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Abstract

This paper analyzes overlapping-generations models where natural capital is
owned by sel�sh agents. Transfers in favor of young agents reduce the rate of
depletion and increase output growth. It is shown that intergenerational transfers
may be preferred to laissez-faire by an inde�nite sequence of generations: if the
resource share in production is su¢ ciently high, the welfare gain induced by preser-
vation compensates for the loss due to taxation. This conclusion is reinforced when
other assets are available, e.g. man-made capital, claims on monopoly rents, and
R&D investment. Transfers raise the welfare of all generations, except that of the
�rst resource owner: if resource endowments are taxed at time zero, all successive
generations support resource-saving policies for purely sel�sh reasons.
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1 Introduction

Preserving intergenerational equity has become a worldwide political concern, and
achieving sustainability is increasingly considered a relevant social goal. A major source
of intergenerational con�ict is represented by the intensive use of natural resources in
the production process, since over-exploitation represents a threat for the ability of
future generations to meet their own needs. Since Hotelling�s (1931) seminal work,
economists have pointed out several potential sources of the problem: over-exploitation
may result from market incompleteness, excessive competition, myopic behavior, and
the lack of incentives for investment in preservation. Accordingly, public intervention
may be called for either to restore e¢ ciency (Toman, 1987) or sette con�icts between
intertemporal e¢ ciency and intergenerational fairness (Howarth and Norgaard, 1990).1

In recent times, the attribution of property rights over natural resources has gained
much attention in the policy debate. However, neither sustainability nor resource
preservation are guaranteed when natural capital is private property. This result holds
in general equilibrium models with in�nitely-lived agents (Pezzey, 1992), and is fur-
thermore valid when assuming sel�sh agents with �nite lifetimes (Mourmouras, 1993):
market valuation of resource assets can only limit the depletion rate to the extent that
preserving natural capital is pro�table to agents currently alive. Consequently, achiev-
ing intergenerational fairness requires a system of transfers that redistributes income
among generations: examples in the recent literature on resource economics include
Howarth (1991), Mourmouras (1993), Krautkraemer and Batina (1999), Gerlagh and
Keyzer (2001). The logic underlying these contributions is that of pursuing intergen-
erational fairness while preserving intertemporal e¢ ciency, and this typically implies
considering lump-sum transfers. However, the welfare e¤ects of transfers can also be
investigated from a di¤erent perspective, which is alternative to (but not con�icting
with) the e¢ ciency-and-equity logic. Real-world policymaking is often constrained by
institutional feasibility: lump-sum taxes have a limited application, and policies involv-
ing intergenerational transfers likely need the support of the constituency. Building on
this point, this paper poses the following question. Consider an economy with overlap-
ping generations where natural capital is essential for production. Suppose that, under
laissez-faire conditions, lifetime utility of future generations will be lower than current
welfare levels. Would sel�sh agents agree on a system of intergenerational transfers
implying a lower rate of resource depletion?

Postulating a direct link between political support and individual welfare, this pa-
per tackles the issue by characterizing individual payo¤s in a regime-contingent fashion
- that is, lifetime utility levels of a given generation under alternative policy regimes
- assuming that transfers are implemented through distortionary measures. The cru-
cial result is that a higher degree of resource preservation may be strictly preferred by
private agents, provided that a critical condition on technological parameters is satis-
�ed. More precisely, it is shown that if the resource-share in production is su¢ ciently
high, taxing natural capital incomes to subsidize young generations guarantees higher
lifetime utility for all newborn generations. The reason for this result is that a lower
rate of depletion increases the growth rate of the economy in the subsequent period: if

1Bromley (1990) forcefully argues that environmental policy should not be restricted to e¢ ciency
targets. In line with this view is the idea that sustainability is a matter of intergenerational equity and,
once the social objective incorporates fairness concerns, e¢ ciency per se does not guarantee socially
optimal outcomes (Howarth and Norgaard, 1990).
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resource productivity is su¢ ciently high, this positive e¤ect on second-period income
more than compensates the negative e¤ect of taxation, and agents will prefer non-zero
transfers to laissez-faire conditions for purely sel�sh reasons. Moreover, this mechanism
is enhanced by the presence of other assets representing individual wealth. Extending
the model to include man-made capital, monopoly rents and R&D sectors, it is shown
that the critical condition becomes less restrictive because the returns from these assets
also bene�t from the positive growth e¤ect induced by a higher degree of preservation.

From a policymaking perspective, the private desire for resource-saving policies
unfolds if young generations are credibly pre-committed. In this regard, it is shown
that permanent transfers may arise as an inde�nite sequence of lifetime contracts:
if young agents were asked to choose between permanent transfers and permanent
laissez-faire, the former option would be preferred. In the absence of commitment de-
vices, transfers may arise as political equilibria in sequential voting games when young
agents have majority power or old agents are induced to cooperate by the presence
of regime-switching costs. In all the above cases, the intergenerational distribution of
bene�ts under resource-saving policies is not Pareto comparable with that obtained
under laissez-faire, since resource owners at time zero bear the burden of initial tax-
ation: similarly to Gale (1973), if the �rst resource owner partially renounces to his
claim over initial endowments, the transmission of this credit forward in time yields
welfare gains for all successive generations.

2 The basic model

In line with recent literature, a sustainable path is de�ned as a path along which welfare
is non-declining over time. The economy has an overlapping-generations structure:
each agent lives for two periods, and enjoys utility from consumption when young
(c) and consumption when old (e). Population in period t consists of Nt young and
Nt�1 old individuals, with a constant rate n of population growth: Nt+1 = Nt (1 + n).
Denoting by Ut the lifetime utility of an agent born in period t, sustainability requires

Ut+1 (ct+1; et+2) � Ut (ct; et+1) ; 8t 2 [0;1) : (1)

Denoting by Rt the stock of natural resources available in the economy, we also de�ne
no depletion paths as those paths satisfying

Rt+1 � Rt; 8t 2 [0;1) : (2)

Our formal analysis draws on Mourmouras (1993) and Krautkraemer and Batina
(1999): in this section, we augment the Mourmouras (1993) model by considering ex-
ogenous technical progress; further extensions regarding man-made capital, monopoly
rents and endogenous technical change are developed later in section 4.

Prospects for sustainability and natural preservation depend on the intergenera-
tional distribution of entitlements, which a¤ects the time-path of resource use, and
in turn, the production frontier and consumption possibilities of generations yet to
be born. In this regard, we assume a grandfathering process à la Krautkraemer and
Batina (1999): at the beginning of period t, the whole stock of natural resources in the
economy Rt is held by old agents. Part of R is used as natural capital in production
(X), while the remaining stock constitutes resource assets (A):

Rt = At +Xt: (3)
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Old agents sell resource assets At to young agents at unit price qt, and receive a gross
marginal rent pt for each unit of natural capital Xt supplied to �rms. Quantities of
resource assets and natural capital per young individual are denoted by at = At=Nt
and xt = Xt=Nt, respectively. While natural capital is destroyed in the production
process, resource assets sold to newborn generations are brought forward in time: in
each period, the resource grows at constant regeneration rate ", implying

Rt+1 = (1 + ") (Rt �Xt) = (1 + ")At: (4)

Only young agents work, supplying one unit of labor services. The consumption good
is produced by means of natural capital and labor, according to technology

Yt = (mtXt)
� (Nt)

1�� ; (5)

mt = mt�1 (1 + �) ; (6)

where Yt is aggregate output, Nt equals total labor units supplied by the currently
young, and mt is the state of technology, representing a process that enhances the
productivity of natural capital in each period: � > 0 is the rate of resource-augmenting
technological progress.2 Denoting by w the wage rate, pro�t maximization implies

pt = �ytx
�1
t = �m�

t x
��1
t ; (7)

wt = (1� �) yt = (1� �)m�
t x

�
t ; (8)

where y = Y=N is output per worker.
Intergenerational transfers take the following form: young agents� investment is

subsidized by taxing the income from natural capital of old agents, and �scal authorities
keep a balanced budget in each period. Formally,

ct = wt � qt (1� dt) at; (9)

et+1 = [pt+1 (1� � t+1)xt+1 + qt+1at+1] (1 + n) ; (10)

pt� tXt = qtdtAt; (11)

yt = ct + et (1 + n)
�1 : (12)

Equations (9) and (10) represent budget constraints faced by each individual born in
period t, where d is the subsidy rate on investment in resource assets, and � is the tax
rate on natural capital income. Equation (11) is the government budget constraint, and
equation (12) is the aggregate constraint of the economy. Agents are homogeneous and
have logarithmic preferences: lifetime utility is Ut = log ct+� log et+1, where � 2 (0; 1)
is the individual discount factor. Equilibrium in the resource market requires

qt = pt (1� � t) (13)

in each period. The consumer problem consists of choosing ct and et+1 in order to
maximize lifetime utility subject to (9)-(10): �rst order conditions read

et+1
�ct

=
qt+1 (1 + ")

qt (1� dt)
: (14)

2 In general, technical progress in Cobb-Douglas technologies is input neutral, and (5) may be
rewritten as Y = X�L1��m̂, where the growth rate of m̂ = m� is the Hicks-neutral rate of technical
progress. Speci�cation (5) is chosen to emphasize that prospects for sustainability depend on the
resource-saving e¤ect of technical progress (�), and not on its global e¤ect of on output levels (m̂t+1=m̂t)
- see Proposition 1; cf. Valente (2005).
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The temporary equilibrium of the economy is characterized by the following relations
(see Appendix): the natural capital-resource asset ratio (z) equals

zt �
xt
at
=
� (1 + �)

� (1� �) (1� � t) (1� dt) ; (15)

and the dynamics of the economy are described by3

�Rt+1 =
1 + "

1 + zt
; (16)

�xt+1 =
zt+1 (1 + ")

zt (1 + zt+1) (1 + n)
; (17)

�yt+1 =

�
zt+1 (1 + �)

zt (1 + zt+1)

��
; (18)

where �vt+1 = (vt+1=vt) for the generic variable vt. Note that in equation (18) we have
de�ned the augmentation rate � as

1 + � = (1 + ") (1 + �) (1 + n)�1 : (19)

In the following subsections we describe the laissez-faire equilibrium, and analyze the
implications of intergenerational transfers.

