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Abstract. In this paper we adopt Group Theory to investigate the sym-
metry and invariance properties of price index numbers. An alternative
treatment is given to the study of the reversibilty axioms, that clarifies
their meaning and allows for a conceptual unification of this topic, within
the framework of Axiomatic Index Number Theory.

1. Introduction

Axiomatic Index Number Theory is probably the most developed formal frame-
work for the study of price and quantity index numbers. Its deductive approach
is based on the identification of a set of axioms that a function of prices and
quantities has to satisfy, to be actually considered a price (or a quantity) index.
These axioms can be subdivided into two main classes. The first class contains
the axioms of proportionality, commensurability, homogeneity and monotoni-
city that establish constraints on the behaviour of the index number when the
prices (or the quantities) assume specific values or undergo particular changes.
The second class contains the axioms of basis reversibility and factor reversi-
bility that establish constraints on the behaviour of the index number when
the price and quantity vectors are exchanged each other in various ways1. In
the following, we focus on the reversibility axioms only (a full account of the
axiomatic approach to price index numbers can be found in [1], [5] and in the
references there cited). The essence of the reversibility axioms is to define
internal simmetries that price and quantity index numbers should satisfy. By
“internal symmetry” we mean some invariance property of an index number
under the action of a suitable transformation involving the price and quantity
vectors. When interpreting reversibility axioms as symmetry (or invariance)
properties, we are naturally led to study the set of transformations that in-
duce them. It turns out that the set of symmetry transformations of a price

1Actually, proposals of other axioms exist, but the ones we have cited are those almost
universally accepted. For details see [1] and [5].
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(or quantity) index number satisfies the axioms of an algebraic object called a
group.

Group Theory was originally developed in connection with the study of the
roots of algebraic equations, in the nineteenth century, but modern Group
Theory was founded on a sound basis in the last ’800s, when the fundamental
axioms were identified by great mathematicians like S. Lie and H. Weber [2].
Since then, the theory had an enormous development, becoming one of the
most important branches of pure mathematics with application in a lot of
other disciplines (other branches of mathematics, physics, social sciences, just
to mention some).

As far as we know, the first to apply group theory to the study of price in-
dex numbers was Vogt [5]. Later, and independently, Fattore [3] and Fat-
tore&Quatto [9] proposed similar arguments. When applying group theory to
a topic such as Axiomatic Index Number Theory, some results are expected.
First, a conceptual simplification and unification. Second, a simplification of
proofs of already known results. Third, the chance to obtain new results, that
can be difficult to derive from a pure analytical perspective, but that are much
simpler to derive in a group theoretical context. In this paper we just utilize
Group Theory to clarify the deep structure of the simmetries of index num-
bers. Nevertheless, we feel sure that Group Theory can help in developing
Axiomatic Index Number Theory in other directions, allowing for new results
to be obtained.

2. Elements of Group theory

In this paragraph we collect some fundamental definitions of Group Theory
and give some examples that will be relevant for the subsequent discussion
(details can be found in [2], [8], [6], [4]).

2.1. Basic definitions. A group is a pair (G, ◦), where G is a set and ◦ is a
binary associative operation defined on G×G (usually called a multiplication),
such that the following axioms are satisfied:

(1) g1 ◦ g2 ∈ G ∀g1, g2 ∈ G
(2) ∃ e ∈ G : e ◦ g = g ◦ e = g ∀g ∈ G
(3) ∀g ∈ G ∃h ∈ G : g ◦ h = h ◦ g = e.

The first axiom requires G to be closed under the action of ◦, the second
axiom defines e as the identity of the group and the third axiom requires that
for every element of the group its inverse exists in G. Usually, the inverse of an
element g is denoted by g−1. If, in addition, it is verified that g1 ◦ g2 = g2 ◦ g1

for every pair g1, g2 of elements of G, then the group is called commutative
or abelian. When there is no risk of ambiguity, the multiplication ◦ is often
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omitted and g1g2 is written instead of g1 ◦ g2. In the following, we will adopt
such a notation. If the set G is composed of a finite number of elements, then
the group is called a finite group and its order is the cardinality of the set G.

