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1  See Ledyard (1995) for a comprehensive, but now dated, survey and evaluation of
laboratory research, and Chapter 6 in Plott and Smith (2003), for a summary of recent results.

2  An early example of this can be found in Buchanan (1967).

3  The classic reference for this approach is Bergstrom, Blume and Varian (1986).

4  See Hirshleifer (1983).

5  The dragon-slaying example is from Bliss and Nalebuff (1984).  Bilodeau and Slivinski
(1996) also mention cleaning shared toilets and chairing an academic department.
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1. Introduction

Questions regarding voluntary contributions to a public good and the free-riding problem

have so far generated a sizable amount of theoretical modeling and experimental investigation.1  

The simplest way to model the free-riding problem in public good provision is through a

Prisoners’ Dilemma type of game.2  A more general approach models the public good provision

decision as a game akin to a Cournot duopoly game.  In this game, each player selects a

contribution level toward the public good.3  In these models, the public good being provided is

an incremental public good in the sense that the quantity of the public good being consumed

depends on the sum of individual contributions.

One question which has received comparatively little attention in the economic literature

is the problem of providing a public good that can be produced through “weakest-link” or “best-

shot” technologies.4  The provision of a public service can often be considered a best-shot

decision.  Examples of such situations include driving for a car pool, organizing a fund-raising

event, getting up at night to quiet a crying baby, or slaying the dragon that threatens the village.5  

In this type of situation, only one individual needs to bear the cost of providing a non-

incremental service that will benefit everyone.  Such a situation is best modeled as a game of



6  The game of Chicken is described in several introductory game theory textbooks, for
example in Rasmusen (1989, p. 73).  The game of Chicken is also sometimes referred to as the
Hawk-Dove game, particularly in evolutionary biology.

7  War of Attrition games can be divided into two variants according to whether they are
stationary or not.  See Fudenberg and Tirole (1991, pp. 119-126) for a description and discussion
of both cases.  The game we investigate experimentally in this paper is non-stationary.

8  See Hendricks, Weiss and Wilson (1988) for a complete characterization of the
equilibria of the War of Attrition game in continuous time.
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Chicken instead of a Prisoners’ Dilemma.6

One characteristic of a game of Chicken is that it generally has multiple equilibria.  For

example, a two-player game of Chicken has two pure strategy equilibria in which either player

gives in and the other one does not (it also has a mixed strategy equilibrium in which each player

gives in with some probability).  To solve this type of game, therefore, one must select an

equilibrium which appears more plausible than others.  Unfortunately, other than the nebulous

concept of a focal point, if any can be found, there is no general method for solving static games

of Chicken.

The situation is different for the dynamic version of the game of Chicken, known as a

War of Attrition.7  In this game, each player becomes progressively more injured as time wears

on until one gives in and stops the game.  The player giving in first gets a lower payoff than he

would have received if someone else had given in.  In a public service provision context, each

player may choose to wait before volunteering to provide the service, thus avoiding the cost of

providing it if someone else volunteers in the meantime, but no one can enjoy the benefits of the

service until someone provides it.  Like games of Chicken, War of Attrition games also generally

have multiple equilibria in pure and mixed strategies.8  However, one widely used equilibrium

selection criterion, applicable in multistage and dynamic games, is the concept of subgame



9  The concept of subgame perfection is explained in several game theory textbooks, for
example in Fudenberg and Tirole (1991, p. 92).
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perfection.9  In dynamic games, some equilibria are deemed implausible because they rest on

non-credible threats.  Subgame perfection rules them out by insisting that the equilibrium

strategy be optimal for each player not only along the equilibrium path, but at every point in the

game – even those that will never be reached.  When a War of Attrition game is not stationary,

subgame-perfection can be applied to select a unique pure strategy equilibrium.  Given the wide

acceptance of subgame-perfection as an equilibrium selection criterion, it is then tempting to

single out the unique subgame-perfect equilibrium as the solution of the game.  This is the

approach taken by Bilodeau and Slivinski (1996).  The present paper is an attempt to verify

experimentally whether this conclusion is warranted.

Our experimental results suggest that it is not.  In 472 three-player War of Attrition

games in which there was a unique subgame-perfect equilibrium (SPE), the SPE prediction was

approximately realized only 133 times.  Moreover, we found no statistical difference in the

distribution of volunteers between games that had a unique SPE and similar-looking games with

multiple SPE.  Given this underwhelming support for subgame-perfection, we suggest an ex-post

behavioral hypothesis that better fits the data.  This ex-post behavioral hypothesis is that the

subjects fail to completely account for the strategic nature of the game they are involved in and

approach it essentially as if they were playing against nature.

2. Modeling the Provision of a Public Service

In this section, we present a simplified version of the public service provision game



10  Bilodeau and Slivinski (1996) model the public service provision decision as a War of
Attrition in continuous time with discounting.  They allow individuals to have different discount
rates and allow the cost of providing the public service to include both a one time cost and an
ongoing cost.  They also allow the benefit of the service to vary depending on who provides it.

11  For completeness, we also need to define the payoffs if two or more players volunteer
simultaneously and if no one ever volunteers. We could do this in many ways; but the simplest
formulation, assuming that both would incur the cost Ci if they volunteer simultaneously and that
all will have a payoff of Tivi if no one ever volunteers, will do.

510 September 2003

modeled in Bilodeau and Slivinski (1996).10  Consider a group of n individuals who would all

stand to benefit for some time if a public service was provided by one of them.  Each must

decide whether and when to volunteer to provide the public service.  Suppose for simplicity that

time is measured in discrete increments.  Each individual i is characterized by four parameters. 