2.1 The laissez-faire economy

Setting tax-subsidy rates equal to zero, it follows from (15) that the natural capital-
resource asset ratio is constant over time:

zt =
� (1 + �)

� (1� �) = ~z for all t. (20)

The laissez-faire economy exhibits the knife-edge property: setting zt+1 = zt = ~z in
(18), the net growth rate of output per worker is constant over time, and it can be posi-
tive, negative, or equal to zero, depending on parameters. With respect to Mourmouras
(1993), the presence of technological progress crucially modi�es the link between re-
source depletion and sustainability, determining possible con�icts among alternative
social objectives. In fact, a necessary and su¢ cient condition for no depletion in the
laissez-faire economy is4

~z � "; (21)

whereas

Proposition 1 A necessary and su¢ cient condition for sustainability in the laissez-
faire economy is

~z � �; (22)

or equivalently

1 + 
 �
�
1� �
�

��
(1 + �) (1 + ")

(1 + n)
� 1
�
� 1; (23)

where 
 = ��1 � 1 is the individual pure rate of time preference.
3Substituting (15) in (3) and (4) yields (16) and (17). From (5) and (6), y = m�x� so that

�y = [(1 + �) �x]�, which implies (18) by (17).
4From (16), no depletion (i.e. �R � 1) requires that (21) be satis�ed.
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Figure 1: The basic model. From (21) and (22), the sustainability threshold zsus = �
increases with �, while the no depletion locus zndp = " is horizontal in the (�, z)
plane. if � < n, the laissez-faire economy may exhibit no depletion together with
unsustainability; if � > n, the economy may exhibit resource depletion together with
sustainability.

Expression (23) is conceptually analogous to the long-run sustainability condition
which holds in economies with in�nitely-lived agents: in the standard capital-resource
model, optimal consumption per capita is asymptotically non-decreasing if the social
discount rate does not exceed the sum of the rates of technical progress and natural
regeneration (Valente, 2005). Similarly, (23) shows that sustainability obtains provided
that the joint e¤ect of � and " is not o¤set by the impatience to consume (
).

Whether sustainability conditions are more restrictive than conditions for no deple-
tion depends on the rates of technological progress and population growth: no depletion
per se does not guarantee sustained utility, and di¤erent combinations of parameters
may determine sustainability, no depletion, both, or none of the two. The interre-
lations, and possible con�icts, between alternative social objectives are described in
Figure 1. Note that if ~z = " and � = n, lifetime utility and the resource stock are
both constant over time. This special case, represented by point S in Figure 1, satis�es
most conventional notions of sustainability: utility is non-declining (standard de�n-
ition), each generation enjoys the same welfare level (intergenerational equity), and
natural capital as such is preserved over time (strong sustainability).

2.2 The economy with transfers

Proposition 1 suggests that if the economy is unsustainable under laissez-faire, a ceteris
paribus reduction in zt due to intergenerational transfers will bring the economy to-
wards the sustainability threshold. Balanced budget policies with positive taxes a¤ect
the gap (zt� ~z) unambiguously: from (15) and (20), the natural capital-resource asset
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ratio at time t equals
zt = ~z (1� � t) (1� dt) : (24)

Assume that the policymaker aims at achieving a pre-determined level z0. Substituting
(24) in the government budget constraint (11), the target level zt = z0 is obtained by
setting dt = d0 and � t = � 0, where (see Appendix)

d0 =
�
~z � z0

�
(1 + ~z)�1 and � 0 =

�
~z � z0

� �
~z
�
1 + z0

���1
: (25)

For example, setting z0 = " in (25) yields tax-subsidy rates that implement zero deple-
tion of the resource stock. By the same reasoning,

Lemma 2 Setting dt = ~z��
1+~z and � t =

~z��
~z(1+�) for each t 2 [0;1) implies zt = � and

Ut+1 = Ut for each t 2 [0;1).

More generally, any �scal intervention that keeps zt below the laissez-faire level ~z
constitutes a resource-saving policy : lowering the natural capital-resource assets ratio
corresponds to lower rates of resource use in production, or equivalently, to a higher
degree of preservation.

3 Resource-saving transfers and lifetime welfare

We now compare the e¤ects of laissez-faire and transfers on individual welfare in each
period: in this regime-contingent formulation, individual payo¤s represent the potential
political support for resource-saving measures, as if agents were asked to choose be-
tween laissez-faire and intergenerational transfers during their life. Assuming that each
newborn agent takes the history of previous regimes as given, we show that resource-
saving transfers in both periods of life may yield higher payo¤s with respect to persistent
laissez-faire if a precise condition regarding technological parameters is satis�ed.

3.1 Regime-contingent payo¤s

Denote by �t the outcome of an unspeci�ed political process, indicating whether laissez-
faire or resource-saving transfers are implemented in period t :

�t =

�
0, zt = ~z (laissez-faire)
1, zt = z0 < ~z (res.-saving transfers)

(26)

The individual payo¤ Vt of each agent born in t � 0 depends on the two outcomes
realized during his lifetime (�t and �t+1) as well as on the whole history of previous
outcomes Ht =

�
�0; �1; :::; �t�1

	
:

Vt
�
�t; �t+1;Ht

�
= Ut

�
ct (�t;Ht) ; et+1

�
�t; �t+1;Ht

��
: (27)

Since agents cannot modify previous outcomes, Ht is taken as given and the individual
payo¤ of an agent born in T � 0 can be written as (see Appendix)

VT
�
�T ; �T+1;HT

�
= 
T (HT ) + log

(�
zT

1 + zT

�� � (1 + �) zT+1
(1 + zT ) (1 + zT+1)

���)
: (28)
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Suppressing argument H, we set VT
�
�T ; �T+1;HT

�
= VT

�
�T ; �T+1

�
and compute all

possible payo¤s on the basis of (28). In particular, we will refer to VT (0; 0) and VT (1; 1)
as payo¤s yielded by life-persistent regimes (�t = �t+1). In the Appendix, we show
that for any value of z0 < ~z,

VT (0; 0) > VT (0; 1) (29)

VT (1; 0) > VT (1; 1) : (30)

On the one hand, this result is intuitive: inequalities (29) and (30) imply that if agents
could modify �T+1 while taking �T as given, they would have an incentive to avoid
taxation in the second period of life. On the other hand, (29) and (30) do not rule out
situations where sel�sh agents would prefer persistent transfers to persistent laissez-
faire: VT (1; 1) and VT (0; 0) cannot be ranked a priori, so it is possible to have the
interesting case

VT (1; 0) > VT (1; 1) > VT (0; 0) > VT (0; 1) : (31)

The explicit condition for obtaining (31) is derived below.

Proposition 3 Individual payo¤s are ranked as in (31) if and only if�
�
1 + �

� + �

�1+� �
�
1� �
� + �

��
<

�
z0

1 + z0

�1+� �
1 + z0

���
: (32)

Condition (32) is necessary and su¢ cient to have VT (1; 1) > VT (0; 0), i.e. private
agents strictly prefer life-persistent transfers to persistent laissez-faire. For a given
discount factor �, inequality (32) de�nes the set of all possible combinations of �
and z0 implying VT (1; 1) > VT (0; 0). This set can be characterized by de�ning the
policy index � � z0=~z, which is determined by �scal authorities through the level of
tax-subsidy rates: from (24), the policy index equals � = (1� �) (1� d), and � < 1
indicates a resource-saving policy. As shown in the Appendix, the welfare gap � =
V (0; 0)� V (1; 1) can be written as

� = log

(�
1

�

��+�� �� (1� �) + �� (1 + �)
� (1� �) + � (1 + �)

��+2��)
; (33)

For given discount factors and policy targets, the gap function � (�) has an inverted-
U shape: as shown in Figure 2.a, there exists a critical value �� such that � (��) =
0, with � being negative (positive) when the resource share exceeds (falls short of)
this threshold level. In other words, if the resource share exceeds the threshold value,
lifetime utility is higher with persistent transfers than under laissez-faire conditions.
The economic interpretation of this result is as follows: reducing the rate of resource
depletion in t implies higher output growth in t+1; if resource productivity is su¢ ciently
high, this favorable e¤ect on second-period income o¤sets the negative e¤ect due to
taxation.

Note that the critical level of the resource share depends on policy targets: as
shown in Figure 2.b, �� is higher the lower is �. This is because � is lower the higher is
the level of transfers: if �scal authorities impose slight deviations from laissez-faire (�
close to 1), the private cost of transfers is relatively small and condition (32) is likely
to be met; conversely, if the policymaker is more inclined towards natural preservation
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Figure 2: Graph (a): �xing � = 0:95 and � = 0:9, the gap � = V (0; 0) � V (1; 1)
is an inverted-U function of �. Condition (32) de�nes the interval (��; 1) over
which V (1; 1) > V (0; 0). Graph (b): the welfare gap as a parametric function of
� = f0:7; 0:8; 0:9g. The critical threshold increases as � declines.

(� close to 0), persistent transfers are more demanding and condition (32) is more
restrictive.

From a policymaking perspective, the result that permanent transfers may be wel-
fare improving for present generations is relevant. In particular, ranking (31) suggests
that while individual preferences about policy regimes can be in favor of intergener-
ational transfers, this private desire for resource-saving policies unfolds if generations
are credibly pre-committed. This statement is investigated in section 3.3 and is similar
to a standard result in the literature on pension funding: in the absence of commitment
technologies, sel�sh agents would not implement pay-as-you-go social security systems
(Browning, 1975; Hammond, 1975). An important di¤erence, however, is that resource-
saving policies involve an opposite direction of transfers (old-to-young) with respect to
social security systems (young-to-old), so that commitment technologies must take a
di¤erent form. In social security systems, young agents agree on �rst-period taxa-
tion only if convinced that they will receive second-period transfers; in the present
model, instead, resource-saving measures gain unanimous support only if young agents
receiving subsidies in the �rst period are induced to pay second-period taxes. As a
consequence, full political support for resource-saving transfers requires either credible
pre-commitment, or cooperation among adjacent generations. An example of a commit-
ment device is provided by lifetime contracts (sec.3.3). In a sequential choice setting,
instead, cooperation can be induced by positive costs of regime-switching (sec.3.4).
Before discussing these issues, we complete the analysis of distortionary transfers by
comparing �rst-best and second-best policies for intergenerational equity.

