in states where its current bene�t

is negative, y(s) < 0. Re�nancing the project makes economic sense if its continuation value

is greater than its current liquidity requirement −y(s). Thus, current and future re�nancing

can increase the value of the project. This implies that the continuation value itself is a�ected

by the availability of re�nancing in the future. Hence, the probability that the project fails
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again in the future is not necessarily µ(y−), and V0(y) is no longer the expected future value

of the project.

In states s where y(s) < 0, the project needs at least −y(s) in order to face its liquidity

requirement and survive until next period. The maximal amount of liquidities the �rm can

raise is equal to the expected discounted value of all future bene�ts, again taking into account

future possibilities of bankruptcy and re�nancing.

De�ne by S∗ the set of states in which the �rm is either not distressed or is successfully

re�nanced, and, therefore, solvent. Since the decision to re�nance is independent of current

�nancial liabilities and bene�ts are stationary, the set S∗ is time independent. Using similar

computations as those in the previous section, the expected discounted value of all future

bene�ts is given by

δ

1− δµ(S∗)
µ(S∗)E{y|S∗}.

This is the maximum amount of �nancial capital the �rm can raise. Hence, the �rm is

solvent in state s only if its net present value is non negative, that is, if:

y(s) +
δ

1− δµ(S∗)
µ(S∗)E{y|S∗} ≥ 0. (3)

The set S∗ is the set of states s for which condition (3) is satis�ed. It is easy to see that,

if s ∈ S∗, then all states s′ such that y(s′) ≥ y(s) are also in S∗. This implies that there

exists some lower bound y∗ below which the �rm is optimally bankrupt.

The lower bound y∗ must be negative, because it is never optimal to declare bankruptcy

when the current bene�t is positive. The set of solvency states is given by S∗ = {s ∈

S|y(s) ≥ y∗} = (y − y∗)+. The lower bound y∗ solves

y∗ +
δ

1− δµ((y − y∗)+)
µ((y − y∗)+)E{y|(y − y∗)+} = 0. (4)

This equality implicitly de�nes the set S∗.

We can now compute the expected value of the project, using y(s) < y∗ as the bankruptcy
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condition. In any period and state s, we have

vy∗(y)(s) =

y(s) + δVy∗(y) if s ∈ S∗,

0 if s ∈ S \ S∗.
(5)

Taking expectations on (5) yields

Vy∗(y) = E{vy∗(y)},

= µ(S∗)E{y + δVy∗(y)|S∗},

=
1

1− δµ(S∗)
µ(S∗)E{y|S∗}. (6)

Equation (6) gives the expected value of the project in an environment without liquidity

constraints. This value depends on the time-independent survival policy function which

characterizes the e�cient bankruptcy rule. For y(s) ≥ y∗, it is pro�table to keep the project

operating. Bankrupting it would destroy value since its future value is larger than the amount

of liquidity required to keep it solvent. For y(s) < y∗, it is optimal to bankrupt the project

since its future value is smaller than the amount of liquidity required to keep it solvent.

Without an aggregate liquidity constraint, a project can raise funds up to its discounted

expected value taking into account the probability of bankruptcy. The value Vy∗(y) can be

compared to the autarkic value V0(y), which corresponds to the case y∗ = 0. It is easily

shown that Vy∗(y) ≥ V0(y), and therefore the availability of outside liquidity raises the value

of the project.

Re�nancing �rms in the face of aggregate liquidity constraints

From now on, we relax the assumption that there is no aggregate liquidity constraint. We

suppose instead that liquidities have to be supplied by existing projects and hence cannot

exceed the sum of positive bene�ts in the economy, Σ y(s)+. Therefore, a project must rely

on other projects' liquidities to re�nance a negative bene�t. However, the availability of

re�nancing for a project also depends on the demand for liquidity by other projects. This
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means that there might be some states where a given project should optimally be re�nanced

but may not be, due to aggregate liquidity being insu�cient. The survival of a project now

depends on the aggregate liquidity of the economy. That means that the value of a project

y is no longer equal to Vy∗(y).

For example, there may be states s and s′ such that y(s) = y(s′) but the project is

solvent in state s and bankrupt in state s′ although its current liquidity requirement and

future expected value are the same in both states.3 Liquidity constraints may bind at the

aggregate level so that states s and s′ di�er in the sense that it is easier for the project to get

re�nancing in state s than in state s′. Hence, liquidity constraints increase the probability

that a project fails and reduce its value.4 This is important since when a project goes

bankrupt, the aggregate �ow of liquidity in the future is reduced. This could jeopardize the

solvency of other projects in the future.

The determination of which distressed projects go bankrupt when there is not enough

aggregate liquidity for all of them depends on the allocation mechanism. In the next section,

we compute project values when aggregate liquidities are optimally allocated by a central

planner. The optimal allocation maximizes the value of the group of projects surviving in

each possible state of nature. In section 4, we decentralize the allocation of funds so that

projects can obtain funds from a liquidity market at a competitive price.

3Since a state s is a description of the whole economy, it is conceivable that a project may have the same

bene�t in two di�erent states, while bene�ts of other projects di�er in these two states.
4To a large extent, our model �ts this story: exogenous shocks on the total supply of funds a�ect the

�e�ective� discount rate di�erent projects face since they a�ect their probability of bankruptcy. This can be

contrasted with standard macroeconomic models where changes in the �e�ective� discount rate are driven

by exogenous technological shocks.
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3 A centralized model of re�nancing

The ability of projects to obtain re�nancing is limited by the aggregate constraint on the

supply of liquidity. We derive a recursive formula to compute the value of a coalition of

projects. A coalition is a �nite set of projects belonging to a network and that provide

each other with liquidities. Our approach is to maximize the current expected value of the

coalition's liquidities. This is done through a complex �nancial �contract� that optimally

assigns realized liquidities to a surviving coalition.

3.1 The coalition model

We take the convention that y denotes the current coalition before the realization of the

state of nature in any period. Since there is no entry of new projects and not all projects

survive from one period to the other, the existing population may decrease with time. A

coalition y faces a liquidity constraint in a given state, if the sum of all positive liquidities

in the coalition is lower than the sum of requirements by distressed projects that are worth

saving.5 In this case, only a sub-coalition of y can survive and some projects must disappear.