Let vi be the payoff he receives each period until the service is provided and let ui be the payoff

he receives each period once the public service is provided.  Let Ci be the cost of providing this

service. This cost must be borne entirely by the volunteer at the time he provides the service and

no side payments are possible.  Finally, let Ti be the (finite) time horizon during which he could

benefit from the public service.

If the individual volunteers at time t 0 [ 0, Ti ] , his payoff is tvi + (Ti - t )ui - Ci , while if

someone else volunteers at time t  his payoff is tvi + (Ti - t )ui .  Assume that ui - vi > 0 (everyone

benefits from the public service), Ci > 0 (volunteering is costly), and Tiui > Ci  (volunteering is

not a dominated strategy).  Also assume that every player’s rationality and all the parameters are

common knowledge.  Then, the game is a well-defined War of Attrition in discrete time with

complete information.11

This game has Nash equilibria in which any one of the players volunteer immediately and

all the others wait.  Intuitively, if player i volunteers immediately then everyone else is better off



12  If t1* = t2*  the subgame perfect equilibrium would not be unique.  We will use that
property to test whether subjects play differently in games with and without a unique SPE.

13  To be precise, we should say that individual 1 volunteers at every t between 0 and t1*
and abstains after that, while all others abstain at every t.  A strategy in this game is a complete
statement of what a player would do at every point in the game, including points off the
equilibrium path.
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waiting; and, if everyone else is waiting, then player i is better off volunteering immediately. 

The same holds for all players.

However, only one of these equilibria is selected by subgame-perfection.  To show this,

we note first that since the payoff if no one ever volunteers is Tivi, it is a dominant strategy for i

not to volunteer at any t such that tvi + (Ti - t)ui - Ci  < Tivi.  Since the payoffs are decreasing in t,

we can calculate from this the critical value ti* = Ti  - Ci /(ui  - vi) beyond which i would never

rationally volunteer.  Without loss of generality, order the individuals such that t1* > t2* $ t3* $

... $ tn* .12  Now, consider individual 1.  If the game reaches t2* or any time between t2* and t1*,

it is optimal for him to volunteer since by then no one else would.  His payoff from volunteering

would still exceed Tivi and would continue to decrease if he waited any longer.  Expecting

individual 1 to volunteer at t2*, all others would then hold off on volunteering for some interval

immediately preceding t2*.  Therefore, individual 1 could do no better than to volunteer at any

time in this interval.  The others would then hold off volunteering in another preceding interval

and so on until individual 1 volunteers at t = 0 and the others wait.  The game has a unique SPE

in which individual 1 volunteers immediately and all others abstain.13

The critical value ti* depends on the parameters that characterize each individual and is

increasing in Ti, decreasing in Ci and increasing in (ui  - vi).  So ceteris paribus, the individual
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with the longest time horizon, the lowest cost of providing the service, or who stands to benefit

the most from the public service will be the one for whom the critical value ti* is the largest.  If

the game unfolds according to the subgame perfect equilibrium prediction, this individual alone

will volunteer immediately.

3. Laboratory Representation of the Public Service Provision Game

In the public service provision game, players receive a flow of payoffs each period, both

before and after someone volunteers, until they reach the end of their time horizon.  Since they

receive a smaller payoff until the public service is provided, waiting is costly: The maximum

possible payoff a player could receive is Tiui  if someone else volunteers immediately, and each

period spent waiting for a volunteer reduces this maximum by (ui  - vi).  To replicate this type of

environment in the laboratory, subjects were given an initial endowment, Ei, and were told that

this would be their payoff if someone took action immediately to stop the game.  Subjects were

also told that their payoff would decline at the rate of si per second until one of them took action

to stop it.  The cost of stopping the game, Ci, if the subject chose to volunteer, would then be

deducted from his payoff.  Stopping the decline of everyone’s payoffs is a public service that the

volunteer provides to everyone at a private cost to himself.  The game played in the laboratory is

strategically equivalent to the public service provision game outlined in section 2 if and only if

Ei = Ti ui and si = (ui - vi) for all players.

There were 14 sessions in this experiment run over the computer network at the

McMaster University Experimental Economics Laboratory in Hamilton, Ontario, Canada. 

Twelve subjects participated in each session of the experiment and a total of 168 subjects were
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recruited from the student population of McMaster University.  Each session of this experiment

consisted of twelve games or rounds (these terms are used interchangeably).

In each round, subjects were randomly assigned to a group with two other subjects. 

These groupings changed every round and no two subjects were in the same group in

consecutive rounds.  At no time were subjects made aware of who were the other members of

their group.  The three parameters (Ei, si and Ci) which characterize the subjects were varied

across subjects systematically.

Table 1 presents the five treatments in the experimental design.  The third column, Ei, is

the subjects’ initial endowment.  The next column, si, shows how much they lost each second

until the game is stopped.  The third column, Ci, lists the cost of providing the service.  When the

entry is a triplet the first value was assigned to subject A, the second to B, and the third to C. 

When there is one entry, all subjects had the same value for that parameter.

The subjects’ endowments, costs and payoffs were initially reported in laboratory dollars

(L$).  Participants were told at the start of their sessions that their laboratory dollar payoffs from

each of the rounds in which they participate will be added up at the end of their sessions and will

be converted to Canadian dollars (C$) at the rate L$1 = C$0.06.  Subjects earned an average of

C$9.50 (the standard deviation was C$0.75) and the range was from C$11.08 to C$7.50. 