3.2 First-best and second-best policies

In order to assess the e¤ects of distortionary transfers on allocative e¢ ciency, a con-
venient benchmark is to assume that the policy target is to achieve intergenerational
equity. In this case, the �rst best (Rawlsian optimum) requires two conditions to be
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satis�ed: �rst, all generations enjoy the same utility level U�; second, U� must be the
maximum utility level that can be sustained inde�nitely. The �rst condition requires
constant income per capita, and hence mtxt constant over time (see Appendix):

x�t =

�
1

1 + �

�t �

1 + �
r0; r�t =

�
1

1 + �

�t
r0: (34)

The depletion path (34) implies a constant output level y� =
h
� (1 + �)�1m0r0

i�
. The

second condition requires (see Appendix)

ct = c� = (1 + �)�1 y�; et = e� = � (1 + n) (1 + �)�1 y�: (35)

Hence, along the �rst-best path, utility equals

U� = log

�
[� (1 + n)]�

h
y� (1 + �)�1

i1+��
(36)

for all agents born in t � 0. If the government aims at implementing the Rawlsian
optimum, a �rst-best policy is one that decentralizes the allocation described by (34)-
(35). A crucial feature of this economy is that the �rst-best policy cannot rely on a
lump-sum transfer scheme alone, due to the asymmetric intergenerational distribution
of property rights over natural resources. Exactly as in Mourmouras (1993), achieving
the �rst-best requires expropriating natural capital of the initial old generation: at
t = 0 the whole resource stock is nationalized; old agents at t = 0 receive a stock of
�at currency that will be transferred to successive generations when acquiring output
units; at each t � 0, the government sells x�t units of resources to �rms, and rebates
the proceeds to the young generation via lump-sum transfers. This policy decentralizes
the Rawls-optimal allocation, and lifetime welfare of all agents born in t � 0 is given
by (36).5

The fact that, under the �rst-best policy, the initial old generation is expropriated
is of particular interest here. In section 3.1, distortionary policies aimed at reducing
the rate of resource use also imply a welfare reduction for the initial old. In order
to compare the two policies, consider a couple of tax-subsidy rates that implements
a constant-utility path. Such a policy is that considered in Lemma 2: authorities set
z0 = � in each period, and obtain the same depletion paths (34). With xt = x�t ,
output equals yt = y� in each period. However, with respect to the Rawlsian optimum,
consumption is lower in the �rst period and higher in the second:6

ct = c�� = (1� �) (1 + �)�1 y� < c�; (37)

et = e�� = (�+ �) (1 + n) (1 + �)�1 y� > e�: (38)

5See proof in the Appendix. With respect to Mourmouras (1993), this Rawls-optimal program
di¤ers because of the presence of technical progress, which has two interrelated implications: �rst,
natural capital per capita x�t declines over time, instead of being constant; second, while utility is kept
at constant level, the resource stock Rt can be either declining, constant, or increasing: as explained
in section 2.1, when production possibilities are increased through m, intergenerational equity and
resource preservation are distinct concepts, and the long-run value of the resource stock depends on
the gap between the rates of technical progress and population growth (cf. Figure 1).

6Equations (37)-(38) derive from conditions (A2)-(A3) in the Appendix.
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From (36) and (37)-(38), lifetime welfare U�� (c��; e��) under this policy is lower with
respect to the �rst-best:

U� � U�� = log
n
(1� �)�1 [�= (�+ �)]�

o
> 0: (39)

Expression (39) is the welfare loss experienced by every agent born in t � 0 under
second-best policies. However, the two policies cannot be Pareto ranked: from (38),
the utility level of the �rst old generation is higher under the second-best policy. Put
di¤erently, if agents face an exclusive choice between the two policies, the young prefer
the �rst-best scheme with nationalization of the resource stock, whereas the old are
better o¤ under distortionary transfers.

3.3 Lifetime contracts

It follows from Proposition 3 that, when (32) is satis�ed, if agents are asked at birth
to sign a lifetime contract requiring them to choose between persistent transfers and
persistent laissez-faire, every agent born in t � 0 chooses resource-saving transfers.
With respect to this result, three main points should be emphasized. First, lifetime
contracts embody a notion of credible commitment: under ranking (31), agents prefer
resource-saving transfers as long as no regime switch is allowed during the life-cycle.
Second, private agents would not enforce such contracts by themselves because resource
owners at t = 0 receive no compensation: this is the ��rst-father problem�discussed
below. Third, whether a sustainable path would be supported depends on the whole set
of parameters. Suppose that lifetime contracts include the options ~z > � and z0 = �. If
condition (32) holds, agents choose z0 and lifetime contracts support a constant utility
path. As shown in Figure 2.b, the technological condition is more restrictive the lower
is �: that is, the threshold �� is very high when the �sustainability gap� (~z � �) is
substantial, whereas conditions for an agreement on sustainability are less restrictive
when ~z is relatively close to �. However, section 4 shows that when other �nancial
assets exist in the economy, the critical threshold for the resource share is reduced, and
its sensitivity to policy targets becomes less critical in this regard.

When considering an in�nite time horizon, the individual �rst-best payo¤ cannot
be assigned to each generation, since implementing Vt (1; 0) in each t is impossible.
From a social-planning perspective, the relevant inequality in (31) is thus the cen-
tral one, V (1; 1) > V (0; 0), which refers to life-persistent regimes. This in turn sug-
gests studying the welfare time-paths implied by the sequences f� t = 0; dt = 0g1t=0 and
f� t = � 0; dt = d0g1t=0. We refer to these sequences as permanent laissez-faire and per-
manent transfers, respectively. Since the initial resource stock is owned by the old at
time zero, a typical ��rst-father problem�arises: if transfers are voted into existence
at t = 0, all successive generations gain from permanent transfers, but initial subsidies
are �nanced at the expense of the �rst old generation. This generation bears the bur-
den of the new regime without gaining from it, and welfare improvements thus pertain
to newborn agents. On the one hand, the �rst-father problem implies that the two
sequences, permanent laissez-faire and permanent transfers, cannot be Pareto ranked.
On the other hand, resource-saving policies recall the logic of Gale-type intergener-
ational transfers: considering a two-generations pure exchange economy, Gale (1973)
showed that the �rst generation can raise future welfare by renouncing part of its claim
over the endowment to the bene�t of the second generation, which in turn transmits a
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claim to its successor, and so on. In our setting, transfers work in a similar way: the
initial tax �0p0X0 amounts to the share of claims over natural capital not received by
the �rst owner, and subsidies to the newborn bring the associated credit forward in
time.

3.4 Sequential voting and induced cooperation

With lifetime contracts, resource-saving policies are supported by successive genera-
tions because agents are credibly committed to pay second-period taxes. An alternative
interpretation of Proposition 3 derives from assuming a sequential process generating
political decisions. Suppose that �scal authorities act in a representative democracy,
and implement the regime voted by the citizens in each period : in this case, all in-
dividuals alive in period t face a discrete choice between laissez-faire (zt = ~z), and a
certain amount of transfers corresponding to the policy proposed by �scal authorities
(zt = z0 < ~z). For a given voting rule, the sequence of depletion rates is determined by
the outcomes of an inde�nitely repeated game. Similar games are used in the recent
literature on social security systems and political economy (Cooley and Soares, 1998;
Boldrin and Rustichini, 2000; Azariadis and Galasso, 2002). These contributions study
whether pay-as-you-go social security systems may result from political equilibria when
private agents choose to create, maintain, or dismantle intergenerational transfers. A
similar reasoning will be followed here, the main di¤erence being that the direction
of transfers implied by pension �nancing (young-to-old) is opposite to that implied
by resource-saving policies (old-to-young). In particular, the di¤erent con�guration of
payo¤s in the present model implies the following

Lemma 4 If (32) holds, agents support transfers in their �rst period of life in any
subgame perfect equilibrium sequence.

The intuition for this result follows immediately from (31): in the �rst period,
laissez-faire choices are ruled out by the fact that young agents prefer resource-saving
transfers irrespective of second-period outcomes. The di¤erence with respect to social-
security games is twofold. On the one hand, Lemma 4 departs from the result, es-
tablished by Boldrin and Rustichini (2000: p.51), that laissez-faire outcomes can be
part of an equilibrium sequence in pension games (see Appendix). On the other hand,
Lemma 4 implies that in a growing economy (n > 0), simple-majority rules su¢ ce
to obtain permanent transfers (�t = 1 in each t � 0) as a political equilibrium,7 in
contrast with the standard result that the open-loop equilibrium in pension games fea-
tures permanent laissez-faire (Hammond, 1975; Sjoblom, 1985; Azariadis and Galasso,
2002).8 More generally, the con�guration of payo¤s in (31) implies that coexisting
generations never cooperate. To see this, consider a quali�ed-majority rule - that is,

7As in Azariadis and Galasso (2002), consider a simple-majority rule operating among homogeneous
agents within each cohort: if the net rate of population growth is positive (negative), the majority of
citizens is constituted by young (old) agents. Sincere voting thus implies that the political outcome �t
coincides with the action of the young when n > 0. As a consequence, when the critical condition (32)
is satis�ed, if n > 0 resource-sacing transfers are voted into existence from t = 0 onward, whereas, if
n < 0, the political outcome is permanent laissez-faire.

8The intuition for this result is that, in pension games, young agents - the majority of citizens
in a growing economy - do not �nance current pensions (young-to-old transfers) in the absence of
commitment devices binding the next generation (see e.g. Azariadis and Galasso, 2002).
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if both cohorts vote for a given regime in t, this regime will be established; otherwise,
the previous regime is maintained (�t = �t�1).

9 In this case, any regime established at
t = 0 becomes a self-sustained regime irrespective of the population growth rate:

Lemma 5 Under quali�ed-majority voting, if (32) holds then �t = �0 in each t > 0.

It follows from the above discussion that intergenerational compromise lacks as
long as old agents have no incentives to cooperate with the currently young. In this
regard, it is worth noting that cooperative voting may be induced by a positive cost
of regime-switching. More precisely, in the present model, a transfer regime already in
place is sustained inde�nitely with unanimous consensus, provided that a regime switch
involves a relevant cost for all agents. Note that the presence of regime-switching costs
is consistent with two alternative interpretations: it may re�ect an exogenous (e.g.
administrative) cost of reforms, or represent an �over-rule tax�. In either case, the
analysis of payo¤s is identical: assume that �t�1 = 1 at some t > 0, and denote by
�t
�
�t�1

�
the welfare cost of a regime switch in period t. The new lifetime payo¤s for

young agents in period t, conditional on �t�1 = 1, are denoted by �Vt and read

�Vt (0; 0) = Vt (0; 0)� �t (1) ;
�Vt (0; 1) = Vt (0; 1)� �t (1)� ��t+1 (0) ;
�Vt (1; 0) = Vt (1; 0)� ��t+1 (1) ; (40)
�Vt (1; 1) = Vt (1; 1) ;

and the following result can be established:

Lemma 6 If
�t (1) > � (41)

and

�t+1 (1) > log

�
1 + �~z

�+ �~z

��
; (42)

agents born in t support transfers in both periods of life. If (41)-(42) hold at all t � 0,
setting �0 = 1 implies unanimous support for transfers at all future dates.

