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Abstract

This work introduces a new model to investigate the efficiency and evolution of networks of firms
exchanging knowledge in R&D partnerships. We first examine the efficiency of a given network
structure in terms of the maximization of total profits in the industry. We show that the efficient
network structure depends on the marginal cost of collaboration. When the marginal cost is low,
the complete graph is efficient. However, a high marginal cost implies that the efficient network
is sparser and has a core-periphery structure. Next, we examine the evolution of the network struc-
ture when the decision on collaborating partners is decentralized. We show the existence of mul-
tiple equilibrium structures which are in general inefficient. This is due to (i) the path dependent
character of the partner selection process, (ii) the presence of knowledge externalities and (iii) the
presence of severance costs involved in link deletion. Finally, we study the properties of the emerg-
ing equilibrium networks and we show that they are coherent with the stylized facts of R&D net-
works.
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1. Introduction

R&D partnerships have become a widespread phenomenon characterizing technological
dynamics, especially in industries (Hagedoorn, 2002) with rapid technological develop-
ment such as, for instance, the pharmaceutical, chemical and computer industries (see
Ahuja, 2000; Pammolli and Riccaboni, 2002; Powell et al., 2005; Roijakkers and Hage-
doorn, 2006). In those industries, firms have become more specialized on specific domains
of a technology and they tend to combine their knowledge with the one of other firms
that are specialized in different domains (Ahuja, 2000; Powell et al., 1996).
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In this paper, we build a model in which firms innovate by recombining their knowl-
edge with that of other firms in the industry, via a network of costly R&D collaborations.
Within this framework, we first study the efficiency of a given network structure in terms
of maximization of total profits in the industry. We characterize the topology of the effi-
cient structure for any level of the marginal cost of collaborations in the relevant range.
Next, we study the emergence of pairwise stable structures by employing the notion
of “improving path” (cf. Jackson and Watts, 2002), and assuming that link deletion
is subject to severance costs. We show the existence of multiple stable structures. In
addition, we study the relation between network stability and efficiency. Finally, we in-
vestigate equilibrium selection under a two-sided myopic link dynamics and we show that
the model is able to generate stable structures that match the properties of empirically
observed R&D networks.

Our research is motivated by two different, albeit related, streams of literature on
R&D collaborations. On the one hand, the increasing importance of R&D partnerships
has spurred research, both theoretical and empirical, on the consequences of a given
structure of the network of R&D collaborations for technology innovation and diffusion
(see among many others Ahuja, 2000; Cowan and Jonard, 2004, 2007; Letterie et al.,
2008). To this regard, an important and still unsettled debate concerns the relation
between the position of a firm in the network and its performance, and, in particular,
whether a densely interconnected network is more conducive to knowledge diffusion and
innovation than a network with structural holes (i.e. displaying the presence of hubs
indirectly connecting many firms which have no direct link across them). Indeed, clusters
of densely and directly connected firms might be seen as fostering collaboration efforts
among participants by generating trust and punishment of opportunistic behaviors, and
a common language and problem solving heuristics (see e.g. Ahuja, 2000; Coleman, 1988;
Cowan and Jonard, 2007; Walker et al., 1997). Conversely, by creating a structural hole
in the network firms may have access to different sources of knowledge spillovers at the
same time economizing on the costs of direct collaborations (cf. Burt, 1992; Gargiulo and
Benassi, 2000; Rowley et al., 2000).

On the other hand, another body of contributions has investigated the salient features
of empirically observed R&D networks (see e.g. Ahuja, 2000; Fleming et al., 2007; Hanaki
et al., 2007; Powell et al., 2005; Roijakkers and Hagedoorn, 2006). These empirical studies
have identified three main structural properties of innovation networks that are invariant
across the different industries examined: (i) Networks are sparse, that is, from all possi-
ble connections between firms, only a small subset is realized. (ii) Networks are highly
clustered, that is, they are locally dense. In clusters firms are closely interconnected but
between different clusters there exist only few connections. (iii) The distribution of links
over the firms tends to be highly heterogeneous with only few firms being connected to
many others. Following this wave of empirical research, theoretical models have explored
the emergence of R&D networks in a framework with firms being allowed to form any
arbitrary pattern of bilateral R&D agreements (see Goyal and Joshi, 2003; Goyal and
Moraga-Gonzalez, 2001, for an equilibrium approach, and Cowan et al., 2006, for an
agent-based approach) . However, these models lead to network structures that are too
simple to account for the stylized facts listed above.

Our paper contributes to the foregoing literature along several dimensions. First, we
show that the network structure maximizing industry welfare (measured as the sum of
firms’ profits) is a function of the marginal cost of collaborations. In particular, we show
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that the efficient graph always belongs to a specific class of graphs (the class of nested-
split graphs, see Definition (2) and Proposition (3)). Furthermore, when the marginal
cost is low the efficient graph graph coincides with the complete graph, i.e. the one maxi-
mizing the number of direct ties . As marginal costs increase, it is efficient for the industry
to organize into networks having a core-periphery structure. More precisely, at high level
of collaboration costs, efficient networks display the presence of hubs, indirectly linking
cliques of firms to otherwise disconnected nodes in the network. Second, and relatedly, we
show that if marginal collaboration costs and the size of the industry are large enough,
the efficient structure for the industry is characterized by significant inequality in prof-
its across firms. In particular, firms having less (more) direct connections are also the
ones displaying higher (lower) profits. In addition, profits inequality increases both in
the number of firms and in the marginal cost of collaboration. Third, we study the rela-
tion between efficiency and equilibrium networks in our model. We show that multiple
equilibrium structures for the same level of collaboration costs do arise in our model.
In particular, we demonstrate that, for the same level of collaboration cost, both the
spanning star (i.e. the star encompassing all nodes in the network), as well as the graph
composed by disconnected cliques of the same size are possible equilibrium networks. The
existence of multiple equilibria implies that efficiency is not necessarily met by equilib-
rium structures in our model. In addition, we identify the conditions on industry size and
collaboration costs under which the efficient network never belongs to the set of possible
equilibria. Finally, we study the properties of equilibrium structures in our model and we
compare them with those of empirical R&D networks. More precisely we investigate the
emergence equilibrium structures under a two-sided link formation/deletion mechanism
(see Vega-Redondo, 2007, p. 212) in which firms are stochastically selected to revise their
collaboration strategies. In this dynamics, firms decide to form a link if the link did not
exist before and the link is beneficial to both of them, and decide to delete a link if
the link existed before and deletion is beneficial to at least one of the agents selected.
We show that under this dynamics the model is able to generate equilibrium structures
matching the stylized facts of empirical R&D networks.

As we mentioned above, the possibility of recombining different knowledge stocks to
introduce innovations in the industry is the rationale for R&D collaborations in our
model (see Ahuja, 2000; Kogut and Zander, 1992; Powell et al., 1996; Weitzman, 1998).
We formalize this idea by assuming that the arrival rate of innovations is proportional to
the growth rate in the knowledge stock of the firm, and that firm’s knowledge growth is
a linear combination of the idiosyncratic knowledge stocks of the firm and the knowledge
of its R&D partners. In the model, firm’s expected profits are a linear function of the
expected number of innovations per period and of the costs of R&D collaborations.
Each R&D collaboration requires a fixed investment over each period. Total costs of
collaboration are thus proportional to the number of collaborations (the degree) of the
firm. Moreover, if the period over which collaborations are evaluated is long enough, the
expected number of innovations per period turns out to be proportional to the largest
eigenvalue of the adjacency matrix associated with the connected component to which
the firm belongs (see Proposition (1) and Corollary (1)). This has several implications.
First, as the largest eigenvalue is the same for all firms in the same component, the
formation/deletion of a collaboration by a firm has a strong non-rival external effect on
all its direct and indirect neighbors. Second, the magnitude of the change in eigenvalue,
resulting from creating/severing a collaboration, varies with the topology of the network
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and the position of the two firms involved in the collaboration, thus implying a strong
path-dependent character of partner’s choice decisions. Finally, it can be shown that
the largest eigenvalue is related to the number of all walks connecting firms in a given
component. .

Our model can be related to the models in the network formation literature in which
agents face a trade-off between the benefit they get from accessing the network and
the cost of forming links with other agents (see e.g. Bala and Goyal, 2000; Carayol
et al., 2008; Haller and Sarangi, 2005; Jackson and Wolinsky, 1996; Vega-Redondo and
Goyal, 2007). To this regard, our model shares many similarities and differences with
the “connections” model introduced in Jackson and Wolinsky (1996) and with the linear
“two-way flow” model without decay introduced in Bala and Goyal (2000). For instance,
similar to both models, the benefit an agent receives from the network derives also from
indirect connections. In addition, such a benefit is non-rival 1 (see in particular Equation
(10) and discussion thereafter). However, differently from both models, link deletion
involves severance costs. Furthermore, differently from Jackson and Wolinsky’s model
the benefit the agent receives from the network does not only depend on the shortest
path existing between the agent and its direct and indirect neighbors but it accounts
for all possible walks existing among them. Next, differently from Bala and Goyal’s
linear model, link-formation is two-sided. In addition, the payoff of the agent does not
only depend on the number of direct and indirect neighbors that can be reached by
the agent with its existing connections, but also on how each neighbor can be reached.
Incorporating all walks and severance costs in the network formation process has several
implications for the results obtained. First, as efficiency is concerned, similar to Jackson
and Wolinsky’s model (and differently from Bala and Goyal’s model) we obtain that
the complete graph and the empty graph are efficient for, respectively, very low and
very high values of the marginal cost of link formation. By contrast, differently from
both models, first, the efficient graph for intermediate levels of the marginal cost of
collaboration (i.e. the nested-split graph), is in general not minimally connected (i.e. more
than one path exists between any two agents in the efficient graph). Second, stable graphs
are not necessarily connected as they can consists of several disconnected components.
Similar to both models, we obtain the spanning star as possible equilibrium network
for intermediate levels of marginal cost of collaboration. However, differently from both
models, this equilibrium coexists with an equilibrium consisting of the class of graphs
composed of disconnected cliques of the same size.

The paper is organized as follows. Section 2 contains the description of the model,
starting with the definition of the network of R&D collaborations across firms, and then
moving to explain how firms profit from R&D collaborations, and the relations between
our model and the others proposed in the literature. Section 3 is devoted to the analysis
of the efficiency of R&D network structures and to the relation between efficiency and
inequality in firms’ profits. Network dynamics, the emergence of equilibrium networks
and their properties are analyzed in Section 4. Finally, Section 5 concludes. All proofs
can be found in the appendix.

1 See Vega-Redondo and Goyal (2007) for a model where benefits from indirect connections are rival.
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2. The Model

We consider an industry in which firms engage in pairwise R&D collaborations with other
firms. Collaborations allow the growth of knowledge within the firm and an increase in
the probability to introduce innovations that yield profits to the firm. We first define the
network of R&D collaborations. Next, we characterize how the R&D network influences
knowledge growth, innovation and profits of the firms. Finally, we briefly discuss the
relations between our model and the relevant literature.

2.1. The Network

Consider an industry populated by n firms. The network 2 G is the pair (N,E) consisting
of the set of nodes N(G) = {1, ..., n}, representing the population of firms and a set of
edges E(G), representing R&D collaborations among the firms 3 (for simplicity we may
just write N and E where it is obvious to which network G the sets refer). An edge
ij ∈ E, represents the existence of an R&D collaboration between firm i and j, which are
said to be adjacent. A subgraph of G is a pair G′ = (N ′, E′) such that N ′ ⊆ N , E′ ⊆ E.
The number of nodes is |N | = n and the number of edges |E| = m. A complete graph
Kn is a graph in which all n nodes are pairwise adjacent. The graph in which no pair of
nodes is adjacent is the empty graph K̄n. A clique Kn′ , n′ ≤ n, is a complete subgraph of
the network G. In contrast to the clique, an independent set K̄n′ is a subgraph in which
all n′ nodes are not pairwise adjacent.

The neighborhood of i is the set Ni = {j ∈ N : ij ∈ E}. The degree of a node i in
G, written by di, is the number of edges incident to i. Clearly, di = |Ni|. The maximum
degree is ∆(G) and the minimum degree is δ(G). The clustering coefficient Ci of firm i
is the proportion of links between the firms within its neighborhood Ni divided by the
number of links that could possibly exist between them, i.e.

Ci =
2|{jk : j, k ∈ Ni ∧ jk ∈ E}|

di(di − 1)
. (1)

The total clustering coefficient is the sum of the clustering coefficients for each firm,
C =

∑n
i=1 Ci.

A walk Wk of length k connecting firm i1 and ik is a sequence of firms (i1, i2, ..., ik) such
that i1i2, i2i3, ..., ik−1ik ∈ E. A walk is closed if the first and last firm in the sequence
are the same, and open if they are different. A path is a walk in which no firm is visited
twice. A closed path encompassing n nodes is a cycle, denoted by Cn.

A connected component in G is a maximal set of firms such that there exists a path
between any two of them. We will say that two components are disconnected if there is
no path between them. A connected graph is a graph consisting of only one connected
component.

Let A(G) be the symmetric n × n adjacency matrix of the R&D network G. The
element aij ∈ {0, 1} indicates if there exists a link between agent i and j such that
aij = 1 if ij ∈ E and aij = 0 if ij /∈ E. The eigenvalues of the adjacency matrix A are

2 In this paper we will use the terms graph and network interchangeably. The same holds for links and
edges.
3 We consider undirected graphs only.
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the numbers λ such that Ax = λx has a nonzero solution vector, which is an eigenvector
associated with λ. The term λPF denotes the largest real eigenvalue of A (the Perron-
Frobenius eigenvalue, cf. Horn and Johnson, 1990; Seneta, 2006), i.e. all eigenvalues λ
of A(G) satisfy |λ| ≤ λPF and there exists an associated nonnegative eigenvector v ≥ 0
such that Av = λPFv. For a connected graph G the adjacency matrix A(G) has a unique
largest real eigenvalue λPF and a positive associated eigenvector v > 0.

Finally, for a graph with n nodes there are
(
n
2

)
possible links and accordingly there are

2(n

2) possible graphs on n nodes. We denote with G(n, p) the random graph with n nodes,
in which each of the possible links occurs independently with probability p. Similarly,
G(n,m) is the random graph with n nodes and m edges.

2.2. Innovation and Profits from R&D Collaborations

Firms exploit R&D collaborations to introduce innovations in the industry. Decisions over
R&D partners are taken at discrete times t = T, 2T, 3T, ... where the length of a period
is given by T > 0. Innovations are introduced during each period (t, t + T ]. The rewards
from each innovation are assumed to be appropriable so that an innovation returns a
value equal to the constant V > 0. Following the theoretical literature on innovation
and endogenous technical change (see e.g. Aghion and Howitt, 1998; Reinganum, 1983,
1985; Winter, 1984), we assume that the introduction of innovations by a firm i ∈ N is
governed by a non-homogeneous Poisson process with arrival rate equal to hi(τ), where
τ ≥ 0 indicates the time variable within a period. Thus, the probability that an innovation
is introduced by firm i in the interval dτ , is equal to hi(τ)dτ . Moreover we assume that,
for any firm i, the arrival rate of innovations is proportional to the growth rate ρi(τ) of
knowledge 4

hi(τ) = bρi(τ), b > 0. (2)

In other words, the higher the growth rate of knowledge, the more likely it is that the firm
will be able to innovate. Expected revenues of firm i in a period (t, t+T ] are given by the
value V of each innovation times the expected number of innovations in the period. Note
that in Equation (2) the innovation process starts anew at the beginning of every period
(t, t + T ], taking as initial condition the stock of knowledge at the end of the previous
period (t−1, t−1+T ]. In addition, let us set τ ∈ (0, T ]. From Equation (2) the expected
number of innovations in a period (t, t + T ] can be written as

∫ T

0

hi(τ)dτ = b

∫ T

0

ρi(τ)dτ. (3)

In turn, the growth rate of knowledge is affected by the network of collaborations as
follows. In each period (t, t+T ], new knowledge is generated by recombining the existing
knowledge stocks of firms in the economy via the existing network of R&D collaborations
(see Kogut and Zander, 1992; Weitzman, 1998). More precisely, let us denote by xi(τ)
the stock of knowledge of firm i at time τ ∈ (t, t + T ]. Then new knowledge within firm
i is generated according to:

4 Note that both, the innovation arrival rate hi(τ) and the growth rate of knowledge ρi(τ) are flow
variables and are measured per unit of time.
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ẋi(τ) =

n∑

j=1

aij(t)xj(τ), (4)

where aij(t) are the elements of the adjacency matrix A(G(t)) (defined in Section 2.1)
corresponding to the network of R&D collaborations 5 . In vector-matrix notation Equa-
tion (4) reads ẋ(τ) = A(G(t))x(τ). Note also that in Equation (4) for non-negative initial
values of x(0) ≥ 0, we have that ẋ(τ) ≥ 0 as well as x(τ) ≥ 0.

