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Abstract 

This study deals with a specific implication of adverse selection on 
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high life expectancy in different ways. Therefore they can be separated 

by insurance firms through appropriate contract offers. We show that in 

this framework a Nash-Cournot equilibrium may not exist; if one exists, 

it will be a separating equilibrium. On the other hand, even if a separating 
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D82, D91, G22) 
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1   Introduction 

 

Private life-annuity markets are frequently recognized as being weak. That is, less life-

annuities are demanded than one could expect, given the need to insure against 

uncertainty about the duration of life, in order to smooth consumption appropriately 

over one's lifetime. Empirical evidence for this fact, which is sometimes called the 

"annuity puzzle", has been established in various studies for the US (see, e.g., MOORE 

AND MITCHELL [2000], FRIEDMAN AND WARSHAWSKY [1990]), but also for the U.K., 

Canada and other countries (for an overview see BROWN [2001]). 

 

To the extent that the low demand is explained by a bequest motive or by the existence 

of a public pension system, the weakness is not attributed to an intrinsic problem of this 

market. However, there is a further reason put forward in the literature, namely 

asymmetric information which leads to adverse selection: The fact that individuals have 

more information about their life expectancy than annuity companies leads to an over-

representation of persons with a high survival probability among the buyers of annuity 

contracts, which in turn drives down the rate of return on annuities below the rate 

corresponding to the average probability of survival.1 As a consequence of this 

phenomenon, a loss of welfare arises for persons who cannot buy an appropriate annuity 

contract. This shortcoming of the annuity market is supposed to become increasingly 

important, because in many countries the existing public pension system, organized 

                                                 
1 Empirical evidence suggests that none of these three reasons alone, but only the interaction of 

adverse selection, public pension system and bequest motives can explain the weakness of the market. 
See, e.g., FRIEDMAN AND WARSHAWSKY [1988, 1990], WALLISER [2000], MITCHELL ET AL. [1999]. 
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according to the pay-as-you-go method, is expected to allow only a reduced 

replacement-ratio in the future, hence increased private insurance will be required. 

 

In the present paper we focus on the fact that annuity contracts provide periodic payouts 

for the duration of the annuitants' life (or at least for a fixed number of years). We point 

out a further consequence of the asymmetric information problem, in addition to the 

adverse-selection problem described so far: The time structure of the payoffs matters. 

Individuals with low life expectancy will put less weight on the payment they may not 

receive in the last period of life than individuals with high life expectancy do. This fact 

can be used by firms to offer annuity contracts which are favourable for low-risk 

individuals but not for high-risk individuals. 

 

Indeed, in two recent empirical papers, FINKELSTEIN AND POTERBA [2002, 2004] have 

found evidence for such selection effects in the U.K. annuities market. They analyzed 

three types of annuity contracts, which differ in the time-path of payoffs: constant 

nominal payoffs, annually escalating nominal payoffs and inflation-indexed payoffs. 

They showed that for the latter two contracts the expected present value of the payoffs, 

based on the average population mortality, is significantly lower than that for fixed 

nominal annuities. This result suggests that those two contracts, which provide the 

higher payoffs in later years, are selected by individuals with a high life-expectancy: 

Only these individuals have an incentive to buy such contracts, because for them the 

expected present value of the payoffs, based on their low mortality rates, is higher and 

may exceed that of annuities with decreasing real (i.e. fixed nominal) payoffs; the latter 
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are favourable for individuals with lower life-expectancy.2 In fact, estimating a hazard 

model regarding the annuitants' life-spans, FINKELSTEIN AND POTERBA [2004] found 

clear evidence for such an annuitant self-selection with respect to the time profile of 

payoffs. Moreover, the selection effects turned out to be quite large.  

 

In the present contribution we provide a theoretical analysis of the functioning of 

annuity markets, when selection through the timing of payoffs takes place. In particular, 

we investigate the reaction of insurance demand and the consequences for the existence 

of equilibria, if insurers offer contracts which vary with respect to the time-path of the 

payoffs.   

 

In the model usually employed for the analysis of annuity markets (see PAULY [1974], 

ABEL [1986] and WALLISER [2000]), there is one period of retirement, and there are two 

groups of individuals with differing life expectancy. Competition takes place via prices 

(i.e. via the rate of return, that is the pension payment per unit of annuity), which are 

fixed by the firms. Individuals can buy as many annuities as they want. As is well-

known, in this framework only a pooling equilibrium is possible, where all individuals 

receive the same rate of return. 

 

We extend this model by introducing two periods of retirement, to which the individuals 

may or may not survive, and by assuming that the payoffs need not be the same in both 

                                                 
2 The lower expected present discounted value of the real annuity, based on average mortality, may 

partly also arise, because a premium for the insurance against inflation has to be paid. The market for real 
annuities is analyzed in BROWN, MITCHELL AND POTERBA [2001], who study the role of government-
issued inflation indexed bonds and other securities as instruments, which insurance companies use to 
hedge price level risks (primarily in the UK and US). However, the authors do not consider selection 
effects. 
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periods. This implies that contracts are characterized by two prices, set by the firms. 

The important aspect in this extended model is that - in accordance with the observation 

mentioned above - annuity demand as well as welfare of the individuals are sensitive 

with respect to the time structure of the payoffs, and the possibility arises for firms to 

separate buyers according to their survival probabilities. This additional separation 

effect, which was up to now neglected in the theoretical literature, may represent a 

further explanation for the fact that annuity markets are not well developed. Indeed, it 

turns out that in such a market no Nash-Cournot equilibrium may exist. If one exists, it 

will be a separating equilibrium. 

 

The Nash-Cournot equilibrium in insurance markets was studied by ROTHSCHILD AND 

STIGLITZ [1976]. In their framework firms offer a number of different contracts which 

specify both a price and a quantity. Individuals who prefer a higher quantity are willing 

to pay a higher price for it. A prerequisite for the existence of price and quantity 

competition is that individuals can buy at most one contract, which may be a reasonable 

assumption for some insurance markets, e.g. insurance against accidents, but seems 

difficult to apply to the annuity market.3 Consequently, in our model individuals are free 

to buy as many annuities as they want. Separation becomes possible because firms can 

fix two prices instead of a price and a quantity. 

 

As a potential answer to the question of what happens in an insurance market, if no 

Nash-Cournot-equilibrium exists, WILSON [1977] introduced a different equilibrium 

                                                 
3  ECKSTEIN, EICHENBAUM AND PELED [1985] make indeed the assumption of a price and quantity 

competition for the annuity market with one period of retirement only. In this framework they derive the 
same results as ROTHSCHILD AND STIGLITZ [1976]. 
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concept, which is based on specific beliefs of firms concerning the reaction of other 

firms to new contract offers. We show that a Wilson equilibrium always exists in our 

model.  

 

Other studies which quit the assumption of a single period of retirement are by 

TOWNLEY AND BOADWAY [1988] and FELDSTEIN [1990]. Feldstein considers a public 

pension system, organized according to the pay-as-you-go method, and discusses the 

time structure of the benefits. He assumes two periods of retirement, but only survival 

to the second is uncertain. In this framework current population prefers to receive 

benefits either in the first or in the second period of retirement, depending on whether 

the return on social security is lower or higher than the expected return on private 

saving. However, steady-state welfare is maximized by paying benefits only in the first 

retirement period, since this increases savings and therefore unintended bequests.  

 

The paper by TOWNLEY AND BOADWAY [1988] deals with the market for private 

annuities and is, thus, more related to the present contribution. The authors model the 

life-span from retirement to death in continuous time and consider term-insured annuity 

contracts, i.e. contracts which guarantee a stream of payoffs for a limited time, either 

until the insured individual dies or until the term of the annuity expires. In their analysis 

of equilibria, Townley and Boadway take the stream of payoffs as constant over the 

whole duration; hence the contracts are characterized by two parameters: the term 

(duration) and the payoff (per unit of money invested). In contrast to our model, where 

firms can separate costumers through a variation of the payment over time, Townley 

and Boadway study separation effects with respect to the term of the annuity: 
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Individuals with longer expected life-span estimate a contract with a longer duration 

higher than individuals with shorter expected life-span. In the framework of their 

model, with asymmetric information concerning life-expectancy, no equilibrium may 

exist, if it exists, it is either a pooling equilibrium or a separating equilibrium.  

 

In TOWNLEY AND BOADWAY [1988] individuals can make provision for the time after 

expiry of the annuity through private savings only. In a related study (BRUNNER AND 

PECH [2002]), we have considered a model which also takes the existence of time-

limited annuity contracts into account, but allows individuals to provide for the time 

after expiry of the annuity by purchasing another annuity. That is, individuals need not 

make their decision concerning old-age provision for the whole time of retirement at 

once, but can do so sequentially. In this framework it turns out that only a situation, 

where all individuals decide sequentially, represents an equilibrium, which is to the 

disadvantage of the short-living individuals. 

 

The rest of our paper proceeds as follows: In Section 2 we introduce the basic model of 

consumption behaviour under asymmetric information with two periods of retirement, 

where individuals provide for old-age by buying annuities. We analyze the effect of a 

variation in the time structure of the payoffs on annuity demand and on welfare of an 

individual under uncertain lifetime. In Section 3 we turn to the investigation of 

equilibria. First, we derive all results concerning the existence and characterization of 

the equilibria in the basic model. Then we extend the model and allow individuals to 

save in riskless bonds in addition to annuities. Section 4 contains concluding remarks. 
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2   Annuity demand in a model with two periods of retirement 

 

2.1 The basic model with asymmetric information 

 

Consider an economy with N individuals who live for a maximum of three periods 

t = 0,1,2. In the working period t = 0 individual i earns a fixed labour income w, spends 

an amount Ai on annuities and consumes an amount i
oc . This gives the budget equation 

for period 0: 

 

(1) 0
i ic w A= − .   

 

The individuals retire at the end of period 0. Through the purchase of annuities they 

make provision for future consumption in the two periods of retirement t = 1,2. An 

annuity contract is characterized by the payoffs (q1,q2): An annuity Ai = 1 pays qt units 

of money to the individual in the retirement periods t = 1,2, if she survives. Hence, for 

individual i the budget equations for the two retirement periods are 

 

(2) 1 1
i ic q A= ,  

(3) 2 2
i ic q A= .  

 

The budget equations (1) – (3) are built on the assumption that the individuals do not 

save and buy other assets, in addition to annuities. At this stage of the analysis we 

exclude holding other assets, in order to concentrate on the design of the annuity 
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contracts. However, the possibility of buying bonds in the working period and in the 

first period of retirement is explicitly considered in Section 3.4, and it will be shown 

that this does not change the main results derived in the basic model. Further, for the 

sake of simplicity, the assumption is made that no public pension system exists.4 

 

Survival to period t = 1 is uncertain and occurs with probability 1
iπ , 10 1< <iπ . In the 

same way, given that an individual is alive in period 1, survival to period 2 occurs with 

probability 2
iπ , 20 1< <iπ . Each individual decides on her consumption plan over the 

uncertain duration of her retirement by maximizing expected utility from a time-

separable utility function iU , 

 

(4)  ( ) ( )2
1 0 1 2 0 1 1 2 0 1 2(1 ) ( ) (1 ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i i i iU u c u c u c u c u c u cπ π π α π π α α= − + − + + + + ,  

 

subject to conditions (1), (2) and (3). In (4) ( )i
tu c  describes utility of consumption per 

period, where we assume that ( ) 0i
tu c′ > , ( ) 0i

tu c′′ <  and 
0

lim ( )
→

′ = ∞
c

u c . α denotes the 

one-period discount factor of utility, with 0 1α< ≤ . Notice that the specification in (4) 

means that the individuals discount future consumption for two reasons, risk aversion 

and time preference. (4) can be reduced to  

 

(4’) 2
0 1 1 1 2 2( ) ( ) ( )= + +i i i i i i iU u c u c u cπ α π π α . 

