
Revised version 
 
 
 
Sustainability and substitution of exhaustible natural resources 
How resource prices affect long-term R&D-investments 
 
 
Lucas Bretschger* 
and 
Sjak Smulders** 

 
 
May 2006 
 
 
 
 
Abstract 
Traditional resource economics has been criticised for assuming too high elasticities 
of substitution, not observing material balance principles and relying too much on 
planner solutions to obtain long-term growth. By analysing a multi-sector R&D-
based endogenous growth model with exhaustible natural resources, the present 
paper addresses this critique. We study transitional dynamics and long-term 
growth and identify conditions under which firms keep spending on research and 
development. Long-run growth can be sustained under free market conditions 
when the elasticity of substitution between resources and intermediate input is 
higher in the knowledge-using sector than in the knowledge-competing sector, even 
when both elasticities are below unity. 
 
 
 
Keywords :   Growth, non-renewable resources, substitution, investment 

incentives, endogenous technological change, sustainability 
 
JEL-Classification :  Q20, Q30, O41, O33 
 
 
 
* Corresponding author: CER-ETH Center of Economic Research at ETH Zurich, ETH-
Zentrum, ZUE F7, CH-8092 Zurich, lbretschger@ethz.ch. 
** Department of Economics, Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The 
Netherlands, j.a.smulders@kub.nl.  
 
We thank Christian Groth, Karl-Josef Koch, Peter Kort, Thomas Steger, Cees Withagen, various 
seminar and session participants, and two anonymous referees for valuable comments. 
Smulders' research is supported by the Royal Netherlands Academy of Arts and Sciences. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7210431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

1. Introduction  
 
The debate on environmental sustainability and the recent upsurge in oil prices have 
reawakened the interest in the question whether and how natural resource scarcity 
impairs development prospects for future generations. The high energy prices in the 
1970s pushed the world economy into a recession. Since then exploration and 
discovery activities have increased the known stocks of resources, in particular fossil 
fuels, and technological change has increased the efficiency of resource use. 
Accordingly, most past predictions of growth perspectives turned out to be too 
pessimistic. However, discoveries can only temporarily postpone the peak of oil 
production, and economic growth has already suffered a serious productivity 
slowdown in the 1980s-1990s. Therefore, in discussions among scientists and 
business people on future growth and well-being, the critical question is whether and 
how decreasing inputs of natural resources will be mitigated or offset by favourable 
technological developments.  

The seminal literature on growth and resources from the 1970s concludes that 
income growth can be sustained in the long run, provided that either the “elasticity 
of substitution between exhaustible resources and other inputs is unity or bigger” 
(Solow 1974b, p.11) or that exogenous resource-augmenting technological progress 
occurs at a constant rate, see Dasgupta and Heal (1974) and Stiglitz (1974). Many 
ecological economists have argued that these assumptions are overly optimistic, e.g. 
Cleveland and Ruth (1997). They assume that the elasticity of substitution between 
natural resources and man-made inputs lies below unity and technical progress is too 
weak in reality. Moreover, they emphasise that material balances limit the use of 
physical capital in the long run, while the resource economics literature of the 1970s 
assumes unbounded accumulation. Finally, while sustained growth may be 
technically feasible under certain circumstances, it is not necessarily reached under 
free market conditions. Low investment incentives and externalities may result in too 
little investment effort in capital which substitutes for resources. Moreover, myopic 
behaviour of today’s generations may prevent the implementation of policy 
measures that are needed to obtain sustainability for future generations.  

The present paper reconsiders the relation between resource scarcity, 
substitution, and innovation. We investigate whether and when poor input 
substitution destroys the innovation incentives that are necessary to offset the drag 
on growth from resource depletion. The following issues are emphasised. First, we 
depart from the common assumption that elasticities of substitution between man-
made inputs and natural resource inputs are unitary; we allow them to be lower. 
Second, we do not use the assumption of exogenous technological progress, which 
has been common in the resource literature up to the 1990s. We thus rule out 
exogenous technological change that offsets resource depletion as “manna from 
heaven”. In our model, technological change results from investments in research 
and development (R&D) that is driven by profit incentives and results in blueprints 
for new intermediate inputs. The division of labour over a larger variety of 
intermediate inputs enhances not only labour productivity, as in Romer (1990) and 
Grossman and Helpman (1991), but also the efficiency of natural resource use.  

Third, we introduce multiple sectors of production in the economy, each with 
different opportunities for innovation and substitution. In particular, we emphasise 
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the distinction between knowledge-using and knowledge-competing sectors. This 
allows us to analyse how resource depletion drives sectoral shifts and, consequently, 
has an impact on the incentives for innovation. Fourth, since these sectoral shifts play 
a major role over time, we discuss transitional dynamics in detail, which are largely 
ignored in the endogenous growth resource literature cited above.  

Finally, we emphasise the accumulation of knowledge rather than physical 
capital as the engine of growth, in order to do justice to material balance principles. 
We bound the total supply of man-made inputs to take into account material 
balances. Physical capital cannot continuously grow in the long run because it 
requires raw materials like metals to be built; the supply of these materials, however, 
is bounded. Accordingly, in our model, labour, natural resource inputs and 
cumulative knowledge are combined to produce a flow of services that yield utility; 
accumulation of purely physical capital is disregarded in the main part of the paper. 
We discuss the impact of additionally including physical capital on the results in a 
separate subsection.  

Our main finding is that long-run growth can be sustained under free market 
conditions even when elasticities of substitution between intermediate inputs and 
natural resources are low, provided that the elasticity of substitution between 
intermediate inputs and resources in the knowledge-using sector exceeds the 
elasticity of substitution in the knowledge-competing sector. In this case, the long-
run growth rate directly depends on the size of the two elasticities. The main 
mechanism underlying this result is sectoral reallocation of inputs. Given the 
depletion of the resource, the sector with the better substitution possibilities is less 
vulnerable to rising resource prices and expands at the cost of the other sector. When 
the relative size of the knowledge-using sector increases, innovation incentives 
remain intact in the long run. We also show that the reallocation process between the 
sectors neutralises the scale effect that is often present in endogenous growth models. 
We thus contribute to the discussion on “scale effects on growth” (see Jones 1995, 
1999) by providing a new way to eliminate such scale effects.  

