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Abstract

Aim of this paper is to analyse the equilibrium strategies of two de-
velopers in the real estate market, when demands are asymmetric. In
particular, we are able to consider three key features of the real estate
market. First, the cost of redevelop a building is, at least partially, irre-
versible. Second, the rent levels for di¤erent building vary stochastically
over time. Third, demand functions for space are interrelated and may
produce positive or negative externalities. Using the method of option
pricing theory, we address this issue at three levels. First, we model the
investment decision of a �rm as a pre-assigned leader as a dynamic sto-
chastic game. Then, we solve for the non-cooperative (decentralised) case,
and for the perfectly cooperative case, in which redevelopment of an area is
coordinated between �rms. Finally, we analyse the e¢ ciency/ine¢ ciency
of the equilibria of the game. We �nd that if one �rm has a signi�cantly
large comparative advantage, the pre-emptive threat from the rival will
be negligible. In this case, short burst and overbuilding phenomena as
predicted by Grenadier (1996) will occur only as a limiting case.
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1 Introduction

Strategic urban development is one of the most critical determinants of success
of a town. In this paper, we focus on one aspect of the (re)development decisions:
the investment decisions coupled with the choice of the mix of building types,
i.e. o¢ ce, retail, industrial, residential.
How should a �rm decide between waiting and investing at once? How

should it value the di¤erent options? Which are the impacts of the mix of
building types on the developer investment decisions? How can we explain the
overbuilding phenomena of last years?
The present paper attempts to provide an answer to the above questions.

In a real estate market comparative advantages of �rms in real estate invest-
ment are di¤erentiated by their pricing, rather than cost containment strategies.
Therefore, by using di¤erent inverse demand functions for �rms in the model,
comparative advantages of �rms and their e¤ects on optimal timing in equi-
librium can be explicitly examined. We develop a continuous time stochastic
oligopoly model to analyse the sequence of events which originates a new urban
area and use it to investigate the interaction of the various forces which may
delay or anticipate market�s creation. We �nd the conditions that may lead the
ones or the others to prevail.
In our model we consider the investment decision of a real estate agent

intending to (re)develop his fraction of building in an area. The investment will
create a new market and the �rm will be the market pioneer. We assume, for
simplicity, that the investment is in a single new project and the investment
expenditure is known and �xed but once made it is irreversible. The �rm
faces exogenous uncertainty about market conditions, which re�ect in rent level.
Moreover, the demands for space are interrelated. The use of space by one tenant
may provide either positive or negative externalities for other tenants. A positive
interaction between tenant types would increase the landlord�s demand for a
"diversi�ed mix" of tenants (e.g. a shopping center). Conversely, a negative
externality e¤ect would occur when the use of space by one type of tenant
impinges upon the e¢ cient use of space of another. A mix of heavy industrial
use with residential or commercial use would be such an example. Thus, the
developer must take into account both the rent levels and the interaction e¤ects
in choosing is optimal investment policy.
We focus on two di¤erent economic settings. We �rst consider the case of

a �rm which is able to promote the development of a new area. The �rm, as
the pioneer of the resulting market, may choose the timing of the investment
without bothering about other potential entrants (or, in other words, may act
as a pre-designated leader) and enjoys furthermore an extreme �rst-mover ad-
vantage which forces any subsequent entrant to accept the role of follower in
dynamic game1 . The rationale behind such modelling assumption is that there

1Alternatively, it can be argued that under uncertainty larger �rms have a relative advan-
tage in making commitments credibly and are inclined to move �rst, while smaller �rms prefer
to move second (see, e.g., Hay and Liu, 1998). With �rms of di¤erent size, it seems therefore
reasonable to model the outcome of oligopoly by a Stackelberg equilibrium.
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are many economic instances in which long-run �rst-mover advantages arise nat-
urally. The second economic setting we investigate is a situation where two �rms
may both potentially invest and thus begin development of a new area. Neither
�rm can now be absolutely sure to be the �rst to enter the market and strategic
considerations may now presumably play a signi�cant role. This second mod-
elling strategy is intended to describe a competitive situation characterised by
more limited novelty in the innovation and, correspondingly, by inferior market
pioneering advantages.
The general methodology adopted in the paper is that of stochastic stop-