A finite group is completely specified by its Cayley table that reports, for each
ordered pair g1, g2, the product g1g2. For a generic group G of order n, the
Cayley table has the following form:

(2.1)

G g1 · · · · · · gn

g1 g1g1 · · · · · · g1gn
...

...
. . . . . .

...
...

...
. . . . . .

...
gn gng1 · · · · · · gngn

A subgroup G′ of G is a subset of G that is a group with respect to the
restriction of ◦ to G′ ×G′.

A finite group is called cyclic if there is an element a ∈ G and a positive integer
n such that:

(2.2) G = {e, a, a2, . . . , an−1}

with an = e. Obviously, cyclic groups are abelian. A cyclic group of order n
will be denoted by Zn. Given an element a ∈ G, the set {e, a, a2, . . . , an−1} is
the cyclic subgroup generated by a. The order of an element of a group G is
the order of the cyclic subgroup it generates.

Let G be a group and G1 and G2 be two subgroups of G such that
(1) g1g2 = g2g1 for every g1 ∈ G1 and g2 ∈ G2

(2) every g ∈ G can be uniquely represented as g = g1g2 = g2g1, with
g1 ∈ G1 and g2 ∈ G2.

The group G is said to be the direct product of G1 and G2.

Let (G, ◦g) and (H, ◦h) be two groups and let ϕ be a mapping G → H such
that

(2.3) ϕ(g1 ◦g g2) = ϕ(g1) ◦h ϕ(g2) ∀ g1, g2 ∈ G.

The mapping ϕ is said a homomorphism and the groups G and H are said to
be homomorphic. If ϕ is bijective, then it is said to be an isomorphism and
G and H are said to be isomorphic. Two isomorphic groups share the same
structure and can be essentially identified.
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The nature of the elements of a group is completely arbitrary. In the following
we will deal with finite groups composed of invertible operators acting on a
suitable set of functions, where the multiplication ◦ stands for the ordinary law
of composition of operators. Such groups are called group of transformations
(or group of operators).

Let G be a group of transformations and let us indicate with X the set on
which the elements of G act. For each x ∈ X and g ∈ G, let us indicate with
g · x the action of the element g on x. The set {g · x, g ∈ G} is called the orbit
of x under the action of G. The relation R defined on X ×X by

x1R x2 ⇔ x1 and x2 belong to the same orbit
is an equivalence relation. Thus two orbits either coincide or have no element
in common.

2.2. Examples of finite groups. In the following, we present some finite
groups that are relevant for the theory of index numbers.

The group Z2. The group Z2 = {e, a} having the following Cayley table:

(2.4)
Z2 e a
e e a
a a e

is a cyclic group of order 2. It is the only group of order 2.

The group Z4. The group Z4 = {e, a, a2, a3} with the following Cayley table

(2.5)

Z4 e a a2 a3

e e a a2 a3

a a a2 a3 e
a2 a2 a3 e a
a3 a3 e a a2

is a cyclic group of order 4. It has three subgroups: {e}, {e, a2} and Z4 itself.

The Klein group. The Klein group V4 is an abelian group of order 4. Its
Cayley table is given by:

(2.6)

V4 e a b c
e e a b c
a a e c b
b b c e a
c c b a e

The Klein group is isomorphic to the group of the symmetries of a rectangle
(i.e. the group of the transformations leaving a rectangle invariant). It has five
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subgroups, precisely: {e}, {e, a}, {e, b}, {e, c} and V4 itself. The Klein group
can be easily seen to be isomorphic to the group Z2 × Z2. As a matter of fact
we have

(2.7) V4 = {e, a} × {e, b} = {e, b} × {e, c} = {e, a} × {e, c}.