We extend the older literature on growth and resources (Solow 1974a and 
especially Dasgupta and Heal 1979) as well as the literature on endogenous growth 
literature. Poor substitution was discussed in resource economics but only in 
combination with exogenous technological change. Moreover, these resource models 
focused on one-sector economies, abstracting from sectoral shifts due to depletion. 
The endogenous growth literature developed in the 1990s endogenised technological 
change by modelling R&D. Positive spillovers from R&D by profit-maximising firms 
to a general stock of knowledge are assumed to support subsequent R&D. The 
positive externalities provide sufficient incentives for entrepreneurs to keep 
innovating at a constant rate. For the case of a unitary elasticity of substitution 
between capital and resource inputs, endogenous knowledge accumulation yields 
sustained growth in the presence of non-renewable resources (Aghion and Howitt 
1998, Scholz and Ziemes 1999, Schou 2000, Groth and Schou 2002, Grimaud and 
Rougé 2003). Elasticities of substitution below unity are discussed in some models of 
renewable resources and endogenous growth (Bovenberg and Smulders 1995, 
Bretschger 1998), but not in the context of non-renewable resources.  

The remainder of the paper is organised as follows. In section 2, the theoretical 
five-sector model of the economy with two consumer goods is presented in detail. 
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Section 3 shows how the model can be solved. Section 4 provides results for 
transitional dynamics and long-run growth for different types of parameter and 
substitution conditions. Section 5 concludes. 

 
 

 
2. The model 
 
2.1 Production sector 
There are two primary inputs: labour L and the exhaustible natural resource R. L 
produces two types of intermediate goods which are combined with R to 
manufacture two final goods: Y-goods, or knowledge-using “high-tech” goods, and 
T-goods, knowledge-competing “traditional” goods, respectively, see figure 1. 
 
 

Fig. 1 
(about here) 

 
 
Y is produced with R and differentiated intermediate inputs K according to the 
following nested CES-function:  
 

 ( ) ( )
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0
(1 )

N

jY q K dj q N RY

σ
σ σσ
βσβ δ σ

− −−⎡ ⎤
⎢= + − ⋅
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where 0 ,q 1β< < , and , 0δ σ >  are given parameters and the time index has been 
omitted. Parameter σ represents the constant elasticity of substitution between 
natural resources and a CES-index of intermediate input. Each moment in time, a 
mass of N(t) varieties of the intermediate good is available; the constant elasticity of 
substitution between them equals 1/(1 – β) > 1.  

In a symmetrical equilibrium, the quantities of intermediate goods K are equal 
for the different components, i.e. jK K=  for all j. Production can then be written as:  
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− −
− −

⎡ ⎤
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⎥
⎥ ,     (1’) 

 
where IY is the following aggregate measure of intermediate goods: 
 

YI N K= ⋅ .           (2) 
 
According to (1’), holding aggregate intermediate input YI  constant, the production 
of the high-tech goods increases with the number of intermediates, N. Accordingly, 
the term (1 ) /N β β−  captures the gains from specialization in the use of intermediates, as 
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introduced by Ethier (1982) and common in the endogenous growth literature 
(Romer, 1990 and Grossman/Helpman, 1991). The term N δ  extends this logic to the 
use of resources: producers are able to use natural resources the more efficiently, the 
higher is the specialization of intermediate goods a given amount of resources is 
combined with. As long as the former effect is stronger than the latter, i.e. 
(1 ) /β β δ− > , an increase in N mainly affects the productivity of intermediates rather 
than resources.  
Rearranging (1’), we find: 
 

 ( ) /( 1)1 /(1 ) / ( 1) / (1 )( )Y YY N qI q N R
σ σσ σβ β σ σ ν −−− − −⎡= ⋅ + −⎣
⎤
⎦     (3) 

 
with (1 ) /= − −ν β β δ . The expression in brackets on the r.h.s. of (3) corresponds to 
the familiar CES-approach of resource economics, see Dasgupta and Heal (1979, p. 
199); it aggregates differentiated goods input YI  and effective resource input Y  
into a composite input. At a pre-determined degree of specialization, N, substitution 
is possible between man-made inputs 

N Rν−

YI  and resources YR . Shifts in production 
possibilities arise from an increase in the degree of specialization, N, which has two 
effects. First, total factor productivity increases (see the term (1 ) /N β β− ), and, second, 
the relative productivities of resource and intermediate inputs change, which 
corresponds to biased technological change (see the term N ν− ). 

The market for Y-goods is fully competitive. Producers take prices of output, 
resource inputs and intermediate goods (denoted by R,Yp p  and Kjp , respectively) as 
given. They maximise total profits 

0

n

Y R Y Kj jp Y p R p K d− − ∫ j , subject to the production 
function (1). Under symmetry ( Kj Kp p= ), relative demand for intermediates and 
resources is given by: 
 

(1 )

1
Y K

Y R

I pq N
R q p

σσ
σ ν

−

− −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

.       (4) 

 
Equation (4) reveals that if (1 )−σ ν  < 0 technological change (i.e. an increase in N) is 
resource-saving; if (1 )−σ ν  > 0, it is resource-using. To be on the conservative side 
with respect to technological opportunities, from now on we assume poor 
substitution, 0 1, 0 1σ ω< < < < , and small effects of specialisation on the resource 
efficiency so that technological change is resource-using, (1 ) / 0= − − >ν β β δ .  

The production of the second type of final goods, standard goods T, requires 
homogenous intermediates TI  and resources TR  as inputs. We use again a CES-
formulation:  

 

( )
1 1 1

1T TT h I h R

ω
ω ω ω
ω
− −

ω
−⎡ ⎤

= ⋅ + −⎢
⎣ ⎦

⎥        (5) 

 
with ω  being the elasticity of substitution in the T-sector and 0 h< <1

T

. Producers 
take prices as given and maximise profits T IT T Rp T p I p R− −  subject to (5), with Tp  
and ITp  denoting the prices of T  and TI . This gives relative factor demand: 
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1
T

T R

I h
R ph

ω

ITp
ω−

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

        (6) 

 
In the third production sector homogenous intermediate goods TI  used in the T-sector 
are produced. We assume labour is the only input and perfect competition applies so 
that the price of the homogeneous intermediate good equals the wage rate: 
 
 ITp w= .          (7) 
 

The final type of production concerns differentiated intermediate goods K which 
are produced by monopolists, using labour L as an input. K-goods are assembled to 
aggregate intermediate services YI  without further costs. The profit maximising 
monopolistic supplier of a K-variety faces a price elasticity of demand equal to 

1/(1 )β− − . As in the standard Dixit-Stiglitz approach, this follows from the Y-
producers demand for K. Thus, the monopolist optimally sets a rental rate that is a 
mark-up 1/β times the marginal cost of production, which equals the labour wage w. 
All monopolistic suppliers set this same price: 

 
 /Kp w β= .          (8) 
 
Associated profits π for each supplier of an intermediate good can be calculated as:  
 

 1 YwI
N

βπ
β

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

.         (9) 

 
Profits are used to cover the expenses for fixed costs in the production of K-goods, 
which consist of payments for the blueprint of the intermediate good. Each design 
contains the know-how for the production of one intermediate K. Thus, each K-firm 
has to acquire one design as an up-front investment before it can start production. 
 