The centralized mechanism optimally designs a survival policy that determines which project

should be re�nanced and which should be bankrupted. The coalition z that survives after

coalition y , and realization of state s, is feasible if and only if it satis�es the following two

properties:

Admissibility (AD): If a project y has a non-negative bene�t in state s, then it must

belong to the surviving coalition in state s. Equivalently, if z is solvent in state s, then

y+
s ⊆ z.

Budget Balance (BB): If coalition z survives in state s, then

−Σ z−s (s) ≤ Σ z+
s (s).

5The decision of which projects are worth re�nancing will be explicitly analysed and this decision depends

on the allocation mechanism we assume.
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In any given state s, admissibility requires that all projects in the set y+
s survive. Budget

Balance ensures that the surviving coalition satis�es the aggregate liquidity constraint. This

is possible if and only if the total liquidity requirement of these distressed projects in the

surviving coalition, z, does not exceed the total liquidity generated by the projects with

positive bene�ts.

The optimal survival policy maximizes the value of the surviving coalition. It is thus

necessary to compute the value of all possible coalition of projects. Suppose that we know

how to compute the expected value of an arbitrary coalition of projects z of size less than

or equal to M ≥ 1. Let V (z) be this expected value. In what follows, we show how to

compute the value of an arbitrary coalition y of M + 1 projects. Let 2y be the power set of

sub-coalitions of y . Assume that the current set of active projects is y . In state s, an optimal

survival policy selects a coalition that solves

Program 1 : max
z∈2y

Σ z(s) + δV (z),

s.t. y+
s ⊆ z, (AD)

− Σ z−s (s) ≤ Σ z+
s (s). (BB)

This problem is well de�ned by assumption, up to V (y) which is unknown. That is, the ex-

pected value V (z) of all subcoalitions z of no more than M projects is known by assumption,

but the expected value of the (current) coalition y of M + 1 projects is unknown.

By admissibility (AD), for all states s such that y−s is empty, the set of instruments

contains only y and Program 1 reduces to

Σ y(s) + δV (y). (7)
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Consider now the states for which y−s is not empty. The following restricted program (for

which y is not a solution) is now well de�ned,

Program 1a : max
z∈2y

Σ z(s) + δV (z),

s.t. y+
s ⊆ z, (AD)

− Σ z−s (s) ≤ Σ z+
s (s), (BB)

z 6= y .

By construction, we know how to solve Program 1a since V (y) need not be evaluated.

Program 1 can be represented as a dynamic program where, if y−s is non-empty, one

decides �rst if y should survive and, in the case where it should not, which coalition z should

survive. De�ne the random variable ν : S → R that takes the value of Program 1a. The

value v(s) of Program 1 then becomes

v(s) =


Σ y(s) + δV (y), if y−s = ∅,

max
{
Σ y(s) + δV (y), ν(s)

}
, if y−s 6= ∅ and Σ y(s) ≥ 0,

ν(s), otherwise.

Since this is a stationary value, V (y) = E(v).

Now let

S∗ =
{
s ∈ S|Σ y(s) + δV (y) ≥ ν(s) and Σ y(s) ≥ 0

}
.

This is the set of states where the full coalition y survives, either because y−s is empty, or

because it is feasible and pro�table to re�nance all distressed projects. In what follows, we

assume that µ(S∗) ∈ (0, 1). The following lemmas describe the solution.

Lemma 1. {s ∈ S|y−s = ∅} ⊆ S∗ ⊆ {s ∈ S|Σ y(s) ≥ 0}.

All proofs are relegated to the Appendix.
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Lemma 2. Monotonicity. Let s ∈ S∗ and consider s′. If, for all projects, y(s′) ≥ y(s), then

s′ ∈ S∗.

For any given y , the value of the coalition y , is the real number V (y) that solves (8):

V (y) = max
S∗

µ(S∗)(E(Σ y |S∗) + δV (y)) + (1− µ(S∗))E(ν|¬S∗). (8)

We have shown in section 2 that a coalition composed of a single project ( y = {y})

has an expected value of V (y) = V0(y). We have shown that if we know how to compute

the expected value of M projects or less, we may compute the value of M + 1 projects. By

induction, we can therefore compute the expected value of an arbitrary but �nite coalition

of projects. In the next section, we do so explicitly for a coalition of 2 projects.

3.2 A two-project coalition

Let y = {y1, y2}. We know that V (y1) = V0(y1) and that V (y2) = V0(y2). We want to

compute V (y). To do so, we need to identify S∗.

By Lemma 1, we need only to identify those states where only one project is distressed

and it makes economic sense to re�nance it. If yj(s) > 0 > yi(s) and yi(s) + yj(s) ≥ 0, then

project yi will be rescued if

yi(s) + yj(s) + δV (y) ≥ yj(s) + δV0(yj),

that is, if

yi(s) ≥ δ(V0(yj)− V (y)) ≡ y∗∗i .

Hence, both projects remain solvent as long as Σ y(s) ≥ 0 and each yi(s) is at least equal to

some endogenous stationary value y∗∗i that depends on V (y). V (y) may be obtained as the

solution to (8) where

S∗ = {s ∈ S|y1(s) ≥ y∗∗1 , y2(s) ≥ y∗∗2 and y1(s) + y2(s) ≥ 0}.
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Notice that the fact that y∗∗i is independent of s is an artifact of the two-project coalition.

In general, this threshold value depends on the state s. For example, suppose there are three

projects. Further assume that only one project is solvent (say project 1) and that it can

only re�nance one of the two distressed projects. Whether say project 2 is re�nanced or not

depends not only on the net future payo� of doing so (as it is the case with two projects),

but also on the cost of bankrupting project 3. This cost depends on the current amount of

liquidity needed to re�nance project 3. Hence, the survival rules depends on the state s for

a coalition of three or more projects.

Finally, it is now possible to isolate the individual value of a single project within coalition

y . Denote the value of project yi ∈ y by

V yi(y) =
µ(S∗ ∪ Syi

)E (yi | S∗ ∪ Syi
) + µ(Syi

)δV0(yi)

1− δµ(S∗)
,

where Syi
is the set of states for which only project yi is solvent. The value of project yi

depends implicitly on the value of the whole coalition through its dependence on the set S∗.