The growth rate of knowledge of firm i, ρi(τ) = ẋi(τ)/xi(τ), in Equation (4) is directly
affected by the growth rate of knowledge of its neighbors, whose growth rate is affected
by the growth rate of their neighbors, and so on. It turns out that the topology of the
whole network of R&D collaborations (including all direct and indirect paths along which
knowledge can flow between the firms), influences the innovation process within the firm.

Collaborations also imply a cost for firms. Within a period (t, t+T ] each collaboration
involves a cost per unit of time equal to c̃. Moreover, we assume that firms are risk-
neutral. Finally, if we denote by Gi(t) the connected component to which firm i belongs
in the period, then expected profits for the firm at the beginning of the period can be
written as

π̃i(Gi(t), c, t) = bV

∫ T

0

ρi(τ)dτ − c̃T di(t), (5)

where di(t) is the degree of the firm at time t and during the period.
The timing of events in each period (t, t + T ] runs as follows: at the beginning t of

the period the network of R&D collaborations is determined (only one link is added or
removed at time t), and remains fixed throughout the period (t, t+T ]. During the period
(t, t + T ], firms recombine their knowledge stocks through the network while they also
bear the costs of their collaborations. As a result, innovations are introduced and the
rents accrue to the firm.

The expression for expected profits in Equation (5) can be directly related to the struc-
ture of the network of collaborations. For this purpose, the next proposition establishes
a relation between, on one hand, the asymptotic growth rate of ideas, the asymptotic
relative stock of knowledge and the rate of convergence, and, on the other hand, the eigen-
values and eigenvectors of the adjacency matrix A(Gi(t)) of the connected component
of firm i.

Proposition 1 Consider the eigenvalues λPF = λ1 ≥ λ2 ≥ ... ≥ λn associated with the
adjacency matrix A(Gi(t)) of the connected component Gi(t) of firm i ∈ N(Gi(t)). Then
the following results hold:

(i) The asymptotic knowledge growth rate of a firm i is constant and equal to the largest
real eigenvalue (Perron-Frobenius eigenvalue) of the adjacency matrix A(Gi(t))

lim
τ→∞

ρi(τ) = λPF(Gi(t)). (6)

The rate of convergence is O
(
e−[λPF(Gi(t))−λ2(Gi(t))]τ

)
as τ → ∞.

(ii) The asymptotic value of a firm i’s relative knowledge stock equals the element vi of
the eigenvector associated with the eigenvalue λPF(Gi(t))

5 In Equation (4) we are assuming the process of creation of ideas at the firm level is cumulative, in
that larger knowledge stocks (of the firm and of its collaborators) lead to higher knowledge growth. This
property of knowledge dynamics has often been emphasized in innovation studies (see e.g. Dosi, 1988).
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lim
τ→∞

xi(τ)
∑n

j=1 xj(τ)
= vi. (7)

Item (i) of the above proposition states that the knowledge dynamics defined in Equation
(4) converges, for a given R&D network, to a steady state characterized by a constant
growth rate of ideas. In addition, such a constant growth rate depends on the topology
of the connected component which the firm belongs to (through the largest eigenvalue
λPF (Gi(t))). This implies that, in the steady state, the arrival rate of an innovation is
constant and equal to bλPF . Moreover, item (ii) implies that the topology of the connected
component Gi(t) determines the distribution of relative values of the knowledge stocks
of firms in the same component. Finally, the rate of convergence to the steady state is
determined by the eigenvalues of 6 A(Gi).

An important assumption of our model is that the growth of knowledge is much faster
than the formation of R&D collaborations. This is equivalent to saying that τ is measured
in time units much smaller than those used to measure t. In other words, t = kτ , with k
large. Under this assumption, the expected number of innovations per unit of time can
be approximated (taking the limit k → ∞) with the largest real eigenvalue of a firm’s
connected component.

Corollary 1 The expected number of innovations of firm i per unit of time in a period
(t, t + T ] tends to a limit proportional to the largest real eigenvalue of firm i’s connected
component Gi.

lim
k→∞

b

kT

∫ kT

0

ρi(τ)dτ = bλPF(Gi(t)). (8)

Expected profits of the firm at beginning of the period (t, t + T ] can now be written as

π̃i(Gi(t), c, t) = bλPF(Gi(t))V T − c̃di(t)T. (9)

Applying an affine transformation to the above equation, we finally obtain expected
profits per unit of time in the period between t and t + T ,

πi(Gi(t), c, t) = λPF(Gi(t)) − cdi(t), (10)

where c = c̃
bV

is the marginal cost of link formation (rescaled by the factor 1/bV ) 7 .
Since in Equation (10) the largest eigenvalue λPF(Gi(t)) is the same for all firms in the
same connected component, the expected revenues from R&D collaborations will be the
same for all the members of Gi. Nonetheless, profits from R&D collaborations vary, in
general, across firms, since each firm may have a different number of collaborations. The
following lemma 8 characterizes the relation between the largest eigenvalue of a connected
component and the creation or removal of R&D collaborations.

6 In general, the convergence in a connected component to its largest real eigenvalue is always guar-
anteed. In addition, more dense networks are characterized by a faster convergence (see the proof of

Proposition (1) in the appendix). However, the convergence can be slow for sparse networks and par-
ticular network topologies. For a recent application and discussion of the convergence properties of the
social network matrices see Jackson and Golub (2007).
7 The introduction of linear and homogeneous in-house R&D activities in Equation (4) for the dynamics
of knowledge stocks would not alter the functional form of profits (up to a constant).
8 A proof of the foregoing lemma can be found in Cvetkovic et al. (1995).
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Lemma 1 Denote G′ = (N ′, E′) the graph obtained from the graph G = (N,E) by the
addition or removal of an edge. Then

(i) λPF(G′) ≥ λPF(G) if ij /∈ E and λPF(G′) ≤ λPF(G) if ij ∈ E.
(ii) λPF(G′) ≤ λPF(Kn) = n − 1.
(iii) |λPF(G′) − λPF(G)| ≤ 1

Thus, the largest real eigenvalue in a component is a non decreasing function of the
number of links. In addition, it is a bounded function, since its value can never be higher
than the one associated with the complete graph Kn. Finally, the change in the eigen-
value is itself a bounded function, since its value must be less than one. The preceding
observations deliver two central properties of the model. First, since the probability of
innovation is the same for all the firms in a given connected component and it is affected
by each link, the creation (deletion) of a collaboration by one firm has a positive (nega-
tive) non-rival external effect on all its direct and indirect neighbors in the component.
As we will discuss in Section 4, this property is at the origin of the fact that the net-
work can evolve into equilibria that are socially inefficient. Second, the marginal revenue
from R&D collaborations is always a positive (albeit bounded) function of the number
of links. This means that the creation (deletion) of a new R&D collaboration increases
(decreases) the probability of an innovation and thus the expected revenue. Moreover,
the revenue itself is a bounded function of the number of links. The last property does
not imply that the revenue is also a concave function of the number of links 9 . However,
as we will show in Section 4, it implies that, as the network grows in the number of links,
the highest marginal revenue that can actually be obtained from the creation of a new
link or from the removal of an existing link can become very small. It turns out that,
when the highest marginal revenue from a collaboration that can be obtained is smaller
than the marginal cost of collaboration, the network reaches an equilibrium, and this
may happen well before the network has grown to a fully connected graph.

2.3. Relation to the Literature on Network Formation

The profit Equation (10) can be compared to other similar utility functions in the litera-
ture that feature a dependence on the position of a firm in the network. For instance, the
utility function proposed in the “connections” model in Jackson and Wolinsky (1996) is
given by

ui =

n∑

j=1

δd(i,j) − cdi, (11)

where 0 < δ < 1 and d(i, j) is the length of the shortest path from node i to node j.
The difference between the profit function in (10) and the utility function in (11)

becomes apparent in the benefit term. While Equation (11) considers the shortest path
between firm i and j only, our model instead takes into account all possible walks from
firm i to the other firms in the connected component 10 . Recall that, in our model, a

9 Incidentally, note that λPF is not even determined as a function of m, because, for a given m, there
are many different ways to arrange the links among the nodes, resulting in different values of λPF.
10 It has been argued that in several settings paths that are not the shortest may have a big impact
on the information that is transmitted from one agent to another (see e.g. Stephenson and Zelen, 1989;
Wasserman and Faust, 1994). Moreover, empirical studies on R&D networks (cf. Powell et al., 2005) bring
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walk represents a sequence of recombination of the knowledge of the firms along that
walk. Not any recombination of knowledge might translate into a successful innovation.
However, the more walks there are in the component, the higher is the number of possible
knowledge recombinations available. It turns out that the likelihood for a successful
innovation is increased. Indeed, the largest eigenvalue λPF(Gi) of the adjacency matrix of
a connected component Gi, is related to the number of possible walks in that component
(more precisely, the growth rate in the number of walks of length k tends to λPF(Gi);
this property has been further elaborated in König et al. (2008)). Thus, the larger is
λPF(Gi), the larger is the number of possible knowledge recombinations via direct and
indirect R&D collaborations. From Equation (10) we can conclude that profits of firm i
grow with the number of walks in the connected component to which firm i belongs. On
the other hand, profits decrease with the degree di of the firm. Therefore, it is best for a
firm to be able to reach the other firms through many walks but to have not too many
links to pay for. This observation becomes apparent if one considers the following simple
example. The revenues of the hub in a star K1,n−1 and a node in a complete graph Kn in
Equation (11) are identical, because the shortest paths to all the other nodes are one link
long in both cases. This is not the case in our model where these two graphs generate
very different revenues. A node in the complete graph can reach the other nodes through
many different paths and this generates a much higher revenue than the one of the hub
in a star.

In their linear “two-way flow” model (without decay) Bala and Goyal (2000) introduce
a utility function of the form

ui = |Gi| − cdi, (12)

where |Gi| is the size of the connected component of firm i ∈ N(Gi). This means that the
utility of firm i grows with the number of all firms in the network who can be reached by
firm i across at least one path. The number of links and the number of paths between i
and the other firms do not matter because the benefit flow across the network is assumed
to be independent of its topology. In contrast, in our model, the topological properties
of the component the firm belongs to are critical for the profits of the firm. Consider
the following simple examples. According to Equation (12), revenues for a firm in the
complete graph Kn, in the clique K1,n−1 and in the cycle Cn, are identical. However,
in our model the revenues a firm earns from being part of a clique Kn are higher than
in a star K1,n−1, which in turn are higher than in a cycle Cn for the same number of
collaborations (see also Table (1), and the discussion in Section 4.2). This ranking can
be understood if one considers the possible walks in these graphs. The number of walks
is highest in the complete graph Kn while it is smallest in the cycle Cn (that contains
only one walk). While all these graphs encompass the same number of firms, they differ
significantly in the way the links are arranged among the firms.

3. Efficiency

In the model presented in the previous section, firms face a trade-off between increasing
the probability to innovate by forming R&D collaborations and the cost of sharing knowl-

support to the claim that firms are forming R&D collaborations in a way that increases the number of
walks in the network.
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edge with other firms in the industry. In this section we investigate how this trade-off can
be managed in order to yield the best outcome from the industry point of view. First,
we show that there exists an interval of the marginal cost of link formation, c ∈ [0, 1],
in which the network that maximizes social welfare, that is the efficient graph, is a con-
nected graph. We will show in Section 4 that this interval is the one of main interest
since for values above this interval, c > 1, firms do not have the incentive to form any
additional collaboration.

We then investigate the topology of the efficient graph, and we show that it belongs
to a well defined class of connected graphs, the “nested split graphs”. In particular,
for c small enough, the efficient graph is the complete graph. On the other hand, for
higher values of c and a larger number of firms, the efficient graph is sparser and shows
a strong degree heterogeneity. In addition, we show that it is characterized by significant
inequality in profits.

3.1. Efficient Networks

Following Jackson and Wolinsky (1996), we define industry welfare as the sum of firms’
individual profits

Π(G, c) =
∑n

i=1 πi(Gi)

=
∑n

i=1 (λPF(Gi) − cdi)

=
∑n

i=1 λPF(Gi) − 2mc.

(13)

We are interested in the solution of the following social planner’s problem. Let G(n)
denote the set of all possible graphs with n nodes. For a given value of cost c, the social
planner’s solution is given by

G∗ = argmax
G∈G(n)

Π(G, c). (14)

A graph G∗ solving the maximization problem (14), will be denoted as “efficient”.In
order to solve this problem we begin by identifying an interval for the marginal costs c
in which industry welfare is increased by connecting two disconnected components of the
network. The following lemma can be stated.

Lemma 2 Consider a graph G consisting of two disconnected components G1 and G2,
with n1, n2 nodes, m1, m2 edges, eigenvalues λPF(G1), λPF(G2) and total profits Π(G1) =
n1λPF(G1)−2m1c, Π(G2) = n2λPF(G2)−2m2c. We further assume that c ∈ [0, 1]. Then
there exists a connected graph G′ with n = n1 + n2 nodes that has higher total profits
than G, that is Π(G′) ≥ Π(G) = Π(G1) + Π(G2).

Thus, for c ∈ [0, 1], connecting two previously disconnected components of the graph
yields total profits larger than the respective total profits of the disconnected components.
From this it follows immediately that the efficient network is connected.

Proposition 2 Let H(n,m) denote the set of connected graphs having n nodes and m
links. If c ∈ [0, 1] then G∗ ∈ H(n,m).

This means that, in order to guarantee efficiency, each firm must have (direct or indirect)
access to the knowledge of all other firms in the industry.

11



Since the efficient graph is connected, Equation (13) for total profits simplifies to

Π(G, c) = nλPF(G) − 2mc. (15)

This implies that, for any given values of n and m, the efficient graph is also the one
with maximal λPF. In other words, for c ∈ [0, 1], the efficient graph G∗ belongs to
the set of connected graphs that maximize λPF(G), denoted by H∗(n,m). As a result,
the efficient graph belongs to a special class of graphs characterized by well defined
topological properties 11 . In order to fully describe these properties we first need to
introduce some basic definitions.

Brualdi and Solheid (1986) show that the graphs in the set H∗(n,m) have a stepwise
adjacency matrix A, defined as follows:

Definition 1 In a stepwise matrix A, the elements aij satisfy the following condition.
If i < j and aij = 1, then ahk = 1 whenever h < k ≤ j and h ≤ i.