The group Z2 × Z2 × Z2. The group Z2 × Z2 × Z2 is an abelian group of
order 8, defined as the direct product of three cyclic groups of order 2. Its
Cayley table has the following structure:

(2.8)

Z3
2 e a b c ab ac bc abc
e e a b c ab ac bc abc
a a e ab ac b c abc bc
b b ab e bc a abc c ac
c c ac bc e abc a b ab
ab ab b a abc e bc ac c
ac ac c abc a bc e ab b
bc bc abc c b ac ab e a
abc abc bc ac ab c b a e

Z2×Z2×Z2 has 16 subgroups: {e}, {e, a}, {e, b}, {e, c}, {e, ab}, {e, bc}, {e, ac},
{e, abc}, {e, a, b, ab}, {e, a, c, ac}, {e, b, c, bc}, {e, b, ac, abc}, {e, ab, c, abc}, {e, a, bc, abc},
{e, ab, bc, ac} and Z2 × Z2 × Z2 itself. Note that all the subgroups of order 4
are isomorphic to the Klein group.

The group D4. The dihedral group D4 is the group of the simmetries of a
square. It is not abelian and has 8 elements. Its Cayley table is:

(2.9)

D4 e a b c d f g h
e e a b c d f g h
a a e c b f d h g
b b c e a g h d f
c c b a e h g f d
d d f h g e a c b
f f d g h a e b c
g g h d f b c a e
h h g d f c b e a

D4 has 10 subgroups: {e}, {e, a}, {e, b}, {e, c}, {e, d}, {e, f}, {e, g, a, h},
{e, a, d, f}, {e, a, b, c} and D4 itself. The subgroup {e, g, a, h} is isomorphic
to the cyclic group Z4, while both the other subgroups of order 4 are isomor-
phic to the Klein group.
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The group D4×Z2. The group D4×Z2 is a non abelian group of 16 elements
with the following Cayley table:

(2.10)
D4 × Z2 e a b c d f g h l m n p q r s t

e e a b c d f g h l m n p q r s t
a a e c b m l n p f d g h t s r q
b b c e a l m p n d f h g s t q r
c c b a e f d h g m l p n r q t s
d d g h f e c a b q r s t l m n p
f f h g d c e b a r q t s m l p n
g g d f h r q s t c e a b p n m l
h h f d g q r t s e c b a n p l m
l l p n m b a c e s t q r d f h g

m m n p l a b e c t s r q f d g h
n n m l p s t r q b a e c h g d f
p p l m n t s q r a b c e g h f d
q q t s r h g f d n p l m e c b a
r r s t q g h d f p n m l c e a b
s s r q t n p m l h g d f b a e c
t t q r s p n l m g h f d a b c e

This group has 35 subgroups (we will not provide the full list here): 11 of
order 2, 15 of order 4 and 7 of order 8, plus the two trivial subgroups {e} and
D4×Z2 itself. Details of this group and further references can be found in [5].

3. Price and quantity index numbers

Let pa,pb, qa, qb be the price and quantity vectors of a set of n different goods
in two temporal or spatial situations a and b. Let us consider situation b as the
reference situation (the basis) for the comparison. We define the value index
Vab as:

(3.1) Vab =
∑n

i=1 paiqai∑n
i=1 pbiqbi

.

The goal of index number theory is to decompose Vab as the product of two
functions, P and Q, the first accounting for the variation in the prices between
b and a, and the second accounting for the variation in the quantities:

(3.2) Vab =
∑n

i=1 paiqai∑n
i=1 pbiqbi

= P (pa,pb, qa, qb) ·Q(pa,pb, qa, qb).

When there is no ambiguity, we will write:

(3.3) Vab = Pab ·Qab
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where Pab = P (pa,pb, qa, qb) and Qab = Q(pa,pb, qa, qb).

Suppose we have identified a price index Pab. A quantity index Qab can thus be
naturally obtained as Vab/Pab. This index is called the cofactor of Pab and it
is indicated as cof(Pab). A different quantity index naturally associated with
Pab is obtained exchanging the vectors pa and pb with the vectors qa and qb,
in the function defining Pab itself. This index is called the correspondent of
Pab and it is indicated as cor(Pab):

(3.4) cor(P ) = P (qa, qb,pa,pb).