Individual values are such that V y1(y) + V y2(y) = V (y). However, the individual value must

be distinguished from the contributory value of yi to coalition y . The contributory value is

the di�erence of values between the coalition y with the project yi and the coalition without

it, that is,

CV yi(y) = V (y)− V (y \ yi) = V (y)− V0(yj) = −δ−1y∗∗i

where y \ yi is the remaining coalition after removing project yi from the coalition y . The

sum of the two contributory values in the coalition y exceed the value of the coalition, or,

CV y1(y) + CV y2(y) = 2V (y)− V0(y2)− V0(y1) > V (y).

The contributory value of a project exceeds its individual value: CV (yi) = V (y)− V0(yj) >

V (y) − V yj(y) = V yi(y) since V0(yj) < V yj(y). Each project, therefore, has a shadow value

that re�ects its externality on the value of the other project.
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4 Decentralization

We now decentralize our coalition economy to examine the characteristics of the surviving

set of projects when re�nancing can be obtained from other projects at a market price. A

project that realizes a positive bene�t in any period is a supplier of funds at that period. A

distressed project has a demand for liquidity whenever its realized bene�t is negative.

4.1 The liquidity market

There is a spot market for funds on which the size of supply and demand determines the

equilibrium price of liquidity, that is, the lending rate. Funds are measured in units of the

consumption good. However, the liquidity market excludes the demand for �nal consumption

of the good. Once funds have been allocated on the liquidity market, the residual funds, if

any, are transferred to the consumption market, where they are consumed.

A project may enter a period with an obligation to repay a debt or a claim on the debt

repayment from its participation in the liquidity market in the previous period. Suppose that

a project with a negative bene�t today has lent the amount x > −y(s)/R in a previous period

that entitles it to receive Rx today. In that case, the project's net liquidity is y(s)+Rx > 0.

Nevertheless, if the project's owners decide to use the amount Rx to rescue their project,

they are lending the liquidity to themselves. An alternative option would be to let the project

die and invest Rx on the liquidity market. A negative bene�t indicates that an investment

in the project is required in order for it to survive, this does not mean that the project's

owners owe −y(s) and are obliged to pay for it out of their loans portfolio. Hence, whether

it is used by the project to re�nance itself or invested in other project, the amount Rx is

part of the supply of fund. For the same reason, the amount −y(s) potentially becomes part

of the demand for funds.

The �nancial instrument exchanged by projects on this market is generic. It could be

a share in the project or a promise of a future payment. Since all agents are risk-neutral,
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the equilibrium risk premium is necessarily zero. Consequently the value of every �nancial

instrument is equal to its expected discounted payo� measured in units of the good.

Supply of funds

The supply of funds in state s is driven by the constant marginal rate of substitution of

consumers, δ, since consumers supply funds on the liquidity market through their ownership

of the various projects. The liquidity generated by projects that are not distressed in state

s is Σy(s)+. Let R be the market interest rate. Then, consumers agree to provide liquidity

on the market as long as R ≥ δ−1. If R is too low, consumers prefer to consume the funds

rather than to invest it on the liquidity market. The gross supply of liquidity is then

Y S(s, R) ∈


0 if R < δ−1,

[0, Σy(s)+] if R = δ−1,

Σy(s)+ if R > δ−1.

Demand for funds

The demand for funds comes from distressed projects. A project with bene�t y(s) < 0 needs

−y(s) to be rescued. Other projects will agree to �nance −y(s) > 0 as long as they receive

a �nancial instrument that is worth at least −y(s). Since they are the residual claimants of

the project's portfolio, the owners of the project are willing to issue a claim worth −y(s) on

future bene�ts if keeping the project alive has more value than −y(s). Let Vm(y) be project

y's market value if rescued. The project is said to be solvent if

Vm(y) ≥ −y(s)R.

The owners of a project that is not solvent will never choose to seek re�nancing for it.6

Hence, the demand for funds from insolvent projects is zero.

6Another way to state this is that a project that is not solvent is not allowed on the market.
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The demand for funds by a solvent project is

dy(s, R) ∈

{0,−y(s)} if Vm(y) = −y(s)R,

−y(s) if Vm(y) > −y(s)R.

When the market rate of return is R, the set of distressed but solvent projects is

x ≡
{
y ∈ y−s |Vm(y) ≥ −y(s)R

}
.

The aggregate demand for funds is then

Y D(s, R) =
∑
y∈x

dy(s, R).

Equilibrium

Because the demand for funds by a solvent project is insensitive to the rate of return and

because there is a �nite number of projects (all with positive measure), the demand for funds

is discontinuous since a marginal raise in the rate of return can turn a solvent project into

an insolvent one and reduce its demand from some positive amount,−y(s), to zero. As a

result, an equilibrium in which demand and supply are equated may fail to exist for some

con�gurations of the parameters. As we shall see, the set of parameters where that happens

is of measure zero. Nevertheless, we adapt our description of the market mechanism to

preclude the non existence of an equilibrium.

Demand is non-increasing, zero if the market price R is su�ciently high, and equal to

−Σy(s)− ≥ 0 if the market price is zero. Likewise, supply is non-decreasing, zero if R is

low and equal to Σy(s)+ ≥ 0 if R is high. An equilibrium would surely exist if demand

was continuous. At a very high price such that demand is zero and supply is Σy(s)+, excess

supply equals Σy(s)+ ≥ 0. At a price of zero, excess supply equals Σy(s)− ≤ 0. By the

theorem of the mean value, there is a value of R for which this di�erence is equal to zero.

Discontinuities in demand imply that there may be excess supply at some price R and

excess demand at some price R′ which is marginally lower that R. Our notion of an equilib-

rium must thus account for an excess supply at the �equilibrium� price R. As we shall see,
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the behavior of the model depends crucially on the total demand that can be accommodated

by the market. An excess supply of funds only a�ects the timing of consumption but has

no e�ect on the overall performance of the economy. Consequently, we devise a rationing

device that regulates an excess supply to yield an equilibrium on the market.

The device works as follows. Suppliers in the market are told that if there is a strictly

positive demand, an unspeci�ed strictly-positive fraction α, α ∈ (0, 1], of their supply will be

channelled through the market. The rest of their supply will be returned for consumption.