  

                                                 
4  In Section 4 we discuss the consequences for our results, if a public pension system is introduced 

in the model.  
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Inserting (1), (2) and (3) into (4’) and differentiating with respect to Ai yields the first 

order condition of this maximization problem as 

 

(5) 2
0 1 1 1 1 2 2 2'( ) '( ) '( ) 0− + + =i i i i i iu c q u c q u cπ α π π α .  

 

From (2) and (3) we know that 1
ic  <

>_  2
ic  corresponds to q1 <

>_  q2. Let Ai(q1,q2) be the 

annuity demand determined by (5), for given (q1,q2). 

 

From now on we assume that the otherwise identical individuals are divided into two 

groups i = L,H, characterized by different risks of a long life, i.e. by different 

probabilities of survival H L
t tπ π>  for t = 1,2. Let γ and (1 − γ) denote the share of the 

high-risk and low-risk individuals, resp., with 0 < γ < 1. The probabilities i
tπ  and the 

share γ are public information, known by the annuity companies. But it is the private 

information for each individual to know her type, i.e. her probability of survival. As a 

consequence, there is an adverse-selection problem in the annuity market. This is 

illustrated by the following lemma, which shows that high-risk individuals buy more 

annuities than low-risk individuals, given any contract (q1,q2).  

 

Lemma 1: For any contract (q1,q2) an individual with high survival probabilities will 

demand a larger quantity of annuities than an individual with low survival probabilities, 

i.e. AH(q1,q2) > AL(q1,q2).5 

 

                                                 
5 The proofs of all Lemmas and Propositions are relegated to the Appendix A.1.  
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This result implies that if there is only a single contract offered in the annuity market, 

with some given payoffs (q1,q2) per period, then the share of annuity purchases of high-

risk individuals in total annuity demand is larger than γ, which is the share of high-risk 

individuals in the economy.  

 

2.2 Separating and pooling contracts 

 

An annuity contract 1 2( , )i iq q  is said to be individually fair for an individual of type 

i = L,H, if expected payoffs equal the price, i.e. if it fulfills 

 

(6) 1 1 1 2 21 0i i i i iq qπ π π− − = ,    

 

given the assumption of a zero interest rate, which is chosen for the sake of simplicity; a 

positive interest rate would not affect the qualitative results. Obviously, (6) implies that 

the annuity companies make zero expected profits, given that solely individuals of type 

i buy their individually fair contracts. However, as there exist many contracts 1 2( , )i iq q  

which fulfill (6), it is interesting to investigate which of the individually fair annuity 

contracts is the most preferred one by an individual of type i. The next Lemma provides 

a characterization.  

 

Lemma 2: Among all individually fair contracts 1 2( , )i iq q  for an individual of type i, the 

most preferred is characterized by  
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(7) 1 2'( ) '( )i iu c u cα= , 

 

which implies that 1 2
i iq q> , if α < 1 and 1 2

i iq q= , if α = 1. 

 

That is, in case of a zero rate of time preference (α = 1), an equal distribution of the 

payoffs 1 2( / 1)=i iq q  over the two periods of retirement is optimal, for both types 

, ,i L H=  given their respective individually fair contract. For α < 1, however, the 

optimum ratio 1 2/ ( 1)>i iq q , determined by (7), will in general be different for the two 

types, because in this case the optimum ratio depends on the respective annuity demand 

AL and AH, which will be different. (But one checks easily that the most preferred ratio 

1 2/i iq q  is independent of Ai and thus identical for both types, in case of a per-period 

utility function u which exhibits a constant relative risk aversion, irrespective of the rate 

of time preference.) 

 

Note, moreover, that with the most preferred individually fair contract the relation (7), 

which characterizes the optimum division of consumption between the two periods of 

retirement, also applies for the allocation decision between consumption in the working 

period and the first period of retirement, namely 

 

(8) 0 1'( ) '( )=i iu c u cα .  

 

This can be seen when eliminating 2'( )iu c  in (5) by use of (7), which yields 

0 1 1 1 1 2 2'( ) '( )( )= +i i i i i i iu c u c q qα π π π . Substituting (6) into this condition, it reduces to (8). It 



 12

follows that an individual, who does not discount future consumption due to time 

preference (α = 1), consumes the same amount in all three periods of life, i.e. 

0 1 2= =i i ic c c . Otherwise (α < 1), she chooses 0 1 2> >i i ic c c . 

 

The assumption L H
t tπ π< , t = 1,2, implies that individual fairness (condition (6)) for 

each group can be fulfilled only with two separate contracts. If each is bought by the 

respective risk group, both produce zero profits. On the other hand, a contract (q1,q2) 

which is bought by both groups, is called a pooling contract. In order that a pooling 

contract produces zero profits, it must fulfill the condition (for shortness we use Ai 

instead of Ai(q1,q2)) 

 

(9) 1 1 2 1 2 1 1 2 1 2(1 ) (1 ) (1 ) 0L L L L H H H HA q q A q qγ π π π γ π π π− − − + − − = . 

 

Zero-profit contracts (whether separate or pooling) are of special interest, because under 

the assumption of perfect competition in the annuity market, only such contracts can 

persist. (9) can also be written as 

 

(9') ( ) ( )1 2 1 1 1 2 1 2 1 2 1 2 1 21 ( , ) ( , ) ( , ) 0L H L L H Hq q q q q q q qρ π ρ π π π ρ π π+ − + − + = , 

 

where ρ is defined by ( ) ( )1 2 1 2 1 2( , ) ( , ) (1 ) ( , )H Lq q A q q A q qρ γ γ≡ − , that is the ratio of 

annuity demand of both groups. Note that ρ depends on (q1,q2), but for shortness, we 

usually do not indicate this dependency. Of course, our assumptions on the survival 

probabilities imply that for the low-risk individuals expected returns from a zero-profit 
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pooling contract are lower than required for individual fairness ( 1 1 2 1 21 0L L Lq qπ π π− − > ), 

while for the high-risk individuals they are higher ( 1 1 2 1 21 0H H Hq qπ π π− − < ). 

 

2.3 Varying the payoff-ratio of a pooling contract 

 

In the Lemmas 3 and 4 below, we consider a zero-profit pooling contract and 

investigate the effect of a marginal change in the payoffs on indirect utility and on 

annuity demand of an individual of type i = L,H. Clearly, if q1 (or q2) is increased alone, 

then both groups benefit and buy more annuities. However, such an increase would 

produce a loss for the annuity companies. Hence, the interesting case is when q1 is 

increased at the expense of q2 (or vice versa), such that the zero-profit condition (9) 

remains fulfilled. We characterize the first-round effect on indirect utility and on 

annuity demand of a marginal increase of q1, when the associated change of q2, such 

that (9') remains fulfilled, is calculated under the assumption of a constant ratio ρ of 

annuity demand of the two groups. Moreover we discuss the conditions necessary for 

the second-round effects (i.e. the influence of the payoffs on ρ) not to outweigh the 

first-round effects.  

 

In Lemma 3(i) we consider a contract with a ratio of the payoffs, which is optimal for an 

individual of type L according to condition (7) for an individually fair contract. We 

show that this ratio is no longer optimal in case of a zero-profit pooling contract: The 

low-risk individual benefits, if q1 is increased. An analogous result is found for a high-

risk individual (Lemma 3(ii)): She benefits if q1 is reduced.  
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Lemma 3: Consider two pooling contracts 1 2( , )q q′ ′ , 1 2( , )q q′′ ′′  where each, together with 

annuity demand of the two groups, fulfills the zero-profit condition (9').  

(i) If the payoff ratio 1 2q q′ ′  satisfies the condition (7) for an optimal individually fair 

contract for type L, a marginal increase of q1 (and thus a marginal decrease of q2) 

where (9') for fixed ρ remains fulfilled, makes an individual of type L better off.  

(ii) If the payoff ratio 1 2q q′′ ′′  satisfies the condition (7) for an optimal individually fair 

contract for type H, a marginal increase of q1 (and thus a marginal decrease of q2) 

where (9') for fixed ρ remains fulfilled, makes an individual of type H worse off. 

 

This first-round effect described in Lemma 3 is of particular interest, because it reveals 

the mechanism which is responsible for the negative result concerning the existence of a 

pooling contract in equilibrium (see Section 3.1). For an illustration, consider the case 

α = 1, which means – as we know from Lemma 2 - that both individuals prefer an equal 

distribution of the payoffs over the two periods of retirement, given their respective 

individually fair contract. However, in case of a zero-profit pooling contract, such an 

equal distribution of the payoffs is no longer optimal: Individuals with low life-

expectancy are better off, if q1, the payoff in the first period of retirement, is increased 

at the expense of q2, while the opposite holds for individuals with high life-expectancy. 

Thus, the annuity companies have an incentive to design separate contracts for the two 

groups. 

 

The intuitive reason why a low-risk individual finds a shift of consumption from period 

2 to period 1 attractive can easily be explained for α = 1 (and thus starting from q1 = q2) 
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as follows: If q1 is increased by one, q2 is decreased by 2 1/dq dq , which is determined 

by the requirement that the zero-profit condition (9') be preserved. Since with a pooling 

contract the associated decrease of q2 goes more to the expense of the high-risk 

individuals, it turns out from (9') that 2 1/dq dq  < 1/ 2
Lπ  (for constant ρ). As a result, for 

type-L individuals the expected loss in period 2, 2
Lπ 2 1/dq dq , is lower than one and 

they benefit from a shift towards increasing q1. (Note that due to q1 = q2, marginal utility 

is equal in both periods.) By the same reasoning and observing that, on the other hand, 

2 1 2/ 1/> Hdq dq π  holds, type-H individuals, who expect to live longer, are better off by 

a shift towards reducing q1. Similar considerations apply for the case of α < 1.  

 

Obviously also the second-round effect, that is the effect tqρ∂ ∂  of the change of the 

payoffs on (the ratio of) annuity demand of the two groups, matters, as can be seen from 

(A6) in the Appendix. The above consideration certainly maintains, if both tqρ∂ ∂ , 

t = 1,2, are sufficiently small, otherwise an appropriate relation between them must 

hold. (For instance, a sufficient, but not necessary condition is 

2 1 2 2 1
H Lq q qπ ρ ρ π ρ∂ ∂ ≥ ∂ ∂ ≥ ∂ ∂ , which ensures that the second-round effect goes into 

the same direction as the first-round effect.) 

 

Remark: Inspection of the proof of the foregoing Lemma shows that an increase of q1 at 

the expense of q2 improves welfare of low-risk individuals also if initially the ratio 

1 2/q q  is lower than that determined by the optimality condition (7) for individually fair 

contracts. It follows that their most preferred pooling contract exhibits a higher ratio 

(that is, in case of 1:α =  q1 > q2). By similar reasoning one finds for the high-risk 
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individuals that their most preferred pooling contract exhibits a lower payoff-ratio than 

that determined by (7) (which means q1 < q2 in case of 1α = ). 

 

A characterization of the effect of a marginal change of q1 (and q2) on annuity demand 

is given in the following Lemma, again starting from a zero-profit pooling contract with 

a payoff-ratio which satisfies (7) for the respective optimal individually fair contract. 

We restrict attention to the case where the discount factor α equals one or the per-period 

utility function exhibits a constant coefficient of relative risk aversion in the sense of 

Arrow-Pratt, defined as ( ) ( )i i i
t t tR c u c u c′′ ′≡ − . Then, as mentioned above, the optimal 

payoff-ratio, given an individually fair contract, is the same for both risk-types (and 

equal to 1, if 1α = ). 

 

Lemma 4: Assume that α = 1 or that R is constant. Consider a pooling contract 1 2( , )q q′ ′  

which, together with annuity demand of the two groups, fulfills the zero-profit condition 

(9') and whose payoff ratio 1 2q q′ ′ is determined by the condition (7) for an optimal 

individually fair contract for both types i = L,H. Then the effect of a marginal increase 

of q1 on the annuity demand of each individual i = L,H, where (9') for fixed ρ remains 

fulfilled, depends on the relative risk aversion in the following way: 

 

 Iff R <>
_  1, then 

1

HdA
dq

<
>
_  0 and 

1

LdA
dq <

>_  0.   

