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Abstract

In this paper graphical modelling is used to select a sparse structure
for a multivariate time series model of New Zealand interest rates. In
particular, we consider a recursive structural vector autoregressions that
can subsequently be described parsimoniously by a directed acyclic graph,
which could be given a causal interpretation. A comparison between com-
peting models is then made by considering likelihood and economic theory.
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1 Introduction

Technology has impacted extensively on the operations of financial markets
which are inhabited by a rich array of fixed-income securities, each bearing a
particular rate of interest. The relationship between the yields on these various
securities is the province of the term structure of interest rates literature which
has a long history and can be traced-back formally to [19]. The more recent
literature has been reviewed in [23].

With the popularity of cointegration and VAR/SVAR approaches to estima-
tion in econometrics, a separate literature using these approaches to estimate
and test term structure models and implications can be identified and includes
[2], [5], [9], [10], [15], [16] and [24]. The papers are typically motivated by a con-
cern to understand the term structure for the ”related monetary policy control”
issues and focus either upon technical estimation issues and often the validity of
inferences derived including, importantly, causal inference, the effects of struc-
tural change or the testing of various hypotheses. Causality is a particularly
important and popular issue given the role of monetary policy intervention.

In this paper we wish to add a significant extra dimension to the debate
by using graphical modelling to identify causal mechanisms within multivariate
time series models. There is a small, but growing literature which uses directed
acyclic graphs in economics and includes, [28], which examines the impact of
monetary policy on agricultural prices in four Asian economies, [7], which exam-
ines relationship between money, income, nominal prices and wheat prices, [8],
which examines causal relationship between trade, government savings, natural
resource exports and GDP in 79 world economies and [6], which examines the
dynamics of regional, export-wheat, railroad rates linking several central US
regions to Texas Gulf ports. This paper considers for the first time, an applica-
tion to the term structure of interest rates where little consensus seems to exist
on the causal nexus and direction between long and short rates of interest. In
particular, there are three alternative views on causality; short rates “cause”
long rates (broadly the traditional “Expectations Hypothesis” view); long rates
“cause” short rates (here rational inflation expectations have a role); or the
“market segmentation” [11], or “preferred habitat” approaches, where causality
is discontinuous across maturity periods. The outcome in an empirical sense
will be crucial for the efficacy of monetary policy design and implementation.

2 Graphical Modelling

Graphical modelling (GM) is a relatively new statistical approach, whose initial
ideas were proposed by Dempster [14] and later developed by Darroch [12].
The major attraction of the approach in empirical research is its convenient
way to present pairwise relationships between random variables taken from a
multivariate context.

The initial step in the approach is the computation of the partial correla-
tions between the variables in the particular multivariate system under study.
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Once the numerical values are known we can test their significance by using
an opportune statistic. Finally the results are presented as a graph, where the
random variables are represented by nodes and a significant partial correlation
between two random variables is denoted by a line that links them named edge.
If the variables in the graph are jointly distributed as a multivariate Gaussian
distribution, a significant partial correlation implies the presence of conditional
dependence. For this reason the graph is called a conditional independence
graph or (CIG).

A more informative object in GM is the directed acyclic graph (DAG). This
is a directed graph where there are arrows linking the nodes and where the
joint distribution of the variables can be expressed as a sequence of marginal
conditional distributions. By way of example, consider the graph in figure 1: its
joint density function can be defined as f(a, b, c) = f(a|b, c)f(b)f(c).

Although the DAG and the CIG represent a different definition of the joint
probability, there is a correspondence between the two which is embodied by
the moralization rule [22]: because of this result we can obtain the CIG from
the DAG by transforming the arrows into lines and linking unlinked parents
with moral edges. By way of example consider the graph in figure 2: A and B
are the parents of C. The moralization of the DAG on the left is obtained by
transforming the existing arrows into edges and by adding a moral edge which
links the parents.

While the CIG represents the associations among the variables either in
terms of conditional dependence or simply in terms of partial correlation if the
joint distribution is not Gaussian, the DAG has a natural interpretation in
terms of causality. As it is not the aim of this paper to enter into philosophical
debate about the definition of causality, we refer to the main contributions on
the causality implied by directed acyclic graphs: [30], [17], [20], [25], [31], [21].

The DAG is very attractive because of its causal implications but in practice
all we can observe is the CIG constructed by the sample partial correlations. In
order to obtain the DAG from the CIG we have to apply the inverse operation
of the moralization, we name it demoralization. Unfortunately while the trans-
formation of a DAG into a CIG is unique, the inverse operation of identification
and removal of moral edges is not. To this end we need to use all the information
we have about the relationships among the random variables in the system.

In this paper we apply this process within the context of multivariate struc-
tural VAR models considering first its saturated specification, where there are
links between every pair of variables (including the contemporaneous variables),
with the aim of finding a parsimonious model of the transmission mechanism
between interest rates in New Zealand.