ping time games (Dutta and Rustichini, 1993), whilst our basic assumptions can
be contrasted with those of Dixit and Pindyck (1994), Smets (1991), Williams
(1993) and Grenadier (1996 and 2002).Williams (1993) focus on the distinguish-
ing features of a real estate market and develop a model of strategic interactions
between developers. These features are summarised in the following points: i)
each real asset produces goods or services that consumers demand with a �nite
elasticity; ii) the rate at which assets can be developed is limited by developer�s
capacity; iii) the supply of undeveloped assets is limited and iv) the ownership
of undeveloped assets can be monopolistic, oligopolistic or competitive. The
signi�cance of these properties results in the optimal exercise policy and in the
market values of real estate vs. �nancial assets and derives an equilibrium set of
exercise strategies for real estate developers, where equilibrium development is
symmetric and simultaneous. He makes a new methodological point in the real
option literature applied to the real estate market. In contrast to the standard
literature, Williams identi�es a region of optimal exercise, replacing the single
point of optimal exercise in all previous models of real options. Grenadier (1996)
uses a duopolistic game theoretic approach to options exercise to explain real
estate developers investment decisions. Developers are characterized by two
symmetric demands and are indi¤erent as to who will take the role of a leader
and/or a follower and, fearing the preemption by competitors, proceed into a
market equilibrium in which all development occurs during a market downturn.
He identi�es the causes of periods of irrational overbuilding in the interaction
between the fear of preemption and the time to build. Compared to Williams�,
in Grenadier�s model, equilibrium development may arise endogenously as either
simultaneous or sequential. Although this literature has made a great step to-
ward a better understanding of investment decisions, the contribution of the real
option literature to the understanding of the real estate market is still limited.
The paper is organised as follows: Section 2 is devoted to the set up of the

model. The speci�cation will serve for the subsequent analysis. In Section 3 the
analysis is performed with reference to a duopolistic market in which the leader
is pre-assigned, i.e an extreme �rst-mover advantage (which allows the pioneer to
dominate the market) is considered. After deriving the value of pursuing both
the leader and the follower strategy, �rms� investment behaviour is derived.
Section 4 presents the case of competition without pre-emption, i.e. a more
limited e¤ect in favour of the �rst entrant (with pioneer and follower competing
under the same conditions) is analysed, and Section 5 provides the analysis of
a cooperative solution that will be used to identify the e¢ ciency/ine¢ ciency of
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the various market structures considered. Section 6 concludes the paper.

2 The Real Estate Market Development

In this section, we present and analyse in some detail the set up of a simple
continuous-time model of irreversible investment to better understand the im-
plications of the reakestate market above described.
Let us consider two real estate developers, denoted by i = L;F , which own

respectively a fraction w and 1 � w of buildings in a town. The total number
of buildings is normalised at 1. Both owners have an opportunity to redevelop
their properties into new, superior buildings or change their �nal destination.
In this case they can earn potentially greater rentals. Thus, each owner holds
an option to develop. The option to develop has an exercise price equal to I,
the cost of construction. To keep matters as simple as possible, we assume that
I is constant over time and (re)development has no operating cost. Initially,
building rents, �Ri; are de�ned as

�RL = �Rw

�RF = �R(1� w)

The exercise of the development option will result in repercussion on both
the option exerciser as well as the other building owner. Let us assume L to
be the leader (the one who �rst exercise his development option). The leader
pays an initial construction cost today and loses current rentals [on the existing
buildings]. New buildings will yield potentially higher rental rate according to
a demand function characterized by evolving uncertainty:

�L = RL = [� � �w] (w)

It represents the leader�s pro�ts for new/redeveloped buildings, where the ��s
represent the own quantity e¤ects. In this formulation uncertainty comes from
the demand side once the redevelopment activity occurs and, more in particular,
we assume that the demand parameter � follows the geometric Brownian motion

d� = ��dt+ ��dw (1)

where � is the instantaneous expected growth rate of the market, � is the
instantaneous variance and dw is a standard normal Wiener process. It follows
that the market demand curve is subject to aggregate shocks so that the de-
veloper knows current demand conditions but cannot predict future changes.
This option exercise also a¤ects the fortunes of the follower. The competitor�s
construction of an improved building can either improve or lessen the demand
for the existing building and his pro�t becomes

�F = �RF + �w(1� w)
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where � represents the interaction e¤ect, e.g. positive � denotes tenant types
which interact favorably2 . This can be the case of shops, where a di¤erent mix
of shop in a borough permits convenient shopping for customers and increases
also the rents of the house.
Now consider the impact of the follower�s exercise of the development option

on both owner. The follower will pay the cost of construction, lose current rent,
and begin receiving rent on the new (or improved) buildings. The leader is also
a¤ected because he can now pro�t from the complementarities of constructions.
After the follower has invested the demand functions will be:

�L = [� � �(w)] (w) + "1w(1� w)

�F = [� � �(1� w)] (1� w) + "2(w)(1� w)

where "1 and "2 indicates the complementarity of developments3 . Negative
"i (i = 1; 2) denotes, for examples, tenant types which interact unfavorably. It
is the case of a mix of heavy industrial use with residential or commercial use.

3 Equilibrium without pre-emption

As before, let us start our analysis with a model describing a situation in which
there exists a pre-designed leader4 . Let us start by assuming that the pre-
designed leader, L; and follower, F; invest at di¤erent points. The expected
total discounted pro�ts of the leader and the follower are derived in what follows.
As usual in dynamic games, the stopping time game is solved backwards, in a
dynamic programming fashion.