2.2 Innovation 
Innovation expands intermediate goods variety, N, as in Grossman and Helpman 
(1991, Chapter 3). We measure innovation by the rate of innovation, defined as:  
 
           (10) /g N N=
 
Blueprints for new varieties  are produced in the R&D sector. Per blueprint, a/N 
units of labour are required. It is assumed that an increase in variety increases the 
stock of public knowledge on which R&D builds so that research costs decline with 
N.  Knowledge capital is accumulated through positive spillovers in research and is 
an input into subsequent R&D; it is the driving force for long-run development.  

N

There is free entry in R&D. Thus, whenever the cost to develop a new 
blueprint, , is lower than the market value of a blueprint, denoted by p( / )w a N⋅ N, 
entry will compete away the rent. Hence we have:  
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   with equality (inequality) if g > 0 (g = 0).  (11) / Naw N p≥
 
The market value of a blueprint follows from the condition that investors earn the 
market interest rate r when investing their money in blueprints, thus earning profits 
π and capital gains Np :  
 
 N Np r pπ + = ⋅          (12) 
 
We combine (9)-(12) to get: 
 

 1ˆ0 YIg r w
a

β
β

⎛ ⎞−
> ⇒ − = −⎜ ⎟

⎝ ⎠
g        (13) 

 
Equation (13) characterises the return to innovation, which increases in the size of the 
knowledge-using sector, the mark-up over marginal cost in the production of 
differentiated intermediates, and the productivity in the research lab; it decreases 
with the innovation growth rate.  
 
2.3 Factor  markets 
The total stock of the non-renewable resource at time t is denoted by . It is 
depleted according to: 

( )S t

 
 ,  given,  ,      (14) ( )Y TS R R= − + (0)S ( ) 0S t ≥
 
which reflects that any flow of resource use depletes the total resource stock 
proportionally, that the resource stock is predetermined, and that the stock can never 
become negative.  

The labour market is in equilibrium if the fixed supply L equals labour 
demand in intermediate goods production, YI  + TI , and in research, ag:  
 
          (15) Y TL I I ag= + +
 
2.4 Households 
The representative household inelastically supplies L units of labour, owns the 
resource stock with value pRS as well as equity in intermediate goods firms with 
value pNN. It maximises utility over an infinite horizon subject to their intertemporal 
budget constraint and the usual No-Ponzi-game condition. We assume a constant 
discount rate ρ and Cobb-Douglas preferences over the two consumption goods. 
Thus the household maximises: 
 

 ( )( ) ln ( )t

t

U t e C dρ τ τ τ
∞

− −= ∫ ,        (16) 

 
subject to   
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1C Y Tφ φ−= ⋅ ,          (17) 

 
 ,   given,   (18) ( )R R T YV r V p S p S wL p T p Y= − + + − − (0)V
 
where  is total asset holdings. The first order conditions yield the 
following relations: 

NV p N p S= + R

 

 
1

Y

T

p Y
p T

φ
φ

⋅
=

⋅ −
 ,         (19) 

 
 ˆˆCp C r ρ+ = − ,         (20) 
 
 ˆRp r= ,          (21) 
  
where hats denote growth rates and 1( / ) ( /(1 ))C Y Tp p pφ φφ φ −= −  is the consumer 
price index. The Cobb-Douglas specification in (17) implies constant expenditure 
shares for T- and Y-goods so that relative demand for final goods is constant, see 
equation (19). Equation (20) is the Ramsey rule stating that the growth rate of 
consumer expenditures is equal to the difference between the nominal interest rate r 
and the discount rate ρ . Equation (21) represents the Hotelling rule, which 
guarantees that resource owners are exactly indifferent between selling resources 
(and investing the profit with interest rate r ) and preserving the stock of resources 
(and earning capital gains because of increases in the resource price).  

The transversality condition and the No-Ponzi-game condition require: 
 

( ) ( )

lim ( ) lim[ ( ) ( ) ( ) ( )] 0t t

r s ds r s ds

N RV e p N p S e

τ τ

τ τ
τ τ τ τ τ

− −

→∞ →∞

∫ ∫
= + = . 

 
Together with (21) this implies that the resource stock is depleted completely 

and that the discounted value of household wealth approaches zero when time goes 
to infinity. Writing the latter condition in terms of percentage changes, we thus have:  
 
 ,        (22) ˆ ˆlim ( ) ( ) 0t NN t p t r→∞ + − ≤
 
 .         (23) lim ( ) 0t S t→∞ =
  
 
3. The dynamics of the model 
  
To characterise the dynamics in the most instructive manner, we introduce the 
proportional extraction rates, RY/S and RT/S (to be denoted by uY and uT, 
respectively), as well as the intermediate goods value shares in the knowledge-using 
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sector Y and the knowledge-competing sector T (to be denoted by q and h, 
respectively). Thus we define:  
 

K Y

Y

p I
q

p Y
= ,  IT T

T

p I
h

p T
= ,       (24) 

 
/Y Yu R= S S,  .       (25) /T Tu R=

 
Using these definitions we can write the firm’s first order conditions (4) and (6) as:  
 

 
(1 ) /

1 1
Y

Y

u SNq q
q q I

σ σν −−⎛ ⎞
= ⎜ ⎟− − ⎝ ⎠

,       (26) 

 
(1 ) /

1 1
T

T

u Sh h
h Ih

ω ω−
⎛ ⎞

= ⎜ ⎟− − ⎝ ⎠
.        (27) 

 
The value shares characterise the static cross-sectional allocation of labour and 
extraction. First, from (7), (8), (15), (19), and (24) we find for labour allocation: 
 

 (
(1 )Y
q )I L ag

q h
φβ

φβ φ
=

+ −
− ,        (28) 

 

 (1 ) (
(1 )T

h )I L ag
q h

φ
φβ φ

−
=

+ −
− .        (29) 

