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Abstract 
 

Panel data characterized by groupwise heteroscedasticity, cross-sectional correlation, and 
AR(1) serial correlation pose problems for econometric analyses.  It is well known that 
the asymptotically efficient, FGLS estimator (Parks) sometimes performs poorly in finite 
samples.  In a widely cited paper, Beck and Katz (1995) claim that their estimator 
(PCSE) is able to produce more accurate coefficient standard errors without any loss in 
efficiency in “practical research situations.”  This study disputes that claim.  We find that 
the PCSE estimator is usually less efficient than Parks -- and substantially so -- except 
when the number of time periods is close to the number of cross-sections.   
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1.   INTRODUCTION 
 

Panel data characterized by heteroscedasticity, serial correlation, and cross-sectional 

correlation raise serious issues for econometric analyses.  An oft-employed procedure for 

data of this sort is the FGLS estimator proposed by Parks (1968).  When the data 

generating process (DGP) is characterized by groupwise heteroscedasticity, time-

invariant cross-sectional correlation, and first-order (AR[1]) serial correlation, the Parks 

estimator is asymptotically efficient.1  It is well-known, however, that the Parks estimator 

can sometimes perform poorly in finite samples, particularly with respect to estimating 

coefficient standard errors. 

A recent paper by Beck and Katz (1995) -- henceforth BK -- proposes an 

alternative, two-step estimator.  In the first step, the data are transformed to eliminate 

serial correlation.2  In the second step, OLS is applied to the transformed data, and the 

standard errors are corrected for cross-sectional correlation.  Based on their Monte Carlo 

analyses, BK conclude that their “panel-corrected standard error” (PCSE) estimator 

produces more accurate standard error estimates, without any loss in efficiency.  It is 

noteworthy that the PCSE procedure assumes the same error variance-covariance matrix 

(and estimates the same parameters) as the Parks estimator.3  

If BK’s results were generalizable to actual panel data, it would be a very useful 

finding.  It promises an important benefit without any cost.  Indeed, the paper and 

corresponding PCSE estimator have been highly influential.  A recent count identifies 

over 500 citations of BK on Web of Science (e.g. Ferguson and Schularick, 2006; 

                                                 
1 For example, in STATA, the “xtgls” options (i) “panels(hteroscedastic)”, (ii) “panels(correlated)” and (iii) 
“corr(ar1/psar1)” correspond to these three types of nonspherical error variance-covariance behaviors. 
2 The “xtpcse” procedure in STATA uses a Prais-Winsten transformation in this first stage. 
3 As a result, the better performance of the PCSE estimator cannot be attributed to the “shrinkage principle” 
(Diebold, 2004, page 45). 
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Yermack, 2006; Dejuan and Luengo-Prado, 2006; and Lapré and Tsikriktsis, 2006).  

Further, the PCSE estimator is now a standard procedure in many statistical software 

packages, including STATA, GAUSS, RATS, and Shazam.   

Unfortunately, our analysis is unable to confirm BK’s efficiency results.  Using a 

different set of Monte Carlo parameters patterned after actual panel data, we find that the 

PCSE estimator is almost always less efficient than Parks, often substantially so.   

2.   THE DATA GENERATING PROCESS AND A MEASURE FOR RELATIVE  
      EFFICIENCY 
 
Following BK, we assume that the DGP is given by:   
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where N and T are the number of cross-sectional units and time periods, respectively;  

is a  vector of observations of the dependent variable for the i

iy

1T × th cross-sectional unit;  

 is a i 1T ×  vector of ones; Xi is a 1T ×  vector of observations of the explanatory 

variable; 0β  and xβ  are scalars; and iε  is a 1T ×  vector of error terms, where ε  ~ N(0, 

NTΩ ).   

 The error structure, NTΩ , is based on the Parks model (Parks, 1967).  It assumes 

(i) groupwise heteroscedasticity, (ii) first-order serial correlation, and (iii) time-invariant 

cross-sectional correlation, imposing the following specification for NTΩ : 

(2) ΠΣΩ ⊗=NT ,  
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There are a total of 
2

2NN 2 ++  unique parameters in NTΩ  (the ’s and ij,σ ε ρ ).  

Each of these must be given a value in order to generate simulated data.  BK emphasize 

that their Monte Carlo analyses were designed to provide guidance to researchers using 

panel data sets that are likely to be encountered in “practical research situations.”  

However, even a moderately sized panel data set of 10 cross-sectional units requires 

setting more than 50 unique parameters.  How is one to know whether the parameter 

values chosen by the researcher for the Monte Carlo simulations are those that typify 

practical research situations?   

Our approach is to take estimated values of these parameters from previous 

research we have done.  In particular, we use (i) real, per capita personal income data 

from U.S. states; and (ii) international real, per capita GDP data.  Further, we work with 

studies in which the dependent variable is in (i) level and (ii) difference (growth) form.  