The above definition says that if the adjacency matrix has an element equal to one, aij =
1, then also the element above in the matrix is one, ai,j−1 = 1, and the element to the left
in the matrix is one, ai−1,j = 1. Consequently, all the preceding elements to the left and
above are one. In this way, the one-elements are separated from the zero-elements in the
adjacency matrix along a line which has the form of a step function. This fact has brought
about the name stepwise matrix. An example of a stepwise matrix is shown in Figure
(1, right). The graphs associated with a stepwise adjacency matrix are called nested
split graphs (Aouchiche et al., 2008). Nested split graphs have a nested neighborhood
structure: the set of neighbors of each node is contained in the set of neighbors of the
next higher degree nodes. However, before providing the formal definition of these graphs,
we provide an intuition of its structure with the help of the representation in Figure (1,
left). In particular, we consider a nested split graph that is also connected, since this will
be our focus later on. First, the nodes in a nested split graph can be partitioned in subsets
of nodes with different properties. In Figure (1, left) each circle represents a subset of
nodes (and not an actual node of the network). Furthermore, we denote the partition
of the graph as P = U ∪ V , where U and V consist of subsets, U = {U1, U2, ..., Uk}
and V = {V1, V2, ..., Vk} respectively. Recall the notation from Section 2.1 in which Kn

denotes the complete graph with n nodes and K̄n the empty graph with n isolated
nodes. Then, for example, in Figure (1, left) the sets are U1 = K2, U2 = K2 ∪ K1 and
U3 = K2 ∪ K1 ∪ K1 and V1 = K̄2, V2 = K̄2 and V3 = K̄2 respectively. Of course, the
subgraph K2 is simply a complete graph since it contains only two nodes, and even more
so K1 is a subgraph consisting of a single node only.

The subsets Ui and Vi differ in the fact that in Ui all nodes are connected to each
other while in Vi there exist no links between the nodes. Moreover, there exist also links
between nodes belonging to different subsets. Indeed, the neighborhood of the nodes in
each set Vi is precisely the set Ui. In Figure (1, left) a line between two subsets indicates
that there exists a link between each node in one subgraph to each node in the other
subgraph. For example the nodes in V1 at the top right of the figure are all connected to
the nodes in U1 at the top left. Similarly, the nodes in V2 are connected to the nodes in
U2 and the nodes in V3 are connected to the nodes in U3. Additionally, the set U as well

11The efficient networks are similar to those obtained in the model of Ballester et al. (2006). More
precisely, within that model Corbo et al. (2006) show that the networks that maximize welfare are given
by the graphs with maximal eigenvalue.
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Fig. 1. Representation of a connected nested split graph (left) and the associated adjacency matrix
(right) with n = 10 nodes. A nested split graph can be partitioned into subsets of nodes with the same
degree (each subset is represented as circle, the degree d of the nodes in the subset is indicated). A line

connecting two subsets indicates that there exists an edge between each node in one set and all the
nodes in the other set. The boxes around the sets indicate the cliques U1 = K2, U2 = K2 ∪ K1 and
U3 = K2 ∪ K1 ∪ K1. In the matrix to the right the zero-entries are separated from the one-entries by a
stepfunction.

as any union of the subsets in U form a complete subgraph or clique. Similarly, any union
of the sets in V form an independent set. Notice also, that all the nodes in one set have
the same degree. Next to the sets in Figure (1, left) the degree of the nodes in a subset is
indicated. The degree of a node in a set can be easily derived from the adjacency matrix
shown in Figure (1, right) by counting the number of ones in a row corresponding to a
particular node in a set. For example the set K2, top left in the figure, corresponds to
two nodes whose links are indicated in the first two rows of the adjacency matrix.

With the preceding discussion in mind, we can now give a more formal definition of a
nested split graph(see Cvetkovic et al., 2007).

Definition 2 In a nested split graph, the set of nodes have a partition P = U ∪ V with
the following properties.

(i) U induces a clique, and V induces an independent set. This also holds for any
union of subsets in U and V .

(ii) U has subsets U1, ..., Uk such that U1 ⊃ ... ⊃ Uk and the neighborhood of each node
in Vi is Ui, for any i = 1, ..., k.

If a nested split graph is connected we call it a connected nested split graph. As we men-
tioned above, the representation and the adjacency matrix shown in Figure (1) actually
show a connected nested split graph. From the stepwise property of the adjacency matrix
it follows that a connected nested split graph contains at least one spanning star, that
is, there is at least one node that is connected to all other nodes. This property can also
be seen in Figure (1), where the first row of the adjacency matrix that is entirely filled
with ones indicates the presence of a spanning star 12 .

We have shown that G∗ is connected and we know that G∗ has a stepwise adjacency
matrix. From the above discussion we can further conclude that G∗ is a connected nested
split graph and it contains at least one spanning star as a subgraph.

12A related type of graph, so called inter-linked stars, has been introduced by Goyal and Joshi (2003).
However, this notion does not specify the nested neighbourhood structure that characterizes nested split
graphs.
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The determination of the exact topology of G∗, for given n and c, is simple for c ∈
[0, 1/2] (see Proposition 3). In contrast, for c > 1/2 this problem requires the determina-
tion of the graph with the largest eigenvalue among all graphs in H∗(n,m) (for a fixed n
and arbitrary m, with n−1 ≤ m ≤ n(n−1)/2). This is still an unresolved research prob-
lem in Spectral Graph Theory (Aouchiche et al., 2008). However, it turns out that the
value of total profits associated with the efficient graph G∗ can be approximated by the
total profits associated with a special type of a connected nested split graph. Following
Bell (1991) we denote this graph by Fn,d.

Definition 3 Fn,d is the graph obtained from the complete graph Kd with d nodes and
a subset of n − d disconnected nodes, by adding n − d links connecting one node in Kd

to each of the n − d disconnected nodes.

Notice that the complete graph and the spanning star are particular cases of connected
nested split graphs (and of the graph Fn,d): the star is K1,n = Fn,1 and the complete
graph is Kn = Fn,n. Figure (3) shows several examples of this type of graph for n = 10.

Moreover, the number of edges in Fn,d is given by m =
(
d
2

)
+ (n − d).

As discussed in more detail in the proof of the next proposition, the maximum relative
discrepancy of total profits between Fn,d and the efficient graph G∗ is considerably small
and vanishes for large n. For example with n = 100 we get get an error below 2%, while
for n = 200 the error is below 1% (see also Figure 4 top left). The higher is the number
n of firms, the more total profits of Fn,d get close to total profits of G∗. Thus, in order
to determine the efficient network G∗, if n is small one can search through all connected
nested split graphs and identify the one with highest total profits, while for large n, one
can use Fn,d as a good approximation.

Bringing the above results together, we can state the following proposition which char-
acterizes the topology of the efficient graph G∗ with n firms in the industry as a function
of the marginal cost of collaboration c ∈ [0, 1].

Proposition 3 Let G∗ be the efficient graph for a given number n of firms and Fn,d be
the graph introduced in Definition (3).

(i) If c ∈ [0, 1] then G∗ is a connected nested split graph.
(ii) Denote the relative error in total profits between the the efficient graph and the

graph Fn,d as ǫ = (Π(G∗) − Π(Fn,d))/Π(Fn,d). If c ∈ [0, 1], then the relative error
is bounded from above as follows

ǫ ≤ 2c(2c − 1)n − 5c2

n2 + 2c(1 − 2c)n + 9c2
, (16)

and vanishes for large n, i.e. limn→∞ ǫ = 0.
(iii) If c ∈ [0, 0.5] then G∗ is the complete graph Kn.
(iv) If c > n then G∗ is the empty graph K̄n.

Figure (2) gives a graphical representation of the results on network efficiency in Propo-
sition (3). In Figure (3) the efficient graphs for values of cost c ∈ [0, 1] and system size
n = 10 are shown 13 . We observe that, with increasing marginal cost, the efficient net-
work becomes more sparse and the degree heterogeneity is increasing. For any value of

13For the particular case of n = 10 the connected graph with maximal eigenvalue is known (Aouchiche
et al., 2008) and so is the efficient network G∗. In this case, the efficient graph is Fn,d itself (without
any approximation).
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Fig. 2. Illustration of the range of efficient graphs as a function of the cost of collaboration. For costs
0 ≤ c ≤ 0.5 the efficient graph is the complete graph Kn. In the region 0.5 < c ≤ 1 the efficient graph is a

connected nested split graph. As indicated in the figure, for n large, Fn,d can be seen as an approximation
of G∗ (with a vanishing relative error in total profits).

cost larger than 0.5 the efficient network consists of a densely connected cluster (clique)
and one node that acts as a hub (star) and connects the remaining nodes to the cluster.

0.5 0.65 0.75 0.85
c

F10,10 = K10 F10,9 F10,8 F10,7

Fig. 3. Efficient graphs for values of cost c = 0.5, 0.65, 0.75, 0.85 and n = 10. The density of the efficient
graph is decreasing and the degree heterogeneity is increasing with increasing cost.

If we consider Fn,d as the efficient network, we can make the following observation.
From the topological structure of Fn,d it follows that, when marginal cost of link forma-
tion is high, it is efficient to concentrate knowledge creation in a small and dense cluster
with one firm acting as a hub that connects all the peripheral firms to the cluster. As the
marginal cost of link formation decreases, knowledge recombination becomes cheaper 14

and it is efficient that a larger fraction of firms takes part in the densely connected clus-
ter. Finally, in the region of small marginal cost, 0 ≤ c ≤ 0.5, it is efficient that all firms
take part in a densely connected cluster, therewith establishing as many collaborations
as possible. In this case, the fully connected graph encompassing all firms is the one in
which total profits in the industry attain their highest possible value.

14Note that for c = 0 the problem in (14) can be reduced to the problem of maximizing total knowledge
growth in the steady state for a given number of firms, in which case the complete graph is the solution.
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An important final remark concerns the relation to the efficient graphs found in models
akin to ours. Similar to both Jackson and Wolinsky (1996) and Bala and Goyal (2000),
we find that the efficient graph is always connected and that it includes, depending on
the cost c, the star and the complete graph. However, differently from the model of Bala
and Goyal, the efficient graph is in general not minimally connected (removing one link
does not necessarily make the graph disconnected). Moreover, differently from the model
of Jackson and Wolinsky, in our model the set of efficient graphs is not limited to the
star and the complete graph, but it includes a whole class of graphs that can be seen as
intermediate graphs between these two extreme cases.

3.2. Efficiency and Profits Distribution

Former works on R&D networks (see Cowan and Jonard, 2004) have emphasized the
emergence of a trade-off between efficiency (in terms of knowledge diffusion) and in-
equality (in terms of knowledge levels). A similar trade-off between efficiency and profits
inequality emerges also in this model if the marginal cost of link formation and the num-
ber of firms operating in the industry are high enough. We measure inequality in profits
in terms of profit variance.

In Proposition (2) we have shown that for c ∈ [0, 1] the efficient graph is connected,
G∗ ∈ H(n, k). Thus, the returns from collaborations in an efficient graph are identical for
all firms (since they have the same largest real eigenvalue) but the cost is different and
is proportional the degree of the firm. More formally, let us define by σ2

π the variance of
profits associated with the graph G. It follows for a graph G ∈ H(n,m) that

σ2
π(G) = c2σ2

d(G), (17)

where σ2
d is the degree variance. Since degree is by definition homogeneous in a complete

graph, from Proposition (3) it follows that for c ≤ 0.5 profits inequality is zero, and no
tension between efficiency and equality arises.

For higher values of costs, we can take Fn,d as a sufficient approximation to the efficient
network G∗, and from the properties of Fn,d we can conclude that the efficient network is
characterized by considerable degree heterogeneity and profits inequality. More precisely,
the following proposition can be stated.

Proposition 4 Let Fn,d be the graph defined in (3) and d̄ = 2m/n the average degree.
Then

(i) The degree variance is growing quadratically with the number of firms, i.e.

σ2
d(Fn,d) = O(n2). (18)

(ii) Let c > 0.5. For large n the coefficient of variation of degree, cv(Fn,d) = σd(Fn,d)/d̄,
tends to a constant depending on the cost,

lim
n→∞

cv(Fn,d) =
√

2c − 1. (19)

(iii) Consider the random graph G(n,m) with n nodes and m links. For large n, the
degree variance of the graph Fn,d is larger by a factor n than the variance of a
random graph with equal number of nodes and links

σ2
d(Fn,d)/σ2

d(G(n,m)) = O(n). (20)
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Fig. 4. Properties of the graph Fn,d as a function of the cost of collaboration. Upper bound ǭ on the
relative error ǫ in the approximation of the efficient graph G∗ (top, left); degree variance σ2

d
(Fn,d)

(bottom, left); degree coefficient of variation cv(Fn,d) (top, right); ratio of degree variance of Fn,d and
degree variance of a random graph G(n, m) of the same size and density, σ2

d
(Fn,d)/σ2

d
(G(n, m)) (bottom,

right) for n = 50, n = 100, n = 200 and cost c ∈ [0.5, 1].

The results of this proposition are illustrated in Figure (4). The coefficient of variation
of degree, cv, increases with increasing cost (Figure (4), top-left). It also increases with
the number of firms up to the finite limit of

√
2c − 1 for large n. Moreover, the degree

variance of Fn,d is many times larger than the degree variance of a random graph G(n,m)
with the same density (Figure (4), bottom-left). Since, Equation (17) links the variance
in profits to the variance in degree it follows that, for higher values of marginal cost
0.5 < c ≤ 1, the industry displays an inequality in profits significantly larger than the
one that could be observed if collaborations would be formed at random.

4. Network Evolution

The analysis contained in the previous section assumes that the structure of the network
is fixed. In this way, it is possible to study which network topologies maximize industry
welfare. In this section we depart from this static network perspective, and we investigate
how the structure of the network evolves whenever firms are allowed to endogenously
choose the partners with whom they want to collaborate.

17



Following Jackson and Wolinsky (1996) we consider a network formation process in
which the creation of a new link requires the bilateral agreement of the two parties
involved. However, the deletion of a link requires the unilateral decision of one of the
two firms only. Consistently, as network equilibrium criterion, we adopt the definition of
pairwise stability, as in Jackson and Wolinsky (1996). Based on this definition of stability,
we derive the conditions on the value of cost for which structures like the empty graph,
the complete graph or the star are stable. Among the possible stable graphs, we find also
a disconnected graph consisting of multiple cliques of the same size. A first important
finding here is the co-existence of multiple equilibrium networks for the same value of
cost.

However, these relatively simple structures are not the only stable networks emerging
in our model. Since it is increasingly difficult to derive general proofs of stability for more
complex structures, we follow the argument in Vega-Redondo (cf. 2007, p. 208) and we
perform a dynamic study of network stability. We model explicitly the evolution process
in which, at the beginning of each period, a pair of firms decides whether to form or
delete a link, based on the expected profits this action brings about. This investigation,
performed through computer simulation, shows that there exist a multitude of complex
structures which are pairwise stable. Remarkably, these networks display topological
properties that are consistent with the stylized facts of R&D networks in a region of the
parameters of the model.

4.1. Improving Paths and Equilibrium Networks

We consider a process of network evolution in which firms form or delete one link at a
time based on the marginal profits they expect from that action. In other words, new
links are created whenever the increase in the probability of innovation, i.e. the marginal
revenue of a new collaboration, is greater than the marginal cost of a collaboration, with
the gain being strict for at least one of the firms in the selected pair. Likewise, link
deletion occurs whenever the saving in marginal cost from removing a collaboration are
enough to compensate for the decrease in marginal revenue. However, given its unilateral
nature, we assume that removing a collaboration involves severance costs 15 so that the
savings in marginal costs from removing a collaboration is reduced by a factor α.

