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Summary  
 

In wildlife population studies one of the main goals is estimating the population abundance. 

Line transect sampling is a well established methodology for this purpose. The usual approach 

for estimating the density or the size of the population of interest is to assume a particular model 

for the detection function (the conditional probability of detecting an animal given that it is at a 

given distance from the observer). Two common models for this function are the half-normal 

model and the negative exponential model. The estimates are extremely sensitive to the shape of 

the detection function, particularly to the so-called shoulder condition, which ensures that an 

animal is almost certain to be detected if it is at a small distance from the observer. The half-

normal model satisfies this condition whereas the negative exponential does not. Therefore, 

testing whether such a hypothesis is consistent with the data is a primary concern in every study 

aiming at estimating animal abundance. In this paper we propose a test for this purpose. This is 

the uniformly most powerful test in the class of the scale invariant tests. The asymptotic 

distribution of the test statistic is worked out by utilising both the half-normal and negative 

exponential model while the critical values and the power are tabulated via Monte Carlo 

simulations for small samples.  
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1. INTRODUCTION  
 

Many studies of wildlife populations aim at estimating the population abundance. 

Transect sampling provides an effective approach for the estimation of the population 

size ν or the density δ = ν / A, where A is the area of the study region. A thorough 

review of this methodology is given for instance by Barabesi (2000).  

The Line transect design (Buckland et al., 2001) in particular assumes that k not 

overlapping lines are randomly chosen within the study area and, then at each of the 

selected lines, an observer measures the distance from the line to any animal detected. 

Since the number of animals observed from each line is quite small in many contexts 

where this sample scheme is adopted, sampled distances are pooled together to increase 

the sample size.  

Let z1,…,zn be the sample of size n obtained by pooling together the distances 

measured at each of the k lines. Let f be the probability density function (pdf) of the 

observed distances and let g be the detection function, that is to say g(y) is the 

conditional probability of detecting an animal given that it is at distance y from the line. 

The relation: 
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holds for every distance z. The estimator of the population density δ is:  
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where l is the total length of the considered lines and )0(f̂  is an estimator of f at 0 

which satisfies the fundamental identity:  
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(Buckland et al., 2001). The basic problem for estimating δ, or equivalently ν,  is 

therefore to estimate  f(0).  

We consider two popular families of detection functions (Zhang, 2001; Eidous, 

2005):  

the half-normal family:  
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and the negative exponential family:  
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The former satisfies the shape criterion:  

 

0)0( =′g              (4) 

 

whereas the latter does not. This property, also known as the shoulder condition, ensures 

that animal detection is nearly certain at small distances from the observer (Buckland et 

al., 2001; Buckland et al., 2004). However, such a condition fails when detectability 

decreases sharply around the observation lines because of low or inexistent visibility 

(e.g. in presence of fog or dense vegetation) and it cannot hold for transect data of many 

wildlife species (Mack and Quang, 1998; Mack et al., 1999).  

In the line transect framework, Eidous (2005) reported some simulation results 

suggesting that the usual estimators of δ are extremely sensitive to departures from the 

shape criterion (4).  

Hence evaluating whether the shape criterion is consistent with the data should be a 

preliminary step for any attempt to estimate wildlife population density via line transect 

sampling (Zhang, 2003; Eidous, 2005). This problem has been previously addressed by 

Mack (1998) and Zhang (2001). 



In this paper we propose a procedure for testing the shoulder condition (4).  

As this condition is independent from the choice of the measure unit for the distance, 

the scale invariance seems to be quite a natural restriction for a statistical test. 

Particularly we consider a scale invariant test for discriminating between the two 

families (2) and (3). Because of (1) this turns out to be equivalent to testing that the 

distance probability density function (pdf) belongs to one of the two families:  
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and:  
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The test proposed herein is the uniformly most powerful (UMP) in the class of the 

scale invariant tests. This is discussed in the following section where the asymptotic 

distributions of the test statistic under (5) and (6) are calculated.  

In section 3 the critical values and the powers of the test are tabulated by Monte 

Carlo simulations for several typical α-levels and small sample sizes n. Conclusions are 

provided in section 4.  

 

 

2. THE UMP SCALE INVARIANT TEST  
 

Given n independent observations z1,…,zn from an unknown pdf f, we consider the 

problem of testing: 

 

H0 : f ∈ F0  vs.  H1 : f ∈ F1,           (7) 

 

where F0 is the family of half-normal distributions with scale parameter σ, and F1 is the 

family of Gamma distributions with shape parameter 1 and scale parameter σ, specified 



in (5) and (6) respectively. This problem is invariant under the group of scale 

transformations:  

 

{ }0:)( >== rrzzG γ .  

