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Abstract:   

Consider the class of games in which each player chooses a strategy from a connected subset 
of the real line. Many oligopoly models fall into this class. In many of these applications, it 
would be useful to show that an equilibrium was unique, or at least to have a set of conditions 
under which uniqueness would hold.  

In this paper, we first prove a uniqueness theorem that is slightly less restrictive than the 
contraction mapping theorem for mappings from the subsets of the real line onto itself, and 
then show how uniqueness in the general game can be shown by proving uniqueness using an 
iterative sequence of R-to-R mappings. This iterative approach works by considering the 
equilibrium for an m-player game holding the strategies of all other players fixed, starting 
with a two-player game. If one can show that the m-player game has a unique equilibrium for 
all possible values for the remaining players strategies, then one can add one player at a time 
and consider the R-to-R mapping from that player’s strategy on to the unique equilibrium of 
the first m players and back onto the (m+1)th player’s strategy.  

We then show how a general condition for each one of this sequence of mappings to have a 
unique equilibrium is that the leading principal minors of a matrix derived from the Jacobean 
matrix of best-response functions be positive, and how this general condition encompasses 
and generalises some existing uniqueness theorems for particular games 
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WORKING PAPER No. 06/2009  

A New Sufficient Condition for Uniqueness in Continuous Games 

1. Introduction: 

Many oligopoly models fall into the class of continuous games in which each player 
chooses a strategy from a connected subset of the real line. For example, in Cournot models, 
each firm chooses a quantity to produce, in product differentiation models firms typically 
choose a price, and so on. Existence of a Nash equilibrium in pure strategies in such models 
are generally shown by means of the Brouwer or Kakutani fixed-point theorems. In many of 
these applications, it would be useful to show that an equilibrium was unique, or at least to 
have a set of easy-to-apply conditions under which uniqueness would hold.  

There are a number of uniqueness conditions that have been found for particular subsets 
of this general class of models.1 Generally, these involve a trade-off between generality and 
ease of application. For instance, the classic paper by Rosen (1965) offers a general sufficient 
condition for uniqueness in a wide class of games that encompasses the class considered in 
this paper, but the condition is quite opaque and hence difficult to apply directly to particular 
applications. At the opposite end of the generality/usability continuum, are uniqueness 
conditions that are specific to particular applications.  For instance, conditions for a unique 
equilibrium in the Cournot quantity-setting oligopoly model have been derived by 
Szidarovszky and Yakowitz (1977), Gaudet and Salant (1991), and Long and Soubeyran 
(2000).  

One of the most useful general ways of showing uniqueness is through the contraction 
mapping theorem. The contraction mapping theorem provides a quite general condition for 
there to be a unique fixed point, with the added benefit that it guarantees existence without the 
requirements that the space being mapped onto itself be convex or bounded. To be useable, 
however, one needs to show that the particular mapping for which a fixed point defines an 
equilibrium constitutes a contraction mapping, a task that is not always straightforward.  

In this paper, we derive a variant of the contraction mapping theorem, and present an 
approach in which this variant is applied iteratively to the class of games outlined above to 
derive an easy-to-apply uniqueness condition defined in terms of the slopes of the players’ 
best-response functions. This uniqueness condition encompasses and generalises a number of 
existing uniqueness conditions. Furthermore, the theorems that show that particular games 
satisfy the general uniqueness condition derived in this paper have relatively simple induction 
proofs, suggesting that the general uniqueness condition could be easily applied to other 
specific games.  

In the next section, we present the contraction mapping theorem and a related, less-
restrictive theorem for the special case of a mapping from a subset of the real line onto itself. 
Section 3 lays out the general problem and shows by example why the conventional 
characterisation of an equilibrium as a fixed point of an  mapping is too restrictive. 
Sections 4 shows how an equilibrium in the general game can be defined in terms of a 

-to-nR Rn

                                                 
1  A good survey of the existing uniqueness theorems is contained in Cachon and Netessine (2004). 
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sequence of contraction mappings involving   mappings; Section 5 then shows how 
the uniqueness condition derived iteratively in this way can be represented in terms of the 
slopes of the best-response functions of each player. Section 6 shows how this general 
uniqueness condition encompasses and generalises many existing results. Section 7 
concludes. 