 

This result follows from the fact that, per definition, the effect of an increase of q1 on 

q1u'(q1Ai), i.e. on the marginal utility of Ai in period 1, can be written as (1 – R), and the 
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same applies to period 2. Hence, whether an increase of q1 at the expense of q2 increases 

or decreases expected marginal utility of Ai (in both retirement periods together) 

depends on 2 2 1(1 / )i dq dqπ+ (1 − R), where, as argued above, 2 2 1/i dq dqπ  describes the 

expected loss in period 2, if q1 is increased and the zero-profit condition is preserved. 

(Note that, by assumption, either q1 = q2 which means that R is equal in both periods, or 

R is constant at all.) We know from above that 2 2 11 /i dq dqπ+  is positive for i = L and 

negative for i = H, given a fixed ratio ρ of annuity demand of both groups. Thus we find 

that, in case of R < 1, for type-L individuals the expected marginal utility of AL in the 

two periods of retirement increases, if q1 is increased at the expense of q2. On the other 

hand, the decision on annuity demand is made by balancing the (negative) marginal 

utility of AL in the working period against the expected (positive) marginal utility in 

retirement. It is intuitively clear that demand increases, if the latter increases (the former 

is unaffected by a change of q1 and q2). Moreover, in case of R > 1, the effect obviously 

goes towards a decrease of AL, and similar consideration hold for type-H individuals.  

 

3   Equilibria 

 

Introducing two instead of one retirement period in the model allows annuity companies 

to offer contracts which differ in the division of the payoffs over time. In this section it 

is shown that this implies the possibility of a separating equilibrium, which means that 

annuity companies separate individuals according to their survival probabilities. To 

obtain this result we make use of the well-known concept of a Nash-Cournot 

equilibrium, which was studied by ROTHSCHILD AND STIGLITZ [1976] in the context of 

insurance markets. Our result is in contrast to studies considering one period of 
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retirement only, which find that under price competition there will be a pooling 

equilibrium. In Subsection 3.3 we extend the analysis by introducing the concept of the 

WILSON [1977] equilibrium, where it is assumed that firms anticipate reactions of the 

other firms to new contract offers, viz. that they will withdraw unprofitable existing 

contracts. First we derive all results concerning the existence and characterization of 

equilibria in the model considered in Section 2, where individuals provide for retirement 

by buying annuities only, then we introduce, in Section 3.4, the possibility of saving in 

riskless bonds. 

 

3.1 The non-existence of a pooling equilibrium 

 

We call a contract (q1,q2) a pooling equilibrium, if together with Ai(q1,q2), i = L,H, the 

zero-profit condition (9) is fulfilled and if no other contract exists, which is preferred to 

(q1,q2) by at least one group i ∈ {L,H} and which allows a nonnegative profit. Our main 

result is that in general no pooling equilibrium exists. As a preparation we show:  

 

Lemma 5: Let (q1,q2) be a pooling contract which together with Ai(q1,q2), i = L,H, 

fulfills the zero-profit condition (9). Any contract ( 1 1 2 2,q q q qδ δ+ + ), which is close 

enough to (q1,q2) and which is chosen only by group L (i.e. AH = 0) allows a 

nonnegative profit. 

 

This result follows from the observation in Section 2.2 that a zero-profit pooling 

contract offers less expected returns to low-risk individuals than required for individual 
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fairness. This in turn implies positive profits, if only the low-risk individuals buy this 

contract or one close to it.  

 

We now introduce a further assumption on Ui, in addition to strict concavity of the 

instantaneous utility function u. Let indirect utility Ui(q1,q2) for any contract (q1,q2) be 

defined in the usual way as utility attained with annuity demand Ai(q1,q2). We assume 

that indifference curves in the (q1,q2)-space satisfy the single-crossing condition 

 

(10) 1 1

2 2

L H

L H

U q U q
U q U q
∂ ∂ ∂ ∂

− < −
∂ ∂ ∂ ∂

  for all (q1,q2).   

 

This condition, which is familiar from other models with asymmetric information, 

requires that the slope of an indifference curve of a low-risk individual is always steeper 

than that of a high-risk individual. Hence, indifference curves of the two groups can 

cross only once. Using the Envelope Theorem, (10) reduces to 

u'(q1AL)/(α 2
Lπ u'(q2AL)) > u'(q1AH)/(α 2

Hπ u'(q2AH)), and one observes that, as 2 2
L Hπ π< , 

the condition is certainly fulfilled for any utility function which exhibits a constant 

coefficient of relative risk aversion, hence, in particular, for logarithmic utility. Single-

crossing is needed for a concise formulation of the following Proposition 1 only; in the 

remark afterwards it will be argued that in general the Proposition holds without this 

assumption.  

 

Proposition 1: No pooling equilibrium exists, given the single-crossing condition (10). 
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This result can be illustrated in a diagram where the payoffs q1 and q2 are drawn on the 

axis (see Figure 1). The dashed line ZP denotes the zero-profit condition (9) for a 

pooling contract, with slope 2 1dq dq , as determined by (A6) in the Appendix. Consider 

any contract (q1,q2) fulfilling (9), i.e. any point on ZP. Due to the single-crossing 

condition the slope of the indifference curve UL corresponding to the low-risk group is 

steeper than that of UH, the indifference curve of the high-risk group. Therefore one can 

find a contract (q1+ 1 2 2,q q qδ δ+ ), close to (q1,q2), which is preferred by the low-risk 

individuals only - and is, therefore, profitable for the annuity companies, as Lemma 5 

tells us. Hence (q1,q2) does not represent a pooling equilibrium.  

 

Figure 1  

The non-existence of a pooling equilibrium 
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Remark: By means of Figure 1 the significance of the single-crossing condition can be 

discussed. One observes immediately that the result of Proposition 1 certainly holds as 
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long as the slopes of UL and UH differ in (q1,q2)-space, independently of which one is 

steeper. Even if UL and UH have the same slope, the result holds, given that the slope of 

ZP is different. In this case one can find another pooling contract ( 1 1 2 2,q q q qδ δ+ + ) 

close to (q1,q2) which is preferred by both groups and produces non-negative profits. 

Only if there exists a point on ZP in which the slopes of ZP, UL and UH are identical, 

this represents a pooling equilibrium. Clearly, this case can occur for very specific 

parameter constellations only, a small perturbation of γ or of i
tπ  would destroy the 

equilibrium. From these considerations we can conclude that in general Proposition 1 

holds without assuming the single-crossing condition. 

 

3.2 The possibility of a separating equilibrium 

 

We call a set of two contracts ( 1 2,L Lq q ), ( 1 2,H Hq q ) a separating equilibrium, if each 

fulfills the respective zero-profit condition (6), if group L does not prefer ( 1 2,H Hq q ) to 

( 1 2,L Lq q ) and vice versa, i.e. if  

 

(11) 1 2 1 2( , ) ( , )H H H H L LU q q U q q≥ ,  

(12) 1 2 1 2( , ) ( , )L L L L H HU q q U q q≥ ,  

 

and if no other contract exists, which is preferred to ( 1 2,i iq q ) by at least one group 

i ∈ {L,H} and which allows a nonnegative profit. 
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As it is usual in this type of asymmetric-information models, we assume that if an 

individual is indifferent between the two contracts ( 1 2,L Lq q ) and ( 1 2,H Hq q ), she chooses 

indeed the particular contract which is designed for her. Moreover, each individual is 

restricted to buy only one type of contract, i.e. no mix of ( 1 2,L Lq q ) and ( 1 2,H Hq q ).6 

However, individuals may purchase as many annuity contracts of the chosen type as 

they want. 

 

We show that with these assumptions a separating equilibrium may, but need not exist, 

by referring to the logarithmic utility function. For simplicity we assume that the 

discount factor α equals one, then lifetime utility (4') for an individual i = L,H reads  

 

(13) 0 1 1 1 2 2ln( ) ln( ) ln( )= + +i i i i i i iU c c cπ π π .  

 

(13) has two convenient properties: (i) As mentioned above, the single-crossing 

condition (10) is fulfilled, since at any (q1,q2) the slope of the indifference curve, which 

is 2 2 1/( )iq qπ− , is flatter for a type-H individual than for a type-L individual. (ii) Annuity 

demand of any individual i = L,H does not depend on the payoffs, since the coefficient 

of relative risk aversion R is equal to one (see Lemma 4 and (A24) in Appendix A.3). 

These properties help to keep the analytical and graphical analysis simple.  

 

                                                 
6  This assumption is also implicit in TOWNLEY AND BOADWAY'S [1988] analysis of the annuity 

market, and it is similar in spirit but, in the context of life annuities, less demanding than that applied by 
ROTHSCHILD AND STIGLITZ [1976] and by ECKSTEIN, EICHENBAUM AND PELED [1985]. They model price 
and quantity competition, which requires that individuals are restricted to buy only one insurance contract 
(otherwise all individuals would buy the contract where the price per unit of insurance is lowest).  
In reality, excluding individuals from buying a mix of contract types requires a system of information 
exchange among insurance companies.  
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Let the two contracts ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) be defined as follows:  

(i) ( 1ˆ
Hq , 2ˆHq ) is the most preferred individually fair contract for group H, therefore 

1ˆ
Hq  = 2ˆHq  by Lemma 2, as α = 1 is assumed.  

(ii) ( 1
Lq , 2

Lq ) is implicitly defined by the zero-profit condition (6) for group L, by the 

property that high-risk individuals are indifferent between ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) 

and by 1
Lq > 2

Lq .  

 

The way how ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) are defined is illustrated in Figure 2. The straight 

lines ZPi, i = H,L, represent the zero-profit conditions for group i = L,H with respective 

slope 21/ iπ− . Note for (ii) that with logarithmic utility the indifference curves in (q1,q2)-

space are strictly convex with slope 2 2 1/( )iq qπ− , as mentioned above. Therefore the 

indifference curve ˆ HU  going through ( 1ˆ
Hq , 2ˆHq ) has exactly two points of intersections 

with the zero-profit condition ZPL for group L. 1
Lq > 2

Lq  uniquely defines the one below 

the 45°-line. 

 

Obviously, the definition of ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) implies that each produces zero-

profits, if chosen only by the respective risk-group i = L,H, and this is ensured for group 

H by the condition UH( 1ˆ
Hq , 2ˆHq ) = UH( 1

Lq , 2
Lq ), which means that the self-selection 

constraint (11) for this risk-group is fulfilled with equality. Moreover, it turns out that 

the self-selection (12) constraint for group L holds as well: It is evident from Figure 2 
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that low-risk individuals are better off with their separate contract ( 1
Lq , 2

Lq ) than with 

( 1ˆ
Hq , 2ˆHq ). This gives us an intuition for the next Lemma. 

 

Figure 2  

The possibility of a separating equilibrium ( 1ˆ
Hq , 2ˆHq ), ( 1

Lq , 2
Lq ) 
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Lemma 6: ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) fulfill the self-selection constraints (11) and (12).  

 

As a consequence, the contract set ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) is an eligible candidate for a 

separating equilibrium. Moreover, the next Proposition reveals that this contract set is 

indeed the only candidate for a separating equilibrium.  
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Proposition 2: If a separating equilibrium exists, it consists of the contracts ( 1ˆ
Hq , 2ˆHq ) 

and ( 1
Lq , 2

Lq ).  