The Follower�s Problem Let us �rst value the payo¤ of being a follower,
denoted by F (�). It has three di¤erent components holding over di¤erent ranges
of �. The �rst, F0 (�), describes the value of investment before the leader has
invested; the existing space yields a pro�t �RF per unit of time and its present
discounted value is

�RF

r . Moreover, the follower holds the option to redevelop the
existing space for the new one, conditional to the leader having already invested.
The option to invest should be valued accordingly. Let us then assume that the
leader has already redeveloped his property, and the follower has now to choose
his redevelopment strategy to maximise his option�s value. This is the second
region, F1 (�). The value of the follower can be characterised as a portfolio
containing the existing properties, yielding a pro�t �RF + �w(1 � w) > 0 per

2 It can also be negative. In this case it denotes tenant type which interacts unfavourably.
In both cases, � must be large enough to ensure positive �F .

3This kind of complementarity has been de�ned "two way complementarity" by Weeds
(2002). It gives rise to a temporary Second Mover Advantage: while the leader alone has
invested, it does not bene�t from the complementaritiy, but after the follower invests the
positions of the two �rms are symmetric.

4This can be the case where a developer owns more of the 50% of the available space
normalized at 1.
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unit of time and a present discounted value of
�RF+�w(1�w)

r , plus an option to
exchange the existing properties with the new one. Finally, in the third region,
F2 (�), paying an irreversible adoption cost I; the follower can redevelop his
property and obtain an instantaneous pro�t [� � �(1� w)] (1� w)+ "2(w)(1�
w), with a present discounted value of �(1�w)r�� + [�(1�w)](1�w)+"2(w)(1�w)

r . Let
us �rst derive the second and the third region. In order to derive the follower�s
optimal investment rule, notice that at each point in time the follower can either
invest, and take the termination payo¤, or can wait for an in�nitesimal time dt
and postpone the decision. The payo¤ of the second strategy consists of the
pro�t �ow during time period dt plus the expected discounted capital gain.
Denoting by FF;1 (�) the option value to invest, the Bellman equation of the
problem is

FF;1 (�) =Max

� �RF + �w(1� w)
r

� I; 1

1 + rdt
E [FF;1 (� + d� j� )]

�
(2)

where E denotes the expectation operator.
Prior to investment the �rm holds the opportunity to invest. It receives

a pro�t �ow
�RF+�w(1�w)

r , but it may experience a capital gain or loss on the
value of this option, dFF;1. Hence, in the continuation region, i.e. the RHS of
equation (2), the Bellman equation for the value of the investment opportunity,
FF;1 (�), is given by

rFF;1dt = E (dFF;1) (3)

Expanding dFF;1 using Ito�s lemma we can write

dFF;1 = F
0
F;1 (�) d� +

1

2
F 00F;1 (�) (d�)

2 (4)

Substituting from (1) and noting that E (dw) = 0 we can write

E (dFF;1) = ��F
0
F;1 (�) dt+

1

2
�2�F 00F;1(�)dt (5)

After some simple substitution, the Bellman equation entails the following
second-order di¤erential equation

1

2
�2�F

00

F;1 (�) + ��F
0

F;1 (�)� rFF;1 = 0 (6)

From (1) it can be seen that if � ever goes to zero it stays there forever.
Therefore the option to invest has no value when � = 0; FF;1 (�) must satis�es
the following boundary condition

FF;1 (0) = 0 (7)

The general solution for the di¤erential equation (6) is

FF;1 (�) = B1�
� +B2�

� (8)
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where � > 1 and � < 0 are respectively the positive and the negative root
of the fundamental characteristic equation5 Q (z) = 1

2�
2z (z � 1) + �z � r, and

B1 and B2 are unknown constant to be determined.
Imposing the boundary condition (7) the value of the option to invest is

FF;1 (�) = B1�
� (9)

and the option value of waiting is F1 (�) =
�RF+�w(1�w)

r + B1�
� . The �rst

part of F1 (�) is the expected value of the �rm if the �rm would never invest
and the second part is the option value to invest derived above. The value in
the �rst region is derived in the same way. The value of the option to invest
is FF;0 = B0�

� , and the expected value of the �rm if it would never invest is
�RF

r . By summing up these to components gives F0 (�) =
�RF

r +B0�
� , that is the

option value of waiting in the �rst region.
We next consider the value of the �rm in the stopping region, in which the

value of � is such that it is optimal to invest at once. This is the third region,
F2 (�). Since investment is irreversible, the value of the agent in the stopping
region is given by the expected value alone with no option value terms. The
value of the follower adopting the new technology is given by the following
expression:

F2 (�) = E

�Z +1

t

( [� � �(1� w)] (1� w) + "2(w)(1� w)) e�r(��t)d� � I(1� w)
�

(10)
that is

F2 (�) =
� (1� w)
r � � +

[�(1� w)] (1� w) + "2(w)(1� w)
r

� I(1� w) (11)

The boundary between the continuation region and the stopping region is
given by a trigger point �F of the stochastic process such that continued delay
is optimal for � < �F and immediate investment is optimal for � � �F . The
optimal stopping time is then de�ned as the �rst time that the stochastic process
� hits the interval [�F ;1) from below. Putting together the three regions gives
the follower�s value function F (�):