Participants also received a “show-up” payment of C$5.00 for arriving on time.  Including the

reading of instructions and answering questions before the rounds began, the twelve rounds were

completed within forty-five minutes and an hour.

All games lasted a maximum of 90 seconds.  In some treatments, the payoffs of some

players decrease to zero before 90 seconds have elapsed.  In this case, the payoffs stop declining
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and remain at zero until the end of the game.  In other treatments the payoffs of some players are

still positive at t = 90 seconds.  This would then be their payoff if the game ends without a

volunteer.  A player could receive a negative payoff by volunteering at a time when his

remaining payoff was less than Ci.

When a round begins, each subject’s screen displays three graphs: one that represents his

payoff and two representing the payoffs of the two other subjects with whom he was matched. 

Figure 1 presents the screen that would have been seen by player C (labeled “you”) in a round of

Treatment 3.1.  His initial endowment was L$14, the second player had an initial endowment of

L$17, and the third, an initial endowment of L$20.  All three see their payoffs decline by L$0.20

per second until the game is stopped.  Each can stop the game any time at a personal cost of L$5. 

The snapshot was taken 34 seconds after the payoffs had started declining (the timer shows 56

seconds remaining).  At that point, player C’s payoff was down to L$7.20.  Once a player’s

payoff reaches 0 (after 70 seconds for player C and 85 seconds for the second player in this

figure) his payoff stops decreasing.  If time expires (at 90 seconds) without a volunteer, the first

and second players in Figure 1 would receive 0, while the third player would receive L$2 since

his payoff has not reached 0 yet.

On each of the three graphs is a light blue line representing the payoff this subject will

receive if the service is provided by someone else.  As time elapses, this line is filled in

progressively with darker blue until someone stops the game.  Below the blue line, each graph

also contains a white line representing the subject’s payoff if he volunteers.  It extends below the

horizontal axis to show that subjects could receive a negative payoff if they volunteer late in the

game.  This line is filled in with red as the round progresses until someone volunteers to stop it. 



14  Go to http://socserv2.socsci.mcmaster.ca/~econ/mceel/papers/bcmvpsin.pdf for the
instructions read to and by participants.
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This gives the subjects a visual indication of their current payoffs at any point in the game. 

Located above the graphs is a button labeled “Action” on which subjects can click using their

computer mouse if they wish to volunteer.

In each round, after the subjects’ computers displayed the screens, subjects were given 15

seconds to make a decision or formulate a strategy before their payoffs started to decline.  This

period was intended to give subjects an opportunity to familiarize themselves with their own

payoffs and the payoffs of the two other subjects with whom they were matched before having to

make a decision.  During these 15 seconds it was possible for one or more subjects to volunteer. 

Anyone volunteering during these 15 seconds of “frozen time” was considered to have

volunteered at time 0.  Subjects were not informed that someone had volunteered until the end of

that 15 second period.14  Further, subjects were never told whether there were multiple

volunteers.

After this initial 15-second period, the payoffs started to decline until one of the subjects

stopped the game by pushing the button labeled “Action” on his screen.  In this experiment, we

always referred to volunteering as “taking action” in order to prevent framing effects.  Subjects

were never informed of which subject had volunteered; they were only told that someone had.

The critical time ti* is the point at which the payoff from volunteering becomes smaller

than the payoff to letting time expire without a volunteer.  For the first two players in Figure 1

this is the point where the white line crosses the horizontal axis, at 45 and 60 seconds

respectively.  They have no incentive to volunteer beyond that point, although nothing prevents
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them from pushing the “Action” button anyway and getting a negative payoff for this round.  For

the third player, the payoff to volunteering falls below L$2 after 65 seconds, so from that point

on none of the subjects have incentives to volunteer anymore.  The ti* values for all treatments

are reported in Table 1.

Looking at Table 1, we see that in treatments 1.1 to 2.4 subgame-perfection predicts that

player A will volunteer.  However, since all eight treatments make the same prediction, finding

that player A is the most frequent volunteer wouldn’t be convincing evidence in support of the

subgame-perfection hypothesis because we wouldn’t know whether player A volunteered 

because all the players saw the SPE strategies as the obvious way to play the game or for some

other reason, e.g., simply because he has the lowest cost of volunteering or the highest cost of

waiting.  We designed the other treatments so that similar-looking games would yield different

SPE predictions.

The games in treatments 3.1 to 3.4 are similar to each other.  In each case, subjects’

payoffs have the same cost of volunteering and the same slope (the cost of waiting) but different

starting endowments.  However, the games in treatments 3.1 and 3.2 have a unique SPE while

those in 3.3 and 3.4 do not.  This difference will be used to test whether subjects played

differently in the games that have a unique SPE and those that do not.

In treatments 4.1 to 4.4, subjects’ payoffs had the same endowment and the same cost of

volunteering, but different slopes.  However, in treatments 4.1 and 4.2 the unique SPE has

subject B volunteering while in treatments 4.3 and 4.4 subject C is the predicted volunteer.  This

difference will be used to test whether subjects played differently in games that yielded different

SPE predictions.



15  Go to http://socserv2.socsci.mcmaster.ca/~econ/mceel/papers/bcmvpsdata.txt for the
data used in the analysis.
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In treatments 5.1 to 5.4, subjects’ payoffs had the same slope but different initial

endowment and different costs of volunteering.  All four treatments make different SPE

predictions.  Again, we will use these differences to test whether subjects played differently in

these games.