Following Jackson and Watts (2002), we call improving path, a sequence of networks
{G(t)}t∈N+

such that (i) any two consecutive networks, G(t) and G(t + 1), differ by one
link only, (ii) if the link is added, both firms benefit from the new link, at least one of
them strictly, and (iii) if a link is deleted, at least one of the two firms strictly benefit
from the deletion .

Improving paths emanating from any initial network must either lead to an equilibrium
network structure, in which no pair of firms has an incentive to form a link, and no single
firm has an incentive to remove a link, or to a cycle, in which a finite number of networks
is repeatedly visited (see Lemma (1) in Jackson and Watts, 2002). In this section we
investigate the existence of both equilibrium networks and cycles.

15These severance costs can be associated with the legal procedures needed to unilaterally bring a
contract to an end, or it can have a different nature, e.g. they can be associated with the loss of
reputation for managers breaking long-lasting collaborations.
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Let G denote the current graph G(t) at time t. Further, denote by G + ij the graph
obtained from G by adding the edge ij. Similarly, let G−ij denote the graph obtained by
removing the edge ij. Denote by λi(G) the largest eigenvalue λPF(Gi) of the connected
component Gi to which the firm i belongs. Note that, although link deletion implies that
the degree of i is reduced by one (and so is the cost for firm i), the firm saves only a
fraction of the cost due to the presence of the severance costs v(c) = (1−α)c. Thus, the
change in profits of firm i induced by the removal of a link are given by:

πi(G − ij) − πi(G) = λi(G − ij) − (di − 1)c − v(c) − (λi(G) − dic)

= c − v(c) − (λi(G) − λi(G − ij))

= αc − (λi(G) − λi(G − ij))

(21)

where α ∈ [0, 1]. Obviously, the firm will only remove a link if this action increases her
profits. With the above notation we can now give the definition of a pairwise stable
network.

Definition 4 The graph G is pairwise stable if

(i) ∀ij ∈ E(G), πi(G) ≥ πi(G − ij) and πj(G) ≥ πj(G − ij) or, equivalently, ∀ij ∈
E(G), λi(G) − λi(G − ij) ≥ αc and λj(G) − λj(G − ij) ≥ αc

(ii) ∀ij /∈ E(G), if πi(G + ij) > πi(G) then πj(G + ij) < πj(G), and, if πj(G + ij) >
πj(G) then πi(G+ij) < πi(G) or, equivalently, ∀ij /∈ E(G), if λi(G+ij)−λi(G) > c
then λj(G+ij)−λj(G) < c, and, if λj(G+ij)−λj(G) > c then λi(G+ij)−λi(G) < c

Before moving to the analysis of the existence of stable graphs, we give an explanation
about why in our model the network might stop evolving along an improving path and
finally reach an equilibrium. Let us consider an improving path along which the number
m of links is increasing from m1 = 0, corresponding to the empty graph, to at most
m2 = n(n − 1)/2, corresponding to the complete graph Kn. Figure (5) shows some
instances of improving paths and their corresponding densities (in terms of the number
of links) for different values of the cost c, but with severance cost α = 0. Note that
a vanishing value of α implies that no links are removed since then the severance cost
exceeds any potential gains that could be realized by saving the cost for that link .

For comparison, the figure shows also the straight line with slope 2
n
, equal to the

average increase of λPF going from the empty graph to the complete graph. In contrast,
along any improving path the trajectory of λPF(m) starts off above such straight line.
This is stated in the following Lemma and has an important implication.

Lemma 3 Along any improving path in which the number m of links is increasing,
λPF(m) increases with m faster than 2

n
, in a set of integers I = {0, 1, 2, ...,m0} with

m0 < n(n − 1)/2.

Since, in addition, the sum of the increments of λPF(m) has to be constant (cf. Lemma
(1), item (ii)), this means that any improving path has to cross the straight line at
some point before reaching the complete graph. In other words, for some value of m the
marginal revenue becomes smaller than the marginal cost (for any value of cost and n
large enough), implying that the evolution stops. This is stated more precisely in the
following proposition.

Proposition 5 Along an improving path in which the number m of links increases,
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Fig. 5. Largest real eigenvalue λPF of a network of n = 20 firms as a function of the number m of
links, along three specific improving paths for costs c = 0.0, c = 0.05, c = 0.15 and severance cost
parameter α = 0. The number of links m and the largest real eigenvalue λPF are normalized to their

maximum values (attained by the complete graph). The improving path for cost c = 0.15 reaches 22%
of the density of a complete graph before it arrives at a stable network while the improving path for
cost c = 0.05 reaches already 50% of the maximum density. Obviously the improving path for c = 0

reaches the complete graph.

marginal profits become negative for some value of m∗ ≤ n(n − 1)/2, for any value of
cost c and n large enough.

In light of the foregoing results 16 we now proceed to investigate the stability of specific
network structures. From a straightforward application of the properties of the marginal
revenues from collaboration (cf. item (iii) in Lemma (1)) it follows that, on one hand,
when marginal costs are zero, c = 0, links will always be created and no existing link will
be deleted. Then the unique equilibrium is the complete graph Kn.

Proposition 6 If costs are zero, c = 0, then the complete graph Kn is the unique stable
network.

On the other hand, when the difference between marginal costs c and severance costs
v(c) is larger than one, it is profitable to remove any link and the only equilibrium is the
empty graph K̄n.

Proposition 7 For cost c′ = αc > 1 the empty graph K̄n is the unique stable network.

Besides the foregoing extreme situations, the determination of stable networks becomes
quite involved. This is because, in general, the marginal revenue from a collaboration
depends on the topology of the graph. In addition, for a given topology, it varies with the
position of the firm which is chosen to create or delete a link. Starting from an initial graph
G0 this property implies that different network trajectories can be explored, according
to the particular pair of firms that is allowed to revise its collaboration strategy at the
beginning of each period. Thus, improving paths have a strong path dependent character
in this model and multiple equilibrium networks might be possible for the same level
of marginal costs. In what follows we show that, on one hand, multiple pairwise stable

16 In Section 4.2 we will show with Proposition (12) that for large enough networks and costs smaller
than 1/2, no improving path will ever reach the complete graph.
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networks exist for the same value of marginal cost c ∈ (0, 1) and severance costs v(c).
On the other hand, we identify a region of costs in the same interval in which stable
networks do not exist and a sequence of networks is repeatedly visited 17 . In the following
proposition, we show that a set of disconnected cliques of the same size can be a stable
network, if their size falls within a certain interval that depends on the marginal cost of
collaboration c and on the severance cost parameter α.

Proposition 8 Consider costs c, c′ = αc and α ∈ [0, 1]. If the network G consists of a
set of k equally sized, disconnected cliques K1

n,K2
n, ...,Kk

n (G having kn nodes in total)
then G is stable if 18

⌈1 + c(1 − c)

c
⌉ ≤ n ≤ ⌊2 − c′(1 − c′)

c′
⌋. (22)

From Proposition (8) it follows immediately that for a given value of cost c there exist
multiple integer values n (the size of the clique) that fit into the interval spanned by the
upper and lower bounds in Equation (8). This is discussed in more details in the proof
of Proposition (8) (see appendix) and implies that multiple equilibrium networks exist
for a given value of marginal cost c and severance cost v(c).

Moreover, note that the homogeneous size of the cliques is only a sufficient condition for
stability but it is not necessary. Indeed, the equilibrium networks obtained with computer
simulations show clearly that there exist also equilibria with disconnected cliques of
different sizes (see e.g. Figure (9), bottom-right). The requirement of having cliques of
the same size appears in Proposition (8) only to allow for an analytical treatment.

Equally sized disconnected cliques are not the only possible stable networks structures
in the interval c ∈ (0, 1) and α ∈ [0, 1]. The next proposition shows that the spanning
star, i.e. the star encompassing all nodes, can be pairwise stable as well, if the size of
the star (and therewith the number of firms in the industry) falls within a certain region
that depends on the cost c and on the severance cost parameter α.

Proposition 9 Consider costs c, c′ = αc, α ∈ [0, 1]. The network G consisting of a

spanning star K1,n−1 with ⌈ 2
c
⌉ ≤ n ≤ ⌊ 1+c′2(6+c′2)

4c′2
⌋ is stable.

The foregoing results have two important implications in relation to the literature. First,
stable graphs are not necessarily connected. Second, in general they are not minimally
connected. Indeed, the multiple clique equilibrium is a disconnected graph in which each
component is complete and thus not minimally connected. This is an important feature
that for instance distinguishes our model from the “connections” model in Jackson and
Wolinsky (1996) and from the linear “two-way flow” model Bala and Goyal (2000). In
both such models, the equilibrium networks are always connected, while in the latter they
are also minimally connected. Furthermore, both models find that the spanning star is
stable for intermediate values of the cost of collaboration. However, differently from both
models, in our model the spanning star is never the unique stable network. Indeed,
the next proposition combines together the results of the previous two propositions, the
conditions under which the link formation dynamics defined in (5) may lead to two
different pairwise stable network topologies for the same level of marginal cost c and

17This is a cycle in the space of network trajectories, to not confuse with the specific graph called cycle.
18 In the following, ⌈x⌉, where x is a real valued number x ∈ R, denotes the smallest integer larger or
equal than x (the ceiling of x). Similarly, ⌊x⌋ the largest integer smaller or equal than x (the floor of x).
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Fig. 6. Number of stable clique sizes when the spanning star K1,n−1 is an equilibrium as well (for
α = 0.1, α = 0.5 and α = 1.0). If this number is positive then we have a spanning star K1,n−1 and (at
least one) set of disconnected cliques K1

k
, ..., Kd

k
as equilibrium networks for the same level of cost c.

severance cost parameter α, namely (i) the set of disconnected equally sized cliques or
(ii) the spanning star.

Proposition 10 Consider costs c, c′ = αc, α ∈ [0, 1] and the network G with n nodes

such that ⌈ 2
c
⌉ ≤ n ≤ ⌊ 1+c′2(6+c′2)

4c′2
⌋. If there exists an integer k ≤ n, mod (n, k) = 0

such that ⌈ 1+c(1−c)
c

⌉ ≤ k ≤ ⌊ 2−c′(1−c′)
c′

⌋ then G can be stable for at least two cases.
(i) G consists of disconnected cliques K1

k , ...,Kd
k , n = kd or

(ii) G consists of a spanning star K1,n−1.
There are at least two stable networks for the same level of marginal cost c (degenerate
cost region).

The multiplicity of equilibria stated in the above proposition is illustrated in Figure (6).
The plot shows the number of different values of size of cliques when the configuration
of multiple cliques and the spanning star are both stable. One can see that for smaller
values of α the number of stable networks increases. Furthermore, Figure (7) shows two
examples of possible equilibrium networks obtained with n = 20, c = 0.3 and α = 0.1.

Not all values of marginal cost c and severance cost parameter α lead to pairwise stable
networks. Consistently with the concept of improving path (cf. Jackson and Watts, 2002,
Lemma (1)) the next proposition shows that in the interval (0.586, 0.618), there exists a
cycle of repeatedly visited networks.

Proposition 11 For values of cost 2 −
√

2 = 0.586 < c < 1
2

(√
5 − 1

)
= 0.618 and

α ∈ [0.707, 1], the improving path leads to a cycle of networks. In such cycle, a sequence
of paths (P2, {P2, P2}, P4, P3, P2) is repeatedly visited.

The graphs which are repeatedly visited are illustrated in Figure (8). The fact that for
some values of the parameters of the model there exists no stable network has also been
found by Jackson and Watts (2002) and by Haller et al. (2007); Haller and Sarangi (2005).
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Fig. 7. An example of two possible (different) equilibrium networks for cost c = 0.3 and α = 0.1 with

n = 20 firms. A set of disconnected cliques of the same size (left) and a spanning star (right)

P2

P2 P2

P4

P3

Fig. 8. Cycle C = (P2, {P2, P2}, P4, P3) of repeatedly visited graphs in which one graph is improved by
the next in the sequence.

4.2. Stability vs. Efficiency

We have shown that for the same level of marginal cost there exist multiple equilibrium
structures associated with different values of total profits. This indicates that stable net-
works can, in general, be inefficient. In particular, we have shown that in the marginal
cost interval c ∈ [0, 1], graphs that are not connected can be stable (cf. Propositions (8)
and (10)), while in that cost region the efficient graph is always connected (cf. Proposition
(2)). The possible inefficiency of the network evolution process stems from the externali-
ties inherent to the process of knowledge recombination, described in Section 2.2. Indeed,
when a firm decides to create or delete a link it takes into account its private marginal
revenue from collaboration (given by the change in the largest eigenvalue of its connected
component), but neglects social marginal revenues inherent to that decision. The latter
is equal to the sum of changes in the largest eigenvalue of all firms belonging to the same
connected component. Thus, it may well be that creating a link is not profitable for the
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individual firm although it would be profitable from the industry point of view.
Furthermore, the efficient network may not even belong to the set of equilibria, as it

is shown in the next proposition.

Proposition 12 Consider a network of size n ≥ 2
c
. For cost c < 1

2 the equilibrium
network is not efficient.

This result can be explained in the following way. Proposition (3) states that, when the
marginal cost of link formation is less or equal to 1/2, the complete graph is the efficient
graph. However, if the number n of firms in the industry is large enough, the individual
marginal revenue of a collaboration is bounded from above by a value decreasing with
n (see the proof of the Proposition (12) in the appendix). In particular, for n ≥ 2

c
the

upper bound is always smaller than the marginal cost c. Therefore the complete graph
is not stable 19 .

An exhaustive discussion of efficiency and stability would require the determination
of individual and total profits of firms under all possible network configurations. Both
require the computation of the largest eigenvalue. Unfortunately, there is no general
closed form solution available for any graph. However, one can provide general results for
some special classes of graphs. Based on these findings Table (1) summarizes the results
on efficiency and stability discussed so far and compares them with results for other well
known classes of graphs in the literature.

Three graphs in the table deserve a special attention. The first is the empty graph,
which is never stable nor efficient in the interval [0, 1). The second one is the complete
graph, which is efficient in [0, 0.5], but is never stable for c > 0 (see Proposition (5) and
Proposition (12)). The third graph is the star, which can be stable but is never efficient 20

in [0, 1]. In other words, both the star and the complete graph are never stable and efficient
at the same time. This is a first important difference with respect to the literature, e.g.
the models in Jackson and Wolinsky (1996) and Bala and Goyal (2000), where, at least in
an interval of the parameters considered, the star (or, respectively, the complete graph)
can be efficient and stable. In our model the tension between efficiency and stability
is more pronounced. We were not able to find any efficient graph which is also stable,
except from the trivial case of c = 0 in which, due the absence of collaboration cost, the
complete graph is both stable and efficient.

Moreover, it is interesting to review the properties of the other graphs listed in the
table and their mutual relations. A k-regular graph, i.e. a graph in which all nodes have
the same degree, yields a revenue proportional to the degree of the nodes, regardless
of the size of the graph. This means that when the degree is small the performance in
terms of aggregate profits of this graph is rather poor. However, the complete graph is
a particular case of regular graph in which all nodes have degree n − 1. In this case, the
regular graph can be efficient.

The set of cliques of the same size, is stable for particular values of their size d,
depending on the level of costs. It can also be efficient, in the particular case of one

19Another (degenerate) region of the parameter space in which the network dynamics leads to inefficient

equilibrium outcomes is the one in which marginal cost is in the open interval (2 −
√

2, 1

2

(√
5 − 1

)
=

(0.586, 0.618). In that case (cf. Proposition (11)), for any number of firms in the industry the dynamics

gets stuck into a cycle of networks, none of which is efficient.
20One can show that for c < n

n−1+
√

n−1
∼ 1 for n → ∞, Kn has a higher performance than K1,n−1.

