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Abstract

We study the relationship between process and product innovations in
vertically differentiated duopolies. A process innovation can lead two
competing firms to improve the quality of their goods introducing a
product innovation. In fact, a cost reducing innovation has two effects:
it spurs production and it enhances price competition. The former effect
induces both firms to increase quality. The latter encourages differenti-
ation, inducing low quality firm to decrease it. Therefore, high quality
firm always improves its quality, while the other may or may not. The
prevailing effect depends on the nature of quality costs (fixed or vari-
able).



1 Introduction

In the present paper we study the relationship between process and
product innovation, which we judge of the utmost relevance for the un-
derstanding of technological dynamics. The theoretical literature repre-
sents process innovation by cost reductions and product innovation by
increases of the demand schedule. However, only few contributions deal
with both kinds of innovation (e.g. Bonanno, Haworth - 1988, Lamber-
tini, Orsini - 2000) and even fewer investigate the relationship between
the two. Remarkable examples are the papers due to Athey, Schmutzler
(1995) and Eswaran, Gallini (1996).
Athey and Schmutzler (1995) prove that process innovation (cost-

reducing) and product innovation (demand-enhancing) are complemen-
tary. In the short run, an increase in firm’s net revenue of one type of in-
novation induces the firm to implement also innovation of the other kind.
Intuitively, product innovation shifts the demand curve incentivating the
firm to increase output. The higher the quantity, the bigger is the return
to lowering unit costs (process innovation). Therefore, the firm will tend
to implement process as well as product innovation. For an analogous
reasoning, long run variables such as investments in product design flex-
ibility and process flexibility show the same kind of complementarity.
Lin, Saggi (2002) in a framework of horizontal product differentiation
find similar results to Athey and Schmutzler (1995). Moreover, in their
model firms invest more in product R&D if they are allowed to invest
also in process one, rather than in the case where process R&D is not
available.
Eswaran, Gallini (1996), instead, study the relationship between

process and product innovation in order to describe the effects of differ-
ent patent policies. They present a model of horizontally differentiated
products, where a competitor can eventually challenge the incumbent
firm, called pioneer. The former enters the market with an horizontally
differentiated product. In this model, the degree of differentiation cor-
responds to the intensity of product innovation. However, the more the
entrant differentiates and the softer price competition is, hence the lower
is the incentive to introduce process innovations. Thus, in their frame-
work, the two kinds of innovation are substitute, since the incentive to
adopt a process innovation is lower when product innovation is larger.1

In our paper we consider a model of vertical product differentiation,

1The approach of Eswaran Gallini was further developed in a recent paper by
Rosenkranz (2003). The author shows that antitrust policy towards R&D coopera-
tion affects innovative decisions and moreover the direction of technological change,
in a model where consumer has a preference over variety and firms simultaneously
choose between process or product innovation.
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which we think as more suitable to represent product innovations (i.e.,
quality improvements), than horizontal ones. Furthermore, we assume
imperfect competition (a duopoly) even before the innovation is adopted
and the adoption of a process innovation at the outset of the game. In
summary, our setup is more similar to that of Eswaran, Gallini (1996),
but our results are closer to those of Athey Schmutzler (1995). In fact,
we prove that a process innovation (cost reducing) can lead firms to
invest and improve the quality of their goods and thus to adopt a prod-
uct innovation. Therefore the two kinds of innovation are complemen-
tary. However, we model the opposite causal effect between product and
process innovation with respect to the previous contributions, namely,
that from process to product one.
The choice of a vertical differentiation model seems to us a natural

one, even though it implies a non trivial choice among different mod-
els. The two main choices concern the market coverage and the cost of
quality. As for the former, we assumed a partially covered market, since
we wish to better capture the demand enhancing character of product
innovation. This assumption is consistent with most of the literature on
the subject. More crucial is the assumption on the latter choice, that
concerning costs of quality. The literature of vertical product differenti-
ation can be divided into two classes of models. The first one assumes
that a higher quality level implies a higher fixed cost (Shaked, Sutton,
1983; Bonanno, 1986), that is, the cost of quality does not interact
with the cost of quantity. While the second one assumes that the choice
of a better quality induces a higher marginal production cost (Mussa,
Rosen, 1978; Gal-Or, 1983). Usually the former assumption is consid-
ered suitable to describe a firm investing in R&D. While the assumption
of variable costs of quality is compatible with the adoption of a new,
quality improving, technology, involving the choice of inputs of better
quality. For instance, in the pharmaceutical industry, the production
of a better drug often entails the introduction of a higher percentage
of active ingredient for each unit of production, which implies higher
marginal production costs. Therefore, in this specific case a product
innovation entails higher marginal costs. In our analysis we consider
separately both fixed and variable costs of quality.
The assumptions on the quality cost affects important details also of

our results. In a duopoly with variable costs of quality, firms improve the
quality levels of their products, but also product differentiation increases,
if a process innovation is available to both firms. That is, the quality of
the high quality firm increases more than that of the low quality one.
Differently, in a duopoly with fixed costs of quality, the results depend
on the initial production costs. A process innovation makes the leader
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firm increase its quality level and the follower one decrease it, if produc-
tion cost are low also before adoption. Conversely, if production costs
before innovation are high, both firms will improve their quality level,
but in this case (and differently from variable costs) reducing vertical
differentiation.
The economic intuition of the results is the following. A process inno-

vation has two different effects. A process innovation induces lower costs
and therefore makes it convenient to increase production. Therefore any
strategy which allows to increase the price becomes more profitable,
for given cost function. Hence firms have higher incentives to improve
the quality of their goods. However there is a second effect of process
innovation. Since products are less costly price competition becomes
tougher. Firms will react adopting strategies based on non-price-factor,
the most important of which is an increase in product differentiation.
In our setup firms have different incentives to differentiate. Therefore
the high quality firm wishes to increase the quality of its product, while
the low quality one to decrease it. Hence this latter effect works in the
same direction of the former for the high quality firm, while it works
in the opposite one for the low quality one. The implication of the two
combined effects are that the high quality firm will always improve the
quality of its product, while the low quality one will improve it only if
the former effect prevails on the latter. When the latter prevails firm
2 reduces quality. This happens only with fixed costs when production
costs are low.
Recently, Bandyopadadhyay, Acharyya, (2004) proposed a model

which has some similarities to ours. They examine the complementarity
between process and product innovations in a monopoly with vertical dif-
ferentiation. Complementarity arises when a process innovation makes
product innovation profitable, thus inducing the monopolist to adopt it.
Also their results depend on the nature of the innovation costs (fix or
variable): when quality costs are variable complementarity holds only
with partial coverage, but when they are fixed the complementarity re-
sults holds unambiguously. However, since they study a monopoly, they
completely neglect any strategic issue.
Some examples of the interdependence between product and process

technology are, in the field of laser printers and of automobile industries;
in both cases of process innovations for building established products in-
duce new and better quality versions of the goods. For instance, in the
Seventies, Bob Metcalfe developed Ethernet in the Xerox Parc Labora-
tories. Ethernet technology was able to send a larger amount of data to
the laser printers, therefore it can be considered a process innovation. Si-
multaneously, Xerox has been forced to produce a new hardware, namely
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a faster printer to exploit the new technology (Varian, Shapiro 1999).
Our model offers a theoretical explanation to this process. Initially a
firm introduces a cost reducing innovation; then it is forced to invest in
R&D and to introduce a new, higher quality hardware, namely a prod-
uct innovation. The final level of market differentiation depends upon
the competitors’ reactions.
Analogously, the use of plastic in the car industry was initially meant

to reduce production costs and certainly not car quality; in this case
we have a process innovation. Later on, research on modern materials
helped car manufacturers to use plastic also to improve product quality
and now luxury brands too make use of plastic parts for the body and
the interior of cars. Again, our model is suitable to describe this equilib-
rium path. At the beginning, plastic parts (for instance bumpers) were a
cost-reducing innovation. Then, according to an increase in market com-
petition, firms try to differentiate their products from the competitors’
ones and improve the quality of bumpers (and hence of cars).
In the following sections of the paper we will introduce the model

and our analytical results. Section 2 introduces the formal model of
vertical differentiation and the assumptions. In the Section 3, we fully
develop the model with variable costs of quality. First, we analyze the
comparative statics, uniqueness and existence of the equilibrium in the
model without innovation. Then we introduce the game with innovation,
both in the symmetric and asymmetric cases. Analogously, Section 4
solves the model with fixed costs. In the Section 5, some concluding
remarks will close the paper.