-to-R R

2. The Contraction Mapping Theorem and a Related Result. 

A. The Contraction Mapping Theorem in Euclidean Space. 

Typically in oligopoly models, the existence of an equilibrium is proved by showing the 
existence of a fixed point in a mapping from a subset of Euclidean space onto itself. Let X  be 
a subset of  and let  be a single-valued function mapping  onto itself. In this 
context, the definition of a contraction mapping and the contraction mapping theorem are as 
follows:  

,nR :f 6X X X

Definition 1: 

If there exists (0,1)β ∈  and a norm x  such that  

  ( ) ( ) , ,∀ ∈x y Xf f β− ≤ −y x y x  (1) 

then f is a contraction mapping.  

Theorem 1 (The Contraction Mapping Theorem): 

If  is a closed subset of  and f is a contraction mapping, then X nR

a) (existence and uniqueness) there exists a unique fixed point  such that *x ∈X
( *) *,f x x=  

b)  (convergence) for any  and  x∈X 1,n ≥ ( ) * * .n nf x x x xβ− ≤ −  

The contraction mapping theorem has three advantages over the Brouwer or Kakutani 
fixed point-theorems if a contraction mapping can be shown to exist: First, and most 
importantly, it shows uniqueness as well as existence; second, it does not require that the set 

 be bounded; and third, it has the convergence property.  X

The convergence property implies that the unique fixed point can easily be found 
numerically. It can be useful in a game-theoretic context if we imagine the Nash equilibrium 
to be one iteration of a repeated game, as it suggests that the Nash-equilibrium outcome can 
be stable in the sense that if every period each player chooses the best response to the 
previous-period strategies of the other players, the game will converge to the unique 
equilibrium.  

Such dynamic interpretations of a static equilibrium are not always appropriate, 
however, and numerical solveability is not often important. If we only require existence and 
uniqueness and not convergence, we can, in principle, relax Condition (1). We do this below 
for the case of case of  mappings.  -to-R R
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B. The Contraction Mapping Theorem in Space. 1R

In this paper, we show how existence of an equilibrium that is a point in Euclidean n 
space, can be represented as a set of fixed points of a sequence of mappings from the real line 
onto itself. For  mappings, the natural norm to use is the absolute value, -to-R R ,x x=  and 
the definition of a contraction mapping becomes as follows:  

Definition 2: 

If there exists (0,1)β ∈  such that  

  
( ) ( )

,
f y f x

x y
y x

β
−

≤ ∀ ∈
−

X,  (2) 

then f is a contraction mapping.  

In words, this says that the straight line between any two points on the graph of the 
function, must have a slope in the interval (-1,1). If, we don’t require the convergence 
property, we only require that the slope be less than 1. We will define such a function as a 
“quasi-contraction mapping”.  

Definition 3: 

If there exists (0,1)β ∈  such that  

  ( ) ( ) ,f x f y x y
x y

β−
≤ ∀ ∈

−
X,  (3) 

then f is a quasi-contraction mapping.  

This gives us the following variant of the contraction mapping theorem:  

Theorem 2: 

If  is a closed, connected subset of  and f is a quasi-contraction mapping, then there 
exists a unique fixed point,  such that 

X R
* ,x ∈X ( *) *.f x x=  

Proof:  

First we show that a fixed point must exist. For any 0 ,x ∈X  we have 0( ) ,0f x x≥  or 
0 0( ) .f x x≤  If 0( ) ,0f x x≥  then define,  

  
{ }

0 0 0

max if  is bounded above

( ) otherwise
1

x x
y f x xβ

β

⎧ ∈
⎪= ⎨ −
⎪ −⎩

X X
. (4) 

If is not bounded above, we have, from X (3) and (4), 

  0 0 0( ) ( ) ( )0f y f x y xβ− ≤ −  

  ⇒ 0 0 0( ) ( ) 0f y y f x xβ β≤ + −  



 