And, since these studies derived their estimates of the ’s and ij,σ ε ρ  using residuals from 

regression equations, we reference two different regression specifications.4   

                                                 
4 The main difference in the two regression specifications is that version 1 includes cross-sectional fixed 
effects, while version 2 includes both cross-sectional and time period fixed effects.  To give an idea of the 
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This allows us to create eight different artificial data environments, each patterned 

after U.S. or international data (INT), income data that are either in level (L) or difference 

(D) form, and a particular type of residual-producing regression specification (1 or 2).  

We designate these US-L1, US-D1, US-L2, US-D2, INT-L1, INT-D1, INT-L2, and INT-

D2.  Our Monte Carlo experiments set values for the ’s and ij,σ ε ρ  so that they “look 

like” estimated values from actual panel sets of a particular size (N,T) for each of the 

eight data environments.  

 Like BK, we generate 1000 simulated panel data sets for each (N,T) experiment.  

For every panel data set (replication), we estimate xβ  in Equation (1) using both Parks 

and PCSE.5  Define  as the true population value of *
xβ xβ , and  and  as the 

Parks and PCSE estimates of 

(r)
Parksβ̂ (r)

PCSEβ̂

xβ  for a given replication, r.  We compare the efficiency 

performance of the two estimators using BK’s measure of relative efficiency:   
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“Relative Efficiency” values less than 100 indicate that PCSE is less efficient than Parks. 

3.   RESULTS 

 Table 1 reports the results of our Monte Carlo simulations.  The presentation is 

patterned after Table 5 (page 642) in BK.  BK report that the PCSE estimator is either 

more efficient, or only slightly less efficient, than the Parks estimator except for “extreme 

                                                                                                                                                 
difference this makes for the residuals, the R2 associated with the first specification usually ran around 0.60 
for the US-Level data, compared to R2 values that were typically over 0.90 using the second specification. 
5 All the programs used for this analysis were written in SAS/IML.  The formulae for the Parks and PCSE 
estimators were constructed to exactly match the output from STATA’s “xtgls” and “xtpcse” procedures, 
using the (i) “panels(correlated)” and “corr(ar1)”, and (ii) “correlation(ar1)” options, respectively (we note 
that the default cross-sectional correlation option for the “xtpcse” option is groupwise heteroscedasticity 
and time-invariant cross-sectional correlation). 
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cases” (page 645) where the “average contemporaneous correlation is at least 0.50 and 

the time sample is quite long” (page 642).  In contrast, we find that the PCSE estimator is 

almost always less efficient than Parks, sometimes substantially so.  For panel data sets of 

size N=10 and T=20, we find that “Relative Efficiency” is less than 50% in four of the 

eight artificial data environments, and never higher than 74%.   

As expected, we find that the efficiency advantage of Parks increases 

monotonically with T.  As T increases, there are more observations available to estimate 

each cross-sectional covariance term.  This increases the reliability of the FGLS 

estimates, enhancing the associated efficiency advantages.  With a few exceptions, the 

efficiency of the PCSE estimator approaches that of Parks only when T is very close to 

N.    

Why are our results different from those of BK?  Table 2 makes it clear that it is 

not because our simulated data are driven by extreme values of either serial correlation or 

cross-sectional correlation.  Each cell reports the (i) average correlation coefficient and 

(ii) average, absolute value of the cross-sectional correlation terms for the 1000 data sets 

corresponding to that experiment.  There is a wide range of serial correlation behavior 

across the different artificial data environments.  Further, most of the simulated data sets 

(cf. the last six columns) have average contemporaneous correlation values well below 

the 0.50 value that BK identify as problematic.   

Most likely, the strong performance of the PCSE estimator reported by BK is an 

artifact of the particular parameter values they selected for their simulations.  As 

discussed above, even small panel data sets with relatively few cross-sectional units have 

a large number of unique parameters in the error variance-covariance matrix.  It is 
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difficult to know how one should set these parameters.  For example, the average 

contemporaneous correlation may be less important for determining efficiency than the 

dispersion of the cross-sectional covariance values.  Further, it is unclear which particular 

combinations represent “practical data situations.”6  For these reasons, we think that 

simulations using error variance-covariance parameter values that are patterned after real 

panel data sets provide a better means of evaluating likely estimator performance in 

“practical research situations.” 

4.   CONCLUSION 

This paper evaluates the efficiency of the PCSE estimator.  Beck and Katz (1995) claim 

that the PCSE estimator is more efficient, or only slightly less efficient, than the Parks 

estimator except for extreme cases that researchers are unlikely to encounter in practice. 

In contrast, this study finds that the PCSE estimator is usually less efficient than 

Parks -- and substantially so -- except when the number of time periods is close to the 

number of cross-sections.  Our findings are consistent across a wide variety of Monte 

Carlo environments patterned after actual panel data.  They indicate that researchers 

should be aware that use of the PCSE estimator may come at a considerable cost in 

efficiency. 