2 Description of the Model

In this section we present the model, starting from the description of the
timing of the game. Then the demand will be described. Finally we will
introduce the technology, distinguishing between the cases of variable
and fixed costs of quality.

2.1 Timing
The timing of the game is as follows. In the first stage, the two firms
simultaneously decide whether to adopt a freely available process inno-
vation. In the second stage firms set the quality θi, i = 1, 2. Then in
the final stage of the game, firms simultaneously set prices. Therefore,
referring to the standard model of quality choice, we add a stage at the
beginning of the game. Namely, in the first stage firms decide whether
to adopt or not a cost reducing innovation.
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2.2 The Demand
As in standard models of vertical differentiation, we assume that each
consumer has the following indirect utility function:

uh = hθi − pi with i = 1, 2

where the parameter h is uniformly distributed on [0, 1], and represents
the consumers’ marginal rate of substitution between money and quality.
θi measures the quality level of the final good yi. pi is the unit price for
the good produced by firm i. We impose that consumers can purchase
at most one unit of the good, as it is standard in this class of models.
Without loss of generality, we assume that θ1 ≥ θ2. Hence, we have

two marginal consumers, the former is indifferent between buying the
low quality good and not buying at all, characterized by a parameter
value: h02 =

p2
θ2
; the latter is indifferent between buying good 1 or good

2, characterized by a parameter value: h21 =
p1−p2
θ1−θ2 . Hence, the demand

functions for the high quality and the low quality firms are the standard
ones in this class of models with partial coverage:

y1 = 1− h21 = 1− p1 − p2
θ1 − θ2

(1)

y2 = h21 − h02 =
p1 − p2
θ1 − θ2

− p2
θ2

(2)

2.3 The Technology
Empirically, cost of quality might have both a variable component and
a fixed one. However, following the literature, we will solve separately
the two models. We start introducing the variable costs model, because
its results are more clear-cut than those of the fixed costs one.

2.3.1 Variable Costs

For computation simplicity and in agreement with most of the literature,
we assume that the cost function of the firm i is:

ci
(θi)

2

2
yi with i = 1, 2 (3)

with ci < 1.
Using the respective demand functions (1) and (2), the profit func-

tions become:

π1 (p1, p2, θ1, θ2) =

µ
1− p1 − p2

θ1 − θ2

¶µ
p1 − c1

θ21
2

¶
(4)

π2 (p1, p2, θ1, θ2) =

µ
p1 − p2
θ1 − θ2

− p2
θ2

¶µ
p2 − c2

θ22
2

¶
(5)
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2.3.2 Fixed Costs

Analogously, assuming fixed costs of quality, cost function of firm i is as
follows:

k
(θi)

2

2
+ aiyi with i = 1, 2

with k < 1.
Therefore, profit functions for Firms 1 and 2 are respectively:

π1 (p1, p2, θ1, θ2) =

µ
1− p1 − p2

θ1 − θ2

¶
(p1 − a1)− k

2
θ21 (6)

π2 (p1, p2, θ1, θ2) =

µ
p1 − p2
θ1 − θ2

− p2
θ2

¶
(p2 − a2)− k

2
θ22 (7)

3 Solution of the Model: Variable Costs

Given the profit functions, (4) and (5), we solve the game backwards,
starting from the price stage. First, we will analyze the existence and the
uniqueness of the equilibrium of the model without innovation. Second,
we perform the comparative statics of the same model. Finally, we will
show that the comparative statics is useful in characterizing the game
with innovation.
Solving the system of first order conditions for prices, we obtain the

following equilibrium prices as a function of the two quality levels:

p1 (θ1, θ2) =
1

2
θ1
4 (θ1 − θ2) + 2c1θ

2
1 + c2θ

2
2

4θ1 − θ2
(8)

p2 (θ1, θ2) =
1

2
θ2
2 (θ1 − θ2) + c1θ

2
1 + 2c2θ1θ2

4θ1 − θ2
(9)

Substituting (8) and (9) in the profit function of Firm 1 and simplify, we
obtain the profit as a function only of the two quality levels. The profit
function of Firm 1 and 2 are respectively:

Π1 (θ1, θ2) = π1 (p1 (θ1, θ2) , p2 (θ1, θ2) , θ1, θ2) = (10)

1

4
θ21

¡
4 (θ1 − θ2)− (2θ1 − θ2) c1θ1 + c2θ

2
2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)

Π2 (θ1, θ2) = π2 (p1 (θ1, θ2) , p2 (θ1, θ2) , θ1, θ2) = (11)

1

4
θ1θ2

¡
2 (θ1 − θ2)− (2θ1 − θ2) c2θ2 + c1θ

2
1

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
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Now, we are ready to solve the second stage of the game where firms
choose the products quality. The following proposition proves that the
equilibrium does exist. In equilibrium, firms will choose to partially
differentiate their products when there is a cost in improving quality.
Moreover, we are able to find a set of parameter values (the cost pa-
rameter of each firm ci, as defined in (3)) for which the equilibrium is
“unique”. Later, we are able to fully characterize the unique equilibrium
of our model.

Proposition 1 There exists a non empty open set of parameter values
- c2
c1
∈ (0.94, 1.06) - for which the model has an equilibrium. The equilib-

rium where θ1 > θ2 is unique and it implies that firms will differentiate
the quality level of their products.

Proof. See Appendix A.

Notice that the set of parameter values specified in the previous
proposition is rather large. In fact, it implies a difference of ±6% in
the marginal costs, a difference which seems to us quite substantial.
There are still some difficulties in performing comparative statics. It is
obvious that when the model is symmetric there exist two equilibria: one
where Firm 1 produces at a higher quality level (the one we studied) and
a second (symmetric with respect to the former) where Firm 2 produces
at higher quality level. In the case of a symmetric model the choice
between the two equilibria is irrelevant, because they are equivalent up
to a name permutation. However, if we set:

c = c2
c1 = mc,

(12)

thus m = c1/c2, we can find a set of equilibria (parameterized to m)
which converges to that of the symmetric equilibrium as m → 1. This,
together with the existence of two equilibria in the symmetric case, im-
plies that in the relevant range of parameter values there are two equi-
libria, which are substantially different ifm 6= 1. In order to simplify the
analysis and to maintain uniqueness, we assume that Firm 1 produces
the highest quality good. With this restriction in mind, Proposition 1
guarantees a unique equilibrium, which allows to prove a simple compar-
ative statics result, summarized in the next Proposition. Before stating
the following Proposition notice that m is an inverse measure of the
technological advantage of Firm 1; therefore when it decreases Firm’s 1
technology improves compared to that of Firm 2. Namely, when m < 1
Firm 1 is more productive than Firm 2, while the opposite occurs when
m > 1.
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Proposition 2 (a) Product quality and product differentiation increase
if both firms production costs reduce proportionally, i.e. if c decreases,
namely

θ1 =
θ1 (m)

c

θ2 =
θ2 (m)

c

with θ1 (m) > θ2 (m).
(b) Product quality of Firm 1 and product differentiation increase also if
Firm 1 increases its technological advantage, i.e. m decreases. Product
quality of Firm 2 first decreases then increases.