 

A maximal invariant under G (Lehmann and Romano, 2005, pp. 214-215) is:  
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It can be proved (see the Appendix) that the UMP test among all of the functions of 

this maximal invariant rejects the null hypothesis for large values of the likelihood ratio:  
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As λ is a monotonically increasing function of the statistic:  
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the critical region of the UMP scale invariant test for the hypotheses (7) is:  

 

α,nn qQ ≥ ,           (11) 

 

where α denotes the level of significance and qn,α is the corresponding critical value so 

that: 
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It may be observed that the test procedure is equivalent to the likelihood ratio test 

proposed by Zhang (2001) although the UMP invariant property was not considered in 

that paper.  

Furthermore, the asymptotic normal distribution under H0 is: 
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and under H1: 
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which are derived from the bivariate central limit theorem and the delta method. For 

large n the approximate critical value and the power are given respectively by:  

 

nzqn αα −+≅ 1, 84.057.1   

 

and:  

 

( ) ( )nzHqQP nn 21.042.01|1 11, −Φ−≅≥=− −ααβ ,  

 

where α−1z  is the (1−α)th quantile and Φ is the cumulative distribution function of the 

standard normal distribution. Hence, the proposed test is consistent (Lehmann, 2001, p. 

158).  

 

 



3. TABLES OF CRITICAL VALUES AND POWERS  
 

In this section Monte Carlo simulations are performed in order to obtain the empirical 

critical values and powers for small sample sizes.  

The simulation design consists of randomly drawing n distances from the distribution 

(5) setting σ = 1. We can make this without loss of generality as the distribution of the 

test statistic under (5) or (6) does not depend on the scale parameter.  

The statistic (10) is then applied to each of the simulated samples and the procedure 

is repeated 5000 times. The critical value qn,α for a considered significance level α is 

obtained as 100×(1-α )-th percentile of the Monte Carlo replicates. We obtained the 

power of the test analogously by simulating each sample according to the alternative 

distribution (6). Monte Carlo approximations of the critical values qn,α and powers are 

reported in Table 1 and in Table 2. The power obtained under (6) is good even in the 

case of a small sample and low α. 

 

TABLE 1 about here 

 

TABLE 2 about here 

 
The test performs reasonably well in terms of the power in the case of the data 

generated from a mixture of (5) and (6) too. In particular we consider the case where the 

sample is drawn from the following pdf  : 
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where p is the average proportion of the observed distances simulated from a population 

distributed according to the alternative hypothesis. Table 3 shows the power of the test 

of level α = 0.05 for a range of mixture proportions p and some sample sizes.  

 

TABLE 3 about here 

 



It can be observed that the proposed procedure performs well even in the case of a 

sample of moderate size drawn from mixture model with a large p.  

 

 

4. CONCLUSIONS 

 

In transect sampling the problem of testing the shoulder condition of a detection 

function is invariant under the group of scale transformations. Hence, the scale 

invariance is a natural restriction on the statistical procedure one has to use. In the case 

of  the half-normal and the negative exponential family, two commonly used models of 

detection functions, the above problem is reduced to testing (7). In this paper we 

proposed the UMP scale invariant test for the abovementioned problem and the limiting 

normal distribution of the test statistic is provided. For small samples we tabulated the 

critical values and related powers via Monte Carlo simulations for a range of different 

sample sizes and significant levels. It turned out that the simulated critical values and  

powers are very similar to those obtained by the asymptotic distribution for a sample 

size of 100 or more. For example, in the case of a sample size equal to 100, the 

empirical and asymptotic critical values at the 5% level were 1.71 and 1.73 respectively; 

also looking at the power, the asymptotic and the empirical approaches provides similar 

values: 0.93 and 0.95 respectively. 

 

APPENDIX 

 

The pdf of the sample ( )nzz ,...,1  can be written as:  
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where: 
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Hence the maximal invariant (8) is expressed as: 
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and has pdf given by:  
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from which the likelihood ratio (9) follows.  

By the Neyman-Pearson Lemma the most powerful test rejects the null hypothesis 

when (9) is too large. Given that its critical region does not depend on σ, the test is 

UMP among all invariant tests.  
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TABLES  

 

 

Table 1. Critical values qn,α of the UMP scale invariant test  

qn,α n = 30 n = 40 n = 50 n = 60 n=100 

α = 0.01 1.998 1.946 1.879 1.840 1.788 

α = 0.05 1.815 1.793 1.768 1.754 1.708 

α = 0.10 1.748 1.734 1.709 1.703 1.674 

 

 

Table 2. Powers 1−β of the UMP scale invariant test  

1−β n = 30 n = 40 n = 50 n = 60 n = 100 

α = 0.01 0.336 0.439 0.581 0.667 0.859 

α = 0.05 0.601 0.682 0.774 0.815 0.953 

α = 0.10 0.706 0.776 0.859 0.887 0.976 

 

 

Table 3. Powers 1−β of the UMP scale invariant test for different mixture proportions  

α = 0.05 n = 40 n = 50 n = 100 

p = 0.25 0.580 0.656 0.887 

p = 0.50 0.442 0.517 0.740 

p = 0.75 0.261 0.299 0.454 

 

 