Cofactor and correspondent of a price index have a central role in the following.
Being both induced by the choice of Pab, wether they coincide or not is a
condition for the internal consistency of the price comparison itself, as the
following section discusses.

4. Reversibility axioms

To guarantee the logical and economical consistency of a price or a quantity
index number, Axiomatic Index Number Theory requires P and Q to satisfy a
list of mathematical properties or axioms [1]. Here, we focus only on the basis
reversibility and factor reversibility properties which aim at guaranteeing the
internal consistency of the formulas adopted as price or quantity index numbers
(in the following, we focus ourselves on price indexes, but the discussion could
have been developed in terms of quantity indexes as well).

Basis reversibility. Given a price index Pab, basis reversibility requires that
when exchanging the situation b and a (i.e. assuming a as the basis of the
comparison), Pab turns into P−1

ab :

(4.1) P (pb,pa, qb, qa) =
1

P (pa,pb, qa, qb)

or, with a compact notation:

(4.2) Pba =
1

Pab
.

The index P−1
ba is called the basis anthitesis of Pab and the axiom of basis

reversibility states that the index Pab and its basis anthitesis have to coincide.

Factor reversibility. Given a price index Pab, factor reversibility requires
that the two naturally quantity indexes associated with Pab coincide, i.e.:

(4.3) cof(Pab) = cor(Pab).
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Alternatively, (4.3) can be stated as [7]:

(4.4) P (pa,pb, qa, qb) =
Vab

P (qa, qb,pa,pb)
.

The right hand side of (4.4) is called the factor antithesis of Pab and the factor
reversibility axiom states that the index Pab and its factor antithesis have to
coincide.

5. The group of the four antitheses

Let Π be the set of strictly positive functions of the four vectors pa,pb, qa, qb.
Let I,B,F ,D be four operators acting on Π with values in Π, defined as:

I
(
f(pa,pb, qa, qb)

)
= f(pa,pb, qa, qb)(5.1)

B
(
f(pa,pb, qa, qb)

)
=

1
f(pb,pa, qb, qa)

(5.2)

F
(
f(pa,pb, qa, qb)

)
=

Vab

f
(
qa, qb,pa,pb

)(5.3)

D
(
f(pa,pb, qa, qb)

)
= Vab · f

(
qb, qa,pb,pa

)
(5.4)

It is immediately checked that D = B ◦ F = F ◦B.

By means of the operators B and F , the reversibility axioms can be stated as
the invariance properties B(Pab) = Pab (basis reversibility) and F (Pab) = Pab

(factor reversibility).

The operators B and F can thus be called basis antithesis operator and fac-
tor antithesis operator respectively and the operator D can be called double
antithesis operator (for alternative denominations, see [5]).

The set G1 = {I,B,F ,D} is an abelian group with respect to the composition
of operators. This group will be called the group of the four anthiteses and its
Cayley table is given by:

(5.5)

G1 I B F D
I I B F D
B B I D F
F F D I B
D D F B I

The Cayley table of G1 shows that this group is isomorphic to the Klein group.
As a consequence, it has five subgroups, precisely: {I}, {I,B}, {I,F }, {I,D}
and G1 itself.
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From the Cayley table, the following proposition follows easily:

Proposition 5.1. Pab is invariant under the action of D, if and only if
B(Pab) = F (Pab).

Proof. If B(Pab) = F (Pab), then from the Cayley table of G1:

(5.6) D(Pab) = (BF )(Pab) = B2(Pab) = Pab.

On the other hand, if D(Pab) = Pab, again from the Cayley table, we have:

B(Pab) = B
(
D (Pab)

)
= (BD)(Pab) = F (Pab) .

�

Similarly, it can be shown that F (Pab) = Pab if and only if B(Pab) = D(Pab)
and that B(Pab) = Pab if and only if F (Pab) = D(Pab).