F (�) =

8><>:
�RF

r +B0�
� � < �L

�RF+�w(1�w)
r +B1�

� � 2 [�L; �F )
�(1�w)
r�� + [�(1�w)](1�w)+"2(w)(1�w)

r � I(1� w) � � �F
(12)

Following Dixit and Pindyck (1994), the value matching and smooth pasting
conditions are used to determine the critical value describing the boundary be-
tween the continuation and stopping regions, along with the unknown coe¢ cient

5See Dixit & Pindyck (1996), pp. 142-143, for details.
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B1. This condition requires the two components of the follower�s value function
to meet smoothly at �F with equal �rst derivatives, which together with the
value matching condition implies

(
�RF+�w(1�w)

r +B1�
� = �(1�w)

r�� + [�(1�w)](1�w)+"2(w)(1�w)
r � I(1� w)

�B1�
��1 = 1�w

r��

Solving the above system, we can compute the value of the unknown B1 and
the optimal trigger point �F :

B1 =
1� w
r � � �

1

�
� �1��F (13)

�F =
�

� � 1 �
(r � �)
r

�
�
R+ �(w) + �(1� w)� "2(w) + rI

�
(14)

It is important to note that the optimal trigger point �F it is not in�uenced
by the complementarity of developments ("1 and "2).

Proposition 1 Conditional on the Leader having redeveloped his properties, the
optimal Follower strategy is to invest the �rst moment that �t equals or exceed
the trigger value �F , as de�ned in equation (14). That is, the optimal entry
time of the follower, TF , can be written as:

TF = inf

�
t � 0 : � � �

� � 1 � (r � �) �
� �R+ �w

r
+
[�(1� w)� "2w]

r
+ I

��
(15)

The value of the unknown constant B0 is found by considering the impact of
the leader�s investment on the payo¤ to the follower. When �L is �rst reached,
the leader invests and the follower payo¤ is altered either positively or negatively.
Since the value functions are forward-looking, F0 (�) anticipates the e¤ect of the
leader�s action and must therefore meet F1 (�) at �L. Hence, a value matching
condition holds at this point; however there is no optimality on the part of the
follower, and so no corresponding smooth pasting condition. This implies that

�RF
r
+B0�

�
L =

�RF + �w(1� w)
r

+B1�
�
L

B0 =
�(w) (1� w)

r
���L +

1� w
r � � �

1

�
� �F 1�� (16)

Note that �F is independent of the point at which the leader invests: given
that the �rm invests second, the precise location of the leader�s trigger point
is irrelevant. However, it is inversely related to the magnitude of the spillover
caused by the leader investment. The e¤ect of uncertainty is standard from the
real option theory. Since @�

@� > 0 a greater uncertainty induce an higher trigger
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value. By simple substitution, the value of being the follower is thus given by
the following expression:

F (�) =

8>>><>>>:
�RF

r + �(w)(1�w)
r

�
�
�L

��
+ 1�w

r�� �
1
� � �F

�
�
�F

��
� < �L

[R+�(w)](1�w)
r + 1�w

r��
1
� �F

�
�
�F

��
� 2 [�L; �F )

�(1�w)
r�� � �(1�w)2

r + "2w(1�w)
r � I (1� w) � � �F

(17)

The Leader�s Problem. The value of the leader, denoted by L (�) ; can be
expressed as follows:

L (�) =

8>><>>:
R(w)
r +BL0�

� � < �L
w�
r�� �

�(w)2

r +BL1�
� � Iw � 2 [�L; �F )

w�
r�� +

"1w(1�w)
r � �(w)2

r � Iw � � �F
(18)

where BL0 and BL1 are the coe¢ cient of the option value to invest. Starting
from equation (18) one can observe that when �F is �rst reached, the follower
invests and the leader�s expected �ow payo¤ is altered. Since value functions
are forward-looking, L1 (�) anticipates the e¤ect of the follower�s action and
must therefore meet L2 (�) at �F . Hence, a value matching condition holds at
this point; however there is no optimality on the part of the leader, and so no
corresponding smooth pasting condition. This implies

w�

r � � �
�(w)2

r
+BL1�

� � Iw = w�

r � � +
"1w(1� w)

r
� �(w)

2

r
� Iw

that gives

BL1 =
"1w(1� w)

r
���F (19)

The usual value matching and smooth pasting conditions at the optimally-
chosen �L determine the other unknown variables:(

R(w)
r +BL0�

� = w�
r�� �

�(w)2

r +BL1�
� � Iw

�BL0�
��1 = w�

r�� + �BL1�
��1

Solving the system, we can compute the value of the unknown BL0 and the
optimal trigger point �L:

�L =
�

� � 1
r � �
r

�
R+ �w + rI

�
(20)

Similar to the optimal trigger point �F , also �L it is not in�uenced by the
complementarity of developments ("1 and "2).
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BL0 =
1

�

�
w

r � �

�
�1��L +

"1w(1� w)
r

���F (21)

The following proposition summarises the result.