  ⇒ 0 0( ) .f y y≤  

If is not bounded above, we have directly that  X

  0 0( ) .f y y≤  

By the intermediate value theorem, therefore, there exists 0 0* [ , ]x x y∈  such that ( *) *.f x x=  
A similar argument holds if 0 0( ) .f x x≤   

To show uniqueness, let  be a fixed point of f. Then *x ∈X *,x x∀ >   

  ( ) ( *) 1
*

f x f x
x x

β−
≤ <

−
 

  ⇒ ( ) ( *) ( *) *f x f x x x x xβ− ≤ − < −  

   ⇒ ( ) ( *) * 0.f x x f x x− < − =

Thus any fixed point of f must be the maximum fixed point, implying that only one can 
exist.  

 

Finally, if, in addition to the above assumptions, we assume that f is differentiable 
almost everywhere, then Condition (2) is equivalent to the following: 

  
a)  is continuous over ,
b) ( )  where  is differentiable.

f
f x x fβ′ ≤ ∀ ∈

X
X

 (5) 

Similarly, Condition (3) is equivalent to the following: 

  
a)  is continuous over ,
b) ( )  where  is differentiable.

f
f x x fβ′ ≤ ∀ ∈

X
X

 (6) 

This gives a general uniqueness theorem that we shall use in this paper: 

Theorem 3: 

Let  be a closed, connected subset of R , and let f be a single-valued continuous 
function from  onto itself that is differentiable almost everywhere. Then if, for some 

X
X

(0,1)β ∈  

  a) ( )  where  is differentiablef x x fβ′ < ∀ ∈X , 

there exists a unique fixed point  such that *x ∈X ( *) *.f x x=  

If in addition, we have  

  b) ( )  where  is differentiablef x x fβ′ > − ∀ ∈X , 

then the fixed point is stable in the sense that for any  and  x∈X 1,n ≥
( ) * * .n nf x x x xβ− ≤ −  

In the next section we show how the contraction mapping theorem in  space is used 
to establish uniqueness in the class of games considered in this paper, and show by example 
why we seek to reduce the problem to one involving  mappings.  

nR

-to-R R
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3. The General Problem: 

A. Notation: 

Imagine that there are n players. We employ the following notation. The strategy space 
for each player i is  and the set of all possible combinations of strategies for all players is 

 Let i i  denote a strategy for player i and let 1  denote a strategy 
combination for all players. Rather than specify the payoffs for each player, we will express 
everything in terms of the best-response functions. Let i

,iX
.nX x ∈X ( ,... ) n

nx x= ∈Xx

−x
)i

 denote the (n-1)-vector of 
strategies of all players other than player i, and let (if −x  be the best-response of player i to 
this combination of strategies of the other players.  

We impose the following restrictions on this general set-up: 

Assumption 1: 

a) For each i,  is a connected subset of the real line; iX�

b) for each i, if  is continuous, single-valued, and differentiable almost everywhere over 
 .nX

We do not require that the if  be fully differentiable so that the model will be able to 
handle non-differentiabilities that can arise from boundary solutions to an individual player’s 
optimisation problem. For ease of exposition, however, when presenting expressions 
involving derivatives we will omit the repeated caveat, “ ”, 
but this is implied.  

where is differentiablen∀ ∈x f  X

Proofs of existence of an equilibrium in this class of games typically proceed by 
defining the aggregate best-response function,  where 1 2:f 6X X ( , ,... ),nf f f=f  so that a 
Nash equilibrium in pure strategies is a fixed point of f and vice versa, and then appealing to 
the Brouwer fixed-point theorem. We want to find sufficient conditions for f to have a unique 
fixed point. For this, it would be sufficient to show that f is a contraction mapping. This, 
however, would be too restrictive, as illustrated by the following simple example.  

B. A Numerical Example:  

Consider a Cournot game in which the n players are firms choosing the quantity to 
produce taking the quantity produced by each of the other n-1 firms as given. Assume that the 
market inverse demand curve is linear, and that each firm has a constant marginal cost of 
production. The linear structure satisfies the conditions required for uniqueness by 
Szidarovszky and Yakowitz (1977) amongst others.  