The definition of the antithesis operators involves some permutations on the
arguments of the index numbers Pab. A direct inspection reveals that such
permutations are the exchange σab of the situation a and b, the exchange σpq

of the vectors pa and pb with qa and qb respecitvely and what can be called
double exchange σd, that is given by the composition of σab and σpq (these
permutations commutes, so their order in the definition of σd is irrelevant).
The set G∗

1 = {σe,σab,σpq,σd} (σe is the permutation that leaves all the
arguments in the original order) is an abelian group, and its Cayley table is
given by:

(5.7)

G∗
1 σe σab σpq σd

σe σe σab σpq σd

σab σab σe σd σpq

σpq σpq σd σe σab

σd σd σpq σab σe

Thus, also the group G∗
1 is isomorphic to the Klein group. Its five subgroups

are the following: {σe}, {σe,σab}, {σe,σpq}, {σe,σd} and G∗
1 itself.

6. The structure of the factor antithesis operator

The second group we are interested in is another abelian group of order four.
Let H and K be two operators acting on the set Π as follows:

H
(
f(pa,pb, qa, qb)

)
=

Vab

f(pa,pb, qa, qb)
(6.1)

K
(
f(pa,pb, qa, qb)

)
= f(qa, qb,pa,pb)(6.2)
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or, more sintethically:

H(f) = cof(f)(6.3)
K(f) = cor(f).(6.4)

The four operators I,H,K,F form an abelian group G2 with the following
Cayley table:

(6.5)

G2 I H K F
I I H K F
H K I F K
K H F I H
F F K H I

As it can be seen, G2 has the same structure of the Klein group and its five
subgroups are: {I}, {I,H}, {I,K}, {I,F } and G2 itself.

The group G2 clarifies the structure of the factor antithesis operator and its
elements will have an important role in the subsequent discussion.

7. The ACC group

When we get a price index number Pab, we can generate other index numbers
by means of the antithesis operators2, i.e. by means of the action of the
group G1 on Pab. The images of Pab under G1 define an equivalence class
of index numbers, that is the orbit of Pab. Starting from Pab we can also
generate quantity index numbers, by means of the operators H (the cofactor)
and K (the correspondent). Obviously, we could start generating quantity
index numbers from any element of the orbit of Pab. Similarly, when we get a
quantity index Qab, we can generate other quantity index numbers by means
of G1 and we can also generate price index numbers applying H and K to Qab

and to the elements of its orbit. The following question naturally arises: what
is the relationship between the price and quantity indexes generated as above?
From a group theoretical point of view, this is the same as asking about the
relationship between the action of G1 on H(Pab) and K(Pab) and the action
of H and K on the orbit of Pab. This leads to the study of the set of operators
S = {I,B,F ,D,H,K}.

The set S is not a group, since the operators BH, HB, BK and KB do
not belong to S, as can be easily verified. By a direct computation, we have
BH = HB and BK = KB, where:

(7.1) BH
(
f(pa,pb, qa, qb)

)
= Vab · f(pb,pa, qb, qa)

2Even if we do not deal with this problem, we stress the fact that in order to be actually
accepted as index numbers, the images of Pab under the antithesis operators have to satisfy
the same list of axiomatic properties that are to be satisfied by the Pab itself.
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and

(7.2) BK
(
f(pa,pb, qa, qb)

)
=

1
f(qb, qa,pb,pa)

.

If we put J = BH and L = BK, the set G3 = {I,B,F ,D,H,K,J ,L} does
form a group of order 8 with respect to the usual operator law of composition.
We can call it the ACC (Antithesis, Cofactor and Correspondent) group. Its
Cayley table is:

(7.3)

G3 I B F D H K J L
I I B F D H K J L
B B I D F J L H K
F F D I B K H L J
D D F B I L J K H
H H J K L I F B D
K K L H J F I D B
J J H L K B D I F
L L K J H D B F I

As it can be seen, G3 is an abelian group containing G1 and G2 and it is
isomorphic to the group Z2×Z2×Z2 (to see this, put B = a,F = b and H =
c). Its 16 subgroups are the following: {I}, {I,B}, {I,F }, {I,H}, {I,D},
{I,K}, {I,J}, {I,L}, {I,B,F ,D} = G1, {I,B,H,J}, {I,F ,H,K} = G2,
{I,F ,J ,L}, {I,D,H,L}, {I,B,K,L}, {I,D,K,J} and G3 itself.