The reasoning behind Lemma 6 is that when the loss implied by a regime switch
is su¢ ciently high, permanent transfers become the �rst-best individual payo¤: in
fact, satisfying condition (42) implies �Vt (1; 1) > �Vt (1; 0), so that agents will vote for
resource-saving transfers not only when young (in t), but also when old (in t + 1).
With respect to this result, we can make three remarks. First, Lemma 6 does not
assume that the usual critical condition be satis�ed, since condition (41) is su¢ cient
to have �Vt (1; 1) > �Vt (0; 0), and is less restrictive than (32).10 Second, the cost of
regime-switching is assumed to be time-varying and regime-contingent for the sake of
generality: if it is interpreted as an exogenous administrative cost, further assumptions

9This voting mechanism is used in many countries, e.g. while voting to modify constitutional norms,
in order to guarantee that speci�c norms are also accepted by at least a fraction of parties that usually
oppose the �standard majority�.
10 In fact, the critical condition (32) implies � < 0, but (41) can be satis�ed even if � > 0. That

is, the presence of regime-switching cost may ensure that persistent transfers are strictly prefer to
laissez-faire conditions even if � > 0.

13



yield symmetry in states (i.e. going from laissez-faire to transfers is as costly as do-
ing the opposite reform) and stationary costs, in which case conditions (41)-(42) can
be expressed in terms of exogenous parameters. Third, the cost of regime-switching
can be alternatively interpreted as an over-rule tax, which essentially constitutes a
commitment technology for young generations.

More generally, in the vast majority of sequential games, a paternalistic action
at t = 0 is required to induce permanent resource-saving transfers . It should be
stressed, however, that this variant of the ��rst-father problem�does not originate in
the distortionary character of transfers: recalling the results of section 3.2, the amount
of resources subtracted from the initial old is even higher under a �rst-best policy: if
the �rst father faced an exclusive choice between �rst- and second-best policies, he
would vote for distortionary transfers, in order to avoid expropriation of his natural
capital.

4 Capital, monopoly rents and R&D activity

The basic model is now extended to include other assets, in addition to natural capital,
which represent individual wealth. In this section, we derive critical conditions that are
conceptually analogous to (32), in the presence of (i) man-made capital, (ii) monopo-
listic sectors, and (iii) R&D �rms developing innovations. For simplicity, we rule out
population growth (n = 0) and normalize total labor supply to unity (Nt = 1). Exoge-
nous technical progress is also ruled out (� = 0), since we will introduce endogenous
technical change under a slightly di¤erent production function.

4.1 Man-made capital

With � = 0, the model with man-made capital is essentially that in Mourmouras (1993:
sect.6), with the only addition of distortionary transfers. Aggregate output is now given
by Y = X�1N�2K�3 with constant returns to scale (�1 + �2 + �3 = 1). Output per
capita equals

yt = x�1t k
�3
t ; (43)

where k � K=N is individual capital. Agents born in t may allocate savings in assets
representing either natural or man-made capital, with budget constraints

ct = wt � qtat (1� d)� kt+1; (44)

et+1 = qt+1at+1 + pt+1 (1� �)xt+1 + ikt+1kt+1; (45)

where ikt+1 is the interest factor received when adult. Tax and subsidy rates (d, �)
are constant and set compatibly with balanced budget in each period, implying the
aggregate constraint

kt+1 = yt � ct � et: (46)

Utility maximization yields the standard Euler condition

et+1 = �cti
k
t+1; (47)

whereas maximization of lifetime income requires

ct = wt (1 + �)
�1 = �2 (1 + �)

�1 yt (48)
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and the Hotelling rule
qt+1
qt

= ikt+1

�
1� d
1 + "

�
(49)

be satis�ed. The equilibrium propensity to invest is now a¤ected by the capital share
�3, which in turn modi�es the depletion index zt = xt=at. Assuming a sequence of
constant tax-subsidy rates, zt is constant over time, and given by (see Appendix)

�3

�
1� d
1 + z

�
+
�1
z
(1� d) (1� �)� �2�

1 + �
= 0: (50)

Expression (50) is a quadratic equation in z with only one admissible (positive) root.
With d = � = 0, the same procedure gives the laissez-faire value ~z. As in the basic
model, equilibrium dynamics of natural capital and resource assets imply a constant
rate of depletion of the resource stock

�xt+1 = �at+1 = �rt+1 = (1 + ") (1 + z)
�1 ;

whereas output and man-made capital evolve according to11

�kt+1 = �3

�
1� d
1 + z

�
x�1t k

�3�1
t ; (51)

�yt+1 =
�
�xt+1

��1 ��kt+1��3 : (52)

As shown in the Appendix, man-made capital and output converge to the same (con-
stant) growth rate in the long run

lim
t!1

�yt = [(1 + ") = (1 + z)]
�1

1��3 ; (53)

and the interest factor approaches the steady-state value

lim
t!1

it = (1 + z) [(1 + ") = (1 + z)]
�1

1��3 : (54)

Expression (53) shows that a reduction in z increases the long term growth rate more
intensively the higher the capital share �3. This suggests that the presence of capital
improves the e¤ectiveness of resource-saving policies in sustaining welfare over time.
To address this point, consider a policy target � = z0=~z < 1 which corresponds to a
couple of tax-subsidy rates satisfying the government budget constraint (11). As shown
in the Appendix, the condition for obtaining � < 0 is now�

1 + �~z

�+ �~z

��1+�1�(1+�3)�1 + �~z
1 + ~z

��1�
< 1: (55)

With respect to the basic model of section 3.1, a slight complication is that ~z is not
linear in �1, and the critical condition for the resource share must be obtained nu-
merically. Results di¤er substantially from the predictions of the basic model: in the
labor-resource economy of section 3.1, condition (32) is usually met for values of the
resource share exceeding 0.5 - a rather high value, from an empirical perspective. In the

11Equation (51) is obtained by substituting yt = x�1t k�3t in equation (A36) in the Appendix. Equa-
tion (52) follows from yt = x�1t k�3t and the transition law xt+1 (1 + z) = xt (1 + ").
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present model, instead, capital productivity a¤ects condition (55) through �3, and the
critical threshold is far below 0.5 under reasonable parameters. In the example reported
in Table 1, we �x �2 = 0:4 and let �1 and �3 vary with a 5% discount rate (� = 0:95).
The critical resource share is ��1 ' 0:23 with �light policies�(� = 0:9), and increases
with heavier tax-subsidy rates (��1 ' 0:37 with � = 0:7). The interpretation of this
result is that the presence of capital enhances the mechanism via which �rst-period
subsidies may compensate, in terms of utility, the negative e¤ects of second-period
taxation: the reduction in resource depletion in t increases output levels in t+ 1, with
a positive level e¤ect on private returns from natural and man-made capital. The next
section shows that this conclusion is robust to alternative assumptions regarding the
nature of �nancial assets held by private agents.

4.2 Monopoly rents

In this section we substitute man-made capital with assets representing claims over fu-
ture monopoly rents. This framework will be extended in sec.4.3 to include endogenous
technical change generated by R&D activity. The supply side of the economy now con-
sists of producers of �nal output (Y ) and �rms producing intermediate products (B).
Final output is obtained by means of natural capital, labor and a number g (assumed
exogenous, for the moment) of intermediate goods�varieties. Assuming constant pop-
ulation, and denoting by B(j) the quantity of the j-th variety of intermediate inputs
(j = 1; :::; g), output equals

Yt = X�1
t N

�2

gX
j=1

B�3(j);t; (56)

where �1+�2+�3 = 1. Each variety is produced by a monopolist with unit production
cost. Denoting by pb(j) the price of intermediates, each monopolist maximizes pro�ts

��(j) = B(j)p
b
(j) � B(j) taking the demand schedule of �nal producers as given. First

order conditions imply pb(j) = ��13 in each period, so that prices and quantities of inter-
mediates are invariant across varieties. As a consequence, each monopolist produces

Bt = B(j);t =
�
�23X

�1
t N

�2
� 1
1��3 : (57)

Monopolistic �rms are owned by the currently old generation. Old agents in period t
thus receive the per capita pro�t rate

g�t = (g=�3) (1� �3) bt; (58)

where �t = ��=N and bt � Bt=N . Note that (57) and (58) imply that output grows at
the same rate as intermediate quantities and monopoly pro�ts:

yt = ��23 gbt; �yt = �bt = ��t : (59)

Each �rm producing a variety holds the relevant patent, and old agents control the
exclusive right to produce existing intermediate goods. Since agents die after the
second period, young agents buy patents in period t in order to run monopolistic
�rms in t + 1. This is equivalent to assuming that young agents invest in single-
period obligations of a consolidated intermediate sector, representing claims over future
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monopoly pro�ts. Denote by v(j);t the forward patent value, i.e. the value in period
t of a patent exploitable to produce the j-th variety in period t + 1. Since pro�ts
are invariant across varieties, v(j);t = vt for any j 2 [1; g]. The aggregate value of all
patents in the intermediate sector is Ft � gvt, and individual budget constraints read

ct = wt � qtat (1� d)� ft; (60)

et+1 = pt+1xt+1 (1� �) + qt+1at+1 + g�t+1 + ft+1; (61)

where f � F=N is the per capita cost of patents. The aggregate constraint of the
economy is (see Appendix):

yt = ct + et + gbt: (62)

Optimality conditions for consumers imply the Hotelling condition

qt+1
qt

�
1 + "

1� d

�
= ift+1; (63)

where the implicit interest factor is de�ned as the gross return on assets

ift+1 = (�t+1 + ft+1) =ft: (64)

As shown in the Appendix, the natural capital-resource asset ratio is constant in equi-
librium, and equals

z = (1� d)
��
1� �23

�
(1 + �)� �2

�
(�2�)

�1 � 1: (65)

A constant propensity to invest in resources implies a knife-edge equilibrium: the
economy displays constant rates of resource use and output growth. In particular,
since �yt = �bt , we have

�yt = (�
x
t )
�1
�
�bt

��3
= (�xt )

�1
1��3 = [(1 + ") = (1 + z)]

�1
1��3 : (66)

Similarly to the model with capital - see (53) - the presence of intermediates contributes
to the magnitude of the growth e¤ects induced by resource-saving policies: transfers
increase �y by reducing z, and the exponent in (66) is increasing in the intermediates
share �3. The dynamic interaction between resource use and investment in intermediate
�rms is as follows. The rate of depletion �x determines output growth �y, which is in
turn the rate at which monopoly rents develop over time - see (59). Hence, reducing the
rate of resource use sustains not only output, but also the pro�tability of monopolistic
�rms that represent investment opportunities for young agents. We thus expect a
positive in�uence of �3 on the critical condition for � < 0. As shown in the Appendix,
the welfare gap V (0; 0)� V (1; 1) now reads

� = log

8<:
�
1

�

� �1(1+�)
1��3

�
1 + �~z

1 + ~z

� �1(1+2�)
1��3

9=; ; (67)

where ~z is given by setting d = 0 in (65). Looking at Table 1, numerical substitutions
suggest that, with respect to the model with capital, monopoly rents imply � < 0 for
a wider range of parameters: considering di¤erent policy targets (�) and comparable
values of input shares, the critical threshold with monopoly rents (��1) is lower than
that obtained with capital (��1). In the next section, the model with monopoly rents is
extended to study the interaction between resource exploitation, endogenous technical
change, and intergenerational fairness.
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4.3 R&D activity