Notice that the supply of funds is una�ected by this device: if supplying z was optimal when

the price is R and α = 1, then supplying z is still optimal as long as α > 0. Once the

demand and the supply of funds have been expressed at an equilibrium price (to be de�ned

below), the parameter α is set by the market operator to a value that clears the market:

α = Y D/Σy+.

An equilibrium is reached when the price R clears the market with α = 1 or when there is

excess supply and a reduction of the price R would lead to an excess demand. This de�nition

captures the idea that competition among suppliers should drive R down. Formally, given

the demand and supply schedules Y D and Y S, we have an equilibrium price R∗ when either

1. Y D(s, R∗) = Y S(s, R∗).

2. Y D(s, R) < Y S(s, R) for all R ≥ R∗ and Y D(s, R) > Y S(s, R) for all R < R∗.

The equilibrium allocation is de�ned to be Y D(s, R∗). Various possible equilibrium con�gu-

rations are represented in Figure 1 in Appendix B.

4.2 A two-project economy

Suppose there currently exist two projects on the market: y1 and y2. Each project has a

continuation value that is equal to the expected discounted value of all its future bene�ts.

The discount rate must be the equilibrium interest rate. Notice that in a case with only two
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projects, the equilibrium rate is R∗ = δ−1. If supply exceeds demand, either the distressed

project has −Vm(yi)/yi(s) ≥ δ−1 and the project is re�nanced at rate R∗ = δ−1 or the project

fails and there is no exchange. If demand exceeds supply, the distressed project cannot be

re�nanced, regardless of its value, and the market collapses. In any case, there is no room

for an equilibrium lending rate higher than δ−1.

The expected value of future bene�ts depends on the probability of failure of the projects

in the future. Moreover, continuation values depend on the state prevailing today, namely,

a project can have three possible continuation values: (1) either the project fails and the

continuation value is 0, (2) or the other project fails and yi's continuation value is its autarkic

value V0(yi), or (3) no project fails and yi's continuation value is the two-project market value

Vm(yi). Notice that in an i.i.d. environment, Vm(yi) does not evolve in time. Let us describe

all the potential market con�gurations that follow the realization of a state of nature.

1. States Sall such that yi(s) > 0 for all i.

In those states, Y D(s, R) = 0 at all R. Both projects survive with no exchange of

liquidity and will be on the market next period. Their continuation value is Vm(yi), ∀i.

2. States S∅ such that yi(s) < 0 for all i.

In those states, Y S(s, R) = 0 at all R. Both projects die, and their value reverts to 0.

There will be no market open next period.

3. States Scstr
i such that yi(s) < 0 < yj(s) with yi(s) + yj(s) < 0.

In those states, the aggregate liquidity constraint binds. Project yi fails, its value

reverting to 0. Project yj survives with its autarkic value V0(yj).

4. States Ŝi such that yi(s) < 0 < yj(s) with yi(s) + yj(s) > 0.

In those states, yi needs re�nancing from yj. Since the liquidity constraint does

not bind, there is an excess supply of funds that drives the equilibrium interest rate

to R∗ = δ−1. Hence, project yi receives re�nancing −yi(s) if its continuation value

Vm(yi) is at least equal to yi(s)/δ. Let us partition the set of states Ŝi into
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4.1 Ŝ+
i , set of states such that Vm(yi) ≥ yi(s)/δ so that project i �nds re�nancing at

the market rate and can, therefore, survive with continuation value Vm(yi);

4.2 Ŝ−
i , set of states such that Vm(yi) < yi(s)/δ so that the project's value reverts to

0 and it fails.

The partition of Ŝi is endogenous since it depends on the market value Vm(yi) itself.

Since the autarkic value V0(yi) has been determined in section 2 for any yi, only the

market value Vm(yi) is left to compute. This value is the continuation value of project yi

following the realization of a state in either Sall or Ŝ+
i . Since the probability of failure of

project i in the future depends on its decision to re�nance yj in earlier periods, both values

cannot be independent. The market values are, then, equal to

Vm(y1) =
(
µ(S∅) + µ(Scstr

1 ) + µ(Ŝ−
1 )

)
× 0 +

(
µ(Scstr

2 ) + µ(Ŝ−
2 )

)
E

(
y1(s) + δV0(y1)|Scstr

2 ∪ Ŝ−
2

)
+

(
µ(Sall) + µ(Ŝ+

1 ) + µ(Ŝ+
2 )

)
E

(
y1(s) + δVm(y1)|Sall ∪ Ŝ+

1 ∪ Ŝ+
2

)
Vm(y2) =

(
µ(S∅) + µ(Scstr

2 ) + µ(Ŝ−
2 )

)
× 0 +

(
µ(Scstr

1 ) + µ(Ŝ−
1 )

)
E

(
y2(s) + δV0(y2)|Scstr

1 ∪ Ŝ−
1

)
+

(
µ(Sall) + µ(Ŝ+

2 ) + µ(Ŝ+
1 )

)
E

(
y2(s) + δVm(y2)|Sall ∪ Ŝ+

2 ∪ Ŝ+
1

)
.

Consequently, market values are jointly determined with the set of states Ŝ+
1 and Ŝ+

2 as the

solution of the following system of 4 equations:

Vm(y1) =

(
µ(Scstr

2 ) + µ(Ŝ2) + µ(Sall) + µ(Ŝ+
1 )

)
E

(
y1(s)|Scstr

2 ∪ Ŝ2 ∪ Sall ∪ Ŝ+
1

)
1− δ

(
µ(Sall) + µ(Ŝ+

1 ) + µ(Ŝ+
2 )

)
+

(
µ(Scstr

2 ) + µ(Ŝ−
2 )

)
δV0(y1)

1− δ
(
µ(Sall) + µ(Ŝ+

1 ) + µ(Ŝ+
2 )

)
Vm(y2) =

(
µ(Scstr

1 ) + µ(Ŝ1) + µ(Sall) + µ(Ŝ+
2 ))

)
E

(
y2(s)|Scstr

1 ∪ Ŝ1 ∪ Sall ∪ Ŝ+
2

)
1− δ

(
µ(Sall) + µ(Ŝ+

2 ) + µ(Ŝ+
1 )

)
+

(
µ(Scstr

1 ) + µ(Ŝ−
1 )

)
δV0(y2)

1− δ
(
µ(Sall) + µ(Ŝ+

2 ) + µ(Ŝ+
1 )

)
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y1(s) + δVm(y1) ≥ 0, y1(s) < 0, and y1(s) + y2(s) > 0 for all s ∈ Ŝ+
1

y2(s) + δVm(y2) ≥ 0, y2(s) < 0, and y1(s) + y2(s) > 0 for all s ∈ Ŝ+
2 .