To see whether the aggregate best-response function constitutes a contraction mapping, 
we need to define a norm. Rather than choosing a particular norm, we will consider any 
p-norm of the form 

  ( )
1

1

n pp
ip

i

x
=

⎛= ⎜
⎝ ⎠
∑x ⎞

⎟  for some real number  1.p ≥
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Now consider some initial vector of outputs, 1( ,... ),nx x=x  and a second vector,  
1( ,... ),ny y=y

.i i

 where all outputs have been perturbed by the same constant, δ, so that 
y x iδ= + ∀  The p-norm for this perturbation is  

  1/ .p
p

n δ− =y x  

The linear Cournot game produces linear best-response functions in which, at interior 
solutions, / 0.5 , .i jx x i∂ ∂ = − ∀ ≠j i  We therefore have ( ) 0.5( 1) ,i i if x n δ− = − −x  and hence 

  1/( ) ( ) 0.5( 1) .p
p

n n δ− = −f y f x  

For any n>2, therefore, we have  

  ( ) ( )
p p

− ≥ −f y f x y x   

and hence f is not a contraction mapping for any p-norm.  

What this example shows is that if we wish to use the contraction mapping theorem to 
show uniqueness in a class of models that encompasses this standard example we will need to 
use a different function than f for which a fixed point defines an equilibrium. In the next 
section, we develop an approach that enables us to transform the problem so that an 
equilibrium is a fixed point in a mapping from a subset of the real line onto itself.  

4. An Alternative Approach: 

To transform the problem, we define an equilibrium iteratively, starting with 2 players 
and then progressively adding more in. To do this, define an m-equilibrium as a set of ix such 
that  

  ( ) 1..i i i ,x f i−= ∀ =x m  

where  That is, it is a set of strategies such that the first m players’ strategies are the 
best response to the strategies of all other players, but the remaining n-m players’ strategies 
are unconstrained.  

.m n≤

Let  be the vector of strategies by the first m firms, and let mx m−x
n

 be the strategies of 
the remaining n-m firms when  An m-equilibrium when .m n< m <  is therefore a Nash 
equilibrium in  taking  as given, and the m-equilibrium when m  is a Nash 
equilibrium of the full game.  

mx m−x n=

Let  denote an m-equilibrium value of i( )m m
ih −x x  when m n<  and let  be an 

m-vector of those values. If there exists a unique m-equilibrium for each value of , then 
the function  is single valued and defined for all 

( )m m−h x
m−x

mh m−x . 

Our approach to finding sufficient conditions for a unique equilibrium is to find the 
conditions for a unique 2-equilibrium that holds for all values of 2−x  and then to extend that 
by induction by finding conditions for there to exist a unique (m+1)-equilibrium that holds for 
all values of  conditional on there being a unique m-equilibrium.   ( 1)m− +x

Let m=2. Define the mapping  as  2 :g R R6

  2 2
2 2 2 1 2( , ) ( ( , ), ).g x f f x− −≡ 2−x x x  (7) 
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There is an equivalence between a 2-equilibrium and a fixed point of 2  From Theorem 2, a 
sufficient condition for there to exist a unique 2-equilibrium is that  be a quasi-contraction 
mapping.  

.g
2g

Now imagine that there exists a unique (m-1)-equilibrium for each value of . In 
this case, define the mapping  as 

( 1)m− −x
:mg 6R R

   (8) 1( , ) ( ( , ), ).m m m
m m m mg x f x− − −≡x h x x m−

Again, there is an equivalence between an m-equilibrium and a fixed point of  and so a 
sufficient condition for there to exist a unique m-equilibrium given 

,mg
m−x  is that  be a quasi-

contraction mapping.  
mg

Definition 4: 

We say that f exhibits an “iterative quasi-contraction mapping” if m  exists and is a 
quasi-contraction mapping for each 

g
{2... },m n∈  and that it exhibits an “iterative contraction 

mapping” if  exists and is a contraction mapping for each mg {2... }.m n∈  

The main result of this paper is then  

Theorem 4: 

If the best-response functions f exhibit an iterative quasi-contraction mapping, then the 
game has a unique Nash equilibrium. 