E.g. for n = 100 we get c < 0.918.
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set containing all firms, i.e. the complete graph. In this case however, it is never stable,
as noted above. The set of identical cliques is also a particular case of k-regular graph,
because the nodes in each clique have the same degree. In a path, the degree of the nodes
is 2, except from the two nodes at the beginning and at the end of the path. In this sense,
the graph is similar to a 2-regular graph. Indeed its eigenvalue is a little smaller than
the one of 2-regular graph. When the network evolves starting from an empty graph,
the first connected graph that is formed is indeed a path of length 2, possibly followed
by a path of length 3 (see the proof of Lemma (3) in the appendix). In such transition,
the largest eigenvalue of the component jumps from 0 to 1 and then to 2 cos

(
π
4

)
> 1.

Instead, when the graph is almost complete, the addition of a new link yields a negligible
increase in the eigenvalue. Notice that the path of length 3 is also a star with one hub
and two peripheral nodes.

A cycle is a closed path and it is in particular a 2-regular graph. In a cycle there is
only one walk, which yields a revenue independent of the number of participating firms.
In particular, because of this in our model the path is never an efficient graph. As we
already noticed in Section 2.3, this is a consequence of the payoff function which differs
in this respect from the one used in other models in the literature (e.g. Bala and Goyal,
2000).

We also list in the table the bipartite graph because of its relation to the notion of
structural holes (cf. Burt, 1992). In a bipartite graph, nodes can be grouped in two
separate classes so that links connect only nodes of one class to nodes of the other class.
Consider for example a network consisting of few hubs, disconnected among them, and of
many peripheral nodes, connected only to one or more hubs. The hubs fill the structural
holes among the the peripheral nodes. This network is also a bipartite graph, since the
hubs and the peripheral nodes form two separate classes of nodes. Notice that the star
is a particular case of a bipartite graph. In our model, the bipartite graph is not efficient
nor stable.

Finally, concerning the largest eigenvalue of Fn,d an exact solution (see Bell, 1991) is
given by the largest root of the cubic polynomial x3−(d−2)x2−(n−1)x+(d−2)(n−d).
From this exact solution, one can show that for a fixed value of d, limn→∞ ∆λPF = 0
and thus it is always profitable to remove a link if n is large (however large the severance
cost or small the marginal cost may be).

4.3. Topological Properties of Stable Networks

The empirical research on R&D partnerships has investigated in depth the topological
patterns of networks of knowledge exchange. From this literature (see e.g. Ahuja, 2000;
Fleming et al., 2007; Hanaki et al., 2007; Powell et al., 2005), three features emerge as
robust stylized facts: (i) R&D networks are sparse, that is the number of actual links is
much less than the number of possible links. (ii) Networks are highly clustered, where
clusters consist of highly interconnected firms, but different clusters are only sparsely
connected. (iii) The distribution of links over the firms is characterized by high dispersion,
with few firms being connected to many others.

The analytical study of equilibrium networks in Section 4 has pointed to the existence
of equilibrium networks that match some of the stylized facts mentioned above. Indeed,
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Graph Class Eigenvalue Total Profits Efficiency Stability

empty graph
λPF = 0 Π = 0 c > n c > 1

G = K̄n

complete graph
λPF = n − 1 Π = (1 − c)n(n − 1) c ≤ 1

2 c = 0
G = Kn

k-regular graph λPF = k − 1 Π = n(k − 1)(1 − c)
if k = n

see cliques
see Kn

path
λPF = 2 cos

(
π

n+1

)

Π = 2 cos
(

π
n+1

)

− (n − 1)c no no
G = Pn

star
λPF =

√
n − 1 Π = n

√
n − 1 − 2(n − 1)c

not in
⌈ 2

c
⌉ ≤ n ≤ ⌊ 1+c′2(6+c′2)

4c′2
⌋

G = K1,n−1 0 < c < 1

cycle
λPF = 2 Π = 2n(1 − c) no no

G = Cn

bipartite graph
λPF =

√
n1n2 Π = (n1 + n2)

√
n1n2 − n1n2c no no

G = Kn1,n2

G = Fn,d λPF ≥ d − 1 Π = λPF(Fn,d) − 2c
((

n
2

)
+ (n − d)

) with good
no

approx. a

cliques b

λPF = d − 1 Π = n(d − 1)(1 − c)
if l = 1, d = n,

⌈ 1+c(1−c)
c

⌉ ≤ d ≤ ⌊ 2−c′(1−c′)
c′

⌋
G = {K1

d , ...,Kl
d} see Kn

Table 1. Summary of the largest real eigenvalue, total profits, efficiency and stability for different types of networks.

a ∀c, and for large n, total profits of this graph tends to the one of efficient graph, limn→∞ ǫ = 0
b We have l cliques of identical size d.
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equally sized cliques are characterized by a high clustering, while the spanning star shows
high degree heterogeneity. All these networks belong to the set of possible equilibria
structures in our model.

In this section we define an explicit process of network evolution that is a particular
case of improving path and we analyze by means of computer simulations the structural
properties of stable networks in our model. In this way we explore the existence of
more complex stable network structures, beyond those described in the previous section.
Furthermore, we investigate whether our model is also able to generate pairwise stable
structures that feature, at the same time, all the stylized facts of R&D networks.

There are several possible processes which would be consistent with the definition of
an improving path. In this work, we investigate a stochastic process in which all pairs of
firms have the same probability to be selected to revise their R&D collaboration strategy
(cf. Vega-Redondo, 2007, p. 212).

Definition 5 (Myopic Pairwise Dynamics) Let G denote the current graph G(t) at
time t. We define the network formation process Γ(G) as follows. At the beginning of
each period (at times t = 0, T, 2T, ...) a single pair of firms, i and j, is uniformly selected
at random from the set N of firms.

(i) If the link ij does not currently exist, ij /∈ E(G), then it is created whenever neither
firm is harmed by the creation and at least one of them strictly gains, i.e.

πi(G + ij, c) ≥ πi(G, c) ∧ πj(G + ij, c) ≥ πj(G, c)∧
πi(G + ij, c) > πi(G, c) ∨ πj(G + ij, c) > πj(G, c).

(23)

or equivalently

λi(G + ij) − λi(G) ≥ c ∧ λj(G + ij) − λj(G) ≥ c∧
λi(G + ij) − λi(G) > c ∨ λj(G + ij) − λj(G) > c.

(24)

(ii) If the link ij is currently in place, ij ∈ E(G), then it is removed whenever at least
one of the firms strictly gains from the change, with link deletion involving the
severance cost v(c) = (1 − α)c, and α ∈ [0, 1]. More formally

πi(G − ij, c, v) > πi(G, c, v) ∨ πj(G − ij, c, v) > πj(G, c, v), (25)

or equivalently:

λi(G) − λi(G − ij) < αc ∨ λj(G) − λj(G − ij) < αc (26)

Note that, in the evolution of the network defined above, the only element of stochasticity
is the sequence of the pairs of firms chosen to create or delete links.

We study stable network structures arising from this process in computational experi-
ments 21 conducted in a large region of the model’s parameter space. More precisely, we
carried out multiple (50 repetitions for each parameter choice) computer simulations of

21When simulating the network evolution discussed in Section 4 the largest real eigenvalue of the network
has to be computed many times. Since the largest real eigenvalue of a graph can be computed in
polynomial time (Hong, 1993) our model is well suited for numerical investigations.
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the network dynamics defined in (5) with a fixed number n of firms in the industry 22

(n = 50), starting each from an empty network K̄n. For each simulation we selected
a value for the marginal cost c in the interval [0, 1] and a value for the severance cost
parameter α in the interval 23 [0, 0.5]. As the number of chosen values were respectively
12 for the marginal cost and 5 for the severance cost parameter, the total number of com-
puter simulations summed up to 3000. The results of the aforementioned Monte-Carlo
experiments are shown in the Figures from (9) to (11).

The plots in Figure (9) show typical equilibrium networks obtained in simulations for
marginal cost of link formation equal to 0.15 and different values of the severance cost
parameter α. Recall that severance cost are equal to v = (1−α)c, and thus are inversely
related to the parameter α. As the plots reveal, in this region of the parameter space the
dynamics in our model is able to generate equilibrium structures displaying the complex
features that characterize empirically observed R&D networks (see e.g. Fleming et al.,
2007). In particular, for very high severance costs the equilibrium network contains a
giant component with a high degree heterogeneity. On the other hand, as severance costs
associated with link deletion fall down (increasing values of α), we observe a significant
increase in the cliquishness of the network, and a reduction of degree heterogeneity.

The insights coming from the foregoing qualitative study are confirmed by a more
quantitative analysis of the topological properties of equilibrium graphs. The plots in
Figure (10) display respectively the mean and the variance of the network degree distri-
bution as functions of the marginal cost c and severance cost parameter α. The mean
degree is inversely related to the sparseness of the graph, while degree variance captures
the degree heterogeneity. As the plots in the figure make clear, higher cost of R&D col-
laboration lead to graphs that are more sparse. On the other hand, degree heterogeneity
reaches a peak for values of marginal cost close to 0.1, and then falls down as collab-
oration costs increase. In addition, degree heterogeneity increases with severance costs
(decreasing α).

The presence of clusters of highly interconnected firms is a key feature of empirically
observed R&D networks (cf. stylized fact number (iii)). As the plots in Figure (11) show,
this feature is also a characteristic for the equilibrium networks generated by the model.
In particular, the average clustering coefficient (Figure (11), top-left) is close to one in
a wide region of the explored parameter space (c ∈ (0, 0.5), α > 0). Moreover, it is a
decreasing function of severance costs v = (1−α)c. Finally, note that clustering becomes
zero for values of costs greater or equal to 0.7. Further information on the topological
features of R&D clusters can be gathered by looking at the average number of connected
components, at their average size and the concentration of their size (Figure (11), top-
right, bottom-left and bottom-right respectively). As the plots in the figure indicate, the
number of connected components is an increasing function of collaboration costs while
the average size and its concentration variables are negatively related to collaboration
costs. In addition, as the costs of link severance increase the number of components
increases, while component size and its concentration decrease.

22Choosing a different, possibly higher, number of firms would have not altered the results, as only the
size (the number of firms) of the connected components, and not the total size of the system matters for
the dynamics.
23Preliminary simulation studies with values of α greater than 0.5 for the severance cost did not reveal
the presence of any striking difference in the results.
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Fig. 9. Equilibrium networks for n = 50, c = 0.15, (a) α = 0.0, (b) α = 0.1, and (c) α = 1.0 starting
from an empty network. Relative profits (compared to the firm with highest profits in the network) are

indicated with different shades, meaning that nodes representing firms with higher relative profits are
shown in a lighter shade. The network plots use the Fruchterman-Reingold algorithm (Fruchterman and
Reingold, 1991).
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centration 〈hH〉 (bottom, right) in the equilibrium network for n = 50, c ∈ [0, 1], starting from an empty
network (averaged over 50 simulations).
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Joining together the foregoing results we can conclude that sparse equilibrium net-
works organized in clusters of highly interconnected firms are a distinctive feature of the
network dynamics in our model. Moreover, low values of R&D collaboration costs and
high values of the costs of link severance lead to equilibrium structures characterized
by a small number of large components, with a highly dispersed degree distribution. As
collaboration costs increase and as link severance costs decrease, we observe that equilib-
rium networks tend to be more and more organized in size homogeneous cliques having
only few connections among them.

5. Conclusions

In this paper, we have investigated the efficiency and the evolution of networks of knowl-
edge exchange across firms. We developed a model in which firms recombine their knowl-
edge stock with the stocks of knowledge of other firms in the industry, in order to in-
troduce innovations in the market. Since each collaboration is costly for firms they face
a trade-off between the benefits of new collaborations (in terms of an increase in the
expected number of innovations per period) and the costs associated with them. Further-
more, we showed that under mild conditions on the horizon over which the performance
of R&D collaborations is evaluated, the benefit the firm receives from the network de-
pends on the growth rate of all walks existing across firms in their connected component.
To this end, our model can be seen as extending other popular models in the network
formation literature (cf. the “connections” model in Jackson and Wolinsky, 1996, and
the linear “two-way flow” model without decay in Bala and Goyal, 2000).

Within the foregoing framework, we characterized the topology of the efficient graph
for any level of the marginal cost of collaboration. We showed that, when the marginal
cost of maintaining collaborations is low, the efficient network is the complete graph.
Thus, when collaboration costs are low, a network of densely connected firms maximizes
total profits in the industry. On the other hand, as the marginal cost of collaboration
increases it is better for the industry network to display the presence of structural holes.
In particular, for intermediate costs of collaboration the efficient graph belongs to the
class of nested split graphs, characterized by the presence of a hub linking a clique to a set
of disconnected firms. Furthermore, we showed that nested split graphs are characterized
by significant cross-firm profit inequality, increasing both in collaboration costs and size
of the industry. Finally, we showed that for very large costs of collaboration the empty
graph is efficient.

We then studied the existence of equilibrium graphs in the model, and the relation be-
tween equilibrium and efficiency. For this purpose, we employed the notion of “improving
path” (cf. Jackson and Watts, 2002), and we assumed that the deletion of existing connec-
tions involves a severance cost. In line with the concept of improving path, we identified
regions of collaboration and severance costs in which there exist either pairwise stable
graphs or a closed cycles of networks. As far as pairwise stable networks are concerned,
we showed that different network structures are stable for the same level of costs. In
particular, we identified regions of the collaboration and severance costs in which (i) the
spanning star (i.e. the star encompassing all firms in the network), and (ii) the class of
size-homogeneous disconnected cliques are stable. In turn, the source of multiplicity of
equilibria lies in (i) the strong path dependency involved in partner selection decisions,
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(ii) in the presence of external effects affecting marginal revenue of collaborations for
firms belonging to the same connected component and (iii) the inertia arising from the
presence of a severance cost associated with link deletion. The presence of multiple sta-
ble structures for the same level of collaboration costs implies that, in general, efficient
structures are not attained in our model. Furthermore, we identified a region of the size
of the industry and of costs in which the efficient graph is never attained.

Finally, we investigated the topological characteristics of pairwise stable graphs in our
model, to see whether they are able to replicate the stylized facts on empirically observed
R&D networks. To this end, we studied via computer simulations the properties of equi-
libria generated under a two-sided myopic pairwise dynamics (cf. Vega-Redondo, 2007, p.
212). The results of our simulations show the existence of a region of low marginal costs
of collaboration and high costs of link deletion in which the aforementioned dynamics is
able to select pairwise stable structures matching the stylized facts on R&D networks.

The present work could be extended at least in three ways. First, the model could
be extended to account for industry demand, for example like in Goyal and Moraga-
Gonzalez (2001). In this way, one could then study how the efficiency and dynamics of
network structure may change when firms operate in markets that are interdependent.
Second, one could investigate whether the foregoing results about the properties of stable
networks are robust to different link updating algorithms. For example, one could study
the effect on the network dynamics of introducing firms pursuing different strategies, for
instance of the kind explored in Bala and Goyal (2000). Similarly, one could depart from
the strong assumptions we made on the knowledge firms have about the network. In
this respect, one could study instead the efficiency and emergence of network structures
when firms follow more simple rules of behavior, for example of the kind suggested in the
empirical work by Powell et al. (2005). Third, in the present model we assumed that the
knowledge bases of firms in the industry were sufficiently homogeneous to be transferred
across firms. However, the process of knowledge transfer across firms is likely to be shaped
by its degree of tacitness, as well as by the existing technological complementarities
across sectors and firms’ knowledge bases. A further analysis of R&D network dynamics
and efficiency should therefore embed all the foregoing ingredients related to industry
technology, and try to investigate how they may affect the revenues and costs of the
process of knowledge recombination.
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Appendix

In the appendix we give the proofs of the propositions and lemmas stated in the
preceding sections.