 
Second, from (24) and (25), the relative sectoral resource use proves to be: 
 

 (1 )
(1 )(1 )

Y

T

u q
u h

φ
φ
−

=
− −

.         (30) 

 
We next determine the dynamics of sectoral shares, innovation, and extraction rates 
in the model. Combining demand equations (4) and (6) with supply equations (7), 
(8), and (21) and the definitions in (24), we derive the following differential equations 
to characterise how factor shares change with factor prices and innovation: 
 
 ˆ (1 )(1 )( )q q r ŵ gσ ν= − − − − + ,       (31) 
 .        (32) ˆ ˆ(1 )(1 )( )h h rω= − − − − w
 
Using (19), (24), (31), and (32) we rewrite the Ramsey rule (20) in two ways: 
  
 ˆ ˆ[1 (1 )(1 )]( ) ( )YI q r w vg gσ ρ ν= − − − − + − + ,     (33) 
 ˆ ˆ[1 (1 )(1 )]( )TI h r wω ρ= − − − − − .       (34) 
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Equations (33) and (34) reflect the households’ savings decisions and show how the 
interest rate, innovation, and the discount rate affect the growth rate of employment 
in both sectors.  

In the above equations, the term ˆr w−  prominently governs the dynamics. 
Since from (7), (8), and (21) we may write Kˆ ˆ ˆ ˆ ˆR IT Rr w p p p p− = − = −

ˆ

, the term 
represents the change in the relative input price for final goods producers and hence 
determines factor share dynamics. Also, from (8) we may write ˆ Kr w r p− = − , so that 
the term represents the real interest rate from the point of view of the innovation 
sector and hence naturally governs the innovation dynamics. From now on we will 
label the term  as the “real interest rate” for convenience. Using (28) we can 
rewrite (13) to express the real interest rate in terms of our key variables: 

ˆr w−

 

  /ˆ0 (1 )
[(1 ) / ]( / )

L a gg r w
h q

β
β φ φ

⎛ −
> ⇒ − = − −⎜ + −⎝ ⎠

g
⎞
⎟ .    (35) 

 
In a steady state without innovation, in which lim ( ) 0t g t→∞ = , discounted stock prices 
change at rate ˆ /Np r p 0Nπ− = − < , see (12). The transversality condition (22) then 
always holds for a positive firm value, i.e. when li . In a steady state 
with innovation, in which , the firm value equals the cost of 
innovation, 

m ( ) 0t Np t→∞ >
lim ( ) 0t g t→∞ >

/Np aw N= , see (11), and the transversality condition (22) boils down to: 
 
   for .     (36) ˆlim ( ) ( ) 0t r t w t→∞ − ≥ lim ( ) 0t g t→∞ >
 
Differentiating (15) with respect to time and using (33) and (34), we can characterise 
the dynamics of the innovation rate g by the following expression: 
 

ˆ(1 )(1 ) (1 )(1 ) (1 )(1 ) ( )Y YI IL ag L agg q g q
a a a a a

ρ σ ν σ ω− −⎡ ⎤= + − − − − − − − − −⎢ ⎥⎣ ⎦
TIh r w− . 

           (37) 
 

This key equation can be reduced to an equation in g, h, and q by substituting (28), 
(29) and (35) to eliminate YI , TI  and ˆr w− ; we will do this stepwise when we discuss 
the different cases in section 4. 

Resource dynamics are given by differential equations in the proportional 
extraction rates. First we differentiate (26) with respect to time and substitute (14), 
(25), (10), (31), and (33) to arrive at: 
 

 (1 )(1 )ˆ 1 (1 )(
(1 )Y Y

hu u q r w g
q

φ ˆ )ρ σ
φ

⎛ ⎞− −
= + − + − − +⎜ ⎟−⎝ ⎠

ν .    (38) 

 
Second, we differentiate (27) with respect to time and substitute (14), (25), (32), and 
(34) to get: 
 

 (1 )ˆ 1 (1
(1 )(1 )T T

qu u h r w
h

φ ρ ω
φ

⎛ ⎞−
= + − + − −⎜ ⎟− −⎝ ⎠

ˆ)( ) .     (39) 
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4. Solutions for different substitution conditions 
 
To see the different mechanisms in the model most clearly, it is useful to first 
consider the case of unitary elasticities in both sectors. Then, intermediate cases with 
poor substitution in one of the sectors are discussed. Finally, the general case for poor 
input substitution and extensions are evaluated. 
 
4.1 Cobb-Douglas Case 
In our benchmark case of unitary elasticities both in the knowledge-using and the 
knowledge-competing industry, we will show the following:  
 
Proposition 1: If 1σ ω= = , there are no transitional dynamics and the innovation rate 
equals: 

(1 ) / ( / )(1 ) /max 0,
1 ( / )(1 ) /

L a h qg
h q

β βρ ρ φ φ
φ φ

⎧ ⎫− − − −
= ⎨ ⎬+ −⎩ ⎭

. 

 
Proof: From (26) and (27) we see that factor shares are constant: q q=  and h h= . 
After substitution of (35) and 1σ ω= = , the dynamics of the innovation rate in (37) 
simplify to the following differential equation:  
 

1
( / )(1 ) /

L Lg g g
a ah q

βρ
β φ φ

⎡ ⎤−⎛ ⎞ ⎛= − + − −⎜ ⎟ ⎜⎢ ⎥+ −⎝ ⎠ ⎝ ⎠⎣ ⎦
g ⎞⎟  if (1 ) /

( / )(1 ) /
L a

h q
β ρ

β φ
−

≥
+ − φ

 

             

0g =         if (1 ) /
( / )(1 ) /

L a
h q

β ρ
β φ

−
φ
<

+ −
 

 
Any path converging to a negative growth rate must be ruled out. The same holds 
true for a path converging to /g L a= , since it violates the transversality condition 
(36). Hence, the equilibrium growth rate jumps to the value for which , i.e. the 
value stated in proposition 1, and remains there. □ 

0g =

The rate of innovation is stimulated by a higher supply of labour L, a lower 
unit input coefficient in research a, higher mark-up rates 1/β, and a lower discount 
rate ρ . This corresponds to the findings in other R&D-models. Novel in our multi-
sector model is how resource dependence in the different sectors affects innovation 
incentives. In particular, the rate of innovation decreases with ( )/ (1 ) /h q φ φ− , which 
captures three effects. First, since innovation takes place in the Y-sector only, a lower 
expenditure share on Y-goods (lower φ) reduces innovation. Second, since innovation 
is embodied in intermediate goods in the Y-sector, a smaller role for intermediates, as 
measured by a smaller intermediate goods share q , decreases the market for 
innovations, which makes research less profitable. Conversely, a high value for q  
implies a low share of non-renewable resources in Y-production: the sector is less 
dependent on non-man-made inputs and this stimulates innovation. Finally, 
innovation is low when the share of non-renewable resources in the T-sector is low 
(high h ). If the T-sector relies heavily on resources rather than labour input, less 
labour is allocated to this sector, and more becomes available for the research sector. 
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Hence, greater natural-resource dependence in the knowledge-competing sector 
reduces output in this sector, but raises innovation. 
 