Proof. See Appendix A.

We derived all the needed results for the vertical differentiation model
without innovation. We now have to find their implications for the
innovation model, starting from the solution of the first stage of the
game, where the two firms simultaneously decide whether to innovate or
not. Afterwards, we have to characterize how innovation affects vertical
products differentiation. Process innovation is represented by a decrease
in ci, namely c = c2 and c1 = mc, which can be induced, for instance, by
the use of a new production input or process. Obviously, firms innovate
only if it is profitable to do so. Therefore, first we have to ascertain what
happens to profits. The next Proposition solves this problem in a rather
simple way.

Proposition 3 Adopting an innovation is an equilibrium strategy for
both firms.

Proof. See Appendix A.

In the comparative statics analysis we will consider two different
kinds of process innovations. We define the first one equiproportional, be-
cause it leaves the ratio between the two marginal costs, m, unchanged.
This kind of innovation can be parameterized through a decrease in c.
The second type of innovation increases the technological advantage of
Firm 1 with respect to Firm 2 and can be represented through a decrease
inm, for given c. We call this type of process innovation, disproportional.
We will deal first with the equiproportional innovation.
In Proposition 2 we found that the solution has the form: θi =

θi(m)
c
,

i = 1, 2, which is very simply parameterized in c and makes it easy to
perform comparative statics when the innovation is introduced. There-
fore a direct consequence of the mentioned Proposition part (a) is that
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a proportional process innovation makes θ1, θ2 and (θ1 − θ2) increase. If
m decreases, provided that m ≤ 1.3, part (b) of Proposition 2 implies
that differentiation increases, as part (b) of the following Proposition
states. We summarize the above discussion in the following:

Proposition 4 If the parameter values are those described in Proposi-
tion 1:
(a) an equiproportional process innovation increases qualities of both
firms and vertical product differentiation,
(b) a disproportional process innovation at the advantage of Firm 1 in-
creases quality of Firm 1 and vertical product differentiation, while prod-
uct quality of Firm 2 first decreases and then increases.

The result of Proposition 4, in the case of equiproportional process
innovation, has a very compelling economic intuition. In fact, as we said
in the Introduction, a process innovation makes price competition among
firms tougher and therefore induces them to adopt defensive strategies,
the most important of which is an increase in product differentiation.
Given the result on differentiation, it is not surprising that Firm 1 ex-
ploits the cost reduction in order to increase the quality. Slightly more
surprising is that also the second Firm quality increases, since it faces a
trade-off. On the one hand, it finds it more convenient to increase qual-
ity, given the cost reduction. On the other hand, it has an incentives to
lower quality in order to increase product differentiation. However, since
Firm 1 is increasing significantly its quality, the latter effect is dominated
by the former.
By the same reasoning, in the case of disproportional process inno-

vation, Firm 1 has an incentive to differentiate its output from that of
the opponent firm, increasing quality differentiation. By so doing, it
also increases its advantage in producing higher quantities of the good,
since it benefits of lower marginal costs. Firm 2 faces a trade-off, as
already said. It has an incentive to increase differentiation and therefore
decrease quality, in order to lower price competition. On the other hand,
an increase of Firm 1 quality allows to exploit the higher willingness to
pay of the consumers. The two forces act differently for different ranges
of parameter values, since the intensity of the second effect varies with
its technological advantage. In fact, the quality of Firm 1 increases in
a much faster way as it becomes more and more efficient. Therefore if
the asymmetries between firms are significant also Firm 2 can increase
its quality. As a matter of facts, for small differences between firms an
increase of Firm 1 efficiency induces a lower quality of the product of
Firm 2, if Firm 1 is much more efficient the opposite is true.
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4 Solution of the Model: Fixed Costs

In the present section we assume that there are fixed costs of quality.
While with variable costs we were able to characterize also the asymmet-
ric model, with fixed cost we are able to solve the symmetric model only.
For this reason and in order to simplify the exposition, we present the
results of the fixed costs model in a more condensed way, with respect
to the variable costs ones.
We solve the game backwards, starting from the prices stage, as

usual. Solving the system of first order conditions, from (6) and (7),
with respect to prices we obtain the equilibrium prices as a function of
the two quality level:

p1 (θ1, θ2, a1, a2) = θ1
2 (θ1 − θ2) + 2a1 + a2

4θ1 − θ2
(13)

p2 (θ1, θ2, a1, a2) =
(θ1 − θ2) θ2 + 2θ1a2 + a1θ2

4θ1 − θ2
(14)

Substituting the equilibrium prices in the profit functions we obtain:

Π1 (θ1, θ2, a1, a2, k) =¡
2θ21 − 2θ1θ2 − 2θ1a1 + θ1a2 + a1θ2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
− 1
2
kθ21

(15)

Π2 (θ1, θ2, a1, a2, k) =

θ1
θ2

¡
θ1θ2 − θ22 + a1θ2 + θ2a2 − 2θ1a2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
− 1
2
kθ22

(16)

as a function of the two quality levels. Now, we can solve the second
stage of the game where firms choose the products quality. As we al-
ready stated, we can solve only the symmetric model, i.e. a1 = a2 = a.
First we will prove the existence of the equilibrium in the model with-
out innovation. Then we will characterize the game with innovation by
means of comparative statics.

Proposition 5 There exists a unique equilibrium of the symmetric game
(i.e., with a1 = a2 = a) with fixed costs for a · k ∈ A ∪ B, where:

A =
£
0, 0.3042E−2

¤
and B =

£
0.59466E−2, 0.82724E−2

¤
.

Proof. See Appendix B.

In equilibrium firms differentiate the quality level of their products,
as it is standard in the literature on vertical differentiation. We are able
to characterize the range of parameter values where an equilibrium exists
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and it is unique. Now we can solve the first stage of the game, where the
two firms simultaneously decide whether to innovate or not, and eventu-
ally how innovation affects quality and vertical products differentiation.
Firms introduce the innovation only if it is profitable. This is proved in
the following proposition.

Proposition 6 For the equilibrium strategy profile of the symmetric
game, the adoption of a process innovation is always profitable for one
of the firms.

Proof. See Appendix B

We cannot prove whether to adopt the innovation is an equilibrium,
since we did not solve the asymmetric model. However, in the appen-
dix we can prove that a small reduction in production costs is always
profitable for one of the firms. Moreover, we proved graphically that
the adoption of a process innovation which allows a discrete reduction
in production costs is an equilibrium.
Notice that in the proof of Proposition 5, we come up with a unique

solution, for specific ranges of parameters values. In the model there are
two driving forces induced by a process innovation and already explained
in the introduction of the paper. The former induces all firms to improve
the quality, while the latter enhances differentiation. For the high qual-
ity firm, these two forces both contribute in improving quality, while for
the low quality firm the attempt to increase product differentiation can
induce a lowering of the quality level. Moreover, these two forces have
different intensities, according to the parameter values. When we con-
sider low production costs, price competition is necessarily tough and
the incentive to improve the quality for Firm 2 are low, since its market
share is relatively small and decreases with the innovation. Therefore
in equilibrium the innovations will induce more product differentiation.
At the opposite, when we start with high production costs, price com-
petition is milder and both firms will increase quality. However, the
low quality firm will have an higher incentive to increase quality than
the high quality one and this will induce a lower vertical differentiation.
This economic intuition is properly stated in the following proposition.