The partition of the set S is much more complex in a case with three projects. It

encompasses the states in which all projects fail, those in which only two project fail, leaving

the other one in autarky, and the case where only one project fail, leaving the two others

with those two-project market values. Finally, the projects' market values in the states

where all three survive rely on all these less-than-three-project cases and a rate of interest

R∗ that can be higher than δ−1. Having computed the three-projects values, it is possible to

�nd the market values in the four-project case with an even more complex partition of the

set of states of nature. Appendix C provides a numerical example where market values are

computed in a two-project case.

5 Static and dynamic e�ciency

Since the value of projects, and hence the survival rule, depends on whether liquidities are

allocated by a central planner (centralized mechanism) or through a decentralized liquidity

market, the allocation mechanism can condition the fragility of the system. To compare the

performance of both mechanisms, we need to be able to compare the set of existing projects

in each case, after a given history of realization of the states of nature. A natural point of

comparison is the coalitions arrived at in the steady state under the two mechanisms. We

will explain the notion of fragility more clearly when we have de�ned the idea of a steady

state.

Let y be a running coalition of projects. As the history of shocks evolves, this coalition

shrinks if some projects become bankrupt. Hence, the number of surviving projects weakly

decreases through time until a stationary state is reached. Let us de�ne this stationary state

with the notion of stable coalition.7

7Note that the term coalition in this context does not imply that the allocation mechanism is centralized.
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De�nition 1 (Stable coalitions). Let y be the existing coalition in the beginning of a

period. The coalition y is stable if it is the surviving coalition after any realization of the

state of nature in this period.

A stable coalition de�nes the stationary state because states of nature are drawn from

identical and independent distributions in every period. If a coalition survives through all

states in one period, it must survive in any state in the future.

There are two necessary conditions for a coalition y to be stable. One condition is that

budget balance holds in every state of nature, or there are no states in which the aggregate

liquidity constraint is binding. The other condition is that no project has to be bankrupted

in any state of nature. This latter condition di�ers according to whether the mechanism is

centralized or not.

Stable coalition with a centralized mechanism In a centralized allocation mecha-

nism, y is a stable coalition if y is feasible and if there is no smaller coalition that would

have a greater value in any state of the world. Formally, y is stable if∑
y(s)+ ≥ −

∑
y(s)− and

y = arg max
z

∑
z(s) + E (V (z)) for alls ∈ S.

Stable coalition on a decentralized market In a decentralized mechanism, y is stable

if, in all possible states, the supply of funds is greater than the demand for funds and no

project is insolvent at the decentralized equilibrium. Formally,

∑
y(s)+ ≥ −

∑
y(s)− and

R∗ ≤ R = min
y∈y−s

{−Vm(y)/y(s)} for all s ∈ S.

If the existing coalition of projects is stable in a market equilibrium, the aggregate liquidity

constraint never binds and, thus, the market gross rate of return is R∗ = δ−1.

The term applies to any group of projects supplying funds to each other as de�ned earlier.
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In accordance with both these de�nitions, we can say that the empty set is stable. This

means that at least one stable coalition exists. Since there is no entry, the number of projects

in the economy can only weakly decrease in time. However, the rate at which projects

disappear and the stable coalition that is reached depends on the history of states of nature

that were realized. This means that project failures that follow temporary liquidity shocks

make shocks permanent. With no entry of projects in the system, a failure in period t may

trigger further failures in the future. Suppose that the set of stable coalitions achievable by a

given allocation mechanism includes sets other than the empty set. We can say that a system

is fragile because the history of realized states can force the system towards a less valuable

stable coaltion. In the extreme, a system can be forced towards the empty set. Furthermore,

since all �rms that belong to any stable coalition would have had an episode of distress but

was re�nanced, they all have positive value, both in the individual and contributory sense.

Hence, the stable coalition with the larger number of projects is more valuable than one with

a smaller number of projects.

The set of states in which all projects survive in a stable coalition is the set S itself since

there are no bankruptcies. The value of a coalition is then simply equal to the discounted

expected value of the cash-�ows of all remaining projects in the centralized as well as in the

decentralized mechanism,

V (y) =
E

(∑
y
)

1− δ
.

Projects are also easy to value in a decentralized market when we have a stable coalition,

since their individual values can also be expressed as the expected discounted value of their

cash�ows. Hence,

Vm(y) =
E (y)

1− δ

for all projects y in a stable coalition.

Result 1. If y is a stable coalition in a decentralized market, then it is stable in a centralized

institution.
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Proofs of this Result is given in Appendix A.

Result 2. If y is a stable coalition in a centralized environment, it may not be stable in a

decentralized one.

A counterexample is enough to prove this last result. Consider the following simple

environment with two projects y and z and 4 equiprobable states of nature. The following

table gives the bene�ts of each project in each state of nature:

s : 1 2 3

y : -1 Y 1

z : 1 0 -1

with Y > 0. Note that the economy faces no aggregate liquidity constraint. Suppose that the

current state of nature is s = 3, so that project z is in �nancial distress. On a decentralized

market, if project z was re�nanced in state 3, its market value would be Vm(z) = 0. This

is a contradiction because the required funds, −z(3) = 1, being greater than the discounted

market value at all levels of the interest rate, project z cannot �nd re�nancing in state 3.

Hence, project z is bankrupt in state 3. However, next period, y could be in �nancial distress

in state 1 with a need of −y(1) = 1 of funds. If project z has been bankrupt the period

before, no funds are available for project y; there is now an aggregate liquidity constraint due

to the disappearance of project z. Project y has, then, to fail also, even if its future value,

be it some liquidity available to re�nance it, would be Y/(3(1 − δ)) > 1 for Y su�ciently

high.

A central planner would allocate funds di�erently. Maximizing the value of coalition

{y, z}, it would allow project z to survive today in state 3 so that project y can be re�nanced

tomorrow if state 1 occurs.