Fig. 2  
(about here) 

 
 

To study how resource dependence affects growth of consumption rather than 
innovation, we need to calculate output growth in both final goods sectors. Besides 
innovation, only depletion of resource inputs drives growth, since labour and 
materials inputs are constant. From (25), (38), and (39), we derive that with σ = ω = 1, 
resource dynamics are characterised by û u ρ= −  where ( )Y Tu R R / S≡ + is the 
aggregate proportionate extraction rate. In order to satisfy the transversality 
condition (23), both the stock of resources and the amount of resources used in both 
sectors must decline at rate ˆ ˆ ˆ

Y TS R R ρ− = − = − = . Differentiating consumption and 
production functions (17), (3) and (5) with respect to time we obtain the consumption 
growth rate according to: 
 

[ ] [ ]ˆ (1 ) / (1 ) (1 ) (1 )(1 )C q q g q hβ β δ φ φ φ= − + − − − + − − ρ .   (40) 
 
Consumption grows at a positive rate only if innovation (at rate g, see first term at 
right-hand side) is sufficiently large to offset the decline in resource inputs (at rate ρ, 
see second term). Consumption growth is bigger, the higher are the gains from 
specialisation (low β ) and the larger are productivity spillovers (δ). A lower 
discount rate (ρ) reduces resource depletion and implies a smaller drag on growth 
from the scarcity of non-renewable resources.  For a given rate of innovation g, a 
higher intermediate goods share in both sectors ( q q=  and h h= ) implies smaller 
dependence of production on natural resource inputs, which is beneficial for growth. 
Overall, resource dependence in the knowledge-competing sector (as measured by 

) has an ambiguous impact on growth. Initial resource and knowledge stocks 
have no impact on dynamics in this case – they affect output levels only. 
1 h−

  
4.2 Poor substitution in the traditional sector 
We now analyse the case in which substitution is more difficult in the knowledge-
competing sector than in the knowledge-using sector, which – as above – has a 
unitary elasticity of substitution. We then arrive at the next proposition: 
 
Proposition 2: If 1 = σ > ω > 0, the rate of innovation is non-decreasing over time; its long-
run value is determined by ( ) max{0, (1 )( / ) }g L aβ βρ∞ = − − . At any time in an equilibrium 
with innovation, an increase in the resource stock reduces innovation. 
 
Proof: With 1σ = , we have q q= , see (26). The dynamics of h and g are shown in 
figure 2a. From (34) and (35) we derive the 0h =  locus, which by (32) corresponds to 
the  line. The  locus follows from (37) and (29). Accordingly we have: ˆ 0r w− = 0g =
 
          ˆ0h r≥ ⇔ − ≤ 0w
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 ˆ0
(1 )1 (1 )
/(1 )

g r w
h h

q h

ρ

ω
φβ φ

≥ ⇔ − ≤
⎡ ⎤−

− − ⎢ ⎥− +⎣ ⎦

     

 
At h = 0 and h = 1, the  line intersects the 0g = ˆr w ρ− =  line, while otherwise the 
former lies below the latter. Moreover, both lines are downward sloping for . 
If 

[0,1]h∈
(1 ) /L aβ βρ− > , there is a unique saddlepath, which lies between the  and 

 loci, along which the intermediate goods share h declines to zero and the 
innovation rate g increases to 

0h =
0g =

(1 )( / )g L aβ βρ= − − . Any other path must be ruled out 
since it violates the transversality condition.   A path converging to h = 1 implies that 
the real interest rate is negative, which violates (36). A path converging to g = 0 and h 
= 0 implies a negative firm value. If (1 ) /L aβ βρ− ≤ , the 0g =  locus lies outside the 
positive quadrant and only a path without innovation can arise in equilibrium.  

To determine the initial value of h, we use (38) to plot the  locus in 
figure 2b. Moreover we derive from (27), (29), and (30) the following relationship 
between the state variable S at t = 0, S(0), and initial values of endogenous variables:   

0Yu =

 
/(1 ) 1/(1 )

1 (0) (1 ) (0)(0)
1 (0) (1 ) (0) (0)Y

h h q L au
h h q h S

ω ω ω
φ

φβ φ

− −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −

= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + −⎝ ⎠ ⎝ ⎠⎝ ⎠

g−  

 
Since for every h the unique equilibrium value of g can be determined in the 

upper panel, the above equation defines a relationship between the initial stock S(0) 
and initial values of the endogenous variables uY(0) and h(0). In the h, uY plane, this 
relationship is a monotonically increasing curve OS, starting at 0,0 and with a vertical 
asymptote at h = 1. Given the development of h derived in the upper panel, there is a 
unique saddlepath converging to a constant positive proportionate extraction rate. 
The intersection between this saddlepath and the OS curve determines the initial 
value of h. A higher resource stock shifts the OS curve down and implies a higher 
intermediate goods share h. From the upper part of the figure it can be seen that a 
higher h implies a lower growth rate, provided that 0 (1 )( / )g L aβ βρ< < − − . □ 
 

Fig. 3  
(about here) 

 
Because of relatively poor substitution in the knowledge-competing sector, the 

sectoral output becomes relatively more expensive and labour moves out of this 
sector when the resource stock gets depleted (see (29) with h gradually declining to 
zero). As a result the knowledge-competing sector vanishes; only conditions in the 
knowledge-using sector determine innovation in the long run. Indeed, the steady-
state innovation rate is the same as the one derived by Grossman and Helpman 
(1991, chapter 3) in their one-sector model without resources. Another implication is 
the “resource curse”-effect, stated in the second part of the proposition. A high 
resource stock benefits mainly the knowledge-competing sector if this sector has the 
lowest substitution possibilities. This sector expands at the cost of the innovating 
sector in response to a higher resource stock, and the smaller size of the innovating 
sector makes innovation less profitable. 
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The steady-state growth rate of aggregate consumption reads: 

 1ˆ( ) (1 ) ( ) [ (1 ) (1 )]C q q g qβ δ φ φ φ
β

⎡ ⎤−
∞ = + − ∞ − − + −⎢ ⎥

⎣ ⎦
ρ  

 
where we write 

t
( ) lim ( )x x t∞ ≡

0

→∞
 for any variable x. Comparing this result with the Cobb-

Douglas case in (40), we see that poor substitution implies a larger drag on growth 
from depletion in the long run (see the second term in brackets). However, 
innovation turns out to be much stronger with poor substitution so that, overall, 
consumption grows faster than under the Cobb-Douglas assumption.  