 

As an intuition for this result, note first that ( 1ˆ
Hq , 2ˆHq ), the contract which, among all 

individually fair contracts (i.e. those on ZPH), is most preferred by type-H individuals, 

must be part of the equilibrium: Any other contract on ZPH is dominated by ( 1ˆ
Hq , 2ˆHq ), 

and firms need not care whether type-L individuals might choose that contract, because 

this would only increase the profit. However, when offering a specific contract to group 

L, firms have to care that this contract is not chosen by the high-risk individuals, 

because then they would make a loss. This implies that the self-selection constraint (11) 

is essential: Among all contracts on ZPL, only the one which provides maximum utility 

for group L, subject to the self-selection constraint (11), can be part of a separating 

equilibrium; this is ( 1
Lq , 2

Lq ). Note, in particular, that ( 1ˆ
Lq , 2ˆLq ), i.e. the contract on ZPL, 

which is most preferred by the L-type individuals, cannot be part of the equilibrium, 

because it would be preferred by type-H individuals to any contract on ZPH.  

 

The properties of the separating equilibrium correspond to familiar findings for other 

models with asymmetric information: Individuals in the "best" group (in our case: the 

long-living individuals) can buy their "first-best" contract, while individuals in the other 

group can only buy a "distorted" contract, in order to keep the former away from buying 

the contract designed for the latter, i.e. to avoid pooling. In the present framework this 

means that the payout in the first retirement period is increased at the expense of the 

payout in the second retirement period, up to a ratio at which the long-living individuals 
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switch to purchase their separate contract. Indeed, with ( 1
Lq , 2

Lq ) the ratio 1
Lq / 2

Lq  is 

sufficiently high that they are not better off than with their most preferred separate 

contract ( 1ˆ
Hq , 2ˆHq ), though the latter offers a lower overall return.  

 

It remains to show whether ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) indeed represent a separating 

equilibrium, that is whether any other contract can be offered, which is preferred by at 

least one group and allows a non-negative profit. One notes first that the arguments 

which proved that no other pair of contracts constitutes a separating equilibrium also 

imply that no other separate contracts can be offered which are more favourable for the 

respective risk-types and produce nonnegative profits. However, ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) 

do not constitute an equilibrium either, if there exists a pooling contract that allows a 

non-negative profit and is preferred by both groups i = L,H.  

 

This argument is demonstrated graphically by means of Figure 2. Consider some 

pooling contract that lies above the indifference curves ˆ HU  and LU , but on or below 

the dashed line ZP, which indicates the zero-profit condition (9) for pooling-contracts. 

(Note that in case of logarithmic utility, ZP is indeed a straight line, since annuity 

demand Ai and thus ρ do not depend on (q1,q2)). Obviously, any such pooling contract, 

e.g. ( 1 2,q q ), dominates ( 1ˆ
Hq , 2ˆHq ), ( 1

Lq , 2
Lq ) and produces a non-negative profit. Hence, 

no separating equilibrium exists. However, the existence of such a pooling contract is 

less likely, the higher the share γ of type-H individuals, because for a higher γ the zero-

profit line ZP in Figure 2 simply shifts to the left. If it does not cross LU , no 

dominating pooling contract exists. This gives us an intuition for 
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Proposition 3: There exists a critical value γ* > 0 of the share of group H such that for 

any given i
tπ , t = 1,2, i = L,H, and any γ > γ* a separating equilibrium exists.  

 

We provide numerical examples for the existence and for the non-existence of a 

separating equilibrium in Appendix A.3. These calculations show, in addition, that 

whether or not a separating equilibrium exists, also depends on the difference between 

the survival probabilities 2
iπ  of both groups i = L,H in the second retirement period. The 

existence of a separating equilibrium is more likely, the larger this difference.  

 

Finally note that the qualitative results throughout this section would not change when 

we assume a discount factor α < 1: In this case, for logarithmic utility the slope of the 

indifference curves is 2 2 1/( )iq qαπ−  and the most preferred individually fair contract for 

both risk-groups is the one with 1 2
i iq qα=  (apply (7) for logarithmic utility). 

Consequently, ( 1ˆ
Hq , 2ˆHq ) and ( 1ˆ

Lq , 2ˆLq ) lie on a straight line through the origin with slope 

α < 1 instead of α = 1 (see Figure 2). One observes immediately that the arguments for 

the characterization and the existence of a separating equilibrium remain valid.  

 

Moreover, it should be mentioned that the basic arguments remain valid in case of a 

general per-period utility function, not just for a logarithmic one, as long as the single-

crossing condition holds. It is straightforward to see that the lines ZPL and ZPH, defined 

by the respective zero-profit conditions for the separate contract for each risk-group, are 

unaffected by the type of the utility function. Hence the characterization of the 
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separating equilibrium remains valid. The main difference is that with a general utility 

function the dashed curve ZP, defined by the zero-profit condition for pooling contracts, 

will no longer be a straight line, because annuity demand, and the demand ratio ρ in 

particular, depend on the payoff rates. The shape of ZP in turn has an influence on the 

existence of the equilibrium.  

 

3.3 The Wilson equilibrium 

 

In Subsections 3.1 and 3.2 we have analyzed the existence of Nash-Cournot equilibria. 

These are defined on the basic assumption that firms, when offering a new contract, take 

the other firms' contract offers as given. Unfortunately, as we have seen, parameter 

constellations are possible where no such equilibrium exists. Obviously, the question 

arises if something more can be said in that case. In the literature (WILSON [1977], 

RILEY [1979], HELLWIG [1987]) it is argued that such an unsatisfactory result is the 

consequence of an incomplete specification of the model (see also MAS-COLELL ET AL. 

[1995]). In particular, it is the missing consideration of reactions to new contract offers, 

which is held responsible for the non-existence of an equilibrium.  

 

Following this argument, an interesting approach was suggested by WILSON [1977]: Let 

a set of existing contracts be offered. A firm, considering a new contract offer, beliefs 

that existing contracts are not offered any more, if they become unprofitable due to the 

new contract offer. As a consequence, potential buyers of the existing contracts will turn 

to the new offer, which influences profitability of the latter. Accordingly, a Wilson 

pooling equilibrium (q1,q2) has to fulfill the property that no other contract exists which 
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is preferred by at least one group i = L,H and allows a nonnegative profit, given that 

(q1,q2) is withdrawn if it becomes unprofitable. The analogous qualification has to be 

added to the definition of the separating equilibrium in order to describe a Wilson 

separating equilibrium.  

 

One observes immediately that this qualification makes the definition less restrictive 

(new contract offers are less attractive). As a consequence, any Nash-Cournot 

equilibrium is also a Wilson equilibrium. Moreover, we have in case of logarithmic 

utility (13): 

 

Proposition 4: A Wilson equilibrium exists, even if the separating equilibrium does not 

exist. It is then a pooling equilibrium, denoted by ( 1 2,q q ), with the following 

properties: 

(i)  The zero-profit condition (9) is fulfilled. 

(ii)  ( 1 2,q q ) is the most preferred pooling contract for the type-L individuals. 

 

Intuitively, the arguments for the non-existence of a Nash-Cournot pooling equilibrium, 

as explored in Section 3.1, do not apply. The reason is that given ( 1 2,q q ), as defined in 

Proposition 4 (see also Figure 2), a "new" contract, which is preferred by the low-risk 

individuals only, turns out to be unprofitable and will not be offered according to 

Wilson's approach: It would be purchased also by the high-risk individuals due to the 

withdrawal of ( 1 2,q q ), which, if purchased only by the high-risk group, would cause 

negative profits.  
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Thus, we have found a potential answer to the question of what will be the outcome in 

case that parameters are such that no separating equilibrium according to the Nash-

Cournot assumption exists. (Note, as already mentioned, that the separating equilibrium, 

if it exists, is also the Wilson equilibrium.)7 Numerical examples for a Wilson pooling 

equilibrium are provided in Appendix A.3. The arguments given at the end of Section 

3.2 apply for this section as well: They indicate that the result concerning the Wilson 

equilibrium remains valid also for a general utility function (not just for logarithmic), as 

long as the single-crossing condition holds.  

 

3.4. Equilibria with saving in bonds 

 

In this section we introduce the possibility of holding one-period bonds and study the 

implications for the existence of an equilibrium. First we note that, under the 

assumption of competitive firms, the returns from annuities are necessarily greater than 

those from bonds, i.e. 1 2 1q q+ >  (where 1 is the return from bonds for a zero interest 

rate).8 Therefore an individual, who derives no utility from leaving a bequest, always 

decides to buy some annuities. However, if the ratio q1/q2 of annuity payoffs is 

inadequate, it is optimal for an individual to supplement annuities by bonds in order to 

smooth consumption appropriately over both retirement periods. If the relative payoff 

                                                 
7 HELLWIG [1987] discusses how these concepts of an equilibrium are related to the modeling to 

the sequence of moves in the underlying multi-stage game.  
8 The result, which goes back to YAARI [1965], holds equivalently for a positive interest rate, 

because this increases the payoffs q1,q2 as well: Like the individuals, insurance companies invest the 
proceeds (premiums) in bonds and earn interest, until the premiums are paid back to the annuitants.  
The general intuition, why annuities offer a higher return than bonds, is the following: In case that an 
individual provides for old-age consumption through bonds, she leaves unintended bequests if dying 
prematurely. In this case, the deceased’s wealth is distributed to the heirs. If, in contrast, the individual 
puts her wealth into life annuities and dies prematurely, this unconsumed wealth is distributed as annuity 
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q1/q2 is sufficiently low, it is optimal for the individual in the working period to 

substitute annuities partly by bonds to increase consumption in the first retirement 

period. On the other hand, for a sufficiently high relative payoff q1/q2, it is optimal for 

the individual to put money aside from the payoff q1Ai in the first retirement period for 

the second retirement period. For payoff ratios q1/q2 in between, the optimal strategy for 

an individual is to buy annuities only.9, 10  

 

Our analysis of possible equilibria proceeds along the same lines as before. Obviously, 

one can still draw indifference curves in the (q1,q2)-space, when holding bonds is 

included. It is straightforward to see that indifference curves are now flatter at points 

where holding bonds in period 0 actually occurs, because individuals have an additional 

instrument to adapt to a small decrease in q1, and thus need a smaller increase in q2 

(compared to a situation where bonds are excluded) in order to stay indifferent. By the 

same reasoning, the indifference curves are steeper at combinations of (q1,q2) where 

saving in bonds in period 1 occurs, compared to a situation where saving in bonds is 

excluded (because individuals need a smaller increase in q1 to compensate for a 

decrease in q2.) For intermediate ratios, where no bonds are held, indifference curves 

obviously are as in the model without bonds.  

                                                                                                                                            
payouts to the surviving annuitants. This result holds as long as an annuity company does not have the 
market power to collect all of the consumer surplus generated in the annuity market.  

9  As it is usual, we exclude that individuals can borrow on the capital market, due to the mortality 
risk. 

10  Formal arguments for these properties are provided in Appendix A.2. 
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Figure 3 

Indifference curves in the model with saving in bonds 
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The important observation, relevant for the existence of a (separating) equilibrium is 

that for large enough q1/q2-ratios, such that saving and buying bonds in the first 

retirement period occurs, indifference curves become straight lines with slope –1. This 

is proved in Appendix A.2, but can intuitively be explained by the observation that an 

individual's utility does not change, if q1 is increased by q∆  and q2 is decreased by the 

same q∆ , because she can fully compensate this change by buying the same amount Ai 

as before and by saving iqA∆  in period 1 and shifting this amount to the second 

retirement period: q1 and q2 are perfect substitutes. Since this applies to any individual, 

irrespective of her type, i.e. her survival probability, the indifference curves will 

coincide for sufficiently high payoff ratios. Thus, a situation prevails as shown in Figure 

3: Indifference curves coincide for large payoff ratios; the ratio at which type-H 

individuals start holding bonds is lower than the corresponding one for type-L 

individuals. This conforms with intuition: Long-living individuals will "sooner" be 
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prepared to provide for the second period of retirement by own saving out of first-

period annuity payouts.   