Note that the contribution of project z in the centralized coalition is not 0, although the

centralized value of the coalition is equal to V ({y, z}) = Y/(3(1− δ)), that is, the value of y

if there is no aggregate constraint. Indeed, in the absence of z, the liquidity constraint binds
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and y has to go bankrupt in state 1 . The contributory value of z is, then,

V z({y, z}) = V ({y, z})− V0(y) =
δY − (3− 3δ)

(3− 3δ)(3− 2δ)
> 0 for Y >

3− 3δ

δ
.

This example illustrates Result 2, that is, there may be stable coalitions in the central-

ized case that cannot be reached on decentralized markets. Decentralized markets continue

bankrupting projects that would survive forever through a centralized decision process. This

allows us to conclude that a decentralized allocation mechanism on which projects exchange

liquidities at a market rate of return, is in general more fragile than a centralized one where

bankruptcies are managed in each state of nature in order to maximize the liquidity of the

system. Since a stable coaltion with a larger number of projects is more valuable than one

with a smaller number of �rms, the more fragile system also has a lower expected value in

the long run.

This may not be obvious in a static environment. Consider a two-period time horizon

in which the liquidity market opens in the �rst period and debt repayments take place in

the second period. In this case, Vm(y) is both the private (market) and social values of a

project y. Because the decentralized market re�nances those projects with the highest market

value, subject to the liquidity constraint, it will also pick the �right� projects to re�nance

and the spot market for liquidities yields an e�cient allocation. In that sense, the market

is statically e�cient. We have shown, however, that a dynamic (in�nite-horizon) framework

yields a di�erent result with respect to e�ciency. In such a context, the decentralized market

is, in general, dynamically ine�ciency. The problem is that market value only accounts for

the private value associated with a distressed project, that is, its expected discounted �ow

of future bene�ts. It does not account for the fact that this project, if re�nanced, may be

on the supply side of the market in the future and help relax the constraint on the supply

of funds. Hence, the �rst welfare theorem does not hold in this economy.

In appendix C, we provide a numerical example where centralized and decentralized

values are computed and compared. Dynamic ine�ciency and the idea of �nancial fragility

associated with Result 2 are made explicit by the example.
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6 Conclusion

We show, in this paper, that the e�ciency of a liquidity allocation system depends on

its ability to measure the value of a project, taking into account its contribution to the

liquidity of the economy in future periods. This contribution is not taken into account of

by decentralized markets because it results in an externality which increases the values of

other projects. In general, the larger the number of projects, the higher is the diversi�cation

of liquidity shocks. This means that an economy with a higher number of projects is less

fragile. The main result of this study is given in Result 2 and states that a competitive

liquidity market may be more fragile than a centralized institution. This has implications

on how a public authority could supervise �nancial markets to make sure that liquidities are

properly allocated among productive projects. The existence of a competitive �nancing rate

for liquidity exchanges is necessary to signal the opportunity cost of liquidities and drive the

price of capital in the economy. However, intervention by a market regulator to rescue a

distressed project that cannot �nd re�nancing on the liquidity market can help ensure that

this liquidity market remains sound in the future.

It is interesting to consider the following interpretation to our model. The coalitional

model can be related to a �nancial market with a �nancial intermediary. The intermediary

allocates �nancing among its �rms to maximize the value of its portfolio of �rms. A long-

lived �nancial intermediary can therefore endogenize the type of externalities that prevent the

market from being e�cient, that is, it can take into account the potential future contribution

of a �nancially distressed �rm when deciding to re�nance it or not.

The only source of �nancial imperfection we consider is a potential shortage of liquidity

at the aggregate level. If markets cannot decentralize the optimal allocation, �rms may have

to use complicated long-term contracts which would depend on all realized shocks in the

economy. It would then be interesting to characterize the nature of these contracts when

they su�er from this and other market imperfections such as non-commitment.
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Appendix A

Proof of Lemma 1

The �rst part comes directly from admissibility (AD). The second part, directly from the

budget balance condition (BB).

Proof of Lemma 2

If y−s = ∅, the result is obvious. If y−s 6= ∅, then the question becomes: given that we manage

to keep all projects solvent, would we want to drop a project now that aggregate liquidity has

risen? The answer is �No�. Suppose that in state s ∈ S∗ the coalition z survives, and that

projects w ⊂ z are bankrupt in state s′ ∈ S∗. This implies that

Σ z(s) + δV (z) ≥ Σ z \ w(s) + δV (z \ w). (9)

In state s′, y increases for all projects. Given stationarity, this a�ects only the �rst term on

each side of condition (9). Since there are more projects in z than in z \ w , this condition

must also be satis�ed in state s′. Hence, it is not optimal to bankrupt more projects in s′

than in s.
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Proof of Result 1

Since budget balance holds, the market rate of return has to be equal to δ−1. The stability

of y implies that all y in y are such that y(s) + δVm(y) ≥ 0 for any possible s. Suppose y

is not stable with a centralized institution, then, there is a state s in which sub-coalition z̄

must optimally be bankrupt. This also writes:

Σ y(s) + δV (y) < Σ z(s) + δV (z),

where z is the value maximizing coalition in state s, that is, the complement of z̄ in y . This

implies

Σ z̄(s) + δ(V (y)− V (z)) < 0.

By stability on the decentralized market, we must have that

Σ z̄(s) + δ
∑
yj∈z̄

Vm(yj) ≥ 0.

This means that the contribution (V (y)− V (z)) of z̄ to the centralized value of y is smaller

than its market value, that is, a contradiction.

Appendix B

The decentralized equilibrium.

Various possible equilibrium con�gurations are represented in �gure 1. In this �gure, the

demand is constant but many supply curves (from Y S
0 to Y S

4 ) are drawn by changing the

values of δ and Σy+. Only Y S
1 is drawn in full for δ = 1

10
and Σy+ = 9 (the numbers are

arbitrary).