Proposition 2 Conditional on roles exogenously assigned, the optimal Leader
strategy is to redevelop his properties the �rst moment that �t equals or exceed
the trigger value �L, as de�ned in equation (20). That is, the optimal entry time
of the Leader, TL, can be written as:

TL = inf t � 0 : �L =
�

� � 1 �
r � �
r

�
R+ �w + rI

�
(22)

Putting together the three region above derived, by simple substitution we
are able to write the leader�s value function:

L (�) =

8>>><>>>:
R(w)
r + 1

�

h
w
r��

i
�L

�
�
�L

��
+ "1w(1�w)

r

�
�
�F

��
� < �L

w�
r�� �

�(w)2

r + "1w(1�w)
r

�
�
�F

��
� Iw � 2 [�L; �F )

w�
r�� +

"1w(1�w)
r � �(w)2

r � Iw � � �F

(23)

In short, Propositions (1) and (2) de�ne respectively the optimal entry time
of the leader and of the follower. It is worth noticing that the optimal entry time
of the follower is positively a¤ected by the interaction e¤ect � and negatively
a¤ected by the complementarily "2: Furthermore, in order to have �F > �L, it
should be that

� > �
[w � (1� w)]

w
+ "2

In particular, when each developer holds half of the space, then � (the inter-
action e¤ect that the follower su¤ers when only the leader develops) has to be
higher than "2 (the complementarity e¤ect). In this case there exists a unique
sequential equilibrium. Otherwise, an investment cascades might occur.

4 Equilibrium with pre-emption

Let us now assume that the role of the leader and that of the follower are deter-
mined endogenously6 . As before, let us assume that one �rm (the pre-emptor)
invests strictly before the other. The follower�s value function and the trigger
point is the same as for the model without preemption (see equation 14). The
leader�s value function is as described in the previous section. However, without
the ability to precommit to a de�ned investment strategy at the beginning of

6 It can be the case of a fragmented market, where, for example each developer holds half
of the space.
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the game, the leader�s investment trigger cannot be derived as the solution to a
single agent optimization problem. This means the leader can no longer choose
its investment point optimally, as if the roles were preassigned. Instead, the
�rst �rm to invest does so at the point at which it prefers to lead rather than
follow. Hence, the investment point, denoted in what follows �P , is de�ned by
the indi¤erence between leading and following as follows:

VL (�P )� I = FF (�P )

In order to simplify notation, let us de�ne A = "1�W
a , a = r

r�� , B =
�+Ir
a + ("1 � "2) w(1�w)

[w�(1�w)] .

Proposition 3 If �F > B then there exists a unique endogenous equilibrium
outcome at �P � �F with the following properties:

VL (�)� I < FF (�) for � < �P
VL (�)� I = FF (�) for � = �P
VL (�)� I > FF (�) for �P < � < �F
VL (�)� I = FF (�) for � � �F

Proof. Let us de�ne the function �(�) = L1 (�) � F1 (�), describing the
gain of pre-emption, where L1 (�) is conditional on the �pre-emptor� having
invested, and F1 (�) is the option value of the follower. By using equations (18)
and (9), we get

�(�) =
w�

r � � �
�(w)2

r
� Iw + "1

w(1� w)
r

�
�

�F

��
+

�
�
R+ �(w)

�
(1� w)

r
� (1� w)

r � � � 1
�
� �F

�
�

�F

��
: (24)

First, we establish the existence of a root for �(�) in the interval (0; �F ) : Evalu-

ating at � = 0 yields �(0) = ��(w)2

r �Iw� [R+�(w)](1�w)r < 0 . Similarly, evalu-

ating at � = �F yields �(�F ) = r
r���F���Ir+

(w)2

r �Iw+("1 � "2) w(1�w)
[w�(1�w)] ;

i.e
�(�F ) > 0 if �F > B (25)

Therefore, �(�) must have at least one root in the interval (0; �F ) : Finally,
some algebraic manipulation yields �0 (0) = w

r�� > 0 and lim�!�F �(�)� =
w
r�� + �"1

w(1�w)
r � (1�w)

r�� �F ? 0 if �F ? A +
w
1�w : To prove uniqueness, one

merely needs to demonstrate strict concavity (convexity) over the interval. Dif-

ferentiating�(�) twice yields: �00 (�) = (� � 1)
h
�"1

w(1�w)
r � (1�w)

r�� �F

i �
�
�F

���1
?

0 if �F ? A:Thus, the root is unique. The Appendix shows a graphical inter-
pretation.
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Proposition 4 If �F < B and �F < A+
w

(1�w) , then VL (�)� I < FF (�) for
all � < �F : It does not exist an endogenous equilibrium outcome in the interval
(0; #F ).