Proof:  

As we have shown, if  is a quasi-contraction mapping, there exists a unique 2-
equilibrium for all values of 

2g
2.−x  If there exists a unique (m-1)-equilibrium for all values of 

 then m  exists, and if m  is a quasi-contraction mapping, there exists a unique m-
equilibrium. By induction, then, if m  is a quasi-contraction mapping for each  
then there must exist a unique m-equilibrium for each m, and hence a unique equilibrium for 
the full game.  

( 1)m− −x g g
g {2... },m n∈

 

Now imagine that each of the m  is a full contraction mapping so that repeated 
applications of m  will generate convergence to the unique fixed point. This does not imply 
that the full equilibrium would be stable in the way it would be if f were a contraction 
mapping.

g
g

2 It does, however, that imply a numerical solvability using the best-response 
functions in the following sense. First, note that the 2-equilibrium can found iteratively by 
alternately adjusting player 1’s strategy to that of player 2 and vice versa. Then, if the m-
equilibrium is iteratively solvable by sequentially adjusting each of the first m player’s 
strategies to be on his best-response functions, and if 1mg +  is a contraction mapping, then the 
(m+1)-equilibrium is iteratively solvable by adjusting the m-equilibrium to 1mx +  and then 1mx +  

                                                 
2  This can be seen from the example in Section 3, for which the equilibrium is not stable, but for which, as will 

be shown in Section 6, each of the mg  is a contraction mapping.  
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to the  and so on. Iterative solveability is perhaps not the most useful property one might 
desire of an equilibrium, but it is essentially a free result.  

mh

5. Sufficient Conditions with Calculus. 

The analysis of the previous section gives sufficient conditions for uniqueness and 
iterative solvability that derive from our sequential approach. They are not, however, 
particularly user friendly. For that, we would like to express the conditions in terms of the 
slopes of the best-response functions.  

To do this let be the nxn Jacobean matrix of f with elements , so that  nJ ijJ

  , ,i
ij

j

fJ j
x
∂

= ∀ ≠ ∀
∂

,i i   and   0 .iiJ i= ∀  

That is,  is the matrix of slopes of the best-response functions of each player with respect 
to the strategies of each other player.  

nJ

Let nA be the nxn matrix, n n n= −A I J ,  where nI  is the nxn identity matrix. Finally, let 
 and mJ mA  be the mxm submatrices comprising the first m rows and first m columns of  

and
nJ

nA , respectively. The derivatives of the functions  can be expressed in terms of the 
determinants of the 

mg
mA  as follows:  

Theorem 5: 

If  exists, then  mg

  
1

1 mm

m m

dg
dx −

= −
A

A
.  (9) 

Proof: 

Note that  

  2 1
1 2

1 2

1,  and 1 ,f f
x x
∂ ∂

= = − ⋅
∂ ∂

A A  

and, from Equation (7), 

  2 2 1

2 1 2

,dg f f
dx x x

∂ ∂
= ⋅
∂ ∂

 

so Equation (9) holds for m=2.  

For m>2, we have from Equation (8) that  

  
11

1
.

mm
m m i

im i

dg f h
dx x x

−−

=

∂ ∂
= ⋅

∂ ∂∑
m

 (10) 

Define CmA  as the column vector containing the first m-1 elements of the m’th column of A, 
and define RmA similarly as the row vector containing the first m-1 elements of the m’th row 
of A, so that mA  is the partitioned matrix 
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  . 1

1
m Cm

m
Rm

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A A
A

A

We can then rewrite Equation (10) as  

  
1

.
m

m
Rm

m m

dg
dx x

−∂
= −

∂
hA  (11) 

The  variables are defined by the fixed point in the m-equilibrium 1m
ih −

   1 1
-( , )m m m

i i i mh f x i m− − −≡ ∀h , x 1.≤ −

Total differentiation yields  

  
11

{1 1}\{ }
.

mm
ji i

j m im j m

hh f i

m

f
x h x x

−−

∈ −

∂∂ ∂
= ⋅

∂ ∂ ∂∑
…

∂
+
∂

 