The aggregate demand is that of 7 troubled projects with pairs (−y(s), Vy) equal to

{(2, 30), (3, 36), (2, 20), (3, 30), (3, 21), (2, 6), (2, 6)} .
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At prices R > 15, no project is solvent and all demand zero fund. At price R = 15, the

�rst project becomes solvent since Vy/R = 30/15 ≥ −y(s) = 2. At that price, the owners

of the project are indi�erent between rescuing or not the project, so that the demand for

funds is either 2 or zero. For any lower price, that project is surely �nanced. For any price

R ∈ (12, 15], this is the only project that can be �nanced. At price R = 12, the second

project may be �nanced since 36/12 ≥ 3. Whether it is or not, the demand for funds is

either 5 = 2 + 3 or 2. A marginal decrease in R sets the demand at 5. At price R = 10, two

other projects can be �nanced, both having their ratio Vy/R equal to 10. Whether, zero,

one or both projects are rescued, the aggregate demand equals 5, 7, 8 or 10. Then the price

must be lowered to 7 to make project (3, 21) solvent, etc.

Let R ≡ maxy−{−V/y(s)} and R ≡ miny−{−V/y(s)} . The generic equilibrium con�gu-

rations are

• When δ−1 > R no project is ever solvent at a price for which there is a positive supply

of funds. Then any R ∈ (R, δ−1] is an equilibrium price with Y D(R∗) = 0. See the

case with Y S
6 in �gure 1. The equilibrium set is E6.

• When Y D(R∗) = Y S(R∗) like at the crossing of the demand and the supply curve Y S
3 .

Then R∗ ∈ [R, R]. See the case with Y S
3 and the equilibrium point E3.

• When δ−1 < R and all projects are solvent. Then there is a su�cient supply of liquidi-

ties on the market to make rescuing all troubled projects pro�table. The equilibrium

price is then R∗ = δ−1 and Y D(R∗) = Σy−. See the case with Y S
5 and the equilibrium

point E5.

There are many instances of multiple equilibria that involve di�erent equilibrium allocations

(like with Y S
1 ) but they are non generic cases. The supply curve Y S

2 yields an instance where

there is rationing at the equilibrium price.
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Appendix C

Let the state of nature s be uniformly distributed on S = [0, 1]. Consider a coalition of two

projects y = {y1, y2}. Let us assume that project yi's bene�t is linear in s:

yi(s) = (bi − ai)s + ai.

Assume without loss of generality that b1 − a1 = 1 and let yh
i = max{ai, bi} and yl

i =

min{ai, bi}. Project yi's random return is uniformly distributed on [yl
i, y

h
i ]. Its expected

value in one period is

E(yi) =
yh

i + yl
i

2
.

Bene�ts of projects 1 and 2 are perfectly correlated and one can write : s =
y1 − a1

b1 − a1

=

y1 − a1, so that

y2 = a2 − (a2 − b2)(y1 − a1),

= −αy1 + (a2 + αa1),

with α = a2 − b2. Notice that total output is given by

y(s) = y1(s) + y2(s) = a + (1− α)s,

where a = a1 + a2.

We assume that α > 0 so that y1 and y2 are perfectly negatively correlated. Total output

y(s) is positively correlated with s if α < 1. Without loss of generality, we assume that this

is the case so that 0 < α < 1. With this parameterization, variation of the total output

re�ects mostly variations in y1.

We also assume that total output is always positive by setting a > 0. Our example is,

then, speci�c in the sense that the aggregate liquidity constraint never binds. However, this

assumption allows us to have that {y1, y2} can possibly form a stable coalition.

33



Our assumptions so far imply that y1 is distributed on [a1, b1] with yl
1 = a1 < 0 < b1 = yh

1

and that y2 is distributed on [b2, a2] with yl
2 = b2 < 0 < a2 = yh

2 . Besides, yh
1 > 0 implies

that 1 + a1 > 0 and yl
2 < 0 implies that α > a2.

We partition the set of states of nature [0, 1] into speci�c events. Let Si be the event

where project i survives and the other project goes bankrupt. The set of states where both

projects survive, either because they have positive returns or because they re�nance each

other, is denoted S12. Note that, since projects' bene�ts are negatively correlated, low (high)

realizations of state s correspond to low (high) realizations of y1 and high (low) realizations

of y2. Therefore, the three events correspond to ranked sub-intervals of [0, 1]. If not empty,

S2 corresponds to low values of s, and S1 to high values of s, whereas intermediate values of

s belong to event S12.

The autarkic (expected) future value of a project, given by equation (2), writes

V0(yi) =
yh

i
2

2((1− δ)yh
i − yl

i)
,

with

µ(y+
i ) =

yh
i

yh
i − yl

i

,

E{yi|y+
i } =

yh
i

2
.

Finally, let us denote V∅(yi), the value of project i that would be realized if it was

compelled to get re�nanced in any event, that is, the expected discounted value of all possible

bene�ts

V∅(yi) =
E{yi}
1− δ

=
yl

i + yh
i

2(1− δ)
.
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The centralized value of the coalition

Let s and s de�ne the boundaries of the aforementioned events. Those values are such that

y1(s) = y∗∗1 and y2(s) = y∗∗2 . The state s (resp. s) is the lowest (highest) state where project

1 (project 2) survives. Hence,

S2 = [0, s], S12 = [s, s], S1 = [s, 1].

The centralized value of coalition y is given by formula (8) in section 3:

V (y) = max
S12∈A

µ(S12)(E(Σ y |S12) + δV (y)) + µ(¬S12)E(ν|¬S12), (10)

where the solution S12 is the event S∗ that maximizes the coalition value. For simplicity,

let us now write V (y) = V , V0(yi) = V 0
i and V∅(yi) = V ∅

i . Hence, �nding the value of the

coalition amounts to �nd the highest �xed point V of

V −M∗(V ) = 0, (11)

where M∗(V ) is the r.h.s. of (10).

M∗(V ) = max
{s,s}

∫ s

0

(y2(s) + δV 0
2 )ds +

∫ s

s

(y(s) + δV )ds +

∫ 1

s

(y1(s) + δV 0
1 )ds,

s.t. s ≥ 0, (12)

1− s ≥ 0. (13)

The solution to that constrained problem is

s = max{0,−a1 − δ(V − V 0
2 )},

=

0 if V ≥ V 0
2 − a1/δ,

−(a1 + δ(V − V 0
2 )) else.

s = min{(a2 + δ(V − V 0
1 ))/α, 1},

=

1 if V ≥ V 0
1 − b2/δ,

(a2 + δ(V − V 0
1 ))/α else.
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Notice that since V (y) ≥ V0(y1) + V0(y2), we have that V > V 0
i for i = 1, 2. This implies

0 < a + δV + δ(V − V 0
1 − V 0

2 ),

−a1 − δ(V − V 0
2 ) < a2 + δ(V − V 0

1 ),

< (a2 + δ(V − V 0
1 ))/α,

max{0,−a1 − δ(V − V 0
2 )} < min{(a2 + δ(V − V 0

1 ))/α, 1},

s < s.