3 Multivariate Time Series

The relationship between several autoregressions can be modelled via the vector
autoregression

xt = c + Φ1xt−1 + Φ2xt−2 + . . . + Φkxt−k + et (1)
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of order k, VAR(k), where xt, . . . , xt−k are n-dimensional vectors of observations
with coefficient vectors Φ1, . . . , Φk, c is the constant and et is the error vector,
which is assumed IID. If the covariance matrix, H, of et is not diagonal, the set of
linear equations (1) corresponds to a system of seemingly unrelated regressions
[33] where the relations among the components of xt are hidden in H. To
highlight such relations we can represent the canonical VAR(k) in (1) in its
structural form (SVAR):

Θ0xt = d + Θ1xt−1 + Θ2xt−2 + . . . + Θkxt−k + ut (2)

where Θi = Θ0Φi for i = 0, . . . , k, d = Θ0c and ut = Θ0et with covariance
matrix Θ0HΘ′0 = D, which is diagonal.

If there are no zeros in the coefficient vectors, the SVAR is saturated, but in
many cases some variables do not play any significant role in explaining the cur-
rent variables, xt. In this case the value of the corresponding coefficient is zero
and hence the SVAR is sparse. An examination of the covariance matrix of the
variables involved, both current and lagged, can assist in identifying the sparse
structure by the computation of the partial correlations. Their significance can
be tested using the appropriate sampling properties ([27], [26], [32]). The model
(2) may be represented by a directed acyclic graph (DAG) in which the compo-
nents of xt, xt−1, . . . , xt−p form the nodes, and causal dependence is indicated
by arrows linking nodes. The nature of the model is that all arrows end in
nodes representing the contemporaneous variables on the left hand side of (2).
Some arrows will start from past values, and some from other contemporaneous
variables.

The coefficients can be estimated by single equation ordinary least squares
(OLS) regression which is fully efficient under the assumption that the vector
series is Gaussian but is also applicable and the properties of the estimates
reliable, under wider conditions, such as et being I.I.D.

Next consider the exploratory tools used to identify the model. The first
step is to identify the overall order p of a VAR model for the series. The second
and central step is to construct a sample conditional independence graph (CIG)
for the variables xt, xt−1, . . . , xt−p which form the nodes of the graph. At this
stage the only causality we can assume is the one indicated by the arrow of time.
Nevertheless, it may serve well to suggest the direction of dependence between
contemporaneous variables. Such dependence can be simply interpreted in terms
of predictability. If we wish to go beyond the concurrence of realizations of
different time series, from our point of view of observers of aggregated data, we
can use the statistical evidence to support a causal belief. This leads to the
connection between causality and probability discussed by De Moivre [13]. A
discussion of this argument and of the debate around it, although at the very
foundation of this work as well as many others in statistics and econometrics,
cannot be contained in an article and we point the interested reader to two recent
monographs by Shafer [30] and Pearl [25]. Causal beliefs can be implemented
in our procedure when we hypothesize possible directed subgraphs for the edges
between contemporaneous variables. The corresponding structural VAR models
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are then fitted and refined by regression and a model selection criterion such as
AIC [1], used to select the best in terms of likelihood.

The statistical procedures are based on a data matrix X which in the general
case consists of m(P + 1) vectors of length n = N − P , composed of elements
xi,t−u, t = P + 1 − u, . . . N − u, for each series i = 1, 2, . . . , m , and each lag
u = 0, 1, . . . , P , for some chosen maximum lag P . In the first stage of overall
order selection, for each order p we fit, by OLS, the saturated structural VAR
regressions of the m contemporaneous (lag 0) vectors on all the vectors up to
lag p. Using the sums of squares Si from these regressions we form the AIC as
n

∑
log Si + 2k, where k = pm2 + m(m− 1)/2 is the total number of regression

coefficients estimated in the regressions. For the saturated model the causal
order of the contemporaneous variables does not affect the result, each one is
included only as a regression variable for a subsequent variable in the chosen
ordering. Then select the order p which minimizes the AIC.

The next step is to construct the sample CIG for the chosen model order
p. In general a CIG is an undirected graph, defined by the absence of a link
between two nodes if they are independent, conditional upon all the remaining
variables. Otherwise the nodes are linked. In a Gaussian context this conditional
independence is indicated by a zero partial autocorrelation:

ρ(xi,t−u, xj,t−v|{xk,t−w}) = 0, (3)

where the set of conditioning variables is the whole set up to lag p, excluding
the variables on the left.

The set of all such partial correlations required to construct the CIG is
conveniently calculated from the inverse W , of the covariance matrix V of the
whole set of variables, as

ρ(xi,t−u, xj,t−v|{xk,t−w}) = −Wrs/
√

(WrrWss) (4)

where r and s respectively index the lagged variables xi,t−u and xj,t−v in the
matrices V and W .

In the wider linear least squares context, defining linear partial autocorrela-
tions as the same function of linear unconditional correlations as in the Gaussian
context, the absence of a link still usefully indicates a lack of linear predictability
of one variable by the other given the inclusion of all remaining variables.