 

By similar arguments, we find that for sufficiently small q1/q2-ratios the indifference 

curves of both risk-types coincide (with slope 2 1(1 )q q− − ; see Appendix A.2) and that, 

if the q1/q2-ratio is increased, type-H individuals stop at a smaller ratio to supplement 

annuities by bonds in the working period than the type-L individuals (who have a 

smaller probability to survive to the second retirement period, hence for them the 

advantage of annuities over bonds, namely to offer payouts in the second period as well, 

is less important.).11  

 

How does holding bonds affect the existence and characterization of the equilibria? In 

the following it will be shown that the main results do not change. First, we argue that 

the negative result concerning the existence of a pooling equilibrium maintains: For any 

zero-profit pooling contract (q1,q2) with intermediate ratio q1/q2, such that one or both 

risk-groups invest solely in annuities, we assume, as before, that the single-crossing 

condition holds,12 therefore the arguments of Proposition 1 apply. For any zero-profit 

pooling contract (q1,q2), for which the indifference curves of both risk types coincide, 

i.e. for which both risk-groups hold bonds (either in period 0 or 1), unintended bequests 

are left by those who die prematurely. It is obvious that in this case one can find another 

                                                 
11  For small q1/q2-ratios, where individuals want to shift part of annuity payoffs from period 2 to 

period 1, the payoffs q2 and q1 are not one-to-one substitutes, because individuals cannot borrow on the 
capital market in period 1; thus shifting involves buying more bonds and less annuities in period 0. Still, 
indifference curves are straight lines, as is shown in Appendix A.2.  

12  This is fulfilled for any utility function which exhibits a constant coefficient of relative risk 
aversion. 
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pooling contract which makes both groups better off (by avoiding bequests) and allows 

non-negative profits. Consequently, no pooling equilibrium exists. 

 

Next we investigate the implications of holding bonds on the existence of a separating 

equilibrium. Again we find the result that a separating equilibrium may, but need not 

exist, by referring to logarithmic utility and assuming that the discount factor α equals 

one: We can replicate Figure 2 for the case that individuals are free to buy bonds (see 

Figure 4).  

 

Figure 4 

Equilibria in the model with saving in bond 
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Note that for logarithmic utility the indifference curves of group i are convex with slope 

2 1(1 )q q− −  for any 1 21/(1 )iq π≤ + , slope 2 2 1/( )iq qπ−  for any 2 1 2 21/(1 ) /i iq qπ π+ < <  

and slope –1 for any 1 2 2/ iq q π≥  (see Appendix A.2). The two contracts ( 1ˆ
Hq , 2ˆHq ) and 

( 1
Lq , 2

Lq ), which may represent a represent a separating equilibrium, are defined as in 

Section 3.2. At their most preferred individually fair contract ( 1ˆ
Hq , 2ˆHq ), it is never 

attractive for high-risk individuals to save in the first retirement period, as shown in 

Appendix A.2. But this may be the case for low-risk individuals, in case that ( 1
Lq , 2

Lq ) is 

offered to them: The ratio 1 2
L Lq q  may be large enough that buying bonds in the first 

period of retirement is optimal. Such a situation is drawn in Figure 4. In this case the 

arguments explored in Section 3.2 for the model without saving apply: It depends on the 

position of the zero-profit line for a pooling contract whether or not ( 1ˆ
Hq , 2ˆHq ) and 

( 1
Lq , 2

Lq ) constitute a separating equilibrium, because both may be dominated by 

( 1 2,q q ), as drawn in Figure 4. 

 

Note, however, that there can be situations where no contract ( 1
Lq , 2

Lq ) with 1
Lq > 2

Lq  

exists, which lies on the zero-profit line ZPL for group L and leaves the high-risk 

individuals indifferent to ( 1ˆ
Hq , 2ˆHq ). Then any individually fair contract for group L with 

1
Lq > 2

Lq  would make the high-risk individuals better off. Thus we have found a further 

reason for the non-existence of a separating equilibrium. Such a situation will prevail, if 

the zero-profit lines of group H and group L are sufficiently remote, which may be the 

case for a large difference in the survival probabilities of both groups.  
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Finally, it should be mentioned that the arguments for the existence of a Wilson 

equilibrium (given in Section 3.3) remain valid also in the model with holding bonds. 

Even if a separating equilibrium does not exist, the pooling contract ( 1 2,q q ), defined as 

in Proposition 4, constitutes a Wilson equilibrium. Again we give numerical examples 

for the existence of a separating equilibrium and for a Wilson pooling equilibrium in 

case of the non-existence of a separating equilibrium in the Appendix A.3.  

 

4   Concluding remarks 

 

Considering a life-cycle model with more than one period of retirement allows the 

formulation of an additional important aspect of the annuity market: It is an attractive 

strategy for companies to offer annuity contracts, for which the pension payoffs are not 

constant over the periods of retirement, since individuals with different life expectancies 

will put different weights on the payment they may or may not receive in the last period 

of life. In the present study we have analyzed the consequence of this possibility on the 

existence of equilibria in the private annuity market under price competition and 

asymmetric information. Our main finding was that in this framework a Nash-Cournot 

equilibrium may not exist; if one exists, it will be a separating equilibrium. On the other 

hand, even if a separating equilibrium does not exist, a Wilson pooling equilibrium 

exists.  

 

By assuming only one period of retirement, previous studies have neglected the fact that 

the time structure of the payoffs matters, which has led to the conclusion that under 

price competition and adverse selection a pooling equilibrium always exists. So, when 
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concentrating on the fact that in real life annuities provide periodic payouts over the 

time of retirement, one can conclude that the existence of a stable outcome is less likely 

than it has been supposed so far.  

 

An interesting question is whether the existence of the equilibrium is affected by the 

introduction of a public pension system. Obviously, this depends on the size of the 

obligatory contribution rates. If it is sufficiently small, nothing changes. To find out the 

effects of larger rates, we ran numerical simulations (reported in Appendix A.3), where 

a funded system with a fixed contribution for every individual and constant payoffs 

(over time) according to the average life-expectancy of the population was added into 

the model of this paper. It turned out that the introduction of a public pension system 

did not destroy the existence of the separating equilibrium. Further, for a certain range 

of parameter values, a separating equilibrium emerged, even if it did not without the 

public pension system. In this case the public pension system can give rise to a Pareto-

improvement. 

 

A consequence of our extended model is that it should change the view guiding 

empirical studies. Usually, they start from the premise that the annuity market should 

ideally offer a pooling contract for all risks, and study the adverse-selection 

phenomenon by comparing life-expectancy of annuity purchasers with the average life-

expectancy of the population. By looking at a specific annuity contract, the magnitude 

of adverse selection is measured by the difference between the expected rate of return 

for the general population and the expected rate of return for the subpopulation of 
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annuitants.13 Instead, our result suggests that a primary object of investigation should be 

the question of whether separating indeed occurs and to which extent. As already 

mentioned in the Introduction, there is empirical evidence for the UK that selection 

effects across different types of annuity contracts, characterized by different time paths 

of the payouts indeed exists (FINKELSTEIN AND POTERBA [2002, 2004]). 

 

Given the problem of asymmetric information, the selection of risks through an 

appropriate time-structure of the payoffs is only one alternative among various possible 

others. In principle, selection can occur across all the different types of annuity 

contracts that are offered. For instance, as discussed in the Introduction, the length of 

the period covered by term-insured contracts acts as a selection instrument (TOWNLEY 

AND BOADWAY [1988]), as do other parameters like a guaranteed minimum payoff 

period (to the advantage of a beneficiary) or the age at which the annuity is purchased 

(FINKELSTEIN AND POTERBA [2002]). Obviously, the best method to overcome the 

adverse-selection problem would be for an insurance company to collect more 

information related to life-expectancy of the customers, e.g. some characteristics of the 

socio-economic status (as is well-known, a better status corresponds with longer life 

expectancy) or even a health test. In fact, FINKELSTEIN AND POTERBA [2002] report that 

a minority of firms in the UK offer a discount for smokers or for people living in a 

region with high mortality, but by far the majority collects only information about 

gender and age. However, one might expect firms to change their behaviour and 

develop additional instruments in the future. 

 

                                                 
13  See, e.g., FRIEDMAN AND WARSHAWSKY [1988, 1990], WALLISER [2000], MITCHELL ET AL. 

[1999].  
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Private annuity insurance is becoming more important, because of the expected decline 

of the replacement ratio offered by the public pension system in many countries. Our 

contribution adds to the set of studies expressing doubts on the adequate functioning of 

the annuity market. Clarifying this issue further, appears to be a prominent task for 

future theoretical and empirical research.  

 

Appendix 

 

A.1. Proofs  

 

Proof of Lemma 1: We determine /i i
tA π∂ ∂ , t =1,2, by implicit differentiation of the 

first-order condition for annuity demand, / 0i iU A∂ ∂ = , with respect to i
tπ  as 

2 2( / ) ( / )i i i i i i
tU A U A Aπ− ∂ ∂ ∂ ∂ ∂ ∂ . Since the denominator is negative due to the second-

order condition of the maximization problem, and the numerator for t = 1,2, is (use (1) –

(3) and (4')) equal to  

 

(A1a) 2 2
1 1 1 2 2 2/ '( ) '( )i i i i i iU A q u q A q u q Aπ α π α∂ ∂ ∂ = + ,  

(A1b) 2 2
2 1 2 2/ '( )i i i i iU A q u q Aπ π α∂ ∂ ∂ = ,  

 

which are both positive, /i i
tA π∂ ∂ , t =1,2, are both positive too. Hence AH > AL.  Q.E.D. 

 

Proof of Lemma 2: We maximize lifetime utility (4’) with respect to 1
iq  and 2

iq , subject 

to (6). Using (2) and (3), the first-order conditions of this problem are 
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(A2) 1 1 1'( ) 0i i i iA u cπ α λπ+ = ,  

(A3) 2
1 2 2 1 2'( ) 0i i i i i iA u cπ π α λπ π+ = ,  

 

where λ is the Lagrange multiplier associated with the constraint (6). From (A2) and 

(A3), we find that maximization requires (7). From (7) one concludes that 1 2
i ic c> , if 

α < 1, and 1 2
i ic c= , if α = 1. This in turn implies, together with (2) and (3), that for any 

arbitrarily given Ai, 1 2
i iq q> , if α < 1, and 1 2

i iq q= , if α = 1.  Q.E.D. 

 

Proof of Lemma 3: Substituting (2) and (3) into (4’) we get (apply the Envelope 

Theorem) 

 

(A4) 2 2
1 1 1 2 2

1 1

'( ) '( )
i

i i i i i i idqU A u c A u c
q dq

π α π π α∂
= +

∂
.  

 

By use of (7), it follows that 

 

(A5) 2
1 1 2

1 1

'( ) 1
i

i i i i dqU A u c
q dq

π α π
⎛ ⎞∂

= +⎜ ⎟∂ ⎝ ⎠
.  

 

(A5) shows that the sign of 1
iU q∂ ∂  depends on the sign of 2 2 11 i dq dqπ+ . Implicit 

differentiation of the zero-profit condition (9') gives  
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(A6) 
1 1 2 1 2 1 1

2 1

1
1 1 2 1 2 1 2 1 2

2

(1 ) ( )

(1 ) ( )

H H H L H

H H H L L H H

q q
dq q
dq q q

q

ρπ π π π ρπ

ρπ π π π π ρπ π

∂
− − − +

∂
= −

∂
− − − +

∂

.  

 

Obviously, the assumption of a fixed ratio ρ of annuity demand implies 0tqρ∂ ∂ = , 

t = 1,2. Thus, for fixed ρ, 2 2 1
i dq dqπ  reduces to 2 1 1 1 2 1 2( ) ( )i L H L L H Hπ π ρπ π π ρπ π− + + , 

which is smaller than –1 for i = H, and greater than –1 for i = L. As a consequence, the 

RHS in (A5) is negative for i = H and positive for i = L, which proves the Lemma.   

  Q.E.D. 

 

Proof of Lemma 4: 1/idA dq  is determined by implicit differentiation of the first-order 

condition for annuity demand, / 0i iU A∂ ∂ = , with respect to q1 as 

 

(A7) 
2

1
2 2

1

/
/

∂ ∂ ∂
= −

∂ ∂

i ii

i i

U A qdA
dq U A

.  