 
4.3 Poor substitution in the high-tech sector 
For the case of a unitary elasticity in the knowledge-competing sector and poor 
substitution in the knowledge-using sector we state: 
 
Proposition 3: If 1 ω σ= > > , the innovation rate is non-increasing over time, becomes 
zero in finite time and remains zero. At any time in an equilibrium with innovation, an 
increase in the resource (knowledge) stock increases (reduces) innovation.  
 
Proof: The relevant phase planes are shown in figure 3. From (33) and (35) we get the 

 locus which by (31) corresponds to the 0q = ˆ 0r w− =  line. The  locus follows 
again from (37). Accordingly we obtain: 

0g =

 
 ˆ0q r w 0gν≥ ⇔ − + ≤        

 ˆ0
(1 )1 (1 )

(1 ) /

gg r w g
q q

h q

ρ νν
σ

φ βφ

+
≥ ⇔ − + ≤

⎡ ⎤−
− − ⎢ ⎥− +⎣ ⎦

   

 
At q = 0 and q = 1, the  locus intersects the 0g = ˆr w ρ− =  line; for all other values of 
q, the former lies below the latter. The intercept of the 0g =  locus is negative, the 
locus slopes upward; only if (1 ) / (1 ) /L a hβ βρ ρ φ φ− − > − , it cuts the horizontal axis 
(since then ˆr w ρ− =  requires g > 0). The result is that the innovation rate can be 
positive at most for a finite amount of time, as shown in figure 3a. 

To determine the initial value of q, we use (39) to plot the  locus in 
figure 3b. We also derive from (26), (28), and (30) the following relationship between 
S at t = 0, S(0), and initial values of endogenous variables:   

0Tu =

 

 
/(1 ) 1/(1 )

1 (0) (1 )(1 )(0)
1 (0) (1 ) (0) (0) (0)T

q q h L agu
q q h q N S

σ σ σ

ν

β φ
φ φβ

− −

−

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −
= ⎜ ⎟⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(0)−  

 
This equation is depicted as the OS line in figure 3b. The intersection of OS with the 
saddlepath determines the initial value q(0). 
 Changes in the initial stock variables shift the OS curve. First, a larger resource 
stock moves the OS curve down, increases q(0) and raises innovation growth, 
provided that g > 0. Second, an increase in the knowledge stock has the opposite 
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result: given that g > 0, it shifts the OS curve up and decreases both q(0) and 
innovation growth. □ 

Relatively poor substitution in the knowledge-using sector has opposite effects 
compared to poor substitution in the other sector: now resource depletion makes the 
innovating sector relatively more expensive and shifts labour to the traditional sector 
(see (28)-(29) with q declining to zero). As a result, research incentives fade away 
with the depletion of the resource stock and consumption steadily declines in the 
steady state. Furthermore, a higher resource stock now expands the knowledge-using 
sector and this may spur innovation in the short run. With resource-using 
technological change, a higher knowledge stock increases the demand for scarce 
resources in the knowledge-using sector, which reduces its size and thus innovation 
incentives.  
 
4.4 Poor substitution in both consumer sectors 
We now turn to the case with substitution elasticities smaller than unity in both 
sectors. Our key result is stated in the following proposition: 
  
Proposition 4: With poor input substitution in both sectors, the steady state innovation rate 
is given by: 
 

( ) 0g ∞ =     if 0 1σ ω< ≤ <  or  
if 0 1ω σ< < <  and L L< ,   (41a) 

 
(1 ) /( )

(1 ) scale
L ag gβ σ βρ

σ βν σ
− −

∞ = ≡
− +

 if  0 1ω σ< <  and L L L≤ ≤ ,  (41b) <

 
( )( )
(1 ) nonscaleg gρ σ ω

ν σ ω
−

∞ = ≡
−

   if 0 1ω σ< < <  and L L> ,   (41c) 

 

where 
1

aL β ρ
β σ

⎛ ⎞
≡ ⎜ ⎟−⎝ ⎠

 and (1 )
(1 ) (1 )

aL β σ ν σ ω ρ
σ ν β ω

⎛ ⎞− + −
≡ ⎜ ⎟− −⎝ ⎠

. 

 
Proof: From (31), (32) and the transversality condition (36) we see that both value 
shares q and h continue to fall in the steady state, so that they must eventually 
approach zero. Hence, in the long run we have: 
 
 .         (42) ( ) ( ) 0h q∞ = ∞ =

 
Substituting (41) into (39) and (40) and taking into account (14) and (22), we find the 
long-run proportional extraction rates: 
 
 ( ) ; ( ) (1 )Y Tu uφρ∞ = ∞ = −φ ρ .       (43) 
 
Substituting (43) into (34) and (35) we find: 
 
 ˆ ˆ( ) ( ( ) ( )) (1 ) ( )YI r w gσ σ ν ρ∞ = ∞ − ∞ − − ∞ −      (44) 

  



 15

 ˆ ˆ( ) ( ( ) ( ))TI r wω ρ∞ = ∞ − ∞ −         (45) 
 
Together with (36), (13) and (15) these two equations determine the long-run values 
of the labour allocation, innovation growth and the real interest rate. There are three 
possible steady states: (i) an interior steady state with g, TI  and YI  strictly positive 
and constant, (ii) a corner solution with 0TI =  zero, and (iii) a corner solution with g 
= 0.  We discuss each of these equilibria in turn. 
(i) In the interior steady state with ˆ ˆ 0Y TI I= = , we derive from (45) that the real 
interest rate equals ˆ /r w ρ ω− =  and from (44) that the growth rate equals 

( ) nonscaleg g∞ = . Since innovation cannot be negative, this equilibrium is only feasible 
if 0nonscaleg ≥  which requires σ ω≥ . Moreover, feasibility requires . Using 
(13) to solve for I