Proposition 5 If �F < B and �F > A+
w

(1�w) then:
a) If �(��) < 0 then it does not exist an endogenous equilibrium;
b) If �(��) = 0 then there exists an unique endogenous equilibrium ��P 2

(0; �F ) with the following properties:

VL (�)� I < FF (�) for � < ��P
VL (�)� I = FF (�) for � = ��P
VL (�)� I > FF (�) for ��P < � < �F
VL (�)� I = FF (�) for � � �F

.
c) If �(��) > 0 then there exists ��P;1 and �

�
P;2 2 (0; �F ) with the following

properties:

VL (�)� I < FF (�) for � < ��P;1
VL (�)� I = FF (�) for � = ��P;1
VL (�)� I > FF (�) for ��P;1 < � < �

�
P;2

VL (�)� I = FF (�) for � = ��P;2
VL (�)� I < FF (�) for ��P;2 < � < �F
VL (�)� I = FF (�) for � � �F

Proof. Let us de�ne the function �(�) = L1 (�) � F1 (�), describing the
gain of pre-emption, where L1 (�) is conditional on the �pre-emptor� having
invested, and F1 (�) is the option value of the follower. By using equations (18)
and (9), we get

�(�) =
w�

r � � �
�(w)2

r
� Iw + "1

w(1� w)
r

�
�

�F

��
+

�
�
R+ �(w)

�
(1� w)

r
� (1� w)

r � � � 1
�
� �F

�
�

�F

��
: (26)

First, we establish the existence of a root for �(�) in the interval (0; �F ) : Evalu-

ating at � = 0 yields �(0) = ��(w)2

r �Iw� [R+�(w)](1�w)r < 0 . Similarly, evalu-

ating at � = �F yields �(�F ) = r
r���F���Ir+

(w)2

r �Iw+("1 � "2) w(1�w)
[w�(1�w)] ;

i.e
�(�F ) > 0 if �F < B (27)

Finally, some algebraic manipulation yields �0 (0) = w
r�� > 0:

It is now easy to prove that:

� if �F < A than lim�!�F �(�)�> 0 and �00 (�) > 0; this implies that it
does not exist an equilibrium;
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� if �F < A+ w
1�w than lim�!�F �(�)�> 0 and �00 (�) < 0; this implies it

does not exist an equilibrium;

� if �F > A + w
1�w than lim�!�F �(�)� < 0 and �00 (�) < 0; de�ning

�� = argmax� (�) we get that if �(��) < 0 then it does not exist an
endogenous equilibrium; if �(��) = 0 then there exists an unique endoge-
nous equilibrium ��P 2 (0; #F ) and �nally if �(��) > 0 then there exists
two endogenous equilibria ��P;1; �

�
P;2 2 (0; #F ). The Appendix shows a

graphical interpretation. Q.E.D.

The presence of asymmetric demands implies that short burst and overbuild-
ing phenomena as predicted by Grenadier (1996) will occur only as a limiting
case. Speci�cally, Proposition (5b) describes the case in which Granadier (1996)
is veri�ed: it would be optimal for the leader to take the preemptive move and
receive higher payo¤s from the action, if and only if the trigger value of the fol-
lower falls below B. Moreover, we �nd a similar result in Proposition 3. In this
case �P � �F and a cascade investments occurs. More important, Propositions
4, 5a and 5c describe cases not considered in Grenadier�s model that reduce his
�ndings to a particular case. Speci�cally, in Proposition 4 and 5a conditions for
a non exsistence of equilibria are derived. These means that there are incentive
to follow rather than to lead. Proposition 5c explicit the range of parameter
value in which we can have either a multiplicity of equilibria or a non existetence
of equilibria.
It is worth noticing that when each developer holds the 50% of the space,

the above propositions can be stated as follows:

Proposition 6 If "1 + "2 > 0 then there exists, somewhere in the interval
(0; #F ), a unique endogenous equilibrium outcome at �P � �F .
If "1 + "2 < 0 then two sub-cases arise:
a) When #F < A + 1, then it does not exist, in the interval (0; #F ), an

endogenous equilibrium outcome
b) When #F > A+ 1 then:
b.1) If �(��) < 0 then it does not exist an endogenous equilibrium;
b.2) If �(��) > 0 then there exists two endogenous equilibria;
b.2) If �(��) = 0 then there exists an unique endogenous equilibrium.

Proof. See above.
The complementarity relations of development ("1 and "2) are the crucial

variables in determining the strategy played by the two investors. In particular,
when "1 + "2 > 0 and when "1 and "2 have opposite sign and the magnitude
of the di¤erence is positive then the equilibrium strategy is unique. This con-
dition arises when both "1 and "2 are positive, i.e. tenant types which interact
favorably as in the case of a mix of residential use with commercial use. When
"1 + "2 < 0 then the existence of a unique endogenous equilibrium is ensured
only in one particular case. This condition arises when:
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1. both "1 and "2 are negative, e.g. tenant types which interact unfavor-
ably an in the case of a mix of heavy industrial use with residential or
commercial use;

2. "1 and "2 have opposite sign and the negative one is higher then the posi-
tive one. This is the case in which one developer is a¤ected by a negative
externality that compensates the positive externality that concerns the
other developer.