Finally, in treatment 2.1 and 2.3 there is no Nash equilibrium in which player C

volunteers because volunteering is a dominated strategy for him.  This difference will be used to

test whether subjects played differently in games where some had no incentive to ever volunteer.

4. Experimental Results

In the games that have a unique SPE, the subgame-perfection refinement yields a clear

prediction: the subject with the largest  ti* value will volunteer immediately and all others will

wait.  The performance of the SPE prediction is summarized in Table 2.15   In the 472 rounds of

our experiments in which there was a unique SPE, this prediction was exactly realized only 97

times.  This is an accuracy of just 20%.  However, it could be argued that including the rounds in

which the predicted subject volunteered shortly after time 0 is reasonable because in the

laboratory environment it is not a large deviation for a subject to wait until the count-down

actually begins before volunteering.  Including the rounds in which the predicted subject

volunteered after 1 or 2 seconds increases to 133 the number of rounds in which the SPE

prediction was approximately realized.   Even if we included the rounds in which the predicted

subject waited more than two seconds before volunteering (there were 61 such rounds with an



16  This includes 37 rounds in which the predicted subject volunteered simultaneously
with at least one other.
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average stopping time of 13 seconds), this would still be a success rate of only about 41%.  By

comparison, subjects other than the one predicted by the subgame-perfection refinement

volunteered first 273 times and 5 rounds had no volunteer.  The identity of volunteers by

treatment is presented in Table 3.

Nonetheless, the subject identified by the subgame-perfection refinement volunteered in

almost 49% of the rounds16.  In 11 of the 17 treatments that had a unique SPE, the predicted

subject volunteered more often than the others, sometimes (e.g., in 1.4) up to three quarters of

the time.  So it is worth verifying whether it is the presence of a unique SPE or some other factor

that is driving these observations.

We compared the distributions of volunteers observed in each sub-treatment of

Treatments 1 through 5.  Overwhelmingly, in all cases, we cannot reject the null hypothesis of

no significant difference against the alternative hypothesis that there are significant differences

among the distributions of volunteers within a treatment.  In treatments 1 and 2, for which each

sub-treatment had the same unique SPE, there was no significant difference in the pattern of play

across sub-treatments ((χ2 test, p > 0.500 for treatment 1 and p > 0.300 for treatment 2).  In

treatment 3, there was no significant difference in the pattern of play between games with a

unique SPE and games with multiple SPE (χ2 test, p > 0.800).  In treatment 4, we observed the

same pattern of play when subgame-perfection predicted that subject C would volunteer as when

it predicted that subject B would volunteer (χ2 test, p > 0.100).  In treatment 5, we also observed

no significant differences in the pattern of play even though each sub-treatment yielded different
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SPE predictions (χ2 test, p > 0.300).  Therefore, even in the rounds where the SPE prediction was

accurate, it appears that this was just a coincidence and that something else was guiding the

subjects’ decisions.  Incidentally, even the presence of a dominated strategy didn’t seem to affect

the pattern of play:  we observed the same patterns in treatments 2.1 and 2.3 where volunteering

was a dominated strategy for player C as in treatments 2.2 and 2.4 in which volunteering was not

dominated.

Table 4 reports the frequency distributions of the time elapsed before the first subject

took “action” and Figure 2 shows the cumulative incidence of volunteering in the first 20

seconds of each game.  Of the 544 rounds played, the median time was 0 (54% of the rounds

were stopped at t = 0) and the median time for “action” in the remaining rounds occurred in the

fourth second.  Even if volunteering immediately can be extended through the first couple of

seconds of a round, this leaves approximately 28% of the rounds without a volunteer after the

first two seconds.  Unless these subjects were playing a mixed strategy and randomizing their

stopping time, this observation suggests that many subjects were either expecting someone else

to stop the game and needed a few seconds to revise their strategy once they saw that the payoffs

were continuing to decline, or, had deliberately chosen to wait some time in the hope that

someone else would volunteer first.  We will explore this possibility below.

5. Discussion

5.1 Subgame-Perfection

Three main reasons lead us to doubt the appropriateness of subgame-perfection as an

equilibrium selection criterion in this experimental context.



17  A description of the two-stage entry-deterrence game can be found in several
introductory game theory textbooks,  for example in Rasmusen (1989, pp.85-87).  This game has
two Nash equilibria in pure strategy (Stay Out; Fight) and (Enter; Collude); however, only the
second is subgame-perfect.
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First, subgame-perfection is an equilibrium selection criterion whose purpose is to

eliminate implausible equilibria, namely those that rest on non-credible threats.  For example, in

a simple two-stage entry-deterrence game, the implausibility of the non-subgame-perfect

equilibrium outcome is apparent to any casual observer.17  In this case, predicting that this or

some other similar game would unfold according to the SPE prediction seems warranted. 