The previous model is now extended to include a third sector which develops innova-
tions: R&D �rms invent new varieties of intermediates, thereby increasing the number
of monopolistic �rms operating in the economy. We thus obtain a variant of the
expanding-varieties model (see Barro and Sala-i-Martin, 2004), which includes over-
lapping generations and resource extraction. Aggregate output equals

Yt = X�1
t N

�2

gtX
j=1

B�3(j);t; (68)

where the number of intermediates� varieties, gt, is now endogenous and generally
time-varying. The behavior of monopolistic �rms is as before, with pro�t-maximizing
conditions implying pbt = 1=�3 and

Bt = B(j);t =
�
�23X

�1
t N

�2
� 1
1��3 : (69)

From (68) and (69), equilibrium output per capita now reads

yt = gtx
�1
t b

�3
t = ��23 gtbt; (70)

and equilibrium dynamics imply

�yt+1 = �gt+1�
b
t+1; �bt+1 =

�
�xt+1

� �1
1��3 : (71)

R&D �rms operating in period t invent new varieties that monopolistic �rms will exploit
at t + 1. In order to develop (gt+1 � gt) new varieties, the R&D sector consumes �ht
units of output, and the innovation technology takes the form

gt+1 � gt = �t
�ht; (72)

where �t, the marginal productivity of R&D expenditure, is a¤ected by aggregate
spillovers generating endogenous growth. In the R&D literature, spillovers are typically
formalized as knowledge-stock externalities, implying that current R&D activity is
more productive the better the state-of-the-art at the aggregate level. In the present
model, a convenient index for the state-of-the-art in producing new intermediates is
the number of existing varieties in relation to output levels. Assuming a linear relation
between the marginal productivity of R&D �rms and the state of technology index,
the aggregate productivity of the R&D sector increases with the economy-wide rate of
R&D investment:

�t =  

�
gt
yt

�
; �gt+1 = 1 +  h

m; (73)

where  > 0 is a proportionality factor, and hm � �ht=yt is the rate of R&D investment
determining, by (72), the rate of expansion in intermediates�varieties. Since pro�ts
are invariant across varieties, the value of each new blueprint equals the forward value
of a patent vt, and equilibrium in the R&D sector requires12

vt = 1=�t: (74)

12Condition (74) maximizes pro�ts vt (gt+1 � gt) � �ht and implies zero extra pro�ts in the R&D
sector. The same condition is equivalently obtained assuming free entry in the R&D business for an
inde�nite number of �rms, as in Barro and Sala-i-Martin (2004: Chp.6).
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From the households�point of view, R&D �rms represent an additional asset: R&D
investment in period t allows young agents to run (gt+1 � gt) new monopolistic �rms in
the subsequent period, obtaining higher second-period income through (i) additional
monopoly pro�ts from intermediates�production, and (ii) additional patent sales to
newborn generations in t + 1. This mechanism is summarized by the individual con-
straints

ct = wt � qtat (1� d)� ft � ht; (75)

et+1 = pt+1xt+1 (1� �) + qt+1at+1 + gt+1�t+1 + ft+1; (76)

where ht is R&D investment per capita, and equals agents� expenditure to obtain
patents for new intermediates: from (74), in aggregate we have

ht = �ht = (1=�t) (gt+1 � gt) : (77)

As regards revenues, non-resource income in (76) can be decomposed as

gt+1�t+1 + ft+1 = [(gt+1 � gt) (�t+1 + vt+1)] + gt (�t+1 + vt+1) : (78)

The last term in (78) is the sum of current pro�ts and patent sales of the gt �rms
that already existed in t, while the term in square brackets is the additional income
(pro�ts plus patents) generated by new blueprints, and thus represents the gross return
to R&D investment. In equilibrium, the two returns must be equal, and the implicit
interest factor is

iht+1 =
gt (�t+1 + vt+1)

ft
=
(gt+1 � gt) (�t+1 + vt+1)

ht
: (79)

From (68), (75) and (76), the aggregate constraint now reads (see Appendix)

yt = ct + et + gtbt + ht: (80)

Optimality conditions for consumers yield the Hotelling rule

qt+1
qt

�
1 + "

1� d

�
= iht+1; (81)

and the standard Euler condition et+1 = �cti
h
t+1. As shown in the Appendix, the

propensity to invest in resources is constant, and the depletion index z is recursively
determined by (the unique positive root of) the system

z = (1� d) [1 +  �3 (1� �3)] [1 +  hm]�1 � 1; (82)

hm = �2� (1 + �)
�1 �  �1 � �1 (1� d) (1� �) z�1; (83)

where the marginal propensity to invest in R&D, hm, is constant as well. Hence, the
equilibrium features balanced growth, and output per capita grows at the constant
rate13

�y = �g (�x)
�1

1��3 = (1 +  hm) [(1 + ") = (1 + z)]
�1

1��3 : (84)

13Rewriting the innovation frontier as �gt+1 = 1 +  hm and substituting in (71) we obtain (84).
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Since consumption is proportional to output levels, the necessary and su¢ cient condi-
tion for non-declining welfare is now

(1 +  hm) [(1 + ") = (1 + z)]
�1

1��3 � 1; (85)

which con�rms that prospect for sustainability are improved by endogenous technical
change - here represented by the rate of expansion in intermediate varieties �gt+1 =
(1 +  hm). The e¤ect of intergenerational transfers on the growth rate is twofold. On
the one hand, positive tax-subsidy rates reduce the depletion index z, implying the
usual mechanism: from (84), a reduction in z directly increases the output growth
rate �y, and this e¤ect is stronger the higher are the shares of resources (�1) and
intermediates (�3) in production. On the other hand, taxes and subsidies also a¤ect the
marginal propensity to invest in R&D, and thereby the rate of expansion in intermediate
varieties (1 +  hm). This second e¤ect is generally ambiguous, but rather unlikely to
imply a reduction of output growth following a decrease in the resource depletion rate.14

As shown in the Appendix, the critical condition for � < 0 is now�
1

�

��
1 + �~z

1 + ~z

� 1+2�
1+�

> 1; (86)

with numerical results reported in Table 1. For the di¤erent policy targets consid-
ered, the critical levels of the resource share in the R&D model occupy intermediate
positions if compared with previous models: with R&D activity, the critical thresh-
old ��1 is slightly higher than that obtained with monopoly rents, but lower than that
obtained in the model with man-made capital (cf. Table 1). Notice, however, that a
sustainability-targeted policy is more politically feasible with R&D activity: the rea-
son is that sustainability conditions di¤er between the present model and that with
monopoly rents - see (66) and (84) - and the growth rate in the economy with R&D
is generally higher. Hence, achieving sustainability in the R&D economy involves a
smaller deviation from laissez-faire (that is, a higher �) with respect to the economy
with monopoly rents, which grows less and must �ll a bigger sustainability gap (that
is, requires a lower �). As a consequence, the critical threshold becomes less restrictive
for the economy with R&D �rms.15

14The e¤ect of a variation in tax-subsidy rates on hm is generally ambiguous since a variation in
d and � modify both the numerator and denominator in the last term in (83). However, an interior
equilibrium with positive R&D activity requires  > 1 (see Appendix: eq.A55), and this implies that
possible reductions in hm would not reduce the rate of expansion 1+ hm substantially. The net e¤ect
of a reduction in z on output growth thus remains largely determined by the usual mechanism induced
by resource preservation.
15For example, set �1 = 0:25, �3 = 0:35, and suppose that the R&D economy requires a reduction of

the depletion index corresponding to � = 0:9. Recalling (66) and (84), the R&D economy can be safely
assumed to be growing faster than a no-R&D economy with monopoly rents. The latter economy thus
requires higher levels of tax-subsidy rates to achieve sustainability, corresponding to (e.g.) � = 0:7.
Under these parameters (�1 = 0:25, �3 = 0:35), Table 1 shows that the sustainability policy would be
politically supported in the R&D economy (�R = �:0003 with � = 0:9) while it would not be in the
no-R&D economy (�M = :0003 with � = 0:7).
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Input shares � = 0:9 � = 0:8 � = 0:7
�1 �2 �3 �M �R �K �M �R �K �M �R �K

.15 .40 .45 .0011 .0097 .0010 .0047 .0252 .0036 .0119 .0489 .0084

.20 .40 .40 -.0009 .0039 .0005 .0008 .0128 .0029 .0065 .0289 .0081

.25 .40 .35 -.0031 -.0003 -.0003 -.0035 .0037 .0016 .0003 .0140 .0067

.30 .40 .30 -.0053 -.0035 -.0014 -.0078 -.0033 -.0004 -.0060 .0025 .0042

.35 .40 .25 -.0073 -.0060 -.0028 -.0118 -.0087 -.0030 -.0120 -.0063 .0006

.40 .40 .20 -.0090 -.0080 -.0045 -.0153 -.0130 -.0062 -.0173 -.0133 -.0037

.45 .40 .15 -.0105 -.0096 -.0063 -.0183 -.0164 -.0099 -.0218 -.0188 -.0090

.50 .40 .10 -.0118 -.0108 -.0084 -.0207 -.0190 -.0140 -.0253 -.0232 -.0151

Table 1. The welfare gap � under di¤erent policy targets (and � = 0:95) in the
three variants of the model: monopoly rents (�M ), R&D �rms (�R), and man-made
capital (�K : in this case, input shares read �1; �2; �3). The welfare gap becomes
negative when the resource share (�rst column) reaches a critical threshold.

5 Remarks

The connections between the present analysis and related literature can be summa-
rized as follows. Mourmouras (1993) uses the basic model of section 2 to show that
competition may lead to over-exploitation of privately-owned renewable resources, and
describes a set of conservationist policies implementing the Rawlsian optimum. A ma-
jor di¤erence is the aim of the present analysis: our focus is the existence of situations
where agents prefer transfers to laissez-faire for purely sel�sh reasons, without assum-
ing a predetermined social objective. Second, we have studied individual payo¤s in
a regime-contingent formulation in order to investigate under what technological and
institutional circumstances agents would agree on a higher rate of natural preservation.
Third, we have extended the model to include technical progress, monopoly rents, and
R&D activity, obtaining insights about the intensity of the welfare e¤ects induced by a
higher degree of resource preservation. All the above di¤erences also apply with respect
to Krautkraemer and Batina (1999), where the basic model is extended to include a
stock-dependent rate of resource regeneration.