 

Since the denominator of the RHS of (A7) is negative due to the second-order condition 

of the maximization problem, 1/idA dq  has the same sign as the numerator of the RHS 

of (A7).  

 

Substituting (1), (2) and (3) into (4') we obtain  

 

(A8) ( ) ( )
2

2 2
1 1 1 1 1 2 2 2 2

1 1

( ) ( ) ( ) ( )
i

i i i i i i i i i
i

dqU u c q A u c u c q A u c
A q dq

π α π π α∂ ′ ′′ ′ ′′= + + +
∂ ∂

.  
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If 1 2
i ic c=  (in case of α = 1) or if R is independent of i

tc , (A8) can be transformed to 

(note (7)) 

 

(A9) ( )
2

2
1 2 1

1 1

(1 ) '( ) 1
i

i i i
i

dqU u c R
A q dq

π α π∂
= + −

∂ ∂
.  

 

If R = 1, then (A9) and thus (A7) are zero for individuals of both types i = L,H. 

Otherwise we determine, as in the proof of Lemma 3, 2 1/dq dq  from the zero-profit 

condition (9') and find that for a fixed ratio ρ of annuity demand 2 2 1 1H dq dqπ < −  and 

2 2 1 1L dq dqπ > − . Thus, in case that R < 1, (A9) is negative for i = H and positive for 

i = L. The opposite is true for R > 1.  Q.E.D. 

 

Proof of Lemma 5: As 1 1 2 1 21 0L L Lq qπ π π− − >  for any pooling contract (q1,q2), which 

fulfills the zero-profit condition (9), the profit for an insurance company is positive, 

given that only this group chooses the contract (q1,q2). By continuity, this holds for any 

contract ( 1 1 2 2,q q q qδ δ+ + ) in the neighbourhood of (q1,q2).  Q.E.D. 

 

Proof of Proposition 1: Let some contract (q1,q2) with associated Ai(q1,q2), i = L,H, be 

given, such that the zero-profit condition (9) is fulfilled. We find the effect iUδ  of a 

marginal change 1 2( , )q qδ δ  of the contract on group i's utility as 

 

(A10) iUδ = 1 2
1 2

i iU Uq q
q q

δ δ∂ ∂
+

∂ ∂
, i = L,H,  
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The single-crossing condition implies that the RHS's of the two equations (A10) are 

linearly independent (i.e. there is no k such that LU∂ / 1 1/Hq k U q∂ = ∂ ∂  and 

LU∂ / 2 2/Hq k U q∂ = ∂ ∂ ), hence the two equations (A10) have a unique solution. 

Choosing some 0LUδ > , 0HUδ <  and solving (A10) for 1 2,q qδ δ , one finds a new 

contract ( 1 1 2 2,q q q qδ δ+ + ), which is preferred by group L, but not by group H. By 

Lemma 5, it also allows a non-negative profit. (As LUδ  and HUδ  can be chosen 

arbitrarily close to zero, 1qδ  and 2qδ  can be taken as arbitrarily close to zero as well.) 

Hence (q1,q2) is not a pooling equilibrium.  Q.E.D. 

 

Proof of Lemma 6: (11) is fulfilled by definition. That (12) is satisfied follows from 

1
Lq > 2

Lq , from the fact that ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ) are on the same indifference curve 

for a type-H individual and that the slope of the indifference curve through ( 1
Lq , 2

Lq ) is 

steeper for a type-L individual than for a type-H individual (see Figure 2).  Q.E.D. 

 

Proof of Proposition 2: Note first that, if ( 1ˆ
Hq , 2ˆHq ) is part of the separating equilibrium, 

then ( 1
Lq , 2

Lq ) must be the other part, because it provides maximum utility for group L, 

subject to the self-selection constraint (11) for group H and to the zero-profit condition 

for (6) for i = L. With ( 1
Lq , 2

Lq ) and ( 1ˆ
Hq , 2ˆHq ), (11) is fulfilled with equality. (Note from 

Figure 2 that the second point of intersection of ˆ HU  and ZPL, as mentioned in the text, 

as well as all contracts on ZPL above this point of intersection, and also those below 

( 1
Lq , 2

Lq ), fulfill (11). However, they all provide lower utility for group L; remember the 
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single-crossing property.) Furthermore, one observes that, for the same reason, if any 

other contract ( 1′
Hq , 2′

Hq ) on ZPH is part of a separating equilibrium, then the other part, 

the separate contract for group L, must be that pair of payoffs ( 1′
Lq , 2′

Lq ), which are 

found as the point of intersection of ZPL and the indifference curve of group H through 

( 1′
Hq , 2′

Hq ), where 1′
Lq > 2′

Lq . Obviously, group H prefers ( 1ˆ
Hq , 2ˆHq ) to any other 

( 1′
Hq , 2′

Hq ) and group L prefers ( 1
Lq , 2

Lq ) to any other ( 1′
Lq , 2′

Lq ). Q.E.D.  

 

Proof of Proposition 3: As mentioned in the text, a variation of the group share γ only 

influences the zero-profit condition (9) for a pooling contract, while leaving the zero-

profit condition (6) for separating contracts (and the indifference curves, of course) 

unchanged. Comparison of (9) and (6) shows that the zero-profit condition (9) for a 

pooling contract converges to the zero-profit condition (6) for group H, if γ approaches 

one. We have already seen that group L prefers ( 1
Lq , 2

Lq ) to any contract on ZPH (note 

the single-crossing condition). By continuity, group L prefers ( 1
Lq , 2

Lq ) to any contract 

fulfilling the zero-profit condition for a pooling contract, as long as γ is sufficiently 

close to 1. In that case, no pooling contract can make a non-negative profit, because it is 

chosen only by the high-risk individuals. We define γ* as the infinum of all γ, for which 

group L prefers ( 1
Lq , 2

Lq ) to any pooling contract. On the other hand, analogous 

considerations show that for sufficiently small γ, a profitable pooling contract, which 

dominates ( 1ˆ
Hq , 2ˆHq ) and ( 1

Lq , 2
Lq ), always exists.  Q.E.D.  
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Proof of Proposition 4: The proof is derived from geometric arguments (see Figure 2). 

Consider the pooling contract ( 1 2,q q ). We show that no firm has an incentive to deviate 

from ( 1 2,q q ): In case that a contract ( 1 1q qδ+ , 2 2q qδ+ ) is offered which is preferred by 

the low-risk, but not by the high-risk individuals (compare Figure 1), the original 

contract ( 1 2,q q ), being then purchased by the high-risk individuals only, makes 

negative profits and will be withdrawn from the market. Consequently, the type-H 

individuals will also accept the contract ( 1 1q qδ+ , 2 2q qδ+ ), which therefore will turn 

out to be unprofitable (note that ( 1 1q qδ+ , 2 2q qδ+ ), if preferred by the low-risk 

individuals, must lie to the right of the zero-profit line ZP for pooling contracts) and 

will not be offered. As a result, ( 1 2,q q ) is a Wilson pooling equilibrium.  Q.E.D. 

 

A.2 The decision problem in the model with saving in bonds 

In case that an individual i is free to buy annuities and one-period bonds, the budget 

equations in the three periods t = 0,1,2, read (Remember that a zero-interest rate is 

assumed)  

 

(A11) 0
i i ic w A K= − − ,  

(A12) 1 1
i i i ic q A K S= + − ,  

(A13) 2 2
i i ic q A S= + ,  

 

where Ki denotes savings in bonds in the working period and Si savings in bonds in the 

first retirement period. As mentioned in the main text, we exclude borrowing, hence 

, 0i iK S ≥ . Substituting (A11) - (A13) into (4') and differentiating with respect to Ai, Ki, 
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and Si, we obtain the Kuhn-Tucker conditions of this maximization problem as (5) in the 

main text and additionally   

 

(A14) 0iA =  and 2
1 1 1 1 2 2 2( ) ( ) ( ) 0′ ′ ′− + + ≤i i i i i i

ou c q u c q u cπ α π π α  

(A15) 0iK >  and 0 1 1( ) ( ) 0′ ′− + =i i iu c u cπ α ,  

(A16) 0iK =  and 0 1 1( ) ( ) 0′ ′− + ≤i i iu c u cπ α .  

(A17) 0iS >  and 2
1 1 1 2 2( ) ( ) 0′ ′− + =i i i i iu c u cπ α π π α ,  

(A18) 0iS =  and 2
1 1 1 2 2( ) ( ) 0′ ′− + ≤i i i i iu c u cπ α π π α .  

 

Note first that the conditions (5), (A15) and (A17) for the interior optima do not hold 

simultaneously, given that 1 2 1q q+ >  (as argued in Section 3.4): Substituting (A15) and 

(A17) into (5) yields 1 2 1 1( 1 ) ( ) 0′− + + =i iq q u cπ α , which is only fulfilled if 1 2 1q q+ = . 

(In this case, the individuals would be indifferent between savings in bonds and 

annuities to provide for retirement, because annuities and bonds yield the same returns.) 

Moreover, the case that 0iA =  can be excluded: Then 0iK >  and 0iS >  must hold to 

ensure positive consumption levels in both retirement periods. Using (A14), (A15) and 

(A17) yields 1 2 1 1( 1 ) '( ) 0i iq q u cπ α− + + ≤ , which is fulfilled only if 1 2 1q q+ < .  

 

Hence, the cases Ai > 0 and either Ki >  0 or Si > 0 (but not both) or Ki = Si = 0 remain, 

where obviously Ki > 0 occurs for sufficiently small payoff ratios 1 2q q  and Si > 0 

occurs for sufficiently large payoff ratios 1 2q q . One can show by (a bit tedious) 

implicit differentiation of (5) and (A15) that for small 1 2q q , such that Ki > 0, Ki 
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decreases along an indifference curve in the (q1,q2)-space with increasing 1 2q q -ratio, 

while implicit differentiation of (5) and (A17) shows that for large 1 2q q , such that 

Si > 0, Si increases along an indifference curve. Hence, as not both are positive 

simultaneously, Ki and Si are zero for intermediate values of 1 2q q . Specifically we 

show that it is optimal for an individual to choose Ai > 0, Ki = 0 and Si = 0 at her most 

preferred individually fair contract (q1,q2) determined by (7): Substituting (7) into the 

condition (A18) for the boundary optimum Si = 0 yields 

 

(A19) 2 1 1( 1 ) ( ) 0′− + ≤i i iu q Aπ π α .  

 

which is strictly fulfilled, as 2 1iπ < . By use of condition (5) for the interior optimum 

Ai > 0 and of the condition (A16) for the boundary optimum Ki = 0, one obtains 

 

(A20) 2
1 1 1 1 2 2 2( 1 ) ( ) ( ) 0′ ′− + + ≥i i i i iq u q A q u q Aπ α π π α .  

 

Substituting (7) and the zero-profit condition (6) into (A20) gives 

 

(A21) 1 1( 1 ) '( ) 0− + ≥i iu q Aπ α ,  

 

which is strictly fulfilled, as 1 1<iπ .  

 



 48

Remember from Section 3.1 that the slope ( ) ( )1 2/ /i iU q U q−∂ ∂ ∂ ∂  of an indifference 

curve in the (q1,q2)-space is just given by ( )1 2 2'( ) '( )i i iu c u cπ α− . Rearrangement of 

(A17) to 

 

(A22) 1

2 2

'( ) 1
'( )

i i

i i i

u q A S
u q A Sπ α

−
=

+
   

 

shows that the slope is equal to –1 for those 1 2q q -ratios, at which Si > 0. Equivalently, 

it follows from (use (5) together with (A15))  

 

(A23) 1 2

2 2 1

'( )
'( ) 1

i i

i i

u q A K q
u q A qπ α

+
=

−
   

 

that the slope of the indifference curve is equal to 2 1(1 )q q− −  for those 1 2q q -ratios, 

at which Ki > 0.  