( ) 0TI ∞ ≥
Y and plugging this solution into (15) to obtain IT we find that in this 

equilibrium  requires ( ) 0TI ∞ ≥ L L≥ .  
(ii) In a corner solution with  and ( ) 0TI ∞ = ˆ ( ) 0YI ∞ = , we find from (13), (15) and (44) 
that the innovation rate equals ( ) scaleg g∞ = . Since innovation cannot be negative, 
feasibility requires 0scaleg ≥ , which requires L L≥ . Moreover, in this equilibrium we 
must have  in order to not violate ˆ ( ) 0TI ∞ < ( ) 0TI ∞ = .  Substituting scaleg g=  into (13) 
and (15) to solve for the real interest rate and substituting this solution into (45), we 
see that  requires ˆ ( ) 0TI ∞ < L L< .  
(iii) In the other corner solution with ( ) 0YI ∞ = , ˆ ( ) 0YI ∞ < , and  results in ˆ ( ) 0TI ∞ =

ˆˆ / , ( ) /Yr w Iρ ω ρ σ ω− = = − ω  and hence requires σ < ω. From (13) and (36) we see 
that this implies g = 0.  □ 

The proposition exhibits that there is a unique steady state for given 
parameters. The appendix shows that for given initial state variables, N(0) and S(0), a 
unique trajectory leads to the unique steady state. Proposition 4 implies that the 
steady-state innovation rate:  

(i) can be positive even with poor input substitution in all production sectors, 
(ii) is non-decreasing in substitution possibilities in the innovative sector, σ, 
(iii) is non-increasing in the substitution possibilities of the non-innovative 
sector, ω, 
(iv) is non-decreasing in labour supply L and, for a large enough labour supply, 
is independent of labour supply,  
(v) is non-monotonous in the discount rate ρ if σ > ω. 
 
The remainder of the section discusses these results and the implications for 

consumption growth. A necessary condition for innovation to remain active in the 
long run is that substitution possibilities in the knowledge-using sector are better 
than in the knowledge-competing sector. As the resource stock is depleted, the sector 
with poorest substitution possibilities is hurt most, i.e. demand shifts away from it 
because the sector faces the steepest increase in costs. Hence, if the Y-sector suffers 
from poorest substitution (σ < ω), it shrinks over time, which sooner or later makes 
innovation unprofitable. In contrast, if the T-sector has poorest substitution 
possibilities (σ>ω), labour moves towards the knowledge-using sector which 
increases the incentives to innovate. If, in addition, the labour force is large relative to 
the discount rate ( L L> ), the long-run size of the Y-sector is large enough to sustain 
incentives to invest in new firms.  If the labour supply is still relatively small 
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( L L L< < ), the growing scarcity of resources drives labour out of the T-sector. An 
exogenous increase in the labour force eventually ends up in the Y-sector and in 
innovation. This implies a scale effect: growth is increasing in the size of the economy 
as measured by the labour force.  

However, this scale effect only applies for small L. As soon as L L> , an 
exogenous increase in the labour force will raise production in both sectors, but will 
not increase innovation. To see why, we note that two opposing – but inseparable – 
forces from depletion and technological change, respectively, determine labour 
allocation. On the one hand, we already saw what we call the “differential 
substitution effect”: as the resource stock is depleted, labour tends to move to the 
sector with good substitution, which is the Y-sector provided that σ > ω. On the other 
hand, there is an “innovation effect”: innovation causes resource-using technological 
change (since ν > 0) and increases the demand for resources in the Y-sector. Resource 
inputs per unit of labour rise which makes it harder to employ workers in the Y-
sector when resources get depleted. This counteracts the differential substitution 
effect when σ > ω. In a steady state with small labour supply ( L L L< < ), the 
innovation effect is too weak to offset the differential substitution effect. However, in 
a steady state with large labour supply ( L L> ), the rate of innovation could be 
potentially so large that labour would, on balance, move from the Y-sector to the T-
sector. This is self-defeating, however, since smaller employment in the Y-sector 
reduces innovation. Hence, in equilibrium the two forces exactly cancel each other 
out and both sectors keep employing labour. If L L> , no increase in the labour force 
can increase the innovation rate, as it would make the innovation effect dominate the 
depletion effect (which is fixed at ρ) but, again, this is self-defeating.  

We are now able to explain why the innovation rate does not always fall with 
the discount rate. If L L L< <  as well as in the Cobb-Douglas case (section 4.1) and in 
most endogenous growth models, discounting disfavours investment in general and 
investment in R&D in particular. However, if L L> , the two types of investments, 
resource conservation and innovation, do not necessarily move in the same direction. 
An increase in the discount rate makes investors less patient so that the resource 
stock is depleted faster (see (43)). This implies that the differential substitution effect 
becomes stronger and there is room for a stronger innovation effect to counteract it in 
the steady state. Although discounting reduces investment in the resource by 
speeding up depletion, it makes investment in innovation more attractive if depletion 
expands the Y-sector at the cost of the T-sector (which requires σ > ω).  

In the long run, with , growth of consumption is (cf. (40)): 0q h= =
 
 ˆ ( ) ( )C gφδ∞ = ∞ − ρ .         (46) 
 
Whenever endogenous knowledge accumulation affects the productivity of resource 
use in Y-production ( 0δ > ), innovation implies resource-augmenting technological 
change that makes long-run consumption growth technically feasible. However, in 
the market equilibrium, consumption grows in the long run only if incentives to 
innovate are large enough relative to the incentive to deplete the resource stock. 
From (45) and (46) we derive that this requires,  
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(i) sufficiently large spillovers, 1[1 ( ) /(1 )] (1 ) /δ φ σ ω σ β β−> + − − − ,  
(ii) better substitution in the knowledge-using sector than in the 

knowledge-competing sector (σ > ω), and  
(iii) a sufficiently low discount rate, .  1[ / (1 ) ] (1 ) /L aρ β φδ σ σ βν β δ−< + + − −

Under these conditions, the discount rate affects consumption growth in an 
ambiguous way: substituting (41) into (46), we see that as long as L L L< <  an 
increase in the discount rate lowers both innovation and consumption growth; 
however, as long as L L>  (which requires ceteris paribus a low discount rate), an 
increase in the discount rate raises both innovation and consumption growth. As a 
result, there is an inverted-V shaped relationship between the discount rate and long-
run consumption growth.  
 