However, in a War of Attrition game such as the one induced in our experiments, it is not clear

that any of the Nash equilibria are implausible.  Individual A taking action and the other two

abstaining sounds just as plausible as individual B or C taking action and the other two

abstaining.  Instead, it is the application of subgame-perfection which seems rather implausible,

as the mere statement of the subgame-perfect equilibrium strategy (player A volunteers at all t

between 0 and tA* ) seems to defy common sense (a natural reaction to this statement is: how can

player A volunteer at all t if he is stopping the game at t = 0?).  Many subjects may have simply

conceived their strategy as a particular stopping time, e.g., “wait 4 seconds,” rather than as a

conditional statement outlining what they would do at every point of the game if this point was

reached, e.g., “wait 4 seconds then push the action button, but if for some reason that doesn’t

stop the game then continue pushing the action button repeatedly every second until 65 seconds

have elapsed and stop pushing the action button after that.”  Unless subjects defined their

strategies in this fashion in their mind (and we doubt that they did), they would be unable to even

notice that a particular strategy combination may not be best responses to each other, say,



18  Past experimental research has so far failed to find convincing evidence that subjects
in sequential decision games systematically play subgame-perfect equilibrium strategies; this is
particularly true for complex games or games involving long decision chains.  See for example
Roth (1995) and Davis and Holt (1993, pp.102-109).
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between the 60th and 65th seconds.

Second, even if they had defined their strategy sets correctly in their minds, identifying

the subgame-perfect equilibrium strategies may be too difficult for most subjects.  Contrary to a

simple Prisoner’s Dilemma, subjects do not have a dominant strategy in a War of Attrition game. 

Selecting a best response to every strategy combination by the other players requires

recalculating an optimization problem for each of their strategies.  Figuring out an equilibrium

strategy combination is even more complex than merely selecting a best response.  It requires

that each player solve the game not only from his point of view but also from the point of view

of all the other players; and, they must verify that each is playing a best response to everyone

else.  Verifying subgame-perfection adds an even thicker layer of complexity by requiring that

the players figure out what everyone would rationally do at every point in the game, even those

they are convinced will never be reached.  This may be too complex a task for many subjects,

especially in a laboratory environment in which they only have 15 seconds to decide on a

strategy.18

Third, even though we provide subjects with complete information about everyone’s

payoffs, we can never truly elicit a game of complete information between them because it is

impossible to insure that everyone’s rationality is common knowledge (i.e., all members of a

group believe that all other members of their group are rational, and their beliefs about others’

beliefs are equally certain and known up to an infinite regress).  If subjects have any doubt about



19  Thaler (2000) predicts an increase in the use of descriptive theories such as this in
economics.  Descriptive theories are based on the observance of empirical regularities in the
behavior of human subjects and the context of the economic problem being considered.   
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another’s rationality or about whether anyone doubts anyone else’s rationality, they will be

unable to predict each other’s best responses accurately.  But the ability to accurately predict

everyone’s rational best responses to actions off the equilibrium path is crucial to the application

of subgame-perfection, and the subjects who participated in these experiments almost certainly

lacked this ability.  In fact, before beginning these experiments none of us knew with certainty

how the subjects would behave.  So, it seems likely that the subjects who participated in the

sessions were at least as ignorant as we were about how their opponents would behave.  But if a

player is unsure of how the other players will behave, how should he rationally play this game? 

The answer is definitely not to just play blindly the strategy identified by the subgame-perfection

refinement.  Instead, he would use whatever beliefs he has about the likelihood that other players

will behave in certain ways to determine an optimal strategy.

Since our experimental results confirm these doubts concerning the accuracy of the

prediction that the game will unfold according to the subgame-perfect equilibrium, we suggest

an alternative hypothesis about how subjects may behave in this environment.  It rests on the

hypothesis that instead of looking backward from the end of the game to unravel the equilibria

that do not meet the subgame perfection criterion, subjects will simply compare the expected

benefits and costs of waiting for some time at the beginning of the game.19



20 Another alternative hypothesis is that subjects may have been attempting to coordinate
their actions around a number of seemingly relevant focal points.  We evaluate this hypothesis in
an appendix that we are not including in this paper due to space constraints, but which is
available at http://socserv2.socsci.mcmaster.ca/~econ/mceel/papers/bcmvpsfocal.pdf . The “focal
point” hypothesis does not explain the data as well as the “play against nature” hypothesis.

21  This hypothesis is similar to what Nagel (1995) calls “first order beliefs.”  Players who
hold first order beliefs assume that others behave randomly and choose their best response to this
random behavior.  Nagel (1995) contrasts this to zero-order beliefs, in which players simply pick
a strategy at random without forming beliefs about what the others will do, and nth-order beliefs
in which the players reason deeply enough to form beliefs about the (n-1)th order beliefs of the
others.

22  If the individual did not know g(t), we could reinterpret it as his belief about the
probability that nature would take action at time t.  Since we would then have to consider the
possibility that the player could update these beliefs every second of the game, this would
complicate the analysis without shedding additional light on the question at hand.
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5.2. Play Against Nature 20

If subjects are unable to quickly and accurately forecast each other’s strategies, they will

approach this game as if they were playing against an unpredictable opponent instead of against

two other purposeful players and will simply choose a waiting time that equates the expected

cost and benefit of waiting an additional second.21  The benefit of waiting is that it increases the

probability that someone else will stop the game first and therefore that the player will avoid the

cost of volunteering.  The cost of waiting is the loss of payoff if no one else has stopped the

game by then.