 

Moreover, if we start from some pair (0, 0
2q ) – where only the second-period payoff is 

positive, and with associated optimal values 0 0iK >  and 0 0iA > , then unchanged 

consumption in all three periods, given an increase in q1, requires that new values 1
iK , 

1
iA  and 2q  fulfil 0 0 1 1

i i i iK A K A+ = + , 0 1 1 1
i i iK K q A= + , 0

2 0 2 1
i iq A q A= . Solving this system 

gives 0
2 2 1(1 )q q q= − , that is, indifference curves are straight lines with slope 

0
2 2 1(1 )q q q− = − − , as long as Ki is positive.  
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Finally, for logarithmic utility (see (13)) we obtain, by use of (A18), that Si = 0 if 

1 2 2( )iq q π α≤  and, by use of (A20), that Ki = 0 if 1 21 (1 )iq π α≥ + . From this and the 

considerations above it follows that for logarithmic utility the indifference curves of 

group i are convex with slope 2 1(1 )q q− −  for any 1 21/(1 )iq π α< + , slope 2 2 1/( )iq qπ−  

for any 2 1 2 21/(1 ) /( )i iq qπ α π α+ ≤ ≤  and slope –1 for any 1 2 2/( )iq q π α> . 

 

A.3 Numerical illustration of the (non-)existence of separating equilibria.  

 

(a) Model without Saving in Bonds: For logarithmic utility (see (13)), annuity demand is 

computed from (5), (1) – (3) as  

 

(A24) 1 2

1 2

(1 )
1 (1 )

i i
i

i iA wπ π
π π

+
=

+ +
,  

 

which is independent from the rates of return (q1,q2), as mentioned in the text. 

 

The separate contracts ( 1ˆ
Hq , 2ˆHq ) and 1 2( , )L Lq q  are computed as follows: Solving the 

zero- profit condition (6) for i = H and setting 1
Hq = 2

Hq  yields 

 

(A25) 1
1 2

1ˆ
(1 )

H
H Hq

π π
=

+
.  
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The contract 1 2( , )L Lq q  for type-L individual, is determined by the self-selection 

constraint (11), and the zero-profit-condition (6) for i = L. Assuming equality, one 

derives from (11) (making use of (A24), (A25), (2), (3) and (13)) 

 

(A26) ( ) ( ) ( )2 2 2 2 2(1 ) / 1/ (1 ) /

1 1 2 1
1

1 ˆ 0
+ +

− + =
H H H H H

L L L H
Lq q q

π π π π π
π

π
.  

 

(A26) can be solved to compute 1
Lq , then 2

Lq  follows from (6).  

 

In order to proof that the contracts ( 1ˆ
Hq , 2ˆHq ) and 1 2( , )L Lq q  indeed constitute an 

equilibrium, we have to show that there is no pooling contract which fulfills the zero-

profit condition (9') and is preferred by individuals of both types i = L,H. To do so, we 

concentrate on the pooling contract ( 1q , 2q ) which together with (A24) fulfils the zero-

profit condition (9') and which is preferred most by a type-L individual. This is the 

accurate procedure, since an individual of type H is certainly better off with the pooling 

contract ( 1q , 2q ) than with her own contract ( 1ˆ
Hq , 2ˆHq ), given a type-L individual prefers 

( 1q , 2q ) to 1 2( , )L Lq q . Maximization of (13) for i = L subject to (9') gives  

 

(A27) 1
2 1 1

1
(1 )( )L L Hq ρ

π π ρπ
+

=
+ +

,  2
2

2 1 2 1 2

(1 )
(1 )( )

L

L L L H Hq π ρ
π π π ρπ π

+
=

+ +
  

 

where ( ) /((1 ) )H LA Aρ γ γ= − . Thus, whenever the low-risk individuals are worse off at 

( 1q , 2q ), the contracts ( 1̂
Hq , 2ˆHq ) and 1 2( , )L Lq q  constitute an equilibrium. Otherwise they 
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do not and the contract ( 1q , 2q ) is the pooling equilibrium according to the definition of 

Wilson. 

 

In Table 1 we provide numerical examples, for which annuity demand Ai, the contracts 

( 1̂
Hq , 2ˆHq ), 1 2( , )L Lq q  and ( 1q , 2q ), as well as expected utility Ui of individuals of both 

types i = H,L, at these contracts are calculated explicitly. We choose three different 

scenarios, which differ in the share γ of the high risk individuals (scenarios 1 and 2) and 

in the survival probability 2
Lπ  of the type-L individuals in period 2 (scenarios 1 and 3). 

In scenario 1 the contracts ( 1̂
Hq , 2ˆHq ) and 1 2( , )L Lq q  constitute an equilibrium. Taking this 

as a reference point, we show that a lower share γ of type-H individuals (scenario 2) and 

a higher survival probability 2
Lπ  of the type-L individuals to period 2 (scenario 3) entail 

that there is no separating equilibrium in a competitive annuity market. In both of these 

scenarios ( 1q , 2q ) constitutes the Wilson pooling equilibrium. 

 

(b) Model with Saving in Bonds: For logarithmic utility (see (13)), we calculate demand 

for annuities and bonds in the first retirement period by use of the first-order conditions 

(5), (A17), (A18) and (A16), together with the budget constraints (A11) – (A13). For 

1 21 (1 )iq π≥ +  (that is, Ki = 0; see Appendix A.2) we obtain again (A24) for annuity 

demand and  

 

(A28) 

1 2 1 2 2
1

1 2 2

2
1

2

( ) for
1 (1 )

0 for

i i

i i i
i

i

q q qw q
S

qq

π π
π π π

π

⎧ −
>⎪ + +⎪= ⎨

⎪ ≤
⎪⎩
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for savings in bonds in the first retirement period.  

 

The separate contract ( 1̂
Hq , 2ˆHq ) for type H is given by (A25). The separate contract 

1 2( , )L Lq q  for type L is determined by the self-selection constraint (11), and the zero-

profit-condition (6) for i = L. Assuming equality, one derives from (11) (making use of 

(A24), (A25), (A28), (13), (A17) and (A18)) 

 

(A29) SH > 0 and 
2 2

2 2

/(1 )
1 2 1 2

1 /(1 )
1 2 1 2

( )
(1 ) ( )

H H

H H

H H L L
L

L L H H
q

π π

π π

π π π π
π π π π

+

+

−
=

−
, 

2 2

2 2

/(1 )
1 1 2

2 /(1 )
1 2 1 2

( )
(1 ) ( )

H H

H H

L H H
L

L L H H
q

π π

π π

π π π
π π π π

+

+

−
=

−
  

 SH = 0 and (A26). 

 

Again we determine the pooling contract ( 1q , 2q ) which fulfills the zero-profit 

condition (9') and is preferred most by a type-L individual. At ( 1q , 2q ) the individual of 

type L does not buy bonds in period 0 nor in period 1, as can be seen as follows: For any 

1 2 21 (1 ) 1 (1 )L Hq π π≥ + > + , the slope (A6) of the zero-profit condition is 

1 1 1 2 1 2( ) ( ) 1L H L L H Hπ ρπ π π ρπ π− + + < − , as 0tqρ∂ ∂ =  by use of (A24). However, at 

points, where SL > 0, the indifference curves of a type-L individual have slope −1, and 

are, thus, flatter. On the other hand, at 1 21 (1 )Lq π= +  with the corresponding q2 such 

that the zero-profit condition (9') is fulfilled, the slope of the indifference curve is 

2 2 1/( )Lq qπ− . It is steeper than the slope of the zero-profit condition 

1 1 1 2 1 2( ) ( )L H L L H Hπ ρπ π π ρπ π− + + , as follows immediately, if 1 21 (1 )Lq π= +  and the zero-

profit condition (9') are substituted into 2 2 1/( )Lq qπ− . Hence, the (convex) indifference 
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curves of a type-L individual can only be tangent to the zero-profit condition, where 

SL = 0 and where 1 21 (1 )Lq π> + , i.e. where KL = 0. As a consequence, ( 1q , 2q ) is given 

by (A27). 

 

In Table 1 numerical examples for equilibria in the model with old-age saving are 

given, where the same parameter constellations (Scenario 1 – 3) are chosen as for the 

model without saving. Besides the respective values of the contracts ( 1̂
Hq , 2ˆHq ), 1 2( , )L Lq q  

and ( 1q , 2q ), annuity demand Ai and indirect utility Ui, savings Si of both types at these 

contracts are included in the Table. As in the model without saving we find that in 

scenario 1 the contracts ( 1̂
Hq , 2ˆHq ) and 1 2( , )L Lq q  constitute an equilibrium, while in 

scenario 2 (with a lower share γ of type-H individuals) and scenario 3 (a higher survival 

probability 2
Lπ  of the type-L individuals) no separating equilibrium exists. In the latter 

two scenarios ( 1q , 2q ) constitute the Wilson pooling equilibrium.  

 

(c) Model with mandatory actuarially fair public pension system: In Table 2 we provide 

numerical computations to illustrate whether the existence of the equilibrium is affected 

by a mandatory fully-funded public pension system. To do so, we take the computations 

in Table 1 as a reference point. Thus, we consider the same three scenarios as in Table 

1, however now we assume that each individual has to pay contributions T to a public 

pension system, which offers constant actuarially fair pension benefits according to the 

average life-expectancy of the population. Thus the budget equations in the three 

periods read 
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(A30) 0
i ic w A T= − − ,  

(A31) 1 1
i ic q A bT= + ,  

(A32) 2 2
i ic q A bT= + ,  

 

where b denotes the actuarially fair benefit rate offered per unit of pension contribution 

T in each period of retirement t = 1,2, with 

 

(A33) 
1 1 2 1 1 2

1
(1 )( ) ( )L L L H H Hb

γ π π π γ π π π
=

− + + +
.  

 

Annuity demand Ai, i = L,H, in the presence of a public pension system is then 

determined by the first-order condition (5), together with the budget constraints (A30) – 

(A32). Assuming again logarithmic utility (13), we have as the interior solution of the 

maximisation problem14 

 

(A34) Ai > 0 and 1 1 1 2 1

1 2

1 i i i

i i i

q q
w A T q A bT q A bT

π π π
= +

− − + +
  

 

(A34) makes obvious that annuity demand Ai depends on the annuity payoffs q1 and q2, 

which is in contrast to the findings in the model without a public pension system. 

Consequently, apart from the separate contract ( 1̂
Hq , 2ˆHq ) for type H, which is again 

given by (A25), the separate contract 1 2( , )L Lq q  for type L as well as the pooling contract 

( 1q , 2q ) can be computed only numerically. The separate contract 1 2( , )L Lq q  for type L is 
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determined by the zero-profit-condition (6) for i = L, by the self-selection constraint 

(11) and by use of (A25), (A31) – (A34) and (13) for i = H. As in the model without a 

public pension system, the pooling contract ( 1q , 2q ) is the one which maximises utility 

(13) for i = L and fulfils, together with (A34) for i = L,H, the zero-profit condition (9').  

 

For each scenario we vary the contributions T to public pensions system (5 %, 15 % and 

25 % of the labour income w) and plot the respective values of the contracts ( 1̂
Hq , 2ˆHq ), 

1 2( , )L Lq q  and ( 1q , 2q ), as well as annuity demand Ai and indirect utility Ui of both types 

i = L,H at these contracts and find the following results: In scenario 1, the introduction 

of the public pension system (irrespective of its size) does not change the result that the 

contracts ( 1̂
Hq , 2ˆHq ) and 1 2( , )L Lq q  constitute an equilibrium. On the other hand, in 

Scenario 2 (with a lower share γ of type-H individuals than in Scenario 1) the 

introduction of a mandatory public pension system changes the results: Now, a 

separating equilibrium exists (again for all three values of T), while it did not in the 

absence of public pension system. In this case, each type of individual i = L,H is better 

off at her separate contract 1 2( , )L Lq q and ( 1̂
Hq , 2ˆHq ), resp., than at the pooling contract 

( 1q , 2q ). The same result is found in Scenario 3 for the highest value of contributions to 

the public pension system (T = 250). However for lower values of T = 50, 150, no 

separating equilibrium exists, which corresponds to the result found in the model 

without a public pension system. In this case ( 1q , 2q ) constitute the Wilson pooling 

equilibrium.  