In the literature on resource economics, intergenerational transfers are also consid-
ered by Howarth (1991) and Gerlagh and Keyzer (2001; 2003). In Howarth (1991),
uncertainty about states of nature implies that the Hotelling�s rule is not necessarily
met, and the competitive equilibrium may thus be ine¢ cient: considering a max-min
welfare criterion, Howarth (1991) shows that an optimal scheme of intergenerational
transfers allows the economy to obtain intergenerational fairness while restoring e¢ -
ciency. Gerlagh and Keyzer (2001) consider a production economy where the resource
stock has a positive amenity value, and show that a �trust fund� policy, where fu-
ture generations receive claims for the natural resource, ensures e¢ ciency and protects
the welfare of all generations. In a similar model, Gerlagh and Keyzer (2003) show
that conservationist measures may implement optimal allocations that would not be
achieved through competitive markets. Apart from substantial di¤erences in the un-
derlying models16, the common merit of these contributions is to show that fairness
16With respect to the present analysis, important di¤erences are represented by uncertainty (which
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may be achieved through policies that also preserve e¢ ciency, in line with the view that
intergenerational equity and intertemporal e¢ ciency are distinct, and not necessarily
con�icting, objectives (Howarth and Norgaard, 1990)).17 As noted in the Introduction,
this view is not challenged by the present analysis, which focuses on the di¤erent issue
of individual motives for supporting resource-saving policies. In this model, distor-
tionary measures bear an e¢ ciency loss with respect to the �rst-best policy discussed
in Mourmouras (1993) - see sect.3.2. This policy can be easily reinterpreted as an
implicit redistribution of property rights across generations operated in each period by
�scal authorities, in line with the main �ndings of Howarth and Norgaard (1990).

Emphasizing the role of sel�sh behavior, our analysis is close to the view that
intergenerational exchange need not be linked to parental altruism, as recently argued
by Boldrin and Rustichini (2000) and Rangel (2003). The general question asked by
these authors is: why should present generations invest in assets that are valuable only
to future ones? Boldrin and Rustichini (2000) and Rangel (2003) use game-theoretical
arguments to show that intergenerational transfers may arise as voting equilibria when
dynastic altruism is absent.18 In particular, Boldrin and Rustichini (2000) show that
pay-as-you-go social security can be voted into existence by the majority, because
the reduction in current saving implied by taxation raises future returns on capital,
thus compensating the negative e¤ect of pension �nancing. Recalling Proposition 3,
our main result hinges on a di¤erent mechanism: the reduction in the rate of resource
use implied by resource-saving transfers improves production possibilities in the future,
and the positive e¤ect on second-period output more than compensates for the negative
e¤ect of taxation (provided that resource productivity is su¢ ciently high).19

With respect to models of social security, the opposite direction of transfers in the
present analysis (old-to-young) implies substantial di¤erences also from a policymaking
perspective, since commitment technologies change. A social security system is sup-
ported only if young generations believe that they will receive second-period transfers
(Browning, 1975), and this generally requires an intergenerational commitment device -
i.e. an institutional arrangement that binds generations yet to be born; in the literature
on social security, this device takes various forms, such as social contracts (Hammond,
1975; Sjoblom, 1985), reputational mechanisms (Kotliko¤ et al. 1988; Cooley and
Soares, 1998), or constitutional norms (Azariadis and Galasso, 2002). Resource-saving
policies, instead, are supported when young individuals who receive subsidies accept

plays a crucial role in Howarth, 1991) and non-essentiality of the resource for producing output (Gerlagh
and Keyzer, 2001). In particular, the fact that natural capital is not essential allows Gerlagh and
Keyzer (2001) to consider zero-extraction paths with positive output, a possibility that is ruled out in
our model.
17Related approaches to �scal policy with overlapping generations are also considered in the related

literature on environmental degradation. In a continuous-time setting, Marini and Scaramozzino (1995)
derive the optimal abatement program assuming the Calvo-Obstfeld criterion for intergenerational
equity. In a similar model, Bovenberg and Heijdra (1998) show that public debt policy can be used to
redistribute in a �fair�manner across generations the burden of taxation implied by e¢ cient abatement
programs.
18Rangel (2003) shows that positive expenditures in goods that only bene�t the elderly (such as

social security) are necessary to achieve an equilibrium with e¢ cient investment in goods that bene�t
future generations (such as clean environment and education).
19Notice that the ampli�cation of the growth e¤ects of transfers, induced by the presence of additional

assets in our model, remains di¤erent from the interest-rate e¤ect in Boldrin and Rustichini (2000).
As shown in sect.4, �nancial returns are raised by resource-saving policies because of the positive level
e¤ect on second-period output induced by a reduction in z.
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to pay second-period taxes: this requires an intertemporal commitment device that
binds a given generation in the subsequent period, such as lifetime contracts (sect.3.3).
Further di¤erences with respect to the social security literature arise, as already noted
(sect.3.4), in the context of sequential voting games due to the particular con�guration
of payo¤s in our model (cf. Proof of Lemma 4).

Due to the �rst-father problem, enacting permanent transfers involves a paternal-
istic action at time zero, as no generation would sel�shly make the initial gift. As
already noted, the logic is similar to Gale (1973), with the major di¤erences that
transfers are distortionary and yield welfare gains only if the critical condition is satis-
�ed. Nonetheless, Gale�s conclusion can be readapted to the present context as follows:
resource-saving transfers begin after the economy

"has been running along for some time in the [no-transfers] equilibrium,
but at time t = 0 some of the old people realize that if they are willing to
give up ever so little of their second-period consumption, the economy in
the future will move up toward [higher welfare for future generations]. (...)
If this altruistic scenario sounds too unrealistic, one can instead imagine a
central authority which levies an income tax on the old people in period
zero and then sells this income back to the young." (ibid., p.29).

Alternatively, we can imagine a privatization scenario where natural resources pre-
viously owned by the State are sold at a lower-than-e¢ ciency price to young generations
in period zero, and permanent transfers are then implemented.20

6 Conclusions

This paper analyzed the welfare properties of distortionary transfers in a growth model
with overlapping generations and privately-owned natural capital. In this framework,
unsustainability and resource depletion are a likely outcome of excessive competition,
and implementing father-to-son transfers generates a higher degree of resource preser-
vation. Our main result is that all newborn agents prefer intergenerational transfers
in both periods of life to persistent laissez-faire conditions, provided that the resource
share exceeds a critical threshold level. The reason is that the reduction in the rate
of depletion implied by transfers improves production possibilities in the future: if
resource productivity is relatively high, the positive e¤ect on second-period output
more than compensates (in welfare terms) for the negative e¤ect of taxation. This
mechanism is enhanced by the presence of other assets, in addition to natural capital.
Extending the model to include man-made capital, monopoly rents and R&D sectors,
it is shown that the critical condition becomes less restrictive because the returns from
these assets also bene�t from the positive growth e¤ect induced by a higher degree of
preservation.

The welfare time-path implied by resource-saving policies is not Pareto comparable
with that obtained under laissez-faire, because resource owners at time zero su¤er a
welfare loss due to taxation of the initial stock. The private desire for resource-saving

20 In this case, the initial selling price (determined by the government) is equivalent to a proportional
subsidy to the young at time zero: under balanced budget, the e¢ ciency loss for the public owner
would fall again on the �rst old generation in the form of reduced transfers.
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policies unfolds only if agents are either subject to credible pre-commitment, or induced
to cooperate with adjacent generations. In the �rst regard, a succession of lifetime
contracts would allow a central authority to implement resource-saving policies in the
inde�nite future: if young agents are asked to choose between permanent transfers and
permanent laissez-faire, the former option is strictly preferred. In a sequential-choice
context, the lack of intergenerational cooperation implies that alternative commitment
devices must be set, e.g. in the form of positive costs of regime-switching. In both cases,
agents support resource-saving policies for purely sel�sh reasons, and a paternalistic
action is required at time zero. These two features recall the logic of intergenerational
transfers à la Gale (1973): if the �rst resource owner partially renounces his claim over
initial endowments, the transmission of this credit forward in time yields welfare gains
for all successive generations.

Appendix

A. The basic model

The consumer problem. By (3), (13) and (4), the second-period individual con-
straint (10) can be rewritten as et+1 = qt+1 (1 + ") at;which can be substituted in (9)
to obtain

ct = wt �
qt (1� dt) et+1
qt+1 (1 + ")

: (A1)

The individual problem consists of choosing ct and et+1 in order to maximize lifetime
utility subject to (A1): �rst order conditions for an interior solution imply (14). Sub-
stituting equilibrium prices (8)-(7) and condition (14) in individual budget constraints
(9) and (10), equilibrium consumption levels are

ct =
wt
1 + �

=
1

1 + �
(1� �) yt; (A2)

et+1 =
1 + n

1 + �
(�+ �) yt+1: (A3)

Deriving equation (15). Substituting et+1 = qt+1 (1 + ") at in (A3) gives

at =
(1 + n) (�+ �)

qt+1 (1 + �) (1 + ")
yt+1: (A4)

From (7) and (13), qt+1 = �m�
t+1x

��1
t+1 (1� � t+1) can be substituted in (A4) to obtain

at =
(1 + n) (�+ �)

� (1 + �) (1 + ") (1� � t+1)
xt+1: (A5)

Now consider the system

qt+1
qt

=
et+1 (1� dt)
�ct (1 + ")

; (A6)

qt+1
qt

=
pt+1
pt

�
1� � t+1
1� � t

�
; (A7)
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where (A6) is the optimality condition (14), and (A7) is implied by no-arbitrage con-
dition (13). Substituting (A2)-(A3) in (A6), and (7) in (A7) respectively gives

qt+1
qt

=
(1 + n) (�+ �) (1� dt)

� (1� �) (1 + ")

�
yt+1
yt

�
; (A8)

qt+1
qt

=
xt
xt+1

�
1� � t+1
1� � t

�
yt+1
yt

; (A9)

implying
xt+1
xt

=
� (1� �) (1 + ") (1� � t+1)

(1 + n) (�+ �) (1� dt) (1� � t)
: (A10)

Substituting (A10) in (A5) gives eq.(15) in the text.
Proof of Proposition 1. Under laissez-faire zt+1 = zt = ~z, which implies that

Ut is proportional to yt (see equation (A14) derived below). Hence, satisfying the
sustainability condition (1) in the laissez-faire economy requires �y � 1. Setting zt+1 =
zt = ~z in (18) it follows that �y � 1 if and only if (22) is satis�ed. Substituting (15)
and 
 = ��1 � 1 in (22) yields (23).