Proposition 7 (a) If ak ∈ A, process innovation increases Firm’s 1
product quality, θ1, while it decreases that of Firm 2, θ2. Therefore,
vertical product differentiation increases.
(b) If ak ∈ B, process innovation increases the quality of both products,
θ1, θ2. Moreover, vertical product differentiation decreases.

11



Proof. See Appendix B.

In the equilibrium of case (a), firms produce at such low costs that
make price competition very tough. Therefore, when process innovation
is introduced, both firms pursue a quality differentiation policy, to relax
price-competition. This strategy induces the quality leader, Firm 1,
to increase product quality. Differently Firm 2 can only decrease its
quality. In summary, process innovation induces product innovation, as
an improvement of product quality, for the high-quality firm and induces
a lower quality level for the low-quality firm. If we interpret fixed cost of
quality as R&D investment necessary to obtain higher quality, product
innovation becomes complementary to the original process innovation.
This statement is even more convincing in case (b). Here the equi-

librium is characterized by high production costs. To recover this costs,
firms are forced to compete on non-price factors, such as quality. Af-
ter the introduction of process innovation and the related fall down in
production costs, both firms improve the quality level of their goods,
reducing vertical differentiation. In summary, for both the firms process
innovation induces a quality improvement which is a product innovation,
under specific interpretation of the model, e.g., if fixed costs are gener-
ated by R&D investments. In both cases, a process innovation allows
the two firms to lower the price and increase the quantities sold, as it
can be proved graphically.

5 Concluding Remarks

The adoption of a process innovation always induces Firm 1, the quality
leader, to choose a better quality; in both cases of variable and fixed costs
of quality. Firm 2, instead, with variable costs of quality, will certainly
choose a higher quality level, while with fixed costs the quality level can
increase or decrease according to the cost level. Product differentiation
increases with variable costs, while it increases with fixed costs, only in
the second case.
The economic reason for the results is that a process innovation has

two different effects. It induces lower costs boosting production, which
makes it more convenient to increase quality. It also makes price com-
petition tougher and therefore spurs vertical differentiation. The two
effects work in the same direction for the high quality firm and in the
opposite one for the low quality one. Hence the high quality firm will
always improve the quality, while the low quality one will improve it
only if the former effect prevails on the latter.
The more natural interpretation of our result is that an adoption

of a process innovation induces always product innovation for the high
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quality firm and in important regions of the parameter values also for
the low quality one, since the quality of their products improves. There-
fore we can say that in our model process innovation induces product
innovation. For this aspect, our model provides a further motivation for
considering product and process innovations as complementary (Athey
and Schmutzler, 1995).
Moreover our results provide a new logical example of the difficulty

in distinguishing between product and process innovations, both theo-
retically and empirically, even though we deserve the distinction between
process and product innovation as one of the most relevant in the whole
theory of technical change.
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Appendix A

Proof of Proposition 1
In order to prove the existence and the uniqueness of the solution in the
asymmetric model for the specified set of parameters values, we start
by maximizing the firms’ profit functions and computing the first order
conditions. Then we show that the solution is an internal one and that
the second order conditions are satisfied. Finally we prove that the
equilibrium is unique.

First order conditions
The two profit functions can be written in terms of c and m setting
c = c2 and c1 = mc, as follows

Π1 (θ1, θ2, c,m) =
1

4
θ21

¡
4 (θ1 − θ2) + cθ22 − 2mcθ21 +mcθ1θ2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)

Π2 (θ1, θ2, c,m) =
1

4
θ1θ2

¡
2 (θ1 − θ2) +mcθ21 + cθ22 − 2θ1cθ2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)

and their first order conditions respectively for θ1 and θ2 are:

1

4
θ1
¡−4θ1 + 4θ2 − cθ22 + 2mcθ21 −mcθ1θ2

¢
¡−20θ1θ22 + 8θ32 + 28θ21θ2 + 24mcθ41 − 46mcθ31θ2 + 23mcθ21θ

2
2− (17)

2cθ42 − 4mcθ1θ
3
2 + 4θ

2
1cθ

2
2 + cθ32θ1 − 16θ31

¢
(4θ1 − θ2)

−3 (θ1 − θ2)
−2 = 0

and

1

4
θ1
¡
2θ1 − 2θ2 +mcθ21 + cθ22 − 2θ1cθ2

¢
¡−19cθ32θ1 + 14θ1θ22 − 22θ21θ2 − 2mcθ21θ

2
2 +mcθ31θ2 + 38θ

2
1cθ

2
2

¢
(18)¡−24cθ31θ2 + 8θ31 + 4mcθ41 + 2cθ

4
2

¢
(4θ1 − θ2)

−3 (θ1 − θ2)
−2 = 0

Substituting (8) and (9) in (1) and (2) we obtain:

y1 =
1

2
θ1
4θ1 − 4θ2 − 2mcθ21 + cθ22 +mcθ1θ2

(4θ1 − θ2) (θ1 − θ2)
(19)

y2 =
1

2
θ1
2θ1 − 2θ2 +mcθ21 + cθ22 − 2θ1cθ2

(4θ1 − θ2) (θ1 − θ2)
(20)

Notice that the first terms of (17) and (18) are the numerator of (19)
and (20) respectively. So in our internal solution only the second terms

15



in (17) and (18) matter. Therefore the first order conditions are satisfied
in internal maxima for the firm only if the numerator of the fractions in
(17) and (18) are nought. Given that, it is not possible to find simply
the zeros of those terms, we introduce the following transformations:

θ1 = s/c

θ2 = xs/c
(21)

with 0 ≤ x ≤ 1, since θ2 ≤ θ1. Therefore, we obtain the following
equivalent conditions:

f1 (s/c, xs/c,m) =
−s3 [(2x4 + 4mx3 − x3 − 23mx2 − 4x2 + 46mx− 24m) s

−8x3 − 20x2 − 28x+ 16] = 0
(22)

f2 (s/c, xs/c,m) =
s3 [(+2x4 − 19x3 + 38x2 − 2mx2 +mx− 24x+ 4m) s

+14x2 − 22x+ 8] = 0
(23)

The system (22)− (23) has a trivial solution, which is θ1 = θ2 = s = 0.
But θ1 = θ2 = 0 cannot be an equilibrium. In fact:

Π1 (θ1, 0, c,m) =
1

16
θ1 (2−mcθ1)

2

is increasing in θ1 in a right neighborhood of 0. Setting s > 0, the
first order conditions are satisfied only if the two expressions in square
brackets are nought. We can easily solve (23) for s and obtain:

s = − 14x2 − 22x+ 8
(+2x3 − 19x2 + 38x− 24) x+ (−2x2 + x+ 4)m

(24)

Substituting then (24) in (22) we have:

2
(x−1)(4−x)(8x5−42x4+20mx3+99x3−104x2−81mx2+48x+84mx−32m)

(−24m+46mx−23mx2+2x4+4mx3−4x2−x3)(4m+38x2+mx+2x4−19x3−24x−2mx2)
= 0

which is zero only if the numerator is nought, that is:

(x− 1) (4− x) · [(8x4 − 42x3 + 99x2 − 104x+ 48)x+
+(20x3 − 81x2 + 84x− 32)m] = 0 (25)

This equation has two obvious solutions: x = 4 and x = 1. The first
one can be discarded because we have x ≤ 1. It is easy to check that
the second one is not an optimum for Firm 1. In fact, x = 1 implies
θ1 = θ2 and the limit of the rhs of (17) for θ1 → θ2 is −∞, since the
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numerator equals −3
4
(1−m)2 c2θ7, while the denominator tends to 0.