 

 

                                                 
6 For example, the simulations underlying the Relative Efficiency results of BK’s Table 5 assume no serial 
correlation. 
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Table 1: 
Relative Efficiency of PCSE Compared to Parks (%) 

 
  Data Generating Processc

Na Tb US-L1 US-G1 US-L2 US-G2 INT-L1 INT-G1 INT-L2 INT-G2 

          
5 10 99.4 95.7 61.8 56.7 108.9 99.9 61.5 57.6 
 15 78.0 95.3 51.0 42.1 94.2 89.0 48.0 43.1 
 20 55.5 83.3 41.2 33.1 94.4 80.9 38.8 31.7 
 25 52.4 74.5 34.5 26.6 94.6 74.3 31.8 25.9 
          

10 10 98.4 96.5 94.1 93.5 93.9 94.7 93.9 92.1 
 15 94.0 88.0 71.5 67.9 82.3 84.8 71.2 66.6 
 20 74.3 81.5 59.3 68.0 76.0 78.2 57.6 52.5 
 25 54.4 66.1 49.6 44.7 71.3 74.0 49.9 43.9 
          

20 20 91.1 96.1 97.1 96.8 97.5 95.9 97.3 95.9 
 25 80.0 78.8 82.8 79.5 86.5 81.3 82.4 78.6 
          

 

NOTE:  
( )
( )∑

∑

=

=

−

−
⋅=

1000

1r

2

x
(r)
PCSE

1000

1r

2

x
(r)
Parks

100Efficiency Relative
*

*

ˆ

ˆ

ββ

ββ
.  Values less than 100% indicate that PCSE is less efficient than Parks. 

a Number of cross-sectional units. 
b Number of time periods. 
c Indicates the type of actual panel data after which the simulated data are patterned.  See Section 2 for category definitions. 
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Table 2: 
Mean Serial Correlation and Mean Cross-Sectional Correlation of Simulated Data Sets 

 
  Data Generating Processc

Na Tb US-L1 US-G1 US-L2 US-G2 INT-L1 INT-G1 INT-L2 INT-G2 

          
5 10 0.35 / 0.65 0.09 / 0.59 0.42 / 0.36 0.19 / 0.34 0.41 / 0.36 -0.09 / 0.27 0.38 / 0.38 -0.08 / 0.34 
 15 0.50 / 0.77 0.16 / 0.67 0.56 / 0.35 0.26 / 0.32 0.57 / 0.34 -0.06 / 0.23 0.56 / 0.36 -0.06 / 0.31 
 20 0.59 / 0.86 0.20 / 0.70 0.66 / 0.34 0.29 / 0.31 0.66 / 0.35 -0.04 / 0.20 0.67 / 0.34 -0.02 / 0.30 
 25 0.64 / 0.89 0.21 / 0.70 0.73 / 0.34 0.30 / 0.30 0.73 / 0.35 -0.04 / 0.19 0.74 / 0.33 -0.02 / 0.29 
          

10 10 0.38 / 0.62 0.08 / 0.57 0.50 / 0.34 0.09 / 0.31 0.47 / 0.39 -0.03 / 0.30 0.49 / 0.37 -0.04 / 0.31 
 15 0.53 / 0.71 0.17 / 0.65 0.63 / 0.31 0.16 / 0.28 0.62 / 0.37 0.01 / 0.27 0.66 / 0.35 0.00 / 0.28 
 20 0.62 / 0.79 0.23 / 0.66 0.73 / 0.30 0.19 / 0.27 0.71 / 0.37 0.03 / 0.26 0.75 / 0.35 0.01 / 0.27 
 25 0.69 / 0.81 0.24 / 0.66 0.79 / 0.28 0.20 / 0.26 0.76 / 0.37 0.03 / 0.24 0.79 / 0.35 0.02 / 0.25 
          

20 20 0.63 / 0.77 0.19 / 0.65 0.71 / 0.32 0.12 / 0.29 0.72 / 0.35 0.04 / 0.25 0.72 / 0.30 0.02 / 0.25 
 25 0.70 / 0.79 0.21 / 0.65 0.77 / 0.31 0.14 / 0.28 0.78 / 0.35 0.05 / 0.24 0.78 / 0.29 0.02 / 0.23 
          

 
NOTE:  Each cell summarizes serial and cross-sectional correlations of a 1000 simulated, panel data sets of respective size (N,T).  For 

each simulated data set, we estimate a value for ρ  and 
2

NN 2 +  values for the respective ’s.  The first number in each cell reports 

the average value of 

ij,σ ε

ρ̂  across the respective 10000 simulated data sets.  The second number reports the average of the absolute value 
of the respective estimates of .  ij,σ ε
a Number of cross-sectional units. 
b Number of time periods. 
c Indicates the type of actual panel data after which the simulated data are patterned.  See Section 2 for category definitions. 
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