Proof of Proposition (1) The adjacency matrix A(G) is diagonalizable (Haemers,
2006) and thus, the general solution of (4) can be written as (Zwillinger, 1998)

x(t) =

n∑

j=1

cjvje
λjt, (27)

where ci are unknown constants, that are determined by the initial values x(0) =
∑n

j=1 cjvj , λPF = λ1 ≥ λ2 ≥ ... ≥ λn are the real eigenvalues of A and v1, ...,vn

the corresponding eigenvectors. In Equation (27) only those eigenvalues and correspond-
ing eigenvectors of the adjacency matrix of the connected component Gi of firm i appear.
All other eigenvalues have vanishing eigenvector components and do not contribute to
the trajectory. This is intuitively clear since firms in disconnected components have de-
coupled equations of the form (4) and their trajectories can be computed independently.
We get

λPF − ẋi(t)
xi(t)

= λPFxi(t)−ẋi(t)
xi(t)

=

∑
n

j=1
cjvjie

λjt(λPF−λj)

xi(t)

=

∑
n

j=2
cjvjie

λjt(λPF−λj)
∑

n

j=1
cjvjie

λjt .

(28)

In the numerator of Equation (28) we obtain a sum of exponentials with one exponential
term less than in the denominator, namely the one with the largest real eigenvalue in
the exponent. We have that the sum of exponentials converges to the exponential with
the largest real eigenvalue. Consider for example aeλ1t +beλ2t = aeλ1t

(
1 + b

a
e(λ2−λ1)t

)
∼

aeλ1t for large t. Thus we get

λPF − lim
t→∞

ẋi(t)

xi(t)
= lim

t→∞
c2v2ie

λ2t(λPF − λ2)

c1v1ieλPFt
∝ lim

t→∞
e−(λPF−λ2)t = 0. (29)

In what follows we compute a lower bound for the difference λPF−λ2 and thus the order
of convergence. Consider the real eigenvalues λPF = λ1 ≥ λ2 ≥ ... ≥ λn of the adjacency
matrix A. We have that

∑n
j=1 λ2

i = tr(A2) = 2m (Bollobas, 1998). Thus, we get

λ2
2 = 2m − λ2

PF − ∑n
j=3 λ2

i

≤ 2m − λ2
PF

≤ 2m −
(

2m
n

)2

= 2m(n2−2m)
n2 .

(30)

Here we use the fact that λPF ≥ 2m
n

(Bollobas, 1998). Therefore we get

λPF − λ2 ≥ 2m −
√

2m(n2 − 2m)

n
, (31)

which is positive and a monotonic increasing function for n2/4 < m ≤ n(n − 1)/2.
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Proof of Corollary (1) The proof follows directly from an application of the following
lemma.
Lemma 4 Consider a continuous function f : [0,∞) → R that converges to a finite
value λ, i.e. limt→∞ f(t) = λ < ∞. Then

lim
T→∞

1

T

∫ T

0

f(t)dt = λ. (32)

Proof of Lemma (4) Denote F (T ) = 1
T

∫ T

0
f(t)dt. We can write

F (T ) =
1

T

∫ τ ′

0

f(t)dt

︸ ︷︷ ︸

≤cτ ′

+
1

T

∫ T

τ ′

f(t)dt. (33)

The first integral in the above expression is finite since any continuous function on the
compact set [0, τ ′] has a maximum denoted by c. Since f(t) converges to λ, for any ǫ′ we
can find a τ ′(ǫ′) such that for all t ≥ τ ′ we have |f(t) − λ| < ǫ′. Thus we get

|F (T ) − λ| =
∣
∣
∣

1
T

(∫ τ ′

0
f(t)dt +

∫ T

τ ′
f(t)dt − λT

)∣
∣
∣

≤ 1
T

(

|c|τ ′ +
∣
∣
∣

∫ T

τ ′
f(t)dt − λT

∣
∣
∣

)

≤ 1
T

(

|c|τ ′ +
∫ T

τ ′
|f(t) − λ|dt + (T − τ ′ − T )λ

)

≤ 1
T

(|c|τ ′ + ǫ′(T − τ ′) − τ ′λ)

= (|c|−λ)τ ′

T
+ T−τ ′

T
ǫ′

≤ |c|τ ′

T
+ ǫ′.

(34)

We define

ǫ = |c|τ ′

T
+ ǫ′

τ = |c|τ ′

ǫ−ǫ′
.

(35)

Since ∂ǫ
∂T

= − |c|τ ′

T 2 < 0 we have that |F (T )− λ| < ǫ for T > τ . For any ǫ > 0 we can find
an ǫ′ < ǫ (e.g. ǫ′ = ǫ/2) and the corresponding τ ′(ǫ′) from which we compute τ(ǫ) such
that |F (T ) − λ| < ǫ for all T > τ(ǫ). This means that limT→∞ F (T ) = λ.

Proof of Lemma (2) Since G1 and G2 are connected, we have that m1 ≥ n1 − 1 and
m2 ≥ n2 − 1 (West, 2001). We now consider different cases for the number of edges in
the components.

(i) m1 ≥ n1 and m2 ≥ n2: Assume that the largest eigenvalue of G1 is λPF(G1) ≥
λPF(G2). Let G′ be the graph obtained as follows: for each node in G2 we rewire one
incident edge to a node in G1. In this way, all nodes in G2 are connected to G1. The
number of rewired edges is n2 (and there are at least that many edges since m2 ≥ n2

by assumption). There exists a relationship between the largest real eigenvalue of a
graph and those of its subgraphs (Cvetkovic et al., 1995): if H is a subgraph of G,
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H ⊆ G, then λPF(H) ≤ λPF(G). Therefore, λPF(G′) ≥ λPF(G1) ≥ λPF(G2). Total
profits of G′ are

Π(G′) = (n1 + n2)λPF(G′) − 2(m1 + m2)c

≥ n1λPF(G1) + n2λPF(G2) − 2(m1 + m2)c

= Π(G1) + Π(G2).

(36)

(ii) m1 ≥ n1 and m2 = n2 − 1: If m2 = n2 − 1 then the largest real eigenvalue of G2 is
at most the one of the star K1,n2−1 with λPF(G2) ≤

√
n2 − 1 (Hong, 1993).

We construct the graph G by connecting all nodes of K1,n2−1 to a single node in
G1 and including the remaining isolated node by adding one more edge. The graph
G has an eigenvalue λPF(G) ≥ λPF(K1,n1+n2−1) =

√
n1 + n2 − 1. Otherwise, the

edges in G are redistributed to form a star K1,n1+n2−1 and the remaining edges are
attached at random. Since λPF is an increasing function of the number of edges in
the graph the inequality follows. We obtain

Π(G) = (n1 + n2)λPF(G) − 2(m + 1)c

Π(G1) + Π(G2) = n1λPF(G1) + n2

√
n2 − 1 − 2 (m1 + (n2 − 1))

︸ ︷︷ ︸

m

c (37)

Thus, we get

Π(G) − (Π(G1) + Π(G2)) = Π(G) − (Π(G1) + Π(K1,n2−1))

= n1 (λPF(G) − λPF(G1))
︸ ︷︷ ︸

≥0

+n2(λPF(G) −√
n2 − 1) − 2c

≥ n2(λPF(G) −√
n2 − 1) − 2c.

(38)

With λPF(G) ≥ √
n1 + n2 − 1 ≥ √

n2 + 1 if n1 ≥ 2 (by assumption). If the last
inequality above is large than 0, we have that

√
n2 + 1 −

√
n2 − 1 ≥ 2c

n2
. (39)

If 0 ≤ c ≤ 1, this inequality is true if n2 ≥ 2 (by assumption).
(iii) m1 = n1 − 1 and m2 = n2 − 1: If m1 = n1 − 1 and m2 = n2 − 1, then both

components are stars, K1,n1−1 and K1,n2−1 with eigenvalues
√

n1 − 1 and
√

n2 − 1.
Construct the graph G by connecting n2−1 nodes from K1,n2−1 to the central node
in K1,n1−1. Then attach an edge to the remaining isolated node to obtain a star
G = K1,n1+n2−1.

Π(G) = Π(K1,n1+n2−1) = (n1 + n2)
√

n1 + n2 − 1 − 2c(n1 + n2 − 1) (40)

For the difference we get
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Π(G) − (Π(K1,n2−1) + Π(K1,n2−1)) = n1(
√

n1 + n2 − 1 −√
n1 − 1)

+n2(
√

n1 + n2 − 1 −√
n2 − 1) − 2c

≥ (n1 + n2)(
√

n1 + n2 − 1 −√
n1 − 1).

(41)
W.l.o.g. we have assumed that n1 ≥ n2. The expression above is larger or equal
than 0 if

(n1 + n2)
︸ ︷︷ ︸

≥n1+2

(
√

n1 + n2 − 1 −
√

n1 − 1
︸ ︷︷ ︸

≥
√

n1+1−
√

n1−1

) ≥ 2 ≥ 2c, (42)

with n2 ≥ 2. We get
√

n1 + 1 −
√

n1 − 1 ≥ 2

n1 + 2
, (43)

and the last inequality holds for n1 ≥ 2.
(iv) n1 ≥ 2 and n2 = 1: We have one isolated node and a connected graph G1. Total

profits are Π(G) = n1λPF(G1)−2m1c. Denote the graph G′ obtained by connecting
the isolated node to G1. Then

Π(G′) = (n1 + 1)λPF(G′) − 2(m1 + 1)c

≥ Π(G) + (λPF(G′) − 2c),
(44)

We now consider three more cases:
(1) If n1 ≥ 4, then m1 ≥ n1 − 1 (since G1 is connected by assumption). We can

construct a star K1,n1−1 plus additional edges from G1 and connect the isolated
node to it. Denote the resulting graph G′. Then, λPF(G′) ≥ λPF(K1,n1

) =
√

n1 ≥ 2.
Thus, Π(G′) − Π(G) ≥ 0 if λPF(G′) ≥ 2 ≥ 2c for c ∈ [0, 1].

(2) If n1 = 3, then G1 is either a path P3 of length 3 or a cycle C3 containing 3
nodes. We connect the isolated node to G1. In the case of G1 = P3 we get

Π(G′) − Π(G) = 4
√

3 − 6c
︸ ︷︷ ︸

Π(G′)

− (3
√

2 − 4c)
︸ ︷︷ ︸

Π(G)

= 2.69 − 2c > 0,

(45)

where the last inequality follows from c ∈ [0, 1]. In the case of G1 = C3 we obtain

Π(G′) − Π(G) = 42.17 − 8c
︸ ︷︷ ︸

Π(G′)

− (32 − 6c)
︸ ︷︷ ︸

Π(G)

= 2.68 − 2c > 0

, (46)

again, using c ∈ [0, 1].
(3) For n1 = 2 we connect the isolated node to G1 = P2 and again denote the

resulting connected graph G′. We have that

Π(G′) − Π(G) = 3
√

2 − 4c
︸ ︷︷ ︸

Π(G′)

− (21 − 2c)
︸ ︷︷ ︸

Π(G)

= 2.24 − 2c > 0

, (47)

with c ∈ [0, 1].
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(v) n1 = 1 and n2 = 1: We have two isolated nodes with total profits Π(G) = 0. If we
connect the nodes via an edge we have Π(G′) = 2(1 − c). Since 0 ≤ c ≤ 1 total
profits in the connected graph G′ are higher.

The above cases consider all possible cases of disconnected graphs and show that total
profits Π can be increased by connecting them.

Proof of Proposition (2) For a contradiction assume that the efficient graph G is
disconnected (and all connected graphs have smaller total profits than G). Since G is
disconnected then it has at least two components. With Proposition (2) each pair of
components can be connected, resulting in a graph with higher total profits. Ultimately
all components of G can be connected, yielding a connected graph G′ with at least the
total profits of G. This is a contradiction to the assumption that the efficient graph is
disconnected.

Proof of Proposition (3) We prove each claim of the proposition as follows.
(i) From Lemma (2) we know that the efficient graph is connected. Moreover, (Brualdi

and Solheid, 1986) have shown that among the connected graphs, the graphs with
maximal eigenvalue have a stepwise adjacency matrix. We have mentioned already
that these graphs are referred to connected nested split graphs (Aouchiche et al.,
2008).

(ii) We have introduced the graph Fn,d in Section 3.1. In order to prove the claim,
we derive a lower bound for the total profits of Fn,d, as well as an upper bound
for the total profit of the efficient graph G∗. We then show that, if one chooses d
appropriately, the relative difference between the two bounds vanishes for large n.
Let us start with the lower bound. Recall that Fn,d is the graph obtained from a
complete graph Kd of d nodes and n−d isolated nodes by connecting each isolated
node to one and the same node of Kd via one link. The number of links m in this
graph is determined by the size d of the clique, m(d) =

(
n
2

)
+ (n − d). Since Fn,d

contains Kd as a subgraph, the largest real eigenvalue of Fn,d is larger or equal to
the one of Kd, which is λPF(Kd) = d− 1. Therefore, total profits of the graph Fn,d

are bounded from below as follows:

Π(Fn,d) = nλPF (Fn,d) − 2m(d)c ≥ n(d − 1) − 2m(d)c. (48)

Since the inequality above is valid for any integer d, such that 1 ≤ d ≤ n, we are
interested in the value of d that maximizes the right hand side of Equation (48),
that is

d = argmax
1≤k≤n

{n(k − 1) − 2m(k)c}, (49)

where m(k) =
(
n
2

)
+ (n − k) and k ∈ N+. By computing the first and second

derivative of the objective function n(k − 1) − 2m(k)c with respect to k, one finds
that its maximum occurs for k = n+3c

2c
. For simplicity, one can take d as the closest

integer to this value 24 . Notice that, as a consequence, d converges to n
2c

for large
n.

24The results on the relative error that we obtain later in this proof are still valid under this assumption.
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Replacing d = n+3c
2c

in Equation (48), we obtain a lower bound, which is inde-
pendent of d, and given by

Π(Fn,d, c) ≥
n2 + n(2c − 8c2) + 9c2

4c
. (50)

We now derive an upper bound for total profits of the efficient network G∗. The
largest real eigenvalue of a connected graph is at most

√
2m − n + 1 (Hong, 1993)

and from this it follows immediately that total profits of G∗ are bounded by

Π(G∗, c) ≤ n
√

2m − n + 1 − 2mc. (51)

We have shown already that for cost c ≤ 1/2 the efficient graph is complete.
Therefore, we are interested in values of cost c > 1/2. Assuming that c > 0.5,
the number m of edges that maximize the right hand side of Equation (51) is

m = n2+4nc2−4c2

8c2 .
Replacing such value of m, we obtain an upper bound that is independent on the

number m of edges,

Π(G∗, c) ≤ n2 − 4nc2 + 4c2

4c
. (52)

At this point, combining Equation (50) and (52), we obtain that the relative dif-
ference ǫ in the total profits of the graph Fn,d and the graph G∗ is bounded from
above by

ǫ =
Π(G∗, c) − Π(Fn,d, c)

Π(Fn,d, c)
≤ 2c(2c − 1)n − 5c2

n2 + 2c(1 − 2c)n + 9c2
. (53)

The expression on the right hand side of the above inequality converges to zero for
n large, and therefore the relative difference in total profits vanishes for n large.