We have finally that the first order condition for internal maxima are
satisfied only if (24) holds and if:

¡
8x4 − 42x3 + 99x2 − 104x+ 48¢x+ ¡20x3 − 81x2 + 84x− 32¢m = 0

It is rather difficult to solve this expression for x. However, we can
solve it for m with the interpretation that we find the ratio between the
two marginal costs, m, that induces a specific equilibrium ratio among
qualities, x. This solution is:

m = −8x
4 − 42x3 + 99x2 − 104x+ 48
20x3 − 81x2 + 84x− 32 x (26)

and substituting again in (24) we obtain:

s = 2
20x3 − 81x2 + 84x− 32

(4− x) (8x3 − 46x2 + 71x− 36)x (27)

Internal solutions
If we consider again the expression for y1, substitute (21) and then the
last two expressions for m and s, we obtain the following expression in
x:

y1 = −2 4x2 − 11x+ 6
8x3 − 46x2 + 71x− 36

The numerator has two solutions: x = 2 and x = 3
4
, while the denomi-

nator has only one real solution, whose approximate value is x ' 3. 662.
Therefore the above expression changes sign in the relevant region x ∈
[0, 1] only once, for x = 3

4
. Moreover, if we evaluate it for x = 0, we ob-

tain y1 = 1/3 > 0. Therefore the relevant range for an internal solution
becomes x ∈ [0, 0.75]. If we do the same for y2 we obtain:

y2 = 2
4x3 − 17x2 + 26x− 16

(4− x) (8x3 − 46x2 + 71x− 36)
We already proved that the denominator does not change sign and hence
it is negative. The numerator has only one real root: x = 2 and therefore
it is also negative in the relevant range. Hence y2 > 0. Finally consider
the expression for s, (27). We already proved that the denominator is
negative and the numerator has only one real root:

x =
1

20

3

q
3403 + 120

√
469 +

169

20
3
p
3403 + 120

√
469

+
27

20
≈ 2. 723 6
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and it is therefore negative in the relevant range. Hence s is positive and,
for positive x, both θ1 and θ2 are positive. Therefore we have to prove
for which values of m we have a positive x. Consider (26) and notice
that the denominator is equal to the numerator of (27). Therefore the
denominator is always negative. The numerator is always decreasing. In
fact, differentiation yields:

32x3 − 126x2 + 198x− 104

which has only one real solution x = 1. Notice that the numerator for
x = 1 is equal to 9 and therefore it is always positive. Therefore m is
positive for any x ∈ [0, 0.75]. Since positive values of m are admissible,
the first order conditions will characterize an internal solution, provided
that the profits are non negative and the second order conditions are
globally satisfied.

Second order conditions
Notice that the profit functions are continuous. Moreover, it is easy to
check that Πi (θ1/c, θ2/c, c,m) = cΠi (θ1, θ2, 1,m). Therefore we can set
c = 1, without loss of generality. Thus the only relevant parameter is m.
Using (26) and (27) we can plotΠ1 (θ1, x · s (x) , 1,m (x)) andΠ2 (s (x) , θ2, 1,m (x))
in order to ascertain whether there exists a set of parameter values which
satisfies globally the second order conditions. For instance, if we set
m = 0.94, the corresponding value of x is that satisfying m (x) = 0.94,
whose approximate value is: x = 0.46616. Substituting this value in
Π1 (θ1 , x·s (x) , 1, m (x)) and inΠ2 (s (x) , θ2, 1,m (x)), and noticing that
the relevant ranges are θ1 ≥ θ∗2 = x∗s (x∗) ' 0.39413, θ1 ≤ 2, θ2 ≥ 0 and
finally θ2 ≤ θ∗1 = s (x∗) ' 0.84549, we can plot the two profit functions
in the relevant regions as in Figures 1. Again, we can set m = 1.06,
the corresponding value of x is that satisfying m (x) = 1.06, whose
approximate value is: x = 0.51188. Substituting in Π1 (θ1 , x · s (x) ,
1, m (x)) and in Π2 (s (x) , θ2, 1,m (x)), and noticing that the relevant
ranges are θ1 > 0.41031, because otherwise y1 is non positive and also
that 0.40811 ≥ x∗s (x∗) ' 0.40663, θ1 ≤ 2, the plot of Firm 1 profit
function in the relevant regions is that in Figure 1. As for θ2, the rele-
vant range is θ2 ≥ 0 and θ2 ≤ θ1 = s (x) ' 0.79439. However, it is easy
to check that for θ2 > 0.77062, y1 is nought and for 0 ≤ θ2 ≤ 0.77062
the plot of Firm 2 profit function is that in Figure 1.
In the interval θ2 ∈ (0.77062, 0.79439] Firm 1 does not sell any good.
Therefore Firm 2 profit function is:

Π2 =

µ
1− p2

θ2

¶Ã
p2 − (θ2)

2

2

!
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Figure 1: Profits as a function of own quality.
The other firm’s quality is held constant at the equilibrium level
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which reaches its maximum for:

p2 =
1

4
(θ2 + 2) θ2

which substituted again in Firm 2 profit function yields:

Π2 =
1

16
(2− θ2)

2 θ2

which is decreasing in the relevant range. Moreover it is easy to check
that Π2 (s (x) , θ2, 1,m (x)) evaluated at x = 0.51188 and θ2 = 0.77062 is
bigger than this last profit function. Hence Π2 has a unique maximum,
which is the one depicted in Figure 1.
We can perform the same exercise for various values of the whole range
m ∈ [0.96, 1.06] reaching the same qualitative results. By continuity
we can ascertain that the second order conditions are satisfied. Finally
notice that the profit levels are always positive and this completes the
proof that the solution are not corner ones. ¥
Proof of Proposition 2
Part (a). Let us start with the comparative statics with respect to c.
First notice that first order conditions, (22) and (23), they do not depend
any more on c. Therefore if bs and bx, with bx ≤ 1, are a solution of the
system, they do not depend on c. Moreover we have: cθ1 = bs and
cθ2 = bxbs and hence the difference between θ1 and θ2 increases when c
decreases. Notice that a decrease in c represents an equiproportional
decrease of c1 and c2. Hence we have an increase in differentiation if
both costs decrease in a proportional way and this proves the first part
of the Proposition.
Part (b). Plotting m as in (26) in the range [0, 0.75] we obtain the
upper left graph in Figure 2. Notice that the relation is monotonically
increasing for x ∈ [0, 0.69]. At x = 0.69, (26) is almost at its maximum,
whose approximate value is 1.3. Therefore the relation between m and
x is monotonically increasing for m ∈ [0, 1.3]. Now, the plot of (27) in
the range x ∈ [0, 0.69] shows that θ1/c is monotonically decreasing in
x and hence in m (See lower left graph in Figure 2). Therefore, when
the technological advantage of Firm 1 increases, its quality increases as
well.
For (27), we have the following expression of the quality of Firm 2:

sx = −2 20x3 − 81x2 + 84x− 32
8x4 − 78x3 + 255x2 − 320x+ 144 (28)

Plotting (28) in the range x ∈ [0, 0.69] we have the lower right graph of
Figure 2. Therefore, when Firm 1 increases its technological advantage,
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Figure 2: Comparative statics with a dispropotional innovation
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product quality of Firm 2 initially decreases, then increases slightly.
Recall that, for given c, the differentiation increases if (θ1 − θ2) c =
s (1− x) increases. For (27) we have:

s (1− x) = 2
(1− x) (20x3 − 81x2 + 84x− 32)
(4− x) (8x3 − 46x2 + 71x− 36)x

whose plot in the range x ∈ [0, 0.69] is the upper right graph in Figure 2
and which is monotonically decreasing in x and hence in m. Therefore,
product differentiation increases as the technological advantage of Firm
1 increases, for given cost of Firm 2, c. ¥