Deriving tax-subsidy rates in (25). Setting zt = z0, � t = � 0 and dt = d0 in
equations (24) and (11) gives

z0 = ~z
�
1� � 0

� �
1� d0

�
; (A11)

� 0z0 =
�
1� � 0

�
d0; (A12)

respectively. Substituting (A12) in (A11) gives � 0 = d0

~z(1�d0) , which can be substituted

back in (A11) to obtain d0 = ~z�z0
1+~z , which is the subsidy rate level in (25). The tax rate

level in (25) then follows from � 0 = d0

~z(1�d0) as obtained above.
Proof of Lemma 2. It follows from (A2)-(A3) that

Ut = log

�
1� �
1 + �

�
+ � log (1 + n)

�+ �

1 + �
+ log yt + � log yt+1: (A13)

By (18), � log yt+1 = � log yt + �� log
zt+1(1+�)
zt(1+zt+1)

, and (A13) can be rewritten as

Ut = log

(�
1� �
1 + �

��
(1 + n) (�+ �)

1 + �

�� � zt+1 (1 + �)
zt (1 + zt+1)

���
y1+�t

)
: (A14)

If the policymaker sets zt = � in each period, (18) implies yt be constant over time and
(A14) implies Ut be constant over time. More generally, from (A14), any path with
constant utility requires

zt+2
1 + zt+2

=
zt+1
(1 + �)

�
zt (1 + zt+1)

zt+1 (1 + �)

� 1
�

for each t 2 [0;1) : (A15)

Deriving expression (28). Given the initial endowment R0 � r0N0, solving (16)
and (17) backward yields

xt = r0

�
1 + "

1 + n

�t
� zt
1 + zt

t�1Y
j=0

1

1 + zj
: (A16)
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Substituting (A16) in yt = m�
t x

�
t gives

yt =

�
zt

1 + zt
�t

��
; (A17)

where

�t �
r0m0 (1 + �)

tQt�1
j=0 (1 + zj)

(A18)

is a function of Ht and is therefore taken as given by the agent born in period t.
Expression (A18) implies that �t+1 = �t (1 + �) (1 + zt)

�1, thus

yt+1 =

�
(1 + �) zt+1

(1 + zt) (1 + zt+1)
�t

��
: (A19)

Substituting (A17) and (A19) in (A13) yields

Ut = log

(��
1� �
1 + �

��
zt

1 + zt
�t

��� �(1 + n) (�+ �)
1 + �

�� � (1 + �) zt+1
(1 + zt) (1 + zt+1)

�t

���)
:

Setting 
t � log
��

1��
1+�

�
��t

h
(1+n)(�+�)

1+� ��t

i��
yields expression (28) in the text.

Deriving expressions (29) and (30). It follows from (28) that

V (0; 0) = 
 + log

(�
~z

1 + ~z

��� 1

1 + ~z

��� �(1 + �) ~z
1 + ~z

���)
; (A20)

V (0; 1) = 
 + log

(�
~z

1 + ~z

��� 1

1 + ~z

��� �(1 + �) z0
1 + z0

���)
; (A21)

V (1; 0) = 
 + log

(�
z0

1 + z0

��� 1

1 + z0

��� �(1 + �) ~z
1 + ~z

���)
; (A22)

V (1; 1) = 
 + log

(�
z0

1 + z0

��� 1

1 + z0

��� �(1 + �) z0
1 + z0

���)
: (A23)

Expressions (29) and (30) in the text are proved as follows: ~z > z0 implies

z0

~z

�
1 + ~z

1 + z0

�
< 1: (A24)

Hence, from (A20)-(A21) we have V (0; 0) > V (0; 1), because
h
~z(1+z0)
z0(1+~z)

i�
> 1; from

(A22)-(A23) we have V (1; 0) > V (1; 1), because
h
~z(1+z0)
z0(1+~z)

i��
> 1.

Proof of Proposition 3. By (A20) and (A23), V (0; 0) < V (1; 1) if and only if�
~z

1 + ~z

��(1+�)� 1

1 + ~z

���
<

�
z0

1 + z0

��(1+�)� 1

1 + z0

���
:

Substituting 1 + ~z = �+�
�(1��) , this inequality reduces to (32). It follows from (29) and

(30) that if (32) is satis�ed the only possible payo¤ ranking is (31).
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Deriving expression (33). From (A20) and (A23), the gap � = V (0; 0)�V (1; 1)
equals

� = log

(�
~z

z0

��+�� �1 + z0
1 + ~z

��+2��)
:

Substituting z0 = �~z and eq.(15) in the above expression yields equation (33) in the
text.

The Rawls-optimal path. Along a Rawls-optimal path, (i) utility per capita
must be constant through generations born in any t � 0 and (ii) the constant utility
level must be the maximum that can be sustained inde�nitely. As regards the �rst
point, utility per capita is constant through generations if yt = y� at any t � 0, implying
m�
t x

�
t = y�. De�ning ~xt � mtxt, the Rawls-optimal path requires ~xt = ~x� = (y�)

1
�

constant. Multiplying by mt the resource constraint rt+1 (1 + n) = (1 + ") (rt � xt),
and de�ning ~rt � rtmt we obtain

~rt+1 = (1 + �) (~rt � ~x�) : (A25)

Equation (A25) displays a unique steady-state point,

~r� =
1 + �

�
~x�: (A26)

Since � > 0, this equilibrium is unstable. As a consequence, if ~x� > ~r0
�
1+� then

~rt diverges to minus in�nity: in this case, the Rawlsian path is unfeasible since the
resource stock becomes negative in �nite time. If set ~x� < ~r0

�
1+� then ~rt diverge

to plus in�nity, which is feasible but technologically ine¢ cient, since there would be
waste of productive resources. As a consequence, the Rawls-optimal plan is to chose
~x� = �

1+� ~r0, which implies x
�
0 =

�
1+�r0. Since x

�
t must decline geometrically at rate � to

ensure constancy of ~x�, natural capital and the resource stock evolve according to (34)

along a Rawls-optimal path, and output per capita is y� =
�

�
1+�m0r0

��
at each t � 0.

Given y�, lifetime utility is maximized by consumption bundles c� and e� satisfying

(c�; e�) = argmax
n
log c� + � log e� sub y� = c� + e� (1 + n)�1

o
:

Assuming an interior solution, the �rst-order condition e� = �c� (1 + n) and the ag-
gregate constraint imply conditions (35).

First-best policy. The �rst-best policy is the same described in Mourmouras
(1993). At time zero, the resource stock is expropriated and a stock J0 of �at currency
is introduced in the economy as a lump-sum transfer to the initial old. Denoting the
quantity of money per young individual as jt = J0=Nt, the �rst father receives (and
consumes)

jt (1 + n)

pyt
= e0;

where pyt is the price index of the economy. All successive generations face individual
constraints

ct = wt + st � (jt=pyt ) ; (A27)

et+1 =
�
jt=p

y
t+1

�
(A28)

27



where st is the lump-sum subsidy through which the government transfers all rents
from natural capital to the currently young. Hence, consumers maximize Ut subject to
(A27)-(A28), obtaining �rst-order conditions

et+1 = �ct
�
pyt =p

y
t+1

�
: (A29)

Since the government is implementing the depletion path described in (34), transfers
to the young equal st = �y� in each period: substituting this amount in the budget
constraints (A27)-(A28) together with the �rst-order condition (A29), we obtain

ct = (1 + �)�1 y� = c�;

et = � (1 + n) (1 + �)�1 y� = e�;

which coincides with the Rawls-optimal allocation (35).
Proof of Lemma 4. A history-dependent strategy for the representative agent

born at the beginning of period t is denoted by �t (Ht), mapping previous generations�
actions into the choice space f0; 1g. In this case, �t (Ht) becomes part of the history set
a¤ecting subsequent strategies, �t+1 (Ht+1) = �t+1 (Ht; �t (Ht)). A subgame perfect
equilibrium is a sequence of strategies (�t)

1
t=0 if and only if, for every t and every

history Ht, strategy �t (Ht) yields an expected lifetime payo¤ exceeding that yielded
by the opposite strategy ��t (Ht), i.e.

Vt (�t (Ht) ; �t+1 (Ht; �t (Ht))) > Vt (��t (Ht) ; �t+1 (Ht; ��t (Ht))) : (A30)

Now assume that (32) holds, so that (31) holds. If �t (Ht) = 0, it is impossible to satisfy
both (A30) and (31) since, by (31), all possible payo¤s with �t (Ht) = 0 are always
lower than all alternative payo¤s with ��t (Ht) = 1. Hence, when (32) holds, �t (Ht) = 0
cannot be part of a subgame perfect equilibrium sequence (and, by extension, laissez-
faire will not arise as an equilibrium outcome with growing population). This result is
due to the fact that, in (31), V (1; 0) and V (1; 1) are strictly preferred to laissez-faire
conditions in the �rst period. Pension games are di¤erent in that the relevant payo¤
is of the type (cf. Boldrin and Rustichini, 2000: eq.3.5)

~V
�
0; 10

�
> ~V

�
10; 10

�
> ~V (0; 0) > ~V

�
10; 0

�
(A31)

where 10 means young-to-old transfers. In this case, laissez-faire outcomes may be part
of a subgame perfect equilibrium sequence since it is possible to set �t (Ht) = 0 while
satisfying both ranking (A31) and the equilibrium condition (A30) - see Boldrin and
Rustichini (2000: p.51).

Proof of Lemma 5. When condition (32) holds, payo¤s are ranked as in (31).
Hence, for any history (�0; �1; :::), the dominant strategy for young agents is to vote
for transfers, whereas each old in period t has incentives to vote laissez-faire for any
�t�1. Hence, quali�ed majorities never arise, implying �t = �0 for all t > 0.

Proof of Lemma 6. From (40), we have �Vt (1; 1)� �Vt (0; 0) = Vt (1; 1)�Vt (0; 0)�
�t (1). Substituting � � Vt (1; 1) � Vt (0; 0), it follows that �Vt (1; 1) > �Vt (0; 0) if (41)
is satis�ed. On the other hand, (40) implies that �Vt (1; 1) > �Vt (1; 0) if ��t+1 (1) >
Vt (1; 0)� Vt (1; 1), which - from (A22) and (A23) - can be rewritten as

��t+1 (1) > log

�
~z

z0

�
1 + z0

1 + ~z

����
: (A32)
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Substituting z0 = �~z and rearranging terms yields (42). This reasoning implies that if
(41)-(42) hold at t we have �Vt (1; 1) > �Vt (1; 0) and �Vt (1; 1) > �Vt (0; 0). From (40), it
also derives that �Vt (1; 1) > �Vt (0; 1). As a consequence, if (41)-(42) hold, the highest
lifetime payo¤ for young agents in period t is �Vt (1; 1), and the dominant strategy in the
political game is to vote for transfers in both periods of life. By sequential reasoning,
if �0 = 1 and the above conditions always hold, transfers receive unanimous political
support from all generations born in t � 0.