(iii) Since for the complete graph Kn, λPF = n− 1 and m = n(n−1)
2 , its total profits are

given by

Π(Kn) = n(n − 1) − 2
n(n − 1)

2
c = n(n − 1)(1 − c). (54)

On the other hand, the largest real eigenvalue λPF of a graph G with m edges is
bounded from above so that λPF ≤ 1

2 (
√

8m + 1 − 1) (Stanley, 1987) 25 . For total
profits we then have

Π =
∑n

i=1 λPF(Gi) − 2mc

≤ nmax1≤i≤n λPF(Gi) − 2mc

≤ n
2 (
√

8m + 1 − 1) − 2cm

= b(n,m, c),

(55)

with n ≤ m ≤
(
n
2

)
. For fixed cost c and number of nodes n, the number of edges

maximizing Equation (55) is given by m∗ = n2−c2

8c2 if n2−c2

8c2 <
(
n
2

)
and m∗ = n(n−1)

2

25Notice that a similar result can be obtained using an alternative bound for connected graphs, λPF ≤√
2m − n + 1 due to (Hong, 1993)
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if n2−c2

8c2 >
(
n
2

)
. The graph with the latter number of edges is the complete graph

Kn. Inserting m∗ into Equation (55) yields

b(n,m∗, c) =

{
n
2 (

√
n2−c2

c2 + 1 − 1) − n2−c2

4c
, if c > n

2n−1 ,

n(n − 1)(1 − c) = Π(Kn), if c < n
2n−1 .

(56)

The bound for c ≤ n
2n−1 ∼ 1

2 in the limit of large n coincides with total profits of
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Fig. 12. Upper bound b(n, m∗, c) of Equation (56) for n = 100 and varying costs c. For c ≤ n
2n−1

the

upper bound corresponds with the complete graph Kn.

the complete graph Kn. Therefore Kn is the efficient graph in that region of cost.
(iv) If c = n then the number of edges maximizing Equation (55) is given by m∗ = 0

and the efficient graph is the empty graph K̄n.
Finally, in Figure (13) we show total profits and the number of links of Fn,d for n = 10.
Note that in this case Fn,d is not an approximation but the exact efficient network.

Proof of Proposition (4) The three claims of the proposition are addressed in se-
quence.

(i) With
∑

i di = 2m we can write the degree variance as follows

σ2
d = 1

n

∑n
i=1

(
di − 2m

n

)2
= 1

n

∑n
i=1 d2

i −
(

2m
n

)2
. (57)

Using then the fact that the graph Fn,d contains one node with degree n − 1 (the
hub), d − 1 nodes with degree d − 1 (those in the clique) and n − d nodes with
degree 1, we get

σ2
d(Fn,d) =

1

n

(
(n − 1)2 + (d − 1)3 + (n − d)

)
−

(
2m

n

)2

. (58)

We now replace in the equation above the value of d that maximizes total profits for
the graph Fn,d, d = n+3c

2c
, as found from Equation (49), as well as the corresponding

value of m, given by m(d) = n2+8c2n−9c2

8c2 . As a result, one obtains the degree
variance and this expression is of quadratic order in n, σ2

d = O(n2).
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Fig. 13. Total profits Π (left) and number of links m (right) of the efficient networks Fn,d, with n = 10.

The plot on the right shows that, with this value of n, the efficient network coincides with the complete
graph ( m = n(n − 1)/2 = 45 ) for c ∈ [0, 0.6], while it differs significantly from the complete graph for
higher value of c. Note that in Proposition (3,(iii)), c ≤ 0.5 is a sufficient condition for the efficient graph
to be complete, but not a necessary one.

(ii) The coefficient of variation of the degree is defined as cv = σd/d̄. Recalling that the
average degree is d̄ = 2m/n and replacing, as above, the value of d that maximizes
total profits, d = n+3c

2c
, and the corresponding value of m, one obtains an expression

in n and c. The limit of large n for this expression is well defined and equal to

lim
n→∞

cv =
√

2c − 1. (59)

(iii) Gutman and Paule (2002) have shown that the degree variance of a random graph
G(n,m) with n nodes and m links is given by

σ2
d(G(n,m)) =

2m(n2 − n − 2m)

n3 + n2
. (60)

Replacing m as in (ii), the expression above turns out to be of order O(n), and
consistently, the ratio of (58) and (60) is of order O(n).

Proof of Lemma (3) The assumptions on the improving path require that we add one
link at a time. Starting from an empty network, the first link added yields a pair (i.e. a
path 26 P2 of length 2), with an eigenvalue of λPF = 1 > 2

n
for n > 2. If a second link is

added to one of the nodes of the pair by attaching another node to them, a path of three
nodes is formed, with associated largest real eigenvalue λPF = 2 cos(π/4) = 1.41 (see
Table (1)). It is 1.41 > 4

n
for n ≥ 3. Therefore, we can always find an integer m3 ≥ 1,

such that λPF(m) > 4
n

for m ∈ [0,m3] ∩ N+, with m3 ≤ n(n − 1)/2.

Proof of Proposition (5) Along an improving path the number m of links can vary
only by one or zero in absolute value. Here, we restrict ourselves to the improving paths
in which the number of links increases from m1 = 0 to at most m2 = n(n − 1)/2. From

26The term path refers to a particular type of graph, as we have discussed in Section 2.1. On the other
hand, in Section 4.1 we have introduced the term improving path which refers to a sequence in the space
of graphs.
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Proposition (1) we know that the largest real eigenvalue is bounded, λPF(m) ≤ n − 1.
Taking the average between the extreme values λPF(m1) = 0 and λPF(m2) = n − 1
we get an average increase of λPF(m) per additional link of 2

n
. This fact is depicted

by the straight line in Figure (5) which has a slope of 2
n

and intersects the origin.
Moreover, Figure (5) shows an example of an improving path that reaches 50% of the
density of a complete graph before it arrives at a stable network. Let us now define
ym = λPF(m) − 2

n
m. ym is just the difference between the largest real eigenvalue of

the improving path and the straight line in Figure (5). Since we have that ym1
= 0

and ym2
= 0, it obviously holds that the sum of the increments ∆ym = ym − ym−1 in

I = [m1,m2] ∩ N+, have to be zero, that is

m2∑

m=m1+1

∆ym = 0. (61)

However, Lemma 3 ensures that along the improving path, ym starts off positive. There-
fore, we can always find an integer m3 ≥ 1, such that (1) ym3

= b > 0 and (2) I = I1∪I2,
with I1 = [m1,m3] ∩ N+ and I2 = [m3,m2] ∩ N+. The condition (61) on the increments
of y implies that

∑

m∈I2

∆ym = −
∑

m∈I1

∆ym = −b. (62)

Denoting by 〈∆y〉I2
the average increment in the set I2, we have

∑

m∈I2

∆ym = 〈∆y〉I2
(m2 − m3). (63)

There must be some increments that are smaller or equal to the average increment.
Hence, there must exists a value m∗ such that

∆ym∗ ≤ − b

m2 − m3
< 0, (64)

or, equivalently, there exists an m∗ such that

∆λPF(m∗) <
2

n
. (65)

For any given cost c, we can find an n large enough and an m∗ such that ∆λPF(m∗) < c.
This means that the marginal revenue is smaller than the cost, for some value of m∗.
This concludes the proof.

Proof of Proposition (6) If costs are zero, c = 0, then the change in eigenvalue equals
the change in profits. Since (in a connected graph G) each link created strictly increases
λPF (Horn and Johnson, 1990) and accordingly profits, the complete graph Kn is reached
eventually.

Proof of Proposition (7) There exists the following bound on the change in eigenvalue
by the removal and creation of a link (Cvetkovic et al., 1995): If the graphs G,G′ differ
in one edge only then |λPF(G′) − λPF(G)| ≤ 1. A link is created if ∆λPF > c. Thus, no
link is created if c = 1. On the other hand, a link is removed, if ∆λPF < c′. And thus,
all links are removed if c′ > 1 and we obtain an empty graph K̄n.
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Fig. 14. Upper and lower bounds for the size of the stable cliques (left) and the number of different sizes
of stable cliques (right) for α = 1 and α = 0.1.

Proof of Proposition (8) The structure of the proof is as follows. We want to show
that the graph G consisting of k cliques of the same size is stable, that is, no link is
removed or created. For the removal, we can focus on links between nodes in the same
clique, since these are the only links in G. Thus, in Proposition (13) we show that, for any
pair of nodes in the same clique, the link is not removed as long as the size n of the clique

is smaller than a given bound br. In particualar, we will show that, br = ⌊ 2−c′(1−c′)
c′

⌋.
For the creation of links, we can focus on links between nodes in different cliques, since

these are the only new links that can be added to the graph. Thus, in Proposition (14)
we show that for any pair of firms belonging to different cliques, a link between them is
not created as long as the size n of the clique is larger than another bound bc, and we

will show that bc = ⌈ 1+c(1−c)
c

⌉.
It turns out that the bound for the removal, br, is larger than the bound for the

creation, bc, for any value of c ∈ [0, 1], as it is shown in Figure (14). However, since the
size n of the clique has to be an integer, the interval [bc, br] needs to contain at least one
integer. This can be done constructively. We explored the interval c ∈ [0, 1] with cost
increments of 10−3 and we counted the number of integer values that fall within [bc, br].
As it is shown in Figure (6), for c < 0.35, there is always at least one integer in between
the two bounds, while for c < 0.2, there are always several integers falling in between the
two bounds.

This is a remarkable finding as it implies that for the values of cost given above, there
exists a multiplicity of equilibria. Indeed, for a given value of cost, the stable graphs are
all the configurations with cliques of the same size n, where n varies among the integers
included in the interval [bc, br].

Propositions (8) and (13), used for this proof, are given below.

Proposition 13 Consider a clique Kn and denote by Kn − ij the graph obtained from

Kn by removing an edge ij. Then λPF(Kn) − λPF(Kn − ij) > c′ if n ≤ ⌊ 2−c′(1−c′)
c′

⌋.

Proof of Proposition (13) Denote the matrix obtained from the adjacency matrix A
of Kn − ij, and subtracting the variable λ on the diagonal of A by M = A− λI. M is a
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block matrix of the form

M =




K BT

B D



 , (66)

with submatrices 27

K =














−λ 1 · · · · · · 1

1 −λ
...

...
. . .

1

1 · · · 1 −λ














(n−2)×(n−2)

, (67)

B =




1 1 1 1 1 1 · · ·
1 1 1 1 1 1 · · ·





2×n

, (68)

D =




−λ 0

0 −λ





2×2

. (69)

Since M is a block-matrix (Horn and Johnson, 1990) we can write

det(M) = det(K) det(P). (70)

We have the following lemma.
Lemma 5

det














a 1 · · · · · · 1

1 a
...

...
. . .

...

1

1 · · · · · · 1 a














n×n

= ((n − 1) + a) (a − 1)n−1. (71)

Proof of Lemma (5) The above determinant can be written as det (U − (1 − a)I),
where U is a matrix consisting of all ones, uij = 1 i, j = 1, ..., n and I is the identity
matrix. Hence, the eigenvalues of the above matrix are minus 1−a the eigenvalues of U.
U has eigenvalues n and 0 with multiplicities 1 and n − 1 respectively (Horn and John-

son, 1990). Therefore, we can write for the determinant (n − (1 − a)) (0 − (1 − a))
n−1

=
((n − 1) + a) (a − 1)n−1.

Thus, we get for the determinant of K

detK = − ((n − 1) − λ) (1 + λ)n−1. (72)

27The numbers at the bottom right of the matrix indicate the dimension of the matrix.
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The Schur complement is P = D−BK−1BT . Multiplying the inverse of K with B from
the left and BT from the right we obtain

BK−1BT = ||K−1||1




1 1

1 1



 (73)

where ||K−1||1 is the sum of all elements in the matrix K−1 (the l1 norm of the matrix
K−1 (Horn and Johnson, 1990)). By computing K−1K = I one can verify that

K−1 =








n−4−λ
(λ−(n−3))(1+λ) − 1

(λ−(n−3))(1+λ) · · ·

− 1
(λ−(n−3))(1+λ)

. . .

...








. (74)

And, by summation over the elements in K−1, we obtain ||K−1||1 = n−2
(n−3)−λ

. Conse-

quently, the determinant of the Schur complement P is given by

det(P) = (1 + λ)n−3λ
(
λ2 − (n − 3)λ − 2(n − 2)

)
. (75)

The largest real eigenvalue of Kn − ij is given by the root of

λ2 − (n − 3)λ − 2(n − 2) = 0. (76)

Thus we get

λPF =
1

2

(

n − 3 +
√

n2 + 2n − 7
)

. (77)

For the change in eigenvalue ∆λPF = λPF(Kn) − λPF(Kn − ij) we obtain

∆λPF =
1

2

(

n + 1 −
√

n2 + 2n − 7
)

, (78)

since λPF(Kn) = n− 1. This is a decreasing function in n. Then for n ∈ N, ∆λPF > c′ if

n ≤ ⌊2 − c′(1 − c′)

c′
⌋. (79)

For c′ = 2 −
√

2 = 0.586 we have n ≤ 3 and for c′ = 1 we obtain n ≤ 2.

Proposition 14 Denote the graph consisting of two disconnected cliques by G and the
graph obtained from G by connecting the two cliques in G via an edge by G′. Then for

n ≥ ⌈ 1+c(1−c)
c2 ⌉ we have λPF(G′) − λPF(G) < c.

Proof of Proposition (14) Denote the adjacency matrix of the graph obtained by
connecting two complete subgraphs Kn and Kn via and edge, see Figure (15), by A.
And denote the matrix obtained by subtracting the variable λ on the diagonal of A by
M = A − λI. The eigenvalues of A are given by the roots of the determinant of M. M
has the form of a block matrix with the submatrices K and B. We have

M =




K B

BT K



 , (80)
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Fig. 15. Two complete graphs, K9, connected through an edge.

K =











−λ 1 · · · · · · 1

1 −λ
...

...
. . . 1

1 · · · 1 −λ











n×n

. (81)

Due to the symmetry of the graph we can consider a matrix of the following form, where
we have put the one on the diagonal indicating the link between the cliques,

B =




















0 · · · · · · 0
...

. . .
...

0

0 1 0

0
...

. . .
...

0 · · · · · · 0




















n×n

, (82)

with the Schur complement

P = K − BT K−1B. (83)

For the determinant of M we have detM = det(K) det(P). The determinant of K is
given by

det(K) = (1 + λ)n−3(λ − n + 3). (84)

The inverse of K is already given in (74) 28 . W.l.o.g. the Schur complement P is given
by

28Note that here the matrix K has dimension n × n
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P =














−λ 1 · · · · · · 1

1 −λ
...

...
. . .

−λ 1

1 · · · 1 −λ + λ−(n−2)
(λ−(n−1))(1+λ)














. (85)

In the next step we make use of the following lemma.
Lemma 6

det














b 1 · · · 1

1 a
...

...
. . .

a 1

1 · · · 1 a














n×n

= (1 − n + (n − 2)b + ab) (a − 1)n−2. (86)

Proof of Lemma (6) We give a proof by induction. For n = 2 we get

det




b 1

1 a





2×2

= ab − 1 = (b(2 − 2) + ab − (2 − 1))(a − 1)0. (87)

For n = 3 we get

det








b 1 1

1 a 1

1 1 a








3×3

= a2b − 2a + 2 − b = (b + ab − 2)(a − 1). (88)

For the induction step we apply a Laplace expansion of the determinant in (86) into
Minors.

b det














a 1 · · · · · · 1

1 a
...

...
. . .

a 1

1 · · · 1 a














(n−1)×(n−1)

− (n − 1) det














1 1 · · · · · · 1

1 a
...