Proof of Proposition 3
Notice that a process innovation for Firm 1 is equivalent to a reduction of
c1, holding c2 constant that given our variable transformations is equiv-
alent to a reduction in m, holding c constant. A process innovation for
Firm 2, instead, is equivalent to a reduction in c2, holding c1 constant,
which after our transformation is equivalent to a decrease in c with a
proportional increase in m, so that mc = c1 is constant. Using (26) and
(27) , Firm’s 1 profits in equilibrium satisfy the following equality:

cΠ1 (s (x) /c, xs (x) /c,m (x) c, c) =

8
¡
4x2 − 11x+ 6¢

80x6 − 624x5 + 1891x4 − 2885x3 + 2394x2 − 1048x+ 192
x (−4 + x) (8x3 − 46x2 + 71x− 36)3

If we plot the vector:

cΠ1 (s (x) /c, xs (x) /c,m (x) c, c)
m (x)

we obtain the equilibrium profit of Firm 1 as a function of m and see in
Figure 3 that it is decreasing. Hence it is always profitable for Firm 1
to adopt a process innovation.
Let us move to the second Firm. Using again (26) and (27) , its equilib-
rium profits satisfy:

mcΠ2 (s (x) /c, xs (x) /c,m (x) c, c) =

m (x) cΠ2 (s (x) /c, xs (x) /c,m (x) c, c) =

8x
(1− x) (x− 2)2 (4x2 − 9x+ 8)2

(4− x)3
·

(8x4 − 42x3 + 99x2 − 104x+ 48)
(−8x3 + 46x2 − 71x+ 36)3
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Figure 3: Profits of the two firms and asymetries

In case of process innovation of Firm 2, the above expression is propor-
tional to profits of Firm 2, since m (x) c is constant. Process innovation
implies an increase in m. If we plot the vector:

m (x) cΠ2 (s (x) /c, xs (x) /c,m (x) c, c)
µ (x)

we obtain the equilibrium profit of Firm 2 as a function of m and see in
Figure 3 that it is increasing. Hence it is always profitable for Firm 2 to
adopt a process innovation.¥
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Appendix B

Proof of Proposition 5.
In order to prove the existence of a unique solution, given the set of
parameters, we start maximizing the firms’ profit functions, computing
the first order conditions. Then we prove that the candidate equilibrium
is an internal solution. Finally we show that second order conditions are
satisfied.

First order conditions
Consider first that in the symmetric model the profit functions (15) and
(16) rewrite as follows:

Π1 (aθ1, aθ2, a, a, k) /a =

¡
2θ21 − 2θ1θ2 − θ1 + θ2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
− 1
2
akθ21 (29)

Π2 (aθ1, aθ2, a, a, k) /a =
θ1
θ2

¡
θ1θ2 − θ22 + 2θ2 − 2θ1

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
− 1
2
akθ22 (30)

Therefore maximizing (29) and (30) is equivalent to maximizing the
following expressions:

Π1 (θ1, θ2, 1, 1, k) =

¡
2θ21 − 2θ2θ1 − θ1 + θ2

¢2
(4θ1 − θ2)

2 (θ1 − θ2)
− 1
2
kθ21 (31)

Π2 (θ1, θ2, 1, 1, k) = θ1

¡
θ2θ1 − θ22 + 2θ2 − 2θ1

¢2
(4θ1 − θ2)

2 (θ1 − θ2) θ2
− 1
2
kθ22 (32)

Differentiating the above profit functions respectively for θ1 and θ2 we
obtain the first order conditions for an internal solution:

F1 (θ1, θ2, k) = (2θ1 − 1) 8θ
2
1 − 6θ2θ1 + 4θ1 + 4θ22 − 7θ2

(4θ1 − θ2)
3 − kθ1 = 0 (33)

F1 (θ1, θ2, k) = (2θ1 − 1) 8θ
2
1 − 6θ2θ1 + 4θ1 + 4θ22 − 7θ2

(4θ1 − θ2)
3 − kθ1 = 0 (34)

In order to solve the system, we introduce the following transformations:
θ1 = θ, θ2 = xθ. Substituting in (33) and (34) we obtain the following
equivalent conditions:
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F1 (θ, xθ, k) = θ

µ
(2θ − 1) 8θ − 6θx+ 4 + 4x

2θ − 7x
(4− x)3 θ3

− k

¶
= 0 (35)

F2 (θ, xθ, k) = (2− xθ)
−4x2 + 7θx2 + 6x− 4θx− 8

θ2x2 (4− x)3
− kxθ = 0 (36)

It is trivial to solve (35) for k.

k = K (x, θ) = (2θ − 1) 8θ − 6θx+ 4 + 4x
2θ − 7x

(4− x)3 θ3
(37)

Then substituting K (·) in (36) we obtain the following equation:¡
8x3 − 12x2 + 23x− 4¢x2θ2 − 4 ¡x3 + 2x2 + x+ 2

¢
x2θ+

7x4 − 4x3 + 8x2 − 12x+ 16 = 0
which can be solved for xθ and has the following two roots:

ΘA (x) =
2x(x+2)(x2+1)+

√
(4x6−8x5+12x4−17x3+20x2−24x+4)(4−x)2
(8x3−12x2+23x−4) (38)

ΘB (x) =
2x(x+2)(x2+1)−

√
(4x6−8x5+12x4−17x3+20x2−24x+4)(4−x)2
(8x3−12x2+23x−4) (39)

Notice that: 2x (x+ 2) (x2 + 1) is always positive, the discriminant is
positive for 0 ≤ x < 0.193 306 and finally the denominator is positive for

x > bx = − 1
12

³
594 + 6

√
39 279

´ 1
3
+
17

2

³
594 + 6

√
39 279

´−1
3
+
1

2
' 0.19043

Therefore the first root is positive in the interval x̂ ≤ x ≤ 0.193 306,
which is its relevant range and can be approximated by 0.19043 ≤ x ≤
0.193306. In this range ΘA (·) can be represented as in Figure 4. The
numerator of the second root is negative for 0 ≤ x ≤ x̂. Recalling
that also the denominator is negative in the same region, 0 ≤ x ≤ x̂
is the relevant area for the second root. The approximate values of the
range of definition of the second root, whose plot is in Figure 4, are
0 ≤ x ≤ 0.19043.
Internal solutions
Notice that prices pi (θ, xθ, 1, 1) for i = 1, 2, defined in (13) and (14), are
always positive for x < 1. Moreover, if we substitute (13) and (14) in
(1) and (2), we obtain respectively:

y1 (θ, xθ) =
2θ1 − 1
4θ1 − θ2
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First Root Second Root
x x

Figure 4: ΘA (·) and ΘB (·) respectively

y2 (θ, xθ, ) = (θ2 − 2) θ1
(4θ1 − θ2) θ2

y1 is positive if θ ≥ 1
2
and y2 if xθ ≥ 2. Therefore quantities are always

positive if θ2 ≥ 2.
Now we have to check whether profits are positive. Let us start consid-
ering the profit function of Firm 1, using K (x, θ) as defined in (37):

Π1 (θ, xθ, 1, 1,K (x, θ)) =

1
2
(1− 2θ) 14xθ − 8θ − 17x+ 2x

2 + 12

(4− x)3 θ

(40)

is positive if and only if one of the two following conditions hold:

14θx− 8θ + 12 + 2x2 − 17x ≥ 0 and 1− 2θ ≥ 0 (41)

14θx− 8θ + 12 + 2x2 − 17x ≤ 0 and 1− 2θ ≤ 0 (42)