4.5 Model extension: physical capital  
The long-run results of the previous subsections continue to hold when we make 
different assumptions regarding the production technology for intermediate inputs. 
In particular, we may allow for the use of materials (distinct from the resource R, e.g. 
metals), which is bounded because of materials balance principles, or the use of 
physical man-made capital, which may accumulate over a certain period of time.  

When we assume that both intermediate goods are produced with such an 
additional input, we find that the price of this input does not play a role in 
determining the relative size of the knowledge-using and the knowledge-competing 
sector, which – according to our discussion in section 4.4 – ultimately determines the 
innovation rate. Hence, material and physical capital inputs have no impact on the 
technical change in this model. The growth rate of consumption is still given by (45). 
The reason is that the share of intermediates in production approaches zero, so that 
the growth rate of the input does not matter for the growth rate of final production.   

 
 

5. Conclusions 
 
In this paper we have used a multi-sector framework in which differences in sectoral 
substitution opportunities cause labour reallocation when the resource stock is 
depleted. Endogenous innovation generates labour and resource augmenting 
technological change and, as a by-product, public knowledge, on which further 
innovation can build. Combined with a sufficiently low discount rate, knowledge 
spillovers would be sufficient to keep growth going in a model without natural 
resources (like the standard endogenous growth model) or with natural resources 
and good input substitution (our Cobb Douglas case). However, we have shown that 
with poor input substitution, the knowledge spillovers can only sustain growth if 
substitution in the sector for which innovation is developed is larger than in the 
sector without innovation opportunities. In this case, the increasing scarcity-price of 
resources makes the sector without innovation opportunities relatively expensive, 
shifting consumer demand towards the innovating sector and increasing the 
incentives for innovation.  
 The model has some new interesting implications. With relatively poor 
substitution in the sector without innovation opportunities, long-run consumption 
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growth may be higher with poorer substitution and, during transition, resource 
abundance may reduce innovation incentives. Furthermore, the size of the elasticities 
of substitution, rather than resource and labour endowments, bound the rate of 
growth. As a result, beyond a certain threshold, the scale of the economy has no 
effect on long-run growth. 

We have made some simplifying assumptions that may be relaxed in future 
research. First, we allowed for only one type of R&D activity. The model could be 
extended with separate R&D activities for capital augmenting and energy 
augmenting innovations (cf. Acemoglu, 2002), possibly in multiple sectors. 
Differences in substitution across sectors will still determine sectoral allocation in 
response to resource depletion and thus market size for innovation, but more 
complex patterns of innovation over time can arise. Second, we have abstracted from 
resource extraction costs and pollution from resource use, which may be taxed by the 
government. These features may change the price profile of the resource but they hit 
both consumer sectors in the same way. As the effects of price changes in the two 
sectors work in opposite directions, as seen in sections 4.2 and 4.3, the quality of our 
results is not expected to change substantially when enlarging the general model set-
up in this way. Third, as the paper focuses on market solutions, the issue of optimal 
policies has not been discussed. Resource use produces no negative externalities in 
this model, only R&D generates positive spillovers which lead, as in the original 
“Romer-type” approach to R&D, to positive subsidies for innovations in the social 
optimum.  
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Appendix  
 
We can show the stability of the steady state in the general case as follows. 
 
Steady state with innovation 
We first discuss the stability of steady state solutions (45b) and (45c) of the 
proposition in section 4.4. These are solutions with g > 0 so that we can use the 
equality in (13). Evaluating partial derivatives in differential equations (33), (34), (35), 
(40), taking into account how  and g depend on h, Iˆr w− Y and IT through (13) and 
(15), respectively, taking into account that [(1 ) / ] /Y Tq hI Iφ φβ= − ⋅  (from (28)-(29), and 
evaluating the partial derivatives for q = h = 0, we find the following Jacobian:  
 

/ / / /
/ / / /

( , , , )
/ / / /
/ / / /

Y T T

Y Y Y Y T Y T
Y T T

T T Y T T T T

T T Y T T T T

h h h I h I h u
I h I I I I I u

J h I I u
I h I I I I I u
u h u I u I u u

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥≡ =
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
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Using Laplace expansion, we can write the characteristic equation of this system as 
11 22 33 23 32 44( )[( )( ) ]( )J J J J J Jλ λ λ− − − − − λ

<

ρ

, where Jij are the elements of the above 
matrix. Hence we find: 
 

2
1 11 4 44 2 3 22 33 23 320, 0, (1 ) / 0Y TJ J J J J J I I aλ λ λ λ σ νω= < = > = − = − −  

 
This implies we have two positive and two negative eigenvalues. Since we also have 
two initial conditions, (26) and (27) (to be evaluated at time zero), there is a unique 
path leading to the steady state.  
 
Steady state without innovation 
Now we discuss the equilibrium without innovation. From (37) and , we 
can solve for the real interest rate: 

0g g= =

 
    (37’) [ ] 1ˆ 1 (1 )(1 )( / ) (1 )(1 )( / ) 0Y Tr w q I L h I Lσ ω −− = − − − − − − >
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With g = 0, we have  from (15) and TL L L= − Y h/( ) [ /(1 )] /Y YL L L qφβ φ− = −  from (28)-
(29). Hence, we can use (31), (32) and (39) to reduce the model to three differential 
equations in .  , / ,  and q Th z q h u≡
 
 ,        (32’) ˆ(1 )(1 )( )h h h r wω= − − − −
 
 ,     (31’) ˆ(1 ) (1 ) ( ) ( )q q qz z hz h r wσ ω ω σ⎡= − − − − − −⎣ ⎤⎦
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First, we consider the case with σ < ω. Since ˆ 0r w− > , see (37’), (32’) implies 

. Then (31’) implies , (39’) implies ( ) 0h ∞ = ( ) 0qz ∞ = ( ) (1 )Tu φ ρ∞ = − , and (37’) implies 
ˆ /r w ρ ω− = . Evaluating the Jacobian of the system in (32’), (31’) and (39’) around this 

steady state, we find:  
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where J0,32 is a finite number. The eigenvalues are the elements on the diagonal. 
Hence there are two negative and one positive eigenvalues. Given our two initial 
conditions this implies uniqueness of the transition to the steady state. 

Second, the case σ > ω is completely symmetric: rewriting (31), (32), and (38) 
as a system of three differential equations in , / ,  and hq z h q uY≡  and calculating the 
Jacobian, we find the eigenvalues { ( ) / , (1 ) / ,σ ω ρ σ σ ρ σ ρ− − − − } so that again 
uniqueness applies.  
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