...
. . .

a 1

1 · · · 1 a














(n−1)×(n−1)

(89)

For the first determinant we can use Lemma (5) and for the second the induction hy-
pothesis in order to obtain

b ((n − 2) + a) (a − 1)n−2 − (n − 1)(a − 1)n−2. (90)
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Fig. 16. Upper and lower bounds for the sizes of the stars (left) and the number of stars of different sizes

(right) for α = 1 and α = 0.1. One can see that for α = 1 and cost larger than 0.4 a stable spanning
star does not exist.

Now we can compute the determinant of the Schur complement P

detP = − (1 − n + (n − 2)q − λq) (1 + λ)n−2

q := −(n−2)+λ

(−(n−1)+λ)(1+λ) − λ.
(91)

λPF is given by the largest root of detP = 0. We obtain λPF = 1
2 (n− 1+

√
n2 − 2n + 5).

The change in the largest real eigenvalue is

∆λPF = 1
2 (n − 1 +

√
n2 − 2n + 5) − (n − 1)

= 1
2 (1 − n +

√

(n − 2)n + 5),
(92)

since λPF(Kn) = n − 1. Thus, ∆λPF < c if

n ≥ ⌈1 + c(1 − c)

c
⌉. (93)

For costs c = 0.5 we get n ≥ 2 and for c = 1 we get n ≥ 1.

Proof of Proposition (9) In order to proof the stability of the spanning star K1,n−1,
that connects all nodes in the network, we have to consider two cases: (i) the creation of
a link and (ii) the removal of a link (see Figure (17)).

(i) We consider the creation of a link between the nodes in the star. The normalized
eigenvector associated with the largest real eigenvalue λPF is given by

1
√

2(n − 1)
(1, ..., 1,

√
n − 1, 1, ..., 1)T . (94)

Maas (1987) found an upper bound for the largest real eigenvalue λPF and the
corresponding eigenvector x of an undirected graph G if an edge ij is added

λPF(G + ij) − λPF(G) < 1 + δ − δ(1 + δ)(2 + δ)

(xi + xj)2 + δ(2 + δ + 2xixj)
, (95)
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(i)

(ii)

Fig. 17. A star K1,8 and (i) the creation of a link or (ii) the removal of a link.

where δ denotes the minimum degree in the graph G 29 . Applying Equation (95)
to the star K1,n−1 gives ∆λPF = λPF(K1,n−1 + ij) − λPF(K1,n−1) < 2

n
. The link

ij is not created if ∆λPF < c or equivalently

n >
2

c
. (96)

This is a decreasing function in c.
(ii) The change in eigenvalue by removing a link from K1,n−1 is given by ∆λPF =

λPF(K1,n−1) − λPF(K1,n−2) =
√

n − 1 −
√

n − 2. A link is not removed from the
star if ∆λPF > c′ or equivalently

2 < n <
1 + c′2(6 + c′2)

4c′2
. (97)

Putting the bounds obtained in (i) and (ii) together we get the desired proposition. The
number of different sizes of stars that are stable are shown in Figure (5).

Proof of Proposition (11) A link between two disconnected firms is created if the
largest real eigenvalue of the connected component of the firms after the link is created
increases more then the cost, i.e. ∆λPF > c. Similarly an existing link is removed if the
largest real eigenvalue of the connected component of the firms after the link is removed
does not decrease more then the cost, i.e. |∆λPF| < c′ = αc, with c, c′, α ∈ [0, 1]. We
therefore have to consider the change in eigenvalue by the creation or removal of a link
and compare it to the cost.

The proof of Proposition (11) is composed of two steps. (i) We show that in every
period t in the network formation process Γ(G) = G(0), G(1), ... the network G(t), t ≥ 1,
consists only of graphs from the set S = {∅, P2, P3, P4}, where ∅ denotes the set of isolated
nodes. (ii) We show that there exists a cycle, i.e. a sequence of repeatedly visited graphs,
C = (P2, {P2, P2}, P4, P3), in which each graph is an improvement over the previous
graph in the sequence C (Jackson and Watts, 2002). Since all the graphs in the set S
can be found in the cycle C, starting from any of the graphs in S, the network formation
process will proceed to the next graph in the cycle C. Therefore, for the given values
of α and cost c, c′ respectively, we can infer that there does not exist a pairwise stable
equilibrium network.

29Equation (95) is an upper bound and the number of stable stars derived from it may actually be
higher.
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(i) We give a proof by induction on the periods t ≥ 1 of the network formation process
Γ(G). The induction basis is period t = 1. The network G(1) is obtained from
the empty network G(0) = K̄n (initial network) by the formation of a link and
thus contains only a P2 and isolated nodes, both graphs are contained in the set
S. Now we assume that the network at time t > 1 consist only of graphs in the
set S (induction hypothesis). The induction step consists in showing from G(t) to
G(t + 1), no other graphs than the ones in the set S will be created. This will
conclude this part of the proof. In order to prove the induction step, we observe
that in the network formation process Γ(G), at time t, a pair of nodes, say i and
j, is selected at random. Either i and j are already connected in G(t) or they are
not. In any case, they both belong by assumption to one of the graphs in S. All
the possible cases can be grouped as follows.
(a) Both nodes are isolated. We show that the empty graph evolves into a P2. The

creation of a link between two isolated nodes results in ∆λPF = 1. Since by
assumption c < 1, the link is indeed created.

(b) At least one of the nodes, say i, is part of a P2. In this case, we show that the
only possible evolution step is from two P2 to one P4.

(i) Link creation: Figure (18) shows all possible distinct graphs that can be
obtained depending on which graph belongs the second node, j, and in
which position. Each of these possible graphs is named with a number
in the following way. For instance, when j is in another P2, the possible
positions in that P2 result both in one same graph labelled as 1. When j
is in a P3, there are two possible distinct resulting graphs, labelled as 2.1
and 2.2. Similarly, we label the graphs resulting in the remaining case
that j is in a P4. Table (2) report the increase of the largest eigenvalue of
the graph when the link is created in all the possible cases. For instance,
consider the graph 2.1 resulting from a P2 and a P3 with the creation of a
link. Before the creation of the link, node i is in a P2 which has λPF = 1
and node j is in a P3 graph which has λPF =

√
2. Since the link formation

rule requires that both nodes will benefit after the creation of the link,
we have to consider the worst case for the initial graph, which means
the highest of the two values, i.e. λPF =

√
2 = 1.414. For the resulting

graph 2.1 we have λ′
PF =

√
3 = 1.732, and therefore an increase of

eigenvalue ∆λPF = 0.318 which is smaller than the cost c = 0.586. It
follows that this link will not be created. After analyzing all the other
cases, we can see that only the case 1 results in an increase in the largest
real eigenvalue ∆λPF = 0.618 that is higher than the lower bound of the
cost c > 2 −

√
2 = 0.586. This implies that the only possible evolution

step at this point is the formation of one P4 starting from two P2. Notice
that P4 is in the set S.

(ii) Link deletion: A link is deleted if this beneficial to at least one of the
two firms concurrent to the link, or, equivalently, if |∆λPF| < c′ = cα. In
the case we are considering, by assumption at least one of the nodes is
in a P2 and we examine the deletion of a link. This implies that the two
nodes form a P2, which has λPF = 1. The deletion of the link implies
to evolve into an empty graph which has λPF = 0, yielding |∆λPF| = 1.
Since, by assumption we have that c > 2−

√
2, the case of cα > 1 implies
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P2

3.1
3.2

4

1 2.1
2.2

Fig. 18. All possible graphs for link creation when at least one of the selected nodes is part of a P2.
We have labeled all the possible cases or links respectively with numbers shown next to the dashed
links.

1 2.1 2.2 3.1 3.2 4

λPF 1 1.414 1.618 1

λPF’ 1.618 1.732 1.848 1.802 1.932 1.414

∆λPF 0.618 0.318 0.434 0.184 0.314 0.414

Table 2
Change in eigenvalue for link creation when at least one of the selected nodes is part of a P2. The
numbers in the first row in the table refer to the possible links indicated by the same numbers in

Figure (18). The maximum increase in the largest real eigenvalue is given by the creation of a link
between the two pairs, indicated by 1 in Figure (18).

that the link is removed only if α > 1
2−

√
2

= 1.707. But we have assumed

that α ∈ [0, 1] and therefore the link is not removed.
(c) At least one of the nodes is part of a P3. In this case, we show that if α ∈

[0.707, 1] then the only possible evolution step is from one P3 to one P2 and
one isolated node.

(i) Link creation: Figure (19) shows all possible graphs that can be obtained
by adding a link when at least one of the selected nodes is part of a P3.
Table (3) shows the increase in eigenvalue for all these possible graphs.
From the Table we can see that in none of the cases the increase in
eigenvalue is higher than the lower bound of the cost. Thus, no link is
created.

(ii) Link deletion: The removal of a link from P3 results in a change in
eigenvalue of ∆λPF =

√
2 − 1 = 0.414. The lower bound for the cost

is c > 2 −
√

2. We have that |∆λPF| ≤ c′ = αc if α ≥
√

2−1
2−

√
2

= 0.707.

Therefore, if we restrict the values of α to the interval [0.707, 1] then the
link is removed and we obtain a single connected pair P2 and one isolated
node. Both are contained in the set of graphs S = {∅, P2, P3, P4}.

(d) At least one of the nodes is part of a P4. In this case, we show that if α ∈
[0.707, 1] then the only possible evolution step is from one P4 to one P3 and
an isolated node.
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4.1

P3

5

Fig. 19. All possible cases for link creation when at least one of the selected nodes is part of a P3. We
have labeled all the possible cases or links respectively with numbers shown next to the dashed links.

1.1 1.2 1.3 1.4

λPF 1.414

λPF’ 1.732 1.848 1.732 1.848

∆λPF 0.318 0.434 0.318 0.434

2.1 2.2 2.3 2.4

λPF 1.414

λPF’ 1.902 1.802 2 1.902

∆λPF 0.488 0.388 0.586 0.488

3.1 3.2 3.3 3.4

λPF 1.618

λPF’ 1.848 2 1.932 2.053

∆λPF 0.23 0.382 0.314 0.435

4.1 4.2 5

λPF 1.414

λPF’ 1.732 1.618 2

∆λPF 0.318 0.204 0.586

Table 3
Change in eigenvalue for link creation when at least one of the selected nodes is part of a P3. The
numbers in the first row in the table refer to the possible links indicated by the same numbers in Fig-
ure (19). The maximum increase in the largest real eigenvalue is given by the creation of a triangle,

indicated by 5 in Figure (19). However, does not exceed the minimum value of cost c ≥ 0.586 and so
the corresponding firms do not form this link.

(i) Link creation: Figure (20) shows the possible graphs that can be obtained
by adding a link when at least one of the selected nodes is part of a P4.
Table (3) shows the corresponding increase in eigenvalue. From the Table
we can see that in none of the cases the increase in eigenvalue is higher
than the lower bound of the cost. Thus, no link is created.

(ii) Link deletion: The change in eigenvalue is either (A) ∆λPF = 0.204 if
the first or last link in P4 is removed or (B) it is ∆λPF = 0.618 if the
second link in the middle of P4 is removed.

In case (A) the change in eigenvalue is given by ∆λPF =
√

2 − 1
2 (1 +√

5). If c′ = αc ≥
√

2 − 1
2 (1 +

√
5), then |∆λPF| ≤ c′ = αc and the

link is removed. This means that, for c > 2 −
√

2 we must have that

α ≥ |
√

2− 1
2
(1+

√
5)|

2−
√

2
= 0.348 which is certainly true since we have assumed

that α ≥
√

2−1
2−

√
2

= 0.707. Thus, the link is removed under the above

made assumptions on cost and α and we obtain a path of length three,
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P4

3.1
3.2 3.3

3.4

1.1
1.2

2.1
2.2 2.3

2.4

4.2

4.1

P4

5.1

5.2

Fig. 20. All possible cases for link creation when at least one of the selected nodes is part of a P4.

1.1 1.2

λPF 1.618

λPF’ 1.802 1.932

∆λPF 0.184 0.314

2.1 2.2 2.3 2.4

λPF 1.618

λPF’ 1.970 1.848 2.053 1.932

∆λPF 0.352 0.23 0.435 0.314

3.1 3.2 3.3 3.4

λPF 1.618

λPF’ 1.879 1.989 1.989 2.095

∆λPF 0.261 0.371 0.371 0.477

4.1 4.2

λPF 1.618

λPF’ 1.848 1.732

∆λPF

5.1 5.2

λPF 1.618

λPF’ 2.170 2

∆λPF 0.552 0.382

Table 4
Change in eigenvalue for link creation when at least one of the selected nodes is part of a P4.

P3, which is in the set of graphs {∅, P2, P3, P4}.
In case (B) we have that ∆λPF = 1− 1

2 (1 +
√

5). This link is removed

for |∆λPF| ≤ c′ = cα implying that α ≥ |1− 1
2
(1+

√
5)|

2−
√

2
= 1.055. Since we

have assumed that α ∈ [0, 1] this cannot be true. Therefore, the link is
not removed.

Notice that in all the cases the graphs created belong to the set S, as we
wanted to prove.

(ii) From the preceding analysis we can infer two facts: First, the individual profits
of the firms involved in the creation or removal of a link always increase along
the closed sequence of graphs C = (P2, {P2, P2}, P4, P3.P2), as it is illustrated in
Figure (8). Therefore, this is an improving path (Jackson and Watts, 2002) which
is cyclical and never reaches an equilibrium. Notice that, the firms responsible for
the creation or deletion of the links along the sequence are different and individual
profits of a given firm are not increasing at every step. Along the improving path,
the individual profits of the firms involved in the link creation or removal increase,
while the profits of the others may decrease. This highlights the effects of the
externalities inherent in our model on the individual profits of the firms.

Second, since at every step of the sequence there is only one possible network
evolution step and since all the non-empty graphs of the set S are also in the
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Fig. 21. Maximal value of cost c for which the complete graph Kn can be obtained as an equilibrium
network.

cycle C, we can conclude that C is the only improving path in the given range of
parameters.

Proof of Proposition (12) The change in the largest real eigenvalue, ∆λPF of a graph
G with m edges and n nodes, by adding one edge to the graph is bounded by

∆λPF ≤ 1

2
(−1 +

√

1 + 8(m + 1)) − 2m

n
. (98)

The above inequality can be obtained as follows. The average degree of the graph is
d̄ = 2m

n
. A lower bound on the largest real eigenvalue is given by λPF ≥ d̄ (Cvetkovic

and Rowlinson, 1990). An upper bound on the largest real eigenvalue is given by λPF ≤
1
2 (−1 +

√
1 + 8m) (Stanley, 1987). Combining the two bounds yields the inequality in

(98).
We apply the bound of Equation (98) on the change in the largest real eigenvalue,

∆λPF, by adding an edge to the graph G with m edges. Solving the equation ∆λPF = c
for m yields the maximal number m∗ of edges that can be added to a graph of n nodes
when the cost is c, m∗(n, c) = n

4 (−1−2c+n+
√

n2 + 9 − 2n(1 + 2c)). Notice that m∗(n, c)
decreases with increasing cost c. Imposing now this expression to be equal to one edge less

than the number of edges in a complete graph Kn with n nodes,
(
n
2

)
−1 = n(n−1)

2 −1, we
get c∗ = 2

n
. Thus, if costs exceed this value then the increase in eigenvalue corresponding

to the creation of the link that would make the graph complete, is smaller than the cost.
Notice that c∗ decreases with n and tends to 0 for large n, as plotted in Figure (21), and
therefore for any given c there is an n large enough such that the complete graph cannot
be reached.

References

Aghion, P., Howitt, P., 1998. Endogenous Growth Theory. MIT Press.
Ahuja, G., 2000. Collaboration networks, structural holes, and innovation: A longitudinal

study. Administrative Science Quarterly 45 (3), 425–455.

53
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