(41) is satisfied if θ ≤ 1
2
, which is not possible. (42) is satisfied if θ ≥ 1

2

and θ ≥ (2x2−17x+12)
2(4−7x) . Plotting θ = (2x2−17x+12)

2(4−7x) in Figure 5, we can see
that for θ > 2 the above condition is satisfied. Thus condition (42) is
always satisfied.
Analogously for the second Firm:

Π2 (θ, xθ, 1, 1,K (x, θ)) =

(43)

1
2

−2(4x3−7x2+13x−4)x2θ2+4(x4+2x3−2x2+10x−8)xθ−(x+2)(7x3−18x2+28x−16)
θ(4−x)3x
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Figure 5: Condition for a positive profit of Firm 1

which is positive if:

G (x, θ) = −2 ¡4x3 − 7x2 + 13x− 4¢x2θ2+
(44)

4
¡
x4 + 2x3 − 2x2 + 10x− 8¢xθ − (x+ 2) ¡7x3 − 18x2 + 28x− 16¢ ≥ 0

Let start substituting the first solution θ = θ2/x = ΘA (x) /x, for
0.19043 ≤ x ≤ 0.193306 in G (x, θ) and plot G (x,ΘA (x) /x) in Fig-
ure 6. Substituting the second solution θ = θ2/x = ΘB (x) /x, for
0 ≤ x ≤ 0.19043 in G (x, θ) and plot G (x,ΘB (x) /x), we obtain the
plot in Figure 6. The equation is zero for x = 0 and x = 0.1821247.
Therefore Π2 (·) is positive if 0.1821257 ≤ x ≤ 0.19043. Then we can
plot K (x,Θi (x) /x), for i = A,B, in the range where both profits, Π1
and Π2, are positive in Figure 7.

Second order conditions
Now we still have to check whether second order conditions are satisfied.
Differentiating (33) and (34) with respect to θ1 and θ2, and introduc-
ing the usual transformation θ1 = θ, θ2 = xθ , we get the following
expressions:

F̃11 (θ, x, k) = −8 (xθ − 2) x
2θ + 5θx− 5x+ 2
(4− x)4 θ3

− k (45)

F̃22 (θ, x, k) = −2−64+64x−24x2+12x3−4(5+x)θx3+(8+7x)x3θ
2

x3(−4+x)4θ3 − k (46)

Substituting the first root in (45) and (46) respectively, we get the graphs
in Figures 6. From the graphs, we see that second order conditions are
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Figure 6: Positive profit for Firm 2

0

0.002
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Figure 7: Relation between K and x. K (x,ΘA (x) /x) in solid line and
K (x,ΘB (x) /x) in dotted line
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always satisfied. Thus the relevant range for x is: 0.1904315 ≤ x ≤
0.193306. Therefore there exists a solution in the range: 0 ≤ k ≤
0.003042. Analogously, substituting the second root in (45) and (46) we
reach similar results, represented in Figures 8. Second order condition
for Firm 1 are always satisfied in the range of definition. Second order
conditions for the second root are always satisfied in the range of positive
profits, therefore 0.182126 ≤ x ≤ 0.19043. Finally we compute the range
of k where the solution exists: 0.0059466 ≤ k ≤ 0.0082724. ¥

Proof of Proposition 6
We have to prove that in the neighborhood of the symmetric equilibrium
it is always convenient to innovate. Therefore we study the sign of the
following derivatives:

dΠi (θi, θj, ai, aj , k)

dai
=

∂

∂θj
Πi (θi, θj , ai, aj , k) · ∂θj

∂ai
+

∂

∂ai
Πi (θi, θj , ai, aj, k) (47)

with i, j = 1, 2 and i 6= j

Let us start with Firm 1. According to expression (47), we have to
prove that:

dΠ1 (θ1, θ2, a1, a2, k)

da1
=

∂
∂θ2

Π1 (θ1, θ2, a1, a2, k) · ∂θ2
∂a1

+ ∂
∂a1

Π1 (θ1, θ2, a1, a2, k) ≤ 0
(48)

Differentiating profit function (15) for θ1, we get:

dΠ1 (θ1, θ2, a1, a2, 1)

dθ1
= (2 (θ1 − θ2) θ1 − (2θ1 − θ2) a1 + θ1a2)

(2θ22−θ1θ2−4θ21)a2+(8θ21−10θ1θ2+5θ22)a1−4θ32+10θ1θ22−14θ21θ2+8θ31
(4θ1−θ2)3(θ1−θ2)2 − θ1

which rewrites, in the symmetric case, as :

G1 (θ1, θ2, a, a, 1) =

(49)

(2θ1 − a)
(4θ1 − 7θ2) a+ 2

¡
2θ22 − 3θ1θ2 + 4θ21

¢
(4θ1 − θ2)

3 − θ1
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Figure 8: Positive profits and second order condition
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Analogously, differentiating (15) for θ2 we obtain:

∂

∂θ2
Π1 (θ1, θ2, a, a, 1) = −(2θ1 + θ2) (2θ1 − a)2

(4θ1 − θ2)
3

and also, differentiating (15) for a1, we have:

∂

∂a1
Π1 (θ1, θ2, a1, a2, 1) = −2(2θ1 − θ2) (2θ1 − a)

(4θ1 − θ2)
2

By the implicit function theorem we have:

∂θ2
∂a1

= −−
∂
∂θ1

G2(θ1,θ2,a1,a2)· ∂
∂a1

G1(θ1,θ2,a1,a2)+
∂
∂θ1

G1(θ1,θ2,a1,a2)· ∂
∂a1

G2(θ1,θ2,a1,a2)

∂
∂θ1

G1(θ1,θ2,a1,a2)· ∂
∂θ2

G2(θ1,θ2,a1,a2)− ∂
∂θ2

G1(θ1,θ2,a1,a2)· ∂
∂θ1

G2(θ1,θ2,a1,a2)
≡

ρ1 (θ1, θ2, a1, a2)

Finally, we get:

dΠ1 (θ1, θ2, a1, a2, k)

da1
=

(50)

−
³
(2θ1+θ2)(2θ1−a)

(4θ1−θ2) · ρ1 (θ1, θ2, a1, a2) + 2 (2θ1 − θ2)
´

(2θ1−a)
(4θ1−θ2)2

We should prove that
dΠ1 (θ1, θ2, a1, a2, k)

da1
> 0. Therefore, we have to

show that (2θ1 − a) and the term in parenthesis have the same sign.
Notice that in the symmetric model, where a1 = a2 = a, we defined
K = ak and therefore a = K/k =

h
K
³
x, Θi(x)

x

´i
/k, for i = A,B, where

Θi (x) is defined in (38) and (39).
We start with the first root. In order to ascertain the sign of (2θ1 − a),
recall that:

1

k
(2θ1 − a) = 2 ·ΘA (x)− xK

µ
x,

ΘA (x)

x

¶
and potting the r.h.s. in the range 0.1904315 ≤ x ≤ 0.193 306, it has
the slope of Figure 9 in the left. Analogously, considering the second
root, the plot of 2 · ΘB (x) − xK

³
x, ΘB(x)

x

´
in the range 0.1904315 ≤

x ≤ 0.193 306 becomes as in Figure 9 in the right. Given that the above
expressions are both positive, we should prove that:µ

(2θ1 + θ2) (2θ1 − a)

(4θ1 − θ2)
· ρ1 (θ1, θ2, a, a) + 2 (2θ1 − θ2)

¶
≥ 0

Introducing the usual transformation, θ1 = θ and θ2 = xθ, and using
(37) and (38) (or (39)) the above expression becomes:
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Figure 9: 2 ·Θi (x)− xK
³
x, Θi(x)

x

´
, with i = A (left) and i = B (right)