Suppose that Nature takes action randomly at some time t according to a (discrete)

probability distribution g(t) over [0, Ti] known by i.22  We could also interpret g(t) as the

subjective belief that someone else will volunteer at time t.  There may be a positive probability

that nature takes action at t = 0 and so g(0) $ 0.  Furthermore, g(Ti) $ 0 allows for a positive

probability that nature will not take action during individual i’s time horizon.  Normalizing
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payoffs so that vi = 0 for simplicity, individual i’s payoff from taking action at time t against an

opponent who plays according to g(t) is:

                                                                              t - 1                                                           t - 1
                           Pi (t) = {1 - 3 g(j)}[ si(Ti - t) - Ci] + 3 g(j) [ si (Ti - j)] (9)
                                               j = 0                                                          j = 0

The first term on the right-hand side is the expected payoff if nature has not taken action by time

t and individual i takes action himself.  In this case, he pays the cost Ci and receives si from time

t through Ti.  The second term is the expected payoff if nature takes action before time t.  In this

case the individual receives si from that time on through Ti .  It is noteworthy that Pi (t) is not

necessarily decreasing monotonically in t, so volunteering at t = 0 is not necessarily optimal. 

Ex-ante, given their incomplete information, it may even be optimal for everyone to wait before

taking action or even for everyone to volunteer at t = 0. The specific form of the function

depends upon g(t).

Given this expected payoff function, the individual will choose to take action at the time t

which maximizes Pi(t).  The expected gain from waiting one more second is: 

                                                                                     t
                                    Pi (t+1) - Pi (t) = g(t)Ci - {1 - 3 g(j)}si (10)
                                                                                    j = 0

The first term to the right of the equal sign contains the probability of avoiding the cost Ci by

waiting one more second and the second term contains the probability of losing the return si if

nature does not act by time t.  The trade-off between taking action and waiting is clear: Each

second the individual waits costs him si if nature does not take action; however, this increases the

probability that nature will take action in the next second sparing him the cost Ci .  Ceteris

paribus, the larger Ci , the longer an individual will choose to wait before taking action, and the

larger si , the shorter the time the individual will choose to wait before taking action.  It is
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noteworthy that the time horizon, Ti, and the initial endowment, Ei, do not appear in the equation. 

When individuals have incomplete information, or are unable to accurately forecast others’

strategies, the decision of how long to wait before taking action depends only on the expected

gain and cost of waiting and Ti and Ei are irrelevant to this decision.

If individuals have the same beliefs, this hypothesis leads to the following predictions: In

the treatments in which individuals differ with respect to the cost of volunteering, Ci, (Treatments

1 and 5) the one with the smallest Ci will wait the shortest time before taking action.  In

Treatments 2 and 4 where individuals differ with respect to the cost of waiting, the individual

with the highest cost of waiting will wait the least.  If the individuals do not differ with respect to

Ci or si (Treatment 3), we cannot predict who will wait the least, thus a default prediction of

random behavior is maintained. 

In the 224 rounds in which subjects differed according to Ci (Treatments 1 and 5), the

subject with the lowest Ci volunteered 145 times, the subject with the middle Ci volunteered 67

times, and the subject with the highest Ci volunteered only 46 times.  In the 224 rounds in which

subjects differed according to si  (Treatments 2 and 4), the subject with the highest cost of

waiting volunteered 123 times, the subject with the middle cost of waiting volunteered 69 times,

and the subject with the lowest cost of waiting volunteered only 49 times.  In both cases, the

distribution of volunteers is significantly different from a random draw.  By contrast, in the 96

rounds in which subjects did not differ by either Ci or si (Treatment 3), the three subjects

volunteered 43, 29 and 36 times each.  These numbers are not significantly different from a



23  The χ2 statistic for the test of the hypothesis that all three subjects volunteer as often as
each other is 63.28 for treatments 1 and 5, 36.48 for treatments 2 and 4 and 2.72 for treatment 3. 
The critical value of the χ2 statistic with 2 degrees of freedom at a 5% significance level is 5.99.
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random draw.23  

It is worth noting that the play-against-nature hypothesis does not predict that the

individual with the lowest cost of volunteering (or the highest cost of waiting) will always

volunteer first.  The decision of how long to wait also depends on the players’ unobserved

beliefs, g(t).  What the play-against-nature hypothesis predicts is that the subjects who have a

lower cost of volunteering or a higher cost of waiting should be observed to volunteer more often

because they tend not to wait as long.  This is exactly what we observed.  Over Treatments 1, 2,

4, and 5, for which the PAN hypothesis predicts nA > nB  > nC  where ni is the number of rounds

in which subject i volunteers, we observed nA  = 268,  nB  = 136 and nC  = 95.  We can reject the

null hypothesis that the true distribution is a random distribution of volunteers across the three

subject types (χ2 = 98.29,  p = 0.000).  In addition to this overall observation, this order is

observed in all four treatments ([88, 27, 26], [53, 24, 23], [70, 45, 26], and [57, 40, 20]). 

Because of the smaller sample size the numbers are not as unambiguous when we break down

the data by sub-treatment, but nonetheless in 13 of 16 sub-treatments  nA > nB , in 9 of 13 nB  >

nC, and in 15 of 16 nA > nC.

Looking at the correlation between the stopping time and the size of the parameters Ci

and si, we ought to observe fewer multiple volunteers and longer stopping times in treatments

1.2, 1.4, 3.3 and 3.4 where the cost of waiting is small (si  = 0.1) than in treatments 1.1, 1.3, 3.1,

3.2 and 5.1-5.4 where it is large (si = 0.2).  The data only weakly confirm that this is what

happened: when si  is smaller, we observed fewer multiple volunteers at t = 0 (11% of the rounds



24  Using a χ2 test we cannot reject the null hypotheses that si has no effect on the number
of multiple volunteers when t = 0 and that si has no effect on the number of rounds that end at t =
0.  A t-test on the difference between the mean stopping times when si = 0.1 and si  = 0.2 does
not permit us to reject the null hypothesis that the mean stopping times are the same.