In matrix notation this gives 

  
1 1m m

m C
m mx x

− −∂ ∂
= −

∂ ∂
h hJ A m  

  ⇒
1

1
-1

m

m Cm
mx

−
−∂

= −
∂
h A A  

so Equation (11) becomes 

  1
-1 .m

Rm m Cm
m

dg
dx

−= A A A  

Finally, note that  

  1
-1

1

1 m
Rm m Cm

m

−

−

= −
A

A A A
A

,  (12) 

which gives us Equation (9).3 

 

The conditions for an iterative quasi-contraction mapping can now be stated in terms of 
the determinants of the mA  matrices:  

Theorem 6: 

a) If there is an ordering of players, indexed by 1..n, such that for some (0,1)ε ∈  

                                                 
3  Equation (12) is a special case of the general result for partitioned matrices that  

  1−= −
A C

A D BA C
B D

 

 for square matrices A and D, where A is non-singular. For a proof of this result, see, for example, Rao (1965, 
p28).  
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  0 {2m mε≥ > ∀ ∈A .. }n  (13) 

then the best-response function exhibits an iterative quasi-contraction mapping.  

b) If, in addition, we have  

  
1

2 2 {2..m

m

m nε
−

≤ − < ∀ ∈
A

A
}.  (14) 

then the best-response function exhibits an iterative quasi-contraction mapping.  

Proof:  

Follows automatically from Theorems 3 and 4.  

 

Condition (12) gives the general uniquness condition of this paper—that the game has a 
unique equilibrium if the leading principal minors of the matrix n n−I J are all positive. In the 
remainder of the paper, we show that this condition encompasses and extends existing 
uniqueness conditions.  

6. Relationship to Other Uniqueness Conditions.  

A. Rosen’s Theorem: 

The best-known paper providing a generic set of sufficient conditions for games of the 
form analysed here is Rosen (1965). Rosen considers a very general game structure in which 
the strategy space for any player can be conditional on the strategy chosen by another (as 
could happen in a coalition game). In the special case, however, where the player’s strategy 
spaces are orthogonal to each other, i.e. the class of games considered in this paper, Rosen’s 
sufficient condition can be written as follows:  

If there exists a diagonal matrix R, with diagonal terms  such that the 
symmetric matrix 

0 iir > ∀i
( ) ( )′+RA RA  is positive definite, then there is a unique equilibrium.  

The main result of this paper generalises this result in two ways: First, Rosen establishes 
existence by means of the Kakutani fixed-point theorem, and thus requires each player’s 
strategy space be bounded, which is not required by the contraction mapping theorem used 
here; second, Rosen’s sufficient condition is strictly encompassed by the conditions of 
Theorem 6 here, as shown by the following result.  

Theorem 7: 

For any symmetric nxn matrix, A, if there exists a diagonal matrix R, with diagonal 
terms  such that the symmetric matrix 0 iir > ∀i ( ) ( )′+RA RA  is positive definite, then the 
leading principal minors of A will be positive, but the reverse is not necessarily true.  
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Proof: 

( ) ( )′+RA RA  is positive definite if and only if RA  is positive definite, which implies 
that the principal minors of RA are all positive, and hence that the principal minors of A are 
positive. The fact that a non-symmetric matrix with positive principal minors is not 
necessarily positive definite, however, allows one to construct counterexamples in which the 
conditions for Theorem 6 are met, but not for Rosen’s theorem. For one such counterexample, 
consider the following matrix.  

   
1 0 8
2 1 0 .
0 .5 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

A has positive principal minors. Without loss of generality, we can set  so that  1 1,r =

   
2

2 2 3

3 3

2 2 8
( ) ( ) 2 2 .5

8 .5 2

r
r r r

r r

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

RA + RA .