5 Co-operative Solution

This section analyses the co-operative solution, in which the agents�investment
trigger points are chosen to maximise the sum of their two value functions. The
objective is to provide a benchmark to identify ine¢ ciencies in the next section.
Let us examine the case when investment is sequential. Two trigger points,

�1L and �2L, are chosen to maximise the sum of the leader�s and follower�s value
functions, denoted by CL+F (�). Using the same steps as before, it is given by

CL+F (�) =

8>><>>:
R
r +B0�

� +B1�
� � < �2L

(R+�w)
r (1� w) + w�

r�� �
�w2

r +B2�
� � Iw +B3�� � 2 [�2L; �2F )

�
r�� �

�(w)2

r � �(1�w)2
r � I + w(1�w)("1+"2)

r � � �2F
(28)

where Bi; i = 0; 1; 2; 3 are constants. The co-operative trigger points are
determined by the value matching and smooth pasting conditions at both points.
Solving the system we get the leader trigger and the follower trigger point,
respectively �1L and �2F , given by8>><>>:

(R+�w)
r (1� w) + w�

r�� �
�w2

r +B2�
� � Iw +B3�� =

= �
r�� �

�(w)2

r � �(1�w)2
r � I + w(1�w)("1+"2)

r
w
r�� + � (B2 +B3) �

��1 � 1
r��

�2F =

�
�

� � 1

�
r � �
r

�
R+ �w + � (1� w) + rI � w ("1 + "2)

�
(29)

8><>:
R
r +B0�

� +B1�
� =

(R+�w)
r (1� w)

+ w�
r�� �

�w2

r +B2�
� � Iw +B3��

� (B0 +B1) �
��1 = � (B2 +B3) �

��1 + w
r��

�1L =

�
�

� � 1

�
(r � �)
r

�
R� �(1� w)+ �(w) + rI

�
(30)

Equation (30) and (29) identify the trigger values of the leader and of the
follower. These values de�ne respectively the optimal entry time of the leader
and of the follower in a co-operative framework. The results arose are closed
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to ones found in previous section. The strong di¤erence between �2F and �F is
that the optimal entry time of the follower is not only positively a¤ected by the
interaction e¤ect � and negatively a¤ected by the complementarily "2, but it is
also negatively a¤ected by "1 (the complementarily that the leader receive when
both develop). Furthermore, comparing �2L and �L we �nd that the optimal
entry time of the leader is now negatively a¤ected by the interaction e¤ect by �
(the interaction e¤ect that the follower receive when only the leader develops).
Comparing the trigger values of �rms an important results arise. The com-

plementarity relations of development ("1 and "2) are the crucial variables in
determining the strategy played by the two investors. In particular, when "1 > 0
, the complementarily that the leader receive when both develop is positive (i.e.
tenant types which interact favorably as in the case of a mix of residential use
with commercial use), then �2F < �F . According to the economic intuition,
in a cooperative setting, if the decision to (re)develop of the follower implies
a positive complementarity to the leader�s value functions, this decision arises
earlier than the non co-operative case. When � > 0, the interaction e¤ect that
the follower receive when only the leader develops (i.e. shops, where a di¤er-
ent mix of shop in a borough permits convenient shopping for customers and
increases also the rents of the house), then �2L < �L:According to the economic
intuition, in a cooperative setting, if the decision to (re)develop of the leader
implies a positive interaction e¤ect to follower�s value functions, this decision
arises earlier than the non co-operative case.

6 Conclusion

In the real world, it is more realistic modeling the investment behaviors by
incorporating the strategic interactions into the real option models. Williams
(1993) and Granadier (1996, 2002) were among few researchers that introduce
this method of modeling in the real estate applications. Williams (1993) and
Granadier (2002) show that the value of waiting option is eroded when the
number of developers increases. This results open the way to an important
merger of the game theoretic and real options literature in the real estate �eld.
Moreover, in contrast to the standard literature, Williams identi�es a region of
optimal exercise, replacing the single point of optimal exercise in all previous
models of real options. Finally, Grenadier (1996) uses a duopolistic game theo-
retic approach to options exercise to explain real estate developers investment
decisions. He identi�es the causes of periods of irrational overbuilding in the
interaction between the fear of preemption and the time to build and his model
provide a rational equilibrium foundation to this irrational overbuilding. Com-
pared to Williams�, in Grenadier�s model, equilibrium development may arise
endogenously as either simultaneous or sequential.
Although this literature has made a great step toward a better understanding

of investment decisions, the contribution of the real option literature to the
understanding of the real estate market is still limited. In particular, in these
models, �rms are assumed to be identical and products are homogeneous. This