25  Using a χ2 test we cannot reject the null hypothesis that the proportion of multiple
volunteers is the same across the three values of Ci , but we can reject the null hypothesis that the
proportion of games ending at t = 0 is the same across the three values of Ci .  Pairwise one-sided
Fisher exact tests support the conclusion that the negative relationship between Ci and the
proportion of games ending at t = 0 is significant.  Finally, t-tests on the differences between
mean stopping times support the significance differences in all pairwise comparisons of average
stopping times.
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when si = 0.1 and 16% when si = 0.2), fewer games ending at t = 0 (54% when si = 0.1 and 60%

when si = 0.2), but nearly identical average stopping times (3.72 seconds when si =  0.1 and 3.78

seconds when si =  0.2).24  It may be that the differences in the costs of waiting in these

experiments (10 cents versus 20 cents per second) are not large enough to prompt significantly

different waiting times.  It would have been interesting to see whether subjects would have

waited significantly longer if waiting had cost them only 1 or 2 cents per second instead.

The same analysis can be made regarding the cost of volunteering.  We ought to observe

fewer multiple volunteers and longer stopping times in treatments 2.1 and 2.3 (Ci  = 10) than in

treatments 2.2, 2.4, 3.1, 3.3, 4.1 and 4.3 (Ci = 5), and the shortest stopping time in treatments 3.2,

3.4, 4.2 and 4.4 (Ci = 1).  The data strongly confirm that this is what happened: When Ci is

larger, we observed fewer multiple volunteers at t = 0 (6% of the rounds when Ci = 10, 7.5%

when Ci = 5, and 14% when Ci = 1), fewer games ending at t = 0 (29% when Ci = 10, 44% when

Ci = 5, and 71% when Ci = 1), and longer average stopping time (17 seconds when Ci = 10, 5

seconds when Ci = 5, and 1 second when Ci = 1).25  These data confirm that subjects tended to

wait longer when the cost of volunteering was higher, as predicted by the play-against-nature
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hypothesis.

The predictive performance of the PAN hypothesis can be compared to that of subgame-

perfection if we look at the treatments in which the subject predicted to volunteer most by the

PAN hypothesis is not the player predicted to volunteer by the SPE hypothesis.  In treatments

4.1, 4.2, 4.3, 4.4, 5.3 and 5.4 the subject predicted to volunteer by SPE did so in 51 of 176

rounds, while the subject predicted to volunteer the most often by the PAN hypothesis did so in

99 rounds.  The PAN prediction was correct twice as often as the SPE prediction.  Not only does

the PAN hypothesis fit the data well, but it’s predictive power is clearly superior to subgame-

perfection.

6. Conclusions

Who will volunteer to do a job that everyone thinks should be done but that everyone

would rather let someone else do?  The evidence from the experiments we conducted shows that

the answer is not as clear as the theory predicted.  Subjects did tend to behave in a systematic

manner: in most rounds someone volunteered immediately or fairly quickly (73% of the rounds

ended within the first 2 seconds), and very few rounds (1%) ended without a volunteer. 

However, our data contradict the hypothesis that subjects saw their subgame-perfect equilibrium

strategies as the obvious way to play the game.  The SPE hypothesis had very poor predictive

power, being approximately correct in only 28% of the rounds.  Moreover, even in the cases

where the SPE prediction was realized, the subjects’ play was likely governed by other

considerations since they appeared to play the same way in games with and without a unique

SPE.  We proposed a simple behavioral hypothesis to explain the observed data: the participants



26 See Kreps (1990) p. 536-543 for a discussion and other examples.
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in our sessions were unable to predict how the others would play, and therefore tried to

maximize their expected payoffs by choosing a waiting time that equates the expected cost and

benefit of waiting an additional second – as if they were playing against an unpredictable

opponent.  We called this hypothesis “play-against-nature”(PAN).  The data on the timing and

identity of volunteers is generally consistent with this hypothesis, and its predictive power is

much superior to the SPE prediction.

We can draw two important lessons from this exercise.  First, we are reminded yet again

that even though useful insights about incentives and strategic behavior may be obtained from

complete information models, one should be cautious to extend the predictions obtained from

these models to actual strategic interaction situations.  Since it is impossible to insure that the

rationality of all the subjects involved in a game is common knowledge, we cannot generate a

game of complete information in the laboratory setting, much less expect to observe one in the

field.  This is significant because even if all players are fully rational, backward induction

reasoning can break down completely when the slightest bit of incomplete information is

introduced.26  Second, these experiments also suggest that given homo sapiens’ limited cognitive

ability, decision-making time is a relevant factor in experimental design.  Figuring out how the

other subjects would play may have been too complex a task in the time we allowed them to

make a decision.  We may wonder, for example, whether subjects would have played the same

way if they had been given 24 hours to research and think about a strategy instead of 15 seconds.