To estimate the CIG we replace V with the sample covariance matrix V̂
formed from the data matrix X, but including only lags up to p. From here
we need a statistical test to decide which links are absent in the graph. We
are only concerned with links between contemporaneous variables and between
contemporaneous and lagged variables, because these are the only ones that
appear in the structural model DAG. The test we use is to retain a link when
|ρ| > z/

√
(z2 + ν)) ≈ z/

√
n− p, where z is an appropriate critical value of the

standard normal distribution. This derives from two results. The first is the
standard, algebraic, relationship between a sample partial correlation ρ̂ and a
regression t value given by ρ̂ = t/

√
(t2+ν) (see Greene, 1993 p 180). The second

is the asymptotic normal distribution of the t value for time series regression
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coefficients, given for example by Anderson (1971, p. 211). Generally, we might
wish to apply multiple testing procedures when applying the test simultaneously
to all sample partial autocorrelations, but that is not a practical option. The
application of GM to VAR systems has been extended by demonstrating that
the sampling properties of GM’s for stationary VAR’s are still valid for for I(1)
VAR processes [32].

We then specify the DAG’s as recursive equation systems which can be
estimated by ordinary least squares.

The next stage in the process is to establish which DAG representations are
consistent with the CIG or are nearly so, allowing for statistical uncertainty,
considering demoralization.

As we mentioned above by this term we mean the inverse operation of mor-
alization which allows to construct a CIG from a given DAG by inserting an
undirected link between any two nodes a and b when there is another node c
with incoming directed edges a → c and b → c. In this case c is known as a
common child of a and b, and the insertion of a new, moral, link will marry the
parents. After this operation for the whole graph, the directions are removed
from the original links.

Of course we attach the arrow of time to links from the past to the present,
so the challenge is to clarify the directions of the recursive ordering of contem-
poraneous variables. Normally there are alternative competitive models and
eventually we compare them by using likelihood based methods.

4 Interest Rate Transmission in New Zealand

We apply the methodology explained in the previous sections to the interest
rate mechanism in New Zealand after the implementation of the Reserve Bank
Act in February 1990. To this aim we consider the model proposed by Oxley
[24] who identified a structural VAR using standard procedures. The paper by
Oxley also provides a thorough discussion of the economic background for the
interested reader.

The application is of interest to the economists as the issues involved for this
New Zealand case are multi-faceted and involves the presence of indirect effects.

The data used are monthly, seasonally unadjusted interest rates taken from
the Reserve Bank of New Zealand Financial Statistics database for the period
February 1990 - April 2002. The individual series considered are the rates on
money at call (denoted A); 90 day bank bills (B); the yield on 1, 3 and 5
year Government stock (C, D and E respectively); base lending rate (F) first
mortgage housing rate (G) and the uncovered interest parity with the US (H).

We identified a VAR(2) and hence considered all the variables up to the
second lag. Once the sample partial correlation matrix was computed we tested
with the appropriate procedures explained above the significance of its elements
and constructed the CIG in figure 3, where the variables at time t are indicated
as A0,B0,...,H0, the variables at time t− 1 as A1,B1,...,H1 and the variables at
time t− 2 as A2,B2,...,H2.
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Model k AIC BIC
Best 42 -97.85 -424.75

Alternative 37 -96.87 -438.11

Table 1: Information criteria.

We then considered several DAG models consistent with the CIG. Such ini-
tial models were obtained by substituting undirected edges linking lagged vari-
ables to contemporaneous variables with directed edges. For the edges between
contemporaneous variables, several models with different directions suggested
by the alternative economic theories were considered. The different models thus
constructed were refined by using subset regression to eliminate the moral links.

Finally we used likelihood based measures to compare the different models.
In particular we considered the Akaike information criterion and the Bayesian
information criterion (BIC) [29].

Here we present the two best models together with a table providing their
values in terms of parameters, deviance and the different information criteria.
They are represented in figure 4 and 5.

For both of them we can observe some common features as the lack of rele-
vance of the uncovered interest parity and the central role of the 90 day bank
bills interest rate. Both models would support a market segmentation hypothesis
confirming what the Reserve Bank of New Zealand recognised: ”The transmis-
sion mechanism is multi-faceted, and the ultimate effect of central bank opera-
tions on the end objective of price stability is very indirect. Partly because the
linkages are so indirect, public and market expectations of future policy changes
play a very important role in monetary policy. In effect, they can short-cut,
bringing the beginning and end of the transmission mechanism closer together.”
Archer et al. (1999).
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A

B

C

Figure 1: Directed acyclic graph.

A A

B B

C C

Figure 2: Moralization of a directed acyclic graph.

A1 B1 C1 D1 E1 F1 G1 H1

A0 B0 C0 D0 E0 F0 G0 H0

A2 B2 C2 D2 E2 F2 G2 H2

Figure 3: Conditional independence graph.
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A2 B2 C2 D2 E2 F2 G2 H2

A1 B1 C1 D1 E1 F1 G1 H1

A0 B0 C0 D0 E0 F0 G0 H0

Figure 4: Best model.

A2 B2 C2 D2 E2 F2 G2 H2

A1 B1 C1 D1 E1 F1 G1 H1

A0 B0 C0 D0 E0 F0 G0 H0

Figure 5: Alternative model.
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