(2 + x)
³
2Θi(x)

x
−K

³
x, Θi(x)

x

´´
(4− x)

·

ρ1

³
Θi(x)
x

,Θi (x) ,K
³
x, Θi(x)

x

´
,K

³
x, Θi(x)

x

´´
+ (51)

+2 · Θi (x)

x
· (2− x)

Substituting (38) in (51) we can plot the function in Figure 10. Analo-
gously, using the second root (39) in (51) and we plot it in Figure 10.
Let us consider, now, Firm 2. As in the previous case we should prove
that:

dΠ2 (θ1, θ2, a1, a2, k)

da2
=

∂

∂θ1
Π2 (θ1, θ2, a1, a2, k) · ∂θ1

∂a2
+

∂

∂a2
Π2 (θ1, θ2, a1, a2, k) ≤ 0

Differentiating profit function (16) for θ2, we obtain:

∂Π2 (θ1, θ2, a1, a2, 1)

∂θ2
=

θ1 ((θ1 − θ2) θ2 − (2θ1 − θ2) a2 + a1θ2) · (52)

(8θ31−18θ21θ2+9θ1θ22−2θ32)a2+θ2(4θ21+θ1θ2−2θ22)a1+θ1θ2(θ1−θ2)(4θ1−7θ2)
θ22(4θ1−θ2)3(θ1−θ2)2

− θ2

In the symmetric case (52) rewrites:
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Figure 10: Condition of profitability of an infinitesimal innovation for
Firm 1

G2 (θ1, θ2, a, a, 1) = θ1 (θ2 − 2a)
(53)

2
¡
2θ22 − 3θ1θ2 + 4θ21

¢
a+ θ1θ2 (4θ1 − 7θ2)

θ22 (4θ1 − θ2)
3 − θ2

Moreover, differentiating (16) for θ1 we get:

∂

∂θ1
Π2 (θ1, θ2, a, a, 1) = (θ2 − 2a)2 2θ1 + θ2

(4θ1 − θ2)
3

and differentiating (16) for a2, we obtain:

∂

∂a2
Π2 (θ1, θ2, a1, a2, 1) = −2(2θ1 − θ2) (θ2 − 2a) θ1

(4θ1 − θ2)
2 θ2

Finally, by the implicit function theorem:

∂θ1
∂a2

=

−
∂
∂θ2

F2(θ1,θ2,a1,a2)· ∂
∂a2

F1(θ1,θ2,a1,a2)− ∂
∂θ2

F1(θ1,θ2,a1,a2)· ∂
∂a2

F2(θ1,θ2,a1,a2)

∂
∂θ1

F1(θ1,θ2,a1,a2)· ∂
∂θ2

F2(θ1,θ2,a1,a2)− ∂
∂θ2

F1(θ1,θ2,a1,a2)· ∂
∂θ1

F2(θ1,θ2,a1,a2)
≡

ρ2 (θ1, θ2, a1, a2)

Therefore, we have to prove that:
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Figure 11: Θi (x)− 2K
³
x, Θi(x)

x

´
, with i = A (left) and i = B (right)

dΠ2 (θ1, θ2, a1, a2, k)

da2
=

(54)µ
θ2 − 2a
(4θ1 − θ2)

ρ2 (θ1, θ2, a1, a2)− 2
¶
(2θ1 − θ2) (θ2 − 2a) θ1

(4θ1 − θ2)
2 θ2

≥ 0

In order to ascertain the sign of (θ2 − 2a) recall that:
1

k
(θ2 − 2a) = Θi (x)− 2K

µ
x,

Θi (x)

x

¶
, i = A,B (55)

Therefore we have to ascertain the sign of the r.h.s. If we use the first
root (38) in order to obtain Θi (x) − 2K

³
x, Θi(x)

x

´
and plot it in the

range 0.1904315 ≤ x ≤ 0.193 306, we obtain Figure 11 on the left, while
if we substitute the second root we obtain the plot on the right of the
same figure.
Therefore (55) is always positive. For those values (5) simplifies to:

xθ − 2a
θ (4− x)

ρ2 (θ, xθ, a, a)− 2 ≤ 0

or, introducing the usual transformation:

Θi(x)−2·K x,
Θi(x)

x

4
Θi(x)

x
−Θi(x)

· ρ2
³
Θi(x)
x

,Θi (x) , K
³
x, Θi(x)

x

´
, K

³
x, Θi(x)

x

´´
− 2 ≤ 0

(56)
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Figure 12: Condition of profitability of an infinitesimal innovation for
Firm 2

whose plot in the range 0.1904315 ≤ x ≤ 0.193 306 is in Figure 12 and
shows that it is always verified, both for the first root and the second
one. ¥

Remark 8 Notice however that if we set a1 = a2 =
1
100
and increase the

efficiency of a1 and a2 separately of 50%, the reaction functions move as
in figure 13 in the upper and lower graphs respectively. One could also
show that the equilibrium moves in a higher isoprofit, even though we
did not trace it in order not to complicate too much the graph.

Proof of Proposition 7
When the innovation is introduced we can perform comparative statics
on a. Notice that in the symmetric model a1 = a2 = a. Let define
θi = aθ̃i , therefore θ̃1 = Θi (x) /x with i = A,B and θ̃2 = Θi (x) with
i = A,B. We define also K = ak and therefore a = K/k. According to
(38), (39) and (37), we can rewrite:

a = K(x,Θi(x)/x)
k

, with i = A,B

θ2 = aΘi (x) = K
³
x, Θi(x)

x

´
Θi(x)
k

, with i = A,B

θ1 = aΘi (x) /x = K
³
x, Θi(x)

x

´
Θi(x)
kx

, with i = A,B

a, θ1 and θ2 are function of x, except for the multiplicative term 1
k
.

Therefore, for comparative statics purposes, we can ignore that term.
Notice also that ΘA is monotonically decreasing in x, as in previous
Figure 4. While ΘB is monotonically increasing in x, as in the same
Figure 4. Now we can plot θ2 = aΘi (x) and θ1 = aΘi (x) /x with
i = A,B as a function of a. Let start with the first root: case a.
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Figure 13: Discrete Changes in the Production Costs
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Case a. In Figures 14, we can see θ2 = aΘA (x) and θ1 = aΘA (x) /x for
0.1904315 ≤ x ≤ 0.193 306.
As stated in the Proposition, the graphs show that a process innovation,
decreasing a, increases θ1 and decreases θ2. Considering, also, that the
distance between θ1 = aΘA (x) /x and θ2 = aΘA (x) is a measure of
differentiation, we can plot:

θ1 − θ2 = K

µ
x,

ΘA (x)

x

¶
ΘA (x)

1− x

x
(57)

always in Figure 14. The graph shows that the product differentiation
increases. Considering a different measure of the differentiation level,

such as the ratio x =
θ2
θ1
, we get the same result, as it is shown again in

Figure 14.

Case b. In Figure 14 we also plot θ2 = aΘB (x) and θ1 = aΘB (x) /x for
0.1821257 ≥ x ≥ 0.19043. Differently from the previous case, here we
have that both θ1 and θ2 increases with a process innovation decreasing
a. Plotting the difference between θ1 = aΘB (x) /x and θ2 = aΘB (x) in
the same Figure 14, we can see that the differentiation increases.

θ1 − θ2 = K

µ
x,

ΘB (x)

x

¶
ΘB (x)

1− x

x
(58)

Again, if we measure the degree of differentiation by means of the ratio

x =
θ1
θ2
, we get the same result in Figure 14. As stated in the Proposition,

when a decreases the differentiation grows up. ¥
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Figure 14: Comparative Statics with Fixed Costs of Quality
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