2r

For the second principal minor to be positive, we need 

   2 1.r <

It is easy to show that the determinant of the full matrix is concave in given  and hence 
that the determinant-maximising value of given  is  

3r 2 ,r
3r 2r

   3 28(3 ) .r r= −

Substituting in this value of  it is trivial to show that the determinant of the full matrix is 
negative for all values of  

3,r
(0,∈2 1).r

 

B. Cournot Games.  

There are many papers giving conditions for uniqueness in a Cournot quantity-setting 
game. These include Szidarovszky and Yakowitz (1977), Gaudet and Salant (1991), and Long 
and Soubeyran (2000). All three of these papers provide conditions which imply that the best-
response functions of firms are negatively sloped, along with other conditions required to 
bound the set of prices over which demand is positive. As shown by the following, theorem, 
by using the general uniqueness theorem in this paper one only needs to require non-
positively-sloped best-response functions; the bounding conditions are not necessary.  

Theorem 8:  

Let nA  be a square matrix with 1 iia i= ∀  and  

  ( 1,0] , .ij ia j i Iα= ∈ − ∀ ≠ ∀   

Then 0.n >A   
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Proof: 

Given in the Appendix .  

 

C. Row-Sum Conditions:  

Cachon and Netessine (2004) show that a sufficient condition for the aggregate best-
response function, f, to exhibit a contraction mapping is that  

  1 or 1ji

j i i jj i

ff
x x≠ ≠

∂∂
< <

∂ ∂∑ ∑ .  

That is, f exhibits a contraction mapping if the sum of the absolute values of the off-diagonal 
elements in the Jacobean matrix be less than one in each row or in each column. This result is 
established by showing that a function has a contraction mapping if the largest eigenvalue of 
the Jacobean matrix is less than one, and that, using a result of Horn and Johnson (1996), this 
will hold if the maximum row sum or the maximum column sum is less than one. Although 
this approach is very different from ours, it is easy to show that this condition meets our 
requirement for there to be an iterative quasi-contraction mapping. In the notation of this 
paper, this requirement is that for the matrix ,n n n= −A I J where is the Jacobean matrix,  nJ

  1,ij
j i

a
≠

<∑      or      1.ij
i j

a
≠

<∑  

We can generalise the theorem a bit:  

Theorem 9: 

 Let nA  be a square matrix with 1 .iia i= ∀  If nA  has a dominant diagonal in the sense 
that there exist positive numbers,  such that either  1 2d d, , ,nd…

  ,j ij i
j i

d a d
≠

<∑  or 

  ,i ij j
i j

d a d
≠

<∑  

then 0 .m m n> ∀ ≤A  

Proof: 

Given in the Appendix.  

 

The conditions for the Cachon and Netessine result are a special case where  1 .id i= ∀



 

7. Conclusion.  

This paper has presented a simple uniqueness condition for continuous games which is 
both quite general and easy to apply. The condition encompasses and generalises a number of 
existing uniqueness conditions that were derived using a wide variety of approaches. The 
condition in this paper, then, provides a unifying framework for presenting those conditions.  

As shown by the relative simplicity of the proofs of Theorems 8 and 9, the general 
condition—that the leading principal minors of the matrix n n−I J  all be positive—lends itself 
to reasonably simple induction proofs for demonstrating that the condition holds in particular 
models. The result therefore has the potential to serve as a source for further uniqueness 
conditions in specific games.  
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Appendix 

A. Proof of Theorem 8. 

Let  be the set of nxn matrices, nΩ ,nA satisfying the following properties: 

 a)  1  iia i= ∀

 b) [0,1)   , .ij ia i i jα= ∈ ∀ ≠  

We want to show that  

  0 ,n n n n> ∀ ∈Ω ∀A A .  

Proof: 

The proof is by induction. The proposition is clearly true for n=1 and n=2. Now assume 
that there is some 2n >  such that the proposition holds for all .n n<  we will show that it 
then holds for .n n=   

Let i
n
−A  be the submatrix obtained by removing the i’th row and column from .nA  First 

note that if 0iα =  for any i, then i
n n

−=A A , and, since  the result 
holds by the induction assumption. We shall therefore only consider the case where 

1,
i

n n n n
−

−∈Ω ⇒ ∈ΩA A

0 .i iα > ∀  

The proof follows by considering the matrix derived from nA by replacing the diagonal 
terms in the last two rows with the off-diagonal term for those rows. We show that this 
change unambiguously reduces the determinant of the matrix, but results in a matrix with a 
determinant of zero.  