B. The model with capital

Deriving expression (50). As shown in Mourmouras (1993: p.264), the natural
capital-resource ratio is constant in the laissez-faire economy with capital. From the
government budget constraint (11), constant tax-subsidy rates imply zt = z constant
as well. From the individual budget constraint (44),

qtat (1� d) + kt+1 = wt � ct =
�2�

1 + �
yt; (A33)

where we have used wt = �2yt and ct = wt (1 + �)
�1. Using the equilibrium condition

qt = pt (1� �) and the pro�t-maximizing condition pt = �1 (yt=xt), we can rewrite net
expenditure in resource assets as

qtat (1� d) =
�1 (1� �) (1� d)

zt
yt; (A34)

and substitute in (A33) to obtain

kt+1
yt

=
�2�

1 + �
� �1 (1� �) (1� d)

zt
: (A35)

Substituting the pro�t-maximizing condition ikt+1 = �3 (yt+1=kt+1) in the Hotelling

rule ikt+1 =
qt+1
qt

�
1+"
1�dt

�
, and using the equilibrium condition qt = pt (1� �) and the

pro�t-maximizing condition pt = �1 (yt=xt), we obtain

kt+1
yt

= �3

�
xt+1
xt

��
1� d
1 + "

�
: (A36)

Plugging (A36) in (A35) and using xt+1 (1 + z) = xt (1 + "), we obtain expression (50)
in the text.

Deriving expressions (53) and (54). From (51) we have

�kt+1 = �yt = (�
x
t )
�1
�
�kt

��3
; (A37)

which can be log-linearized as (de�ning ��it � log �it)

��
k
t+1 = �1��

x
t + �3

��
k
t = �3��

k
t + �1 log [(1 + ") = (1 + z)] : (A38)

Since �3 < 1, ��
k
t converges to the unique steady state

��
k
=

�1
1� �3

log [(1 + ") = (1 + z)] :
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As a consequence,

lim
t!1

�kt = [(1 + ") = (1 + z)]
�1

1��3 : (A39)

From (A37), it derives that limt!1 �kt = limt!1 �yt , which proves expression (53). As
regards the interest factor, we have

lim
t!1

it = lim
t!1

�3 (yt=kt) = (1 + z) lim
t!1

�yt ;

which yields (54) after substitution of (53).
The critical condition (55). Using ct = �2 (1 + �)

�1 yt and et+1 = it+1�ct =
�2�3�
1+�

�
yt
kt+1

�
yt+1, lifetime utility of agents born in t equals

Ut = log

�
�2
1 + �

yt

�
+ � log

�
yt
kt+1

�
�3�2�

1 + �

�
yt+1

�
: (A40)

Setting et+1 = it+1�ct =
�2�3�
1+�

�
yt
kt+1

�
yt+1 in period t and substituting in the aggregate

constraint (46) yields kt+1 = �'tyt, where

�'t � 1�
�2
1 + �

� �2�3�

1 + �

�
yt�1
kt

�
is taken as given by agents born in period t. Hence, (A40) can be rewritten as

Ut = log

(
�2
1 + �

�
�3�2�

�'t (1 + �)

��)
+ log yt + � log yt+1: (A41)

Using the de�nition of �t in (A18), output at subsequent dates can be written as
21

yt =

�
zt

1 + zt

��1
��1t k

�3
t ; (A42)

yt+1 =

�
zt (1 + ")

(1 + zt) (1 + zt+1)

��1
��1t �'

�3
t y

�3
t : (A43)

where we have used k�3t+1 = (�'tyt)
�3 . Substituting (87)-(87) in (A41),

Ut = 

0
t + log

8<:
�

zt
1 + zt

��1 " 1 + "

1 + zt+1

�
zt

1 + zt

�(1+�3)#�1�9=; ; (A44)

where we have de�ned


0t � log

24�2��1t k�3t
1 + �

 
�3�2��

�1(1+�3)
t '�3t k

�23
t

�'t (1 + �)

!�35 : (A45)

Since 
0t is taken as given by agents born in t, the gap between utility under life-
persistent transfers (zt = zt+1 = z0) and under laissez-faire (zt = zt+1 = ~z) is given
by

� = V (0; 0)� V (1; 1) = log
(�

~z

z0

�
1 + z0

1 + ~z

���1+�1�(1+�3)�1 + z0
1 + ~z

��1�)
: (A46)

From (A46), setting z0 = �~z, the condition for � < 0 is given by inequality (55) in the
text.
21With � = n = 0, � in (A18) is here simpli�ed by � = " and m0 = 1).
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C. The model with monopoly rents

Deriving equation (62). Since (56) displays constant returns to scale, pro�t maxi-
mization of �nal output producers implies

yt = ptxt + wt + �
�1
3 gbt = ptxt + [ct + qtat (1� d) + ft] + ��13 gbt;

where the term in square brackets follows from (60). Setting (61) at time t and sub-
stituting for qtat yields

yt = ct + et � g�t + ��13 gbt;

where we have simpli�ed ptxt� = qtatd from the government budget constraint (11).
Substituting monopoly rents from (58) yields (62).

Deriving expression (65). Substituting ct = �2 (1 + �)
�1 and gbt = �23yt in the

aggregate constraint (62) yields

et+1 =
��
1� �23

�
(1 + �)� �2

�
(1 + �)�1 yt+1: (A47)

Substituting (A47) in the Euler condition et+1 = ift+1�ct, and using the Hotelling rule
(63) we get

xt+1
xt

=
�2� (1 + ") (1� d)�1�
1� �23

�
(1 + �)� �2

; (A48)

which implies that zt is constant over time (knife-edge equilibrium). Substituting
�x = (1 + ") (1 + z)�1 yields expression (65).

Deriving the gap function (67). Substituting ct = �2 (1 + �)
�1 and (A47) in

the utility function gives

Ut = log

8<: �2
1 + �

"�
1� �23

�
(1 + �)� �2
1 + �

#�9=;+ log
24y1+�t

�
1 + "

1 + z

� �1�
1��3

35 (A49)

where we have substituted yt+1 = yt [(1 + ") = (1 + z)]
�1

1��3 from (66). Substituting the

resource constraint xt = rtz (1 + z)
�1 and the equilibrium condition bt =

�
�23x

�1
t

� 1
1��3

in the production function yt = x�1t gb
�3
t yields

yt =
1

�23
gt
�
�23r

�1
t

� 1
1��3

�
z

1 + z

� �1
1��3

; (A50)

where rt is taken as given by agents born in t. Hence, substituting (A50) in (A49) and
de�ning


00t � log

8<: �2
1 + �

"�
1� �23

�
(1 + �)� �2
1 + �

#� �
1

�23
g
�
�23r

�1
t

� 1
1��3

�1+�9=; ;

we obtain

Ut = 

00
t + log

24� z

1 + z

� �1(1+�)
1��3

�
1 + "

1 + z

� �1�
1��3

35 : (A51)

Setting z = z0 for V (1; 1) and z = ~z for V (0; 0), the gap function is � = V (0; 0) �
V (1; 1) can be expressed as in (67), where � � z0=~z as usual.
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D. The model with R&D

Deriving equation (80). Since (68) displays constant returns to scale, pro�t maxi-
mization of �nal output producers implies

yt = ptxt + wt + �
�1
3 gtbt = ptxt + [ct + qtat (1� d) + ft + ht] + ��13 gtbt;

where the term in square brackets follows from (75). Setting (76) at time t and sub-
stituting for qtat yields

yt = ct + et + ht � gt�t + ��13 gtbt;

where we have simpli�ed ptxt� = qtatd from (11). Substituting monopoly pro�ts
�t = ��13 (1� �3) bt yields (80).

Derivation of system (82)-(83). Substituting (74), (77) and �t+1 = ��13 (1� �3) bt+1
in (79) we obtain

iht+1 =
(gt+1 � gt) (�t+1 + vt+1)

ht
= �t

�
��13 (1� �3) bt+1 + ��1t+1

�
:

Substituting (73) and recalling that yt = ��23 gtbt,

iht+1 = [1 +  �3 (1� �3)] �bt+1 = [1 +  �3 (1� �3)]
�
�xt+1

� �1
1��3 ; (A52)

where we have used (71). Now rewrite the Hotelling rule (81) as

iht+1 = (1 + ") �
y
t+1

�
(1� d) �xt+1

��1
: (A53)

Plugging (A53) in (A52) and using �yt+1 = �bt+1�
g
t+1, we get

�xt+1 =

�
1 + "

1� d

��
1 +  (ht=yt)

1 +  �3 (1� �3)

�
; (A54)

where we have substituted �gt+1 = [1 +  (ht=yt)] from (72) and (73). The only endoge-
nous variable in (A54) is the marginal propensity to invest in R&D, ht=yt, which can
be obtained as follows. Rewrite (75) as

ct=yt = wt � �1 (1� d) (1� �) z�1t � gtvt � (ht=yt) ;

and substitute ct = wt (1 + �)
�1 and (74) to obtain

ht=yt = �2� (1 + �)
�1 �  �1 � �1 (1� d) (1� �) z�1t : (A55)

which is equivalent to expression (83) in the text. Note that the marginal propensity to
invest in existing �rms, ftvt = 1= , must be less than unity in an interior equilibrium,
so that positive R&D activity requires  > 1 as claimed in footnote 14. From (A54)
and (A55), the growth rate of natural capital solely depends on zt, which is therefore
constant and obtained recursively: setting �xt+1 = (1 + ") (1 + z)

�1 in (A54) yields (82),
to be combined with (A55) as shown in the main text.

The critical condition (86). From et+1 = �cti
h
t+1 and ct = wt (1 + �)

�1, lifetime
utility equals

Ut = log

�
c1+�t ��

�
iht+1

���
= log

�h
�2 (1 + �)

�1 yt
i1+�

��
�
iht+1

���
:
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Substituting (A52) and �x = (1 + ") (1 + z)�1,

Ut = log

8<:�� [1 +  �3 (1� �3)]�
�

�2
1 + �

�1+� �1 + "
1 + z

� �1�
1��3

y1+�t

9=; : (A56)

Substituting xt = rtz (1 + z)
�1 in (70), output reads

yt = gtx
�1
t b

�3
t = �

2�3
1��3
3 gtx

�1
1��3
t = gtr

�1
1��3
t �

2�3
1��3
3

�
z

1 + z

� �1
1��3

: (A57)

Plugging (A57) in (A56) yields

Ut = 

000
t + log

24�1 + "
1 + z

� �1�
1��3

�
z

1 + z

� �1
1��3

(1+�)
35 ; (A58)

where we have de�ned


000t � log
(
�� [1 +  �3 (1� �3)]�

�
�2 (1 + �)

�1 gtr
�1

1��3
t �

2�3
1��3
3

�1+�)
;

which is historically-determined and taken as given by agents born in t. Hence, the
welfare gap is

� = V (0; 0)� V (1; 1) = log
"�

~z

z0

� �1
1��3

(1+�)�1 + z0
1 + ~z

�(1+2�) �1
1��3

#
: (A59)

Setting � = z0=~z, it follows from (A59) that � < 0 when inequality (86) holds.
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