                                                                                                                                            
14 Note that for a sufficiently large public pension system annuity demand of an individual can be zero.  
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Table 1 

Numerical illustration of the (non-)existence of separating equilibria for log utility 

Scenario 1: Existence of a separating equilibrium ( 1
Hq̂ , 2

Hq̂ ), ( 1
Lq , 2

Lq ) 

 w = 1000, γ = 0.6, 1
Hπ = 0.8, 2

Hπ = 0.6, 1
Lπ = 0.7, 2

Lπ = 0.2.  

Model without Saving in Bonds:  
 AH = 561.4,  
 AL = 456.5. 

Model with Saving in Bonds:  
 AH = 561.4, SH = 350.9 (0.6q1 − q2),  
 AL = 456.5,  SL = 380.4 (0.2q1 − q2). 

contracts UH UL contracts UH UL SH SL 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.376, 2
Lq =0.307 

13.871 
13.871 

11.235 
11.500 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.407, 2
Lq =0.107 

13.871 
13.871 

11.235 
11.412 

0 
258.8

0 
66.5 

 1q =1.090, 2q =0.462 13.885 11.394  1q =1.090, 2q =0.462 13.902 11.394  67.1 0 

 

Scenario 2: Non-existence of a separating equilibrium, existence of a Wilson equilibrium ( 1q , 2q ) 
 w = 1000, γ = 0.2, 1

Hπ = 0.8, 2
Hπ = 0.6, 1

Lπ = 0.7, 2
Lπ = 0.2. 

Model without Saving in Bonds:  
 AH = 561.4, 
 AL = 456.5. 

Model with Saving in Bonds:  
 AH = 561.4, SH = 350.9 (0.6q1 − q2),  
 AL = 456.5,  SL = 380.4 (0.2q1 − q2). 

contracts UH UL contracts UH UL SH SL 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.376, 2
Lq =0.307 

13.871 
13.871 

11.235 
11.500 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.407, 2
Lq =0.107 

13.871 
13.871 

11.235 
11.412 

0 
258.8

0 
66.5 

 1q =1.152, 2q =0.758 14.166 11.502  1q =1.152, 2q =0.758 14.166 11.502 0 0 

 

Scenario 3: Non-existence of a separating equilibrium, existence of a Wilson equilibrium ( 1q , 2q ) 
 w = 1000, γ = 0.6, 1

Hπ = 0.8, 2
Hπ = 0.6, 1

Lπ = 0.7, 2
Lπ = 0.5. 

Model without Saving in Bonds:  
 AH = 561.4, 
 AL = 512.2. 

Model with Saving in Bonds:  
 AH = 561.4, SH = 350.9 (0.6q1 − q2), 
 AL = 512.2,  SL = 341.5 (0.5q1 − q2). 

contracts UH UL contracts UH UL SH SL 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.250, 2
Lq =0.357 

13.871 
13.871 

12.481 
12.536 

 1
Hq̂ =0.781, 2

Hq̂ =0.781 
 1

Lq =1.343, 2
Lq =0.171 

13.871 
13.871 

12.481 
12.508 

0 
222.9

0 
171.0

 1q =0.875, 2q =0.774 13.956 12.557  1q =0.875, 2q =0.774 13.956 12.557 0 0 
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Table 2 

Numerical computations of the effects of a mandatory actuarially fair pension system on the (non-)existence of separating equilibria 

Scenario 1: w = 1000, γ = 0.6, 1
Hπ = 0.8, 2

Hπ = 0.6, 1
Lπ = 0.7, 2

Lπ = 0.2, b = 0.906 

Existence of a separating equilibrium: T = 50 Existence of a separating equilibrium: T = 150 Existence of a separating equilibrium: T = 250 

contracts AH AL UH UL contracts AH AL UH UL  AH AL UH UL 

1ˆ
Hq =0.781, 2ˆ Hq =0.781 

1
Lq =1.373, 2

Lq =0.277 
507.9 
500.3 

402.2 
406.3 

13.887 
13.887 

11.249 
11.489 

1ˆ
Hq =0.781,  2ˆ Hq =0.781

1
Lq =1.388,  2

Lq =0.204
400.9 
380.6 

293.5 
310.6 

13.924 
13.924 

11.278 
11.470 

1ˆ
Hq =0.781,  2ˆ Hq =0.781

1
Lq =1.407,  2

Lq =0.106
293.9 
266.8 

184.9 
221.2 

13.960 
13.960 

11.306 
11.445 

1q =1.113,  2q =0.412 504.9 406.0 13.881 11.395 1q =1.171,  2q =0.287 385.6 306.0 13.885 11.398 1q =1.241,  2q =0.139 262.6 211.0 13.915 11.400 

 
Scenario 2: w = 1000, γ = 0.2, 1

Hπ = 0.8, 2
Hπ = 0.6, 1

Lπ = 0.7, 2
Lπ = 0.2, b = 1.078 

Existence of a separating equilibrium: T = 50 Existence of a separating equilibrium: T = 150 Existence of a separating equilibrium: T = 250 

contracts AH AL UH UL contracts AH AL UH UL  AH AL UH UL 

1ˆ
Hq =0.781,  2ˆ Hq =0.781 

1
Lq =1.374, 2

Lq =0.271 
503.1 
494.1 

396.2 
401.3 

13.913 
13.913 

11.269 
11.505 

1ˆ
Hq =0.781,  2ˆ Hq =0.781

1
Lq =1.392,  2

Lq =0.183
386.5 
363.2 

275.6 
297.6 

13.997 
13.997 

11.336 
11.516 

1ˆ
Hq =0.781, 2ˆ Hq =0.781

1
Lq =1.416,  2

Lq =0.065
269.8 
240.9 

155.0 
200.9 

14.077 
14.077 

11.401 
11.520 

1q =1.163,  2q =0.717 508.4 406.0 14.163 11.503 1q =1.196,  2q =0.597 398.6 304.8 14.155 11.505 1q =1.255,  2q =0.396 278.7 203.8 14.149 11.508 

 
Scenario 3:  w = 1000, γ = 0.6, 1

Hπ = 0.8, 2
Hπ = 0.6, 1

Lπ = 0.7, 2
Lπ = 0.5, b = 0.842 

Non-existence of a separating equilibrium: T = 50 Non-existence of a separating equilibrium: T = 150 Existence of a separating equilibrium: T = 250 

contracts AH AL UH UL contracts AH AL UH UL  AH AL UH UL 

1ˆ
Hq =0.781,  2ˆ Hq =0.781 

1
Lq =1.264,  2

Lq =0.330 
509.7 
504.7 

460.3 
456.7 

13.879 
13.879 

12.489 
12.542 

1ˆ
Hq =0.781,  2ˆ Hq =0.781

1
Lq =1.298,  2

Lq =0.260
406.3 
391.9 

356.5 
348.1 

13.897 
13.897 

12.505 
12.553 

1ˆ
Hq =0.781,  2ˆ Hq =0.781

1
Lq =1.349,  2

Lq =0.160
302.9 
280.8 

252.8 
243.7 

13.914 
13.914 

12.521 
12.562 

1q =0.879,  2q =0.764 511.2 462.1 13.956 11.557 1q =0.894,  2q =0.735 410.4 361.7 13.955 12.557 1q =0.928,  2q =0.672 308.7 261.0 13.953 12.557 



 58

References 

 

ABEL, A. B.  [1986], "Capital Accumulation and Uncertain Lifetimes with Adverse 

Selection," Econometrica, 54, 1079-1097. 

BROWN, J. R. [2001], "Private pensions, mortality risk, and the decision to annuitize," 

Journal of Public Economics, 82, 29-62. 

BROWN, J. R., O. S. MITCHELL, AND J. M. POTERBA [2001], "The Role of Real Annuities 

and Indexed Bonds in an Individual Accounts Retirement Program," pp. 321-

360 in: J. Y. Campbell and M. Feldstein (eds.), Risk Aspects of Investment-

Based Social Security Reform, University of Chicago Press: Chicago. 

BRUNNER, J. K. AND S. PECH [2002], "Adverse selection in the annuity market with 

sequential and simultaneously insurance demand," Working paper, 0204, 

Department of Economics, University of Linz, Austria. 

ECKSTEIN, Z, M. EICHENBAUM, AND D. PELED [1985], "Uncertain Lifetimes and the 

Welfare Enhancing Properties of Annuity Markets and Social Security," 

Journal of Public Economics, 26, 303-326. 

FELDSTEIN, M. [1990], "Imperfect annuity markets, unintended bequests, and the 

optimal age structure of social security benefits," Journal of Public Economics, 

41, 31-43. 

FINKELSTEIN, A. AND J. M. POTERBA [2002], "Selection Effects in the United Kingdom 

Individual Annuities Market," Economic Journal, 112 (476), 28-50. 

FINKELSTEIN, A. AND J. M. POTERBA [2004], "Adverse Selection in Insurance Markets: 

Policyholder Evidence from the U.K. Annuity Market," Journal of Political 

Economy, 112, 183-208. 

FRIEDMAN, B. M. AND M. J. WARSHAWSKY [1988], "Annuity Prices and Saving 

Behaviour in the United States," pp. 53-77 in: Z. Bodie, J.  Shoven and D. 

Wise (eds.), Pensions in the U.S. Economy, University of Chicago Press: 

Chicago. 

FRIEDMAN, B. M. AND M. J. WARSHAWSKY [1990], "The Cost of Annuities: Implications 

for Saving Behaviour and Bequests," Quarterly Journal of Economics, 105, 

135-154. 



 59

HELLWIG M. [1987], "Some recent developments in the theory of competition in 

markets with adverse selection," European Economic Review, 31, 319-325. 

MAS-COLELL, A., M. D. WHINSTON, AND J. R. GREEN [1995], Microeconomic Theory, 

Oxford University Press: Oxford.  

MITCHELL, O. S., J. M. POTERBA, M. J. WARSHAWSKY, AND J. R. BROWN [1999], "New 

Evidence on the Money’s Worth of Individual Annuities," American Economic 

Review, 89, 1299-1318. 

MOORE, J. F. AND O. S. MITCHELL [2000], "Projected Retirement Wealth and Savings 

Adequacy in the Health and Retirement Study," pp. 68-94 in: O. S. Mitchell, B.  

Hammond, and A. Rappaport (eds.), Forecasting Retirement Needs and 

Retirement Wealth, Pension Research Council, University of Pennsylvania 

Press: Philadelphia. 

PAULY, M. V. [1974], "Overinsurance and Public Provision of Insurance: The Roles of 

Moral Hazard and Adverse Selection," Quarterly Journal of Economics, 88, 

44-62.  

RILEY, J. G. [1979], "Informational equilibrium," Econometrica, 47, 331-359. 

ROTHSCHILD, M. AND J. STIGLITZ [1976], "Equilibrium in Competitive Insurance 

Markets: An Essay on the Economics of Imperfect Information," Quarterly 

Journal of Economics, 90, 629-649. 

TOWNLEY, P. G. C. AND R. W. BOADWAY [1988], "Social Security and the Failure of 

Annuity Markets," Journal of Public Economics, 35, 75-96. 

WALLISER, J. [2000], "Adverse Selection in the Annuities Market and the Impact of 

Privatizing Social Security," Scandinavian Journal of Economics, 102, 373-

393. 

WILSON, CH. [1977], "A Model of Insurance Markets with Incomplete Information," 

Journal of Economic Theory, 16, 167-207. 

YAARI, M. E. [1965], "Uncertain Lifetime, Life Insurance, and the Theory of the 

Consumer," Review of Economic Studies, 32, 137-150. 

 