15



symmetric assumption can be useful in selected case but may be inadequate to
describe real practices in other cases.
In this paper, we extend the symmetric model proposed by Granadier (1996)

by analysing the equilibrium strategies of two developers in the real estate mar-
ket, when demands are asymmetric. In particular, we are able to consider three
distinguishing features of the real estate market. First, the cost of redevelop a
building is, at least partially, irreversible. Second, the rent levels for di¤erent
building vary stochastically over time. Third, demand functions for space are
interrelated and may produce either positive or negative externalities. Further-
more, the asymmetries comes from three elements: the fraction of buildings each
developer owns (w and 1 � w ), the interaction e¤ect (�) and the complemen-
tarity of developments that can be di¤erent when the developer is the follower
or the leader ("1 and "2 ).
In symmetric demand models, equilibrium strategies either sequential or

simultaneous, are driven largely by the action of a comparatively strong leader.
This result becomes a special case when we analyse an asymmetric demand.
In this case, the optimal entry time of the leader and of the follower and the
conditions for the existence of an endogenous equilibrium are a¤ected by the
interaction e¤ect, by the complementarity e¤ect and by the fraction of building
each developer owns.
In our paper we analyse equilibrium strategies in asymmetric demand model

by studying three di¤erent cases: i) a �rm as a pre-assigned leader, ii) competi-
tion without pre-emption, and �nally iii) the cooperative case, i.e. the agents�
investment trigger points are chosen to maximise the sum of their two value
functions. In the pre-assigned case, the theory here developed predicts that the
optimal entry time of the follower is positively a¤ected by the interaction e¤ect
� and negatively a¤ected by the complementarily "2: Furthermore, an important
result arises when we analyse the particular case in which each developer holds
half of the space. In this case there exists a unique endogenous equilibrium only
if the interaction e¤ect that the follower receive when only the leader develops
is higher than the complementarily that the follower receive when both develop.
In the case with competition without pre-emption, we found that, by introduc-
ing several element of asymmetry in the model, the short burst and overbuilding
phenomena as predicted by Grenadier (1996) will occur only as a limiting case.
In particular, when one �rm has a signi�cantly large comparative advantage,
the pre-emptive threat from the rival will be negligible. Moreovere we identi�ed
the regions of parameter value �; "1 and "2, in which we can have either a no
equilibrium or a multiplicity of equilibria. The three di¤erent regions identi�ed
are the following:
(i) #F > B. In this case it would be optimal for the leader to take the

preemptive move and receive higher payo¤s from the action, than there exists
a unique endogenous equilibrium as predicted by Grenadier (1996).
(ii) #F < B and #F < A+ w

(1�w) : In this case both developers receive higher
payo¤s if they are the follower. Thus no equilibria arise when # is below the
follower�s trigger point (#F ). When # = #F , then both developers start to build
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simultaneously.
(ii) #F < B and #F > A +

w
(1�w) . In this case three sub-cases arise: ( no

equilibrium one equilibrium or two equilibria ).
Finally, we analysed the co-operative solution, in which the agents�invest-

ment trigger points are chosen to maximise the sum of their two value functions.
According to the previous cases, the optimal entry time of the leader and of the
follower and the conditions for the existence of an endogenous equilibrium are
a¤ected by the interaction e¤ect, by the complementarities and by the fraction
of buildings each developer owns.
Furthermore, comparing the trigger values of both �rms when there is co-

operation and when there is not, another important results arose:
(i) when "1 > 0. In this case, if the decision to (re)develop of the follower

implies a positive complementarity to the leader�s value functions, this decision
arises, in a cooperative setting, earlier than the non co-operative case
(ii) when � > 0. In this case, if the decision to (re)develop of the leader

implies a positive interaction e¤ect to follower�s value functions, this decision
arises, in a cooperative setting, earlier than the non co-operative case
Several extensions for future work could be explored. First, we can analyse

a microfoundation of the model and its empirical implementation. Second the
duopoly game theoretic framework can be extended to include multi-player dy-
namic game. Finally, we can analyse other elements that imply asymmetric
demands.
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7 Appendix

By using the pictures below, let�s show the intuition of the proof.
1) Figure (1) shows the function �(�) when �F > B and therefore,

by (25), �(�F ) > 0: It is straightforward to show that only one endogenous
equilibrium arises in the interval (0; �F ):

w
wAF −

+>
1

θ

w
wAA F −

+>>
1

θ

AF <θ

)( Fθ∆

)(θ∆

)0(∆

BF >θCASE

Figure 1: Existence of a unique endogenous equilibrium.

2) When #F < B, then �(�F ) < 0 (see Proposition 4 and 5). In this
case we have to distinguish two di¤erent situation.

a) Figure (2) shows the function �(�) when #F < A +
w

(1�w) : In this
case, it does not exist an endogenous equilibrium in the interval (0; #F ):

b) Figure (3) shows the function �(�) when #F > A + w
(1�w) : In

this case, we have shown that a multiplicity of equilibria might arise according
with the value of �� that maximizes the function �(�). In particular, b.1) if
�(��) < 0 then it does not exist an endogenous equilibrium; b.2) if �(��) > 0
then there exist two endogenous equilibria; b.3) if �(��) = 0 then there exists
an unique endogenous equilibrium in the interval we considered.
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w
wAA F −

+>>
1

θ

AF <θ

)( Fθ∆

)(θ∆

)0(∆

BF <θCASE

Figure 2: Non-existence of the equilibrium.

w
wAF −

+>
1

θ

)( Fθ∆

)(θ∆

)0(∆

BF <θCASE

0)( * >∆ θ

0)( * =∆ θ

0)( * <∆ θ

Figure 3: A multiplicity of equilibria might arise.
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