In any event, the solution M∗(V ) is a piecewise quadratic di�erentiable function of V .

Next, consider the following parameter values that yield an interior solution in s and s.

First set yl
i + yh

i = 0 so that V ∅
i = 0 for all i. This ensures that projects have more value

in autarky than if they are unconditionally re�nanced V 0
i > V ∅

i for all i. Hence, liquidating

a project can be an option in some states, that is, Si 6= ∅, i = 1, 2. This also means that

coalition y is not stable.

Let α = 1/2. These values imply that project 1's returns are distributed on [−1/2, 1/2]

and project 2's returns are distributed on [−1/4, 1/4]. The discount rate is set su�ciently

low so that the system has interior solutions for the critical states: δ = 1/4. With these

values, we compute that

V 0
1 = 2/14 ' 0.14286, V 0

2 = 1/14 ' 0.07143.

The value V of the coalition will be at least as great as the sum V 0
1 +V 0

2 = 3/14 ' 0.21429

but should not exceed much that value. Conditions for an interior solution are

−a1 − δ(V − V 0
2 ) > 0

(a2 + δ(V − V 0
1 ))/α > 1,

which yield

V < V 0
2 − a1/δ,

V < V 0
1 − b2/δ.
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Yet we �nd

V 0
2 − a1/δ = 29/14 ' 2.07,

V 0
1 − b2/δ = 16/14 ' 1.14.

It seems unlikely that V ≥ 16/14 or V ≥ 29/14. Hence assume as an educated guess that

V < 16/14 so that M∗(V ) is computed with an interior solution

s =
29− 14V

56
,

s =
24 + 28V

56
,

M∗(V ) =
3

32
V 2 − 5

224
V +

1353

6272
.

Solving V = M∗(V ) then yields

V =
229−

√
48382

42
' 0.21526,

which is higher than 0.21429 and lower than 1.14 as previously stated. Besides

s =

√
48382− 142

168
' 0.46404219,

s =
530− 2

√
48382

168
' 0.536201344.

In autarky, project 1 is solvent as long as y1(s) ≥ 0, that is for s ≥ −a1 = 1/2 and

project 2 is solvent as long as y2(s) ≥ 0, that is for s ≤ a2/α = 1/2. The coalition allows

optimal re�nancing of project 1 by project 2 over [s, 1/2] ' [0.46, 0.50] and of project 2 by

project 1 over [1/2, s] ' [0.50, 0.54].

Decentralized values

In a decentralized market, projects are re�nanced as long as their continuation value is

greater than their cash requirement. In a rational expectations equilibrium, continuation

values depend on which of the three possible event, S1, S2 or S12 is realized. We now denote:

S2 = [0, ŝ1], S12 = [ŝ1, ŝ2], S1 = [ŝ2, 1].
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The current market value of project 1 in state s depends on which of these three event s

belongs to. Let us write vm
i (s) this value.

vm
1 (s) =


0 if s ∈ [0, ŝ1),

y1(s) + δV m
1 if s ∈ [ŝ1, ŝ2],

y1(s) + δV 0
1 if s ∈ (ŝ2, 1],

V m
1 = E(vm

1 (s)),

= (1− ŝ1)E(y1|s ≥ ŝ1) + δ(ŝ2 − ŝ1)V
m
1 + δ(1− ŝ2)V

0
1 ,

=
(1− ŝ1)(a1 + (1 + ŝ1)/2) + δ(1− ŝ2)V

0
1

1− δ(ŝ2 − ŝ1)
.

Likewise for project 2

vm
2 (s) =


0 if s ∈ (ŝ2, 1],

y2(s) + δV m
2 if s ∈ [ŝ1, ŝ2],

y2(s) + δV 0
2 if s ∈ [0, ŝ1),

V m
2 = E(vm

2 (s)),

= ŝ2E(y2|s ≤ ŝ2) + δ(ŝ2 − ŝ1)V
m
2 + δŝ1V

0
2 ,

=
ŝ2(a2 − αŝ2/2) + δŝ1V

0
2

1− δ(ŝ2 − ŝ1)
.

In a decentralized market, both projects will be re�nanced as long as yi(s) + δV m
i ≥ 0.

Critical values ŝ1 and ŝ2 are such that yi(ŝi) + δV m
i = 0 or

y1(ŝ1) + δV m
1 = 0,

y2(ŝ2) + δV m
2 = 0.

Applying the parameter values used in the centralized case gives the following non-linear

system with two unknown, ŝ1 and ŝ2:

(1/2)ŝ2
1 + 4ŝ1 − ŝ1ŝ2 + (13/28)ŝ2 − (55/28) = 0,

(1/4)ŝ2
2 − 2ŝ2 − (1/2)ŝ1ŝ2 + (15/56)ŝ1 + 1 = 0.
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And it is (numerically) solved in

ŝ1 ' 0.464123,

ŝ2 ' 0.535877.

With these values, we have

V m
1 ' 0.143506,

V m
2 ' 0.071753,

V m
1 + V m

2 ' 0.215259.

The di�erent values found with this simulation are summarized in the following table.

Centralized Sol. � � V = 0.21525983 [s, s] = [0.4640, 0.5362]

Market Solution V m
1 = 0.1435 V m

2 = 0.0717 V m
1 + V m

2 = 0.21525980 [ŝ1, ŝ2] = [0.4641, 0.5359]

Autarky V 0
1 = 0.1429 V 0

2 = 0.0714 V 0
1 + V 0

2 = 0.21429 [0.50, 0.50]

In that simple example with no aggregate liquidity constraint, it appears that the centralized

institution can value the externality each �rm plays on the value of the other. The total

market value, V , is greater than the sum of both market values, V m
1 +V m

2 . This is also made

clear by the range of states of nature on which both �rm can survive. This range is greater

with a centralized institution, [s, s] = [0.4640, 0.5362], than with a decentralized liquidity

market [ŝ1, ŝ2] = [0.4641, 0.5359].
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