This is an issue for further research.
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Table 1     Experimental Design

Treatment
Parameter
     Set

Observations Ei si Ci ti* SPE Prediction

1.1 32 20 0.2 1, 3, 5 85, 75, 65 A

1.2 32 20 0.1 1, 3, 5 80, 60, 40 A

1.3 32 10 0.2 1, 3, 5 44, 34, 24 A

1.4 32 10 0.1 1, 3, 5 80, 60, 40 A

2.1 24 18, 12, 6 0.3, 0.2, 0.1 10 26, 9, - A

2.2 24 18, 12, 6 0.3, 0.2, 0.1 5 42, 34, 9 A

2.3 24 20, 15, 10 0.4, 0.3, 0.2 10 24, 16, - A

2.4 24 20, 15, 10 0.4, 0.3, 0.2 5 36, 32, 24 A

3.1 24 20, 17, 14 0.2 5 65, 59, 44 A

3.2 24 20, 17, 14 0.2 1 85, 79, 64 A

3.3 24 20, 17, 16 0.1 5 40, 40, 40 A,B,C

3.4 24 20, 17, 16 0.1 1 80, 80, 80 A,B,C

4.1 32 20 0.4, 0.2, 0.1 5 36, 65, 40 B

4.2 32 20 0.4, 0.2, 0.1 1 46, 85, 80 B

4.3 32 10 0.4, 0.2, 0.1 5 11, 24, 40 C

4.4 32 10 0.4, 0.2, 0.1 1 21, 44, 80 C

5.1 24 16, 18, 20 0.2 1, 5, 10 74, 64, 40 A

5.2 24 16, 18, 20 0.2 1, 3, 5 74, 74, 65 A,B

5.3 24 10, 15, 20 0.2 1, 5, 10 44, 49, 40 B

5.4 24 10, 15, 20 0.2 1, 3, 5 44, 59, 65 C

Note:  The first 8 sessions included treatments 1, 2 and 4.  The data from treatment 2 were inaccurately recorded
because of a programming error.  These data are not reported.  The next 6 sessions included treatments 2, 3, and 5. 
These treatment 2 data are reported.  
          For some parameter combinations, a player’s payoff would still have been positive at t=90.  If the game ended
without a volunteer, the payoff he received was then Ei - 90 si.  For other parameter combinations, a player’s payoff
would have decreased to zero before t=90.  In this case, the payoff function had a kink and followed the horizontal
axis from that point on until the end of the game.  Due to a programming glitch subjects received one second’s
payoff, si, instead of 0.  This shortens the ti* values by one second.  The values of ti* are therefore calculated as ti* =
min {90 - Ci/ si , (Ei - Ci)/si - 1}.
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Table 2     Summary of Subgame Perfect Equilibrium Prediction Performance

Description Number of Rounds Percentage

Predicted subject volunteers immediately, all others wait 97 20%

Predicted subject waits 1 or 2 seconds 36 8%

Predicted subject waits more than 2 seconds
(average stopping time: 13 seconds)

61 13%

Multiple volunteers at time 0 (including predicted
subject)

37 8%

Another subject volunteers but not the predicted subject 236 50%

No one volunteers 5 1%

Total 472 100%

Note: Totals exclude treatments 3.3, 3.4 and 5.2 in which there was not a unique SPE
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Table 3     Identity of Volunteers by Treatment (Predicted Subgame Perfect Equilibrium
Volunteers are Identified with Bold Font)

Participant

Treatment A B C

1.1 21 11 6

1.2 22 7 7

1.3 21 5 7

1.4 24 4 6

2.1 16 4 5

2.2 15 7 3

2.3 8 8 8

2.4 14 5 7

3.1 12 8 6

3.2 11 7 11

3.3 8 8 10

3.4 12 6 9

4.1 21 8 6

4.2 14 16 6

4.3 20 6 8

4.4 15 15 6

5.1 16 7 3

5.2 12 11 8

5.3 13 11 7

5.4 16 11 2

Note: Rows do not always total 32 or 24 because there were multiple volunteers in some rounds. 
In some other rounds time ran out and no one volunteered.
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Table 4     Frequency Distributions and Medians of Times at which Action was taken and Number of Multiple
Volunteers by Treatment

Treatment
Time Elapsed Before a Volunteer Takes Action (in seconds)

Multiple
Volunteers0 1 to 2 3 to 5 6 to 10 11 to 20 21 to 89 No

Volunteer
Median

1.1 17 8 5 1 0 1 0 0 6

1.2 16 7 2 5 0 2 0 0.5 4

1.3 16 4 5 3 1 3 0 0.5 1

1.4 16 6 6 2 2 0 0 0.5 2

Sub-total 65 25 18 11 3 6 0 1 13

2.1 7 4 4 1 3 3 2 4 1

2.2 10 4 2 6 1 1 0 1 1

2.3 7 4 2 3 0 5 3 4.5 2

2.4 9 5 5 2 3 0 0 1 2

Sub-total 33 17 13 12 7 9 5 2 6

3.1 7 4 2 6 3 2 0 4 2

3.2 19 4 1 0 0 0 0 0 5

3.3 10 8 0 1 1 3 1 1 3

3.4 19 3 1 1 0 0 0 0 3

Sub-total 55 19 4 8 4 5 1 0 13

4.1 18 5 1 3 3 2 0 0 3

4.2 21 10 0 0 0 1 0 0 4

4.3 17 5 3 5 1 1 0 0 1

4.4 20 9 3 0 0 0 0 0 4

Sub-total 76 29 7 8 4 4 0 0 12

5.1 19 0 1 2 1 1 0 0 2

5.2 16 3 2 1 0 2 0 0 7

5.3 14 5 2 0 2 1 0 0 6

5.4 16 1 2 2 1 2 0 0 4

Sub-total 65 9 7 5 4 6 0 0 19

Total 294 99 49 44 22 30 6 0 63



Figure 1     Subject’s Screen Providing Information for the Three Participants in a Group
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Figure 2     Cumulative Distributions of Volunteers over Time by Treatment