Formally, define the matrix  which is derived from some nxn matrix, ( , ),m n mbB A ,nA  
by replacing with  The determinant of this matrix is  mma .mb

  ( , )( , ) ( ) .m m
m n m n mm m nb a b −= − −B A A A  (15) 

We can show the following result: 

Lemma 1: 

If 0m >A for all  for all,m ∈ΩA m ,m n≤ then ( , ) 0 .m m m m mα ≥ ∀ ∈ΩB A A  

That is, changing the diagonal term in the bottom row from unity to be the same as the other 
m-1 terms in that row will not change the sign of the determinant of the matrix from positive 
to negative.  

Proof: 

The proof is by contradiction. Assume that ( , ) 0m m mα .<B A Note that  

  1( , ) (1 )m m m m m mb b −= − −B A A A .  
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Since 1m−A is positive by the induction assumption, ( , )m m mA bB  is continuous and monotone 
increasing in  Further, since .mb ( ,1) 0m >B A , by the intermediate value theorem there must 
exist some mb such that ˆ ( ,1)αm ∈ ˆ( , ) 0m mA b .=B  Now multiply the mth row of ˆ( , )m mA bB  by 

 Since  is positive, this leaves the sign of the determinant unchanged. But it produces 
a matrix that is a member of  and so must have a positive determinant. This establishes the 
contradiction.  

ˆ1/ .mb m̂b
mΩ

 

Now consider the matrix 1 1( ( , ), )n n n n nα α−B B A − —that is, the matrix found by replacing 
the diagonal terms in each of the last two rows with the entry for the off-diagonal terms in 
those rows. Since the nth row is then a multiple of the (n-1)th row,  

  1 1( ( , ), ) 0.n n n n nα α− − =B B A  

Using Equation (15) above, we can also write  
( 1)

1 1 1

( 1)
1

( ( , ), ) ( , ) (1 ) ( , )

(1 ) (1 ) ( , ) .

m
n n n n n n n n n n n n

n m
n n n n n n nA

α α α α α

α α α

− −
− − −

− −
−

= − −

= − − − −

B B A B A B A

A B −A
 

By the induction base, we have  

  0 ,n
n n
− > ∀ ∈ΩA A n  

and by the induction base and Lemma 1, we have  

  ( 1)( , ) 0 .m
n n n n nα − − ≥ ∀ ∈ΩB A A  

We therefore have  

  1 1( ( , ), ) 0n n n n n nα α− −> =A B B A ,  

which establishes the result.  

  

B. Proof of Theorem 9. 

For ease of exposition, it will be convenient to prove a trivially generalised statement of 
Theorem 9 in which the diagonal elements of nA  can take any positive values:  

Theorem 9a: 

 Let nA  be a square matrix with  If 0 .iia ≥ ∀i nA  has a dominant diagonal in the sense 
that there exist positive numbers,  such that either  1 2, , ,nd…d d

  ,j ij i
j i

d a d
≠

<∑  or 

  ,i ij j
i j

d a d
≠

<∑  

then 0 .m m n> ∀ ≤A  
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Proof: 

Theorem 4.C.1 in Takayama (1985), shows that a dominant diagonal matrix with no 
nt on the sign of the diagonal elements must be non-singular. It is then straightforward 

to show that if the d

heorem holds for all matrices of size m-1, and let 

constrai
iagonal elements are all positive, the determinant must be positive. The 

proof is by induction.  

Trivially, the 1x1 matrix whose single element is positive has a positive determinant. 
Now assume that the t mA  be a dominant 
diagonal matrix. This implies that  

  1 0.m m
mma −

∂
= >

∂
A A  (16) 

Now let  

1

ˆ ,m
mm mm

m

a a
−

= −
A

A
   (17) 

and let ˆ
mA  ted by replacing mma  with ˆ .mma  Equations (16) and (17) then be the matrix crea

imply that  

ˆ 0,m =A    

 ˆ
mAwhich from Takayama’s result implies that  cannot be dominant diagonal and hence that  

 (18) ˆ .mm mma a<  

Since 1 0,>A (17) and (18) together imply that 0.>A  m− m
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