8. New axioms and possible extensions

Axiomatic Index Number Theory is now a well established deductive frame-
work, for the study of price and quantity index number formulas. However, the
discussion about the axioms that should be included is not over and from time
to time different authors propose new properties that index numbers should
satisfy, enlarging and modifing the axiomatic structure of the theory. Here we
give an example that is relevant for our discussion about finite groups.

In 1978, Funke and Voeller proposed two new axioms that we can directly state
in terms of invariance under the action of a new pair of operators. Let U and
V be two operator on Π, defined as follows:

U
(
f(pa,pb, qa, qb)

)
= f(pa,pb, qb, qa)(8.1)

V
(
f(pa,pb, qa, qb)

)
=

1
f(pb,pa, qa, qb)

.(8.2)



12 MARCO FATTORE

Funk and Voeller require that:

U(Pab) = Pab(8.3)
V (Pab) = Pab.(8.4)

If we add U and V to the antithesis operators we have considered so far, we
get the set W = {I,B,F ,D,U ,V }. W is not a group, not being closed under
the composition of operators, nor it is a subset of any finite group, as can be
easily seen3 (note that the Fisher Group introduced by Vogt, is based on a dif-
ferent definition of some of the antithesis operators. This group is isomorphic
to D4 × Z2. For details, see [5]).
Nevertheless, the set of permutations involved in the definition of the ele-
ments of W do generate a finite group. A simple inspection of the ope-
rators U and V shows that the set of permutations we are dealing with is
{σe,σab,σpq,σd,σpapb

,σqaqb
}, where σpapb

and σqaqb
exchange the price vec-

tors and the quantity vectors respectively. This set is not a group, since it is
not closed under the composition of permutations. Particularly, we have:

σpq ◦ σpapb
P (pa,pb, qa, qb) = P (qb, qa,pa,pb)(8.6)

σpapb
◦ σpqP (pa,pb, qa, qb) = P (qa, qb,pb,pa)(8.7)

(in the following we will write σpq ◦ σpapb
= σu and σpapb

◦ σpq = σv.). A
direct computation shows that σqaqb

◦ σpq = σu, σpq ◦ σqaqb
= σv and that

σ2
u = σ2

v = σab, so the set G∗
4 = {σe,σab,σpq,σd,σpapb

,σqaqb
,σu,σv} is a non

abelian group of order 8, with the following Cayley table:

G∗
4 σe σab σpq σd σpapb

σqaqb
σu σv

σe σe σab σpq σd σpapb
σqaqb

σu σv

σab σab σe σd σpq σqaqb
σpapb

σv σu

σpq σpq σd σe σab σu σv σpapb
σqaqb

σd σd σpq σab σe σv σu σqaqb
σpapb

σpapb
σpapb

σqaqb
σv σu σe σab σd σpq

σqaqb
σqaqb

σpapb
σu σv σab σe σpq σd

σu σu σv σqaqb
σpapb

σpq σd σab σe

σv σv σu σpapb
σqaqb

σd σpq σe σab

From the multiplication table, we see that the group G∗
4 is isomorphic to

the group D4. Its ten subgroups are: {σe}, {σe,σab}, {σe,σpq}, {σe,σd},

3Some computations shows that

(8.5) FU(Pab) = w(pa, pb, qa, qb) · Pab

where w(·, ·, ·, ·) ia a suitable function. So no finite group can contain the set W .
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{σe,σpapb
}, {σe,σqaqb

}, {σe,σab,σpq,σd} = G∗
1, {σe,σab,σu,σv},

{σe,σab,σpapb
,σqaqb

} and G∗
4 itself.

9. Conclusions

In this paper we have briefly presented some sets of symmetry transforma-
tions that are relevant in the framework of Axiomatic Index Number Theory,
discussing their algebraic properties from the point of view of Group Theory.
The scope of the paper was limited to the analysis of the reversibility axioms.
A natural extension is thus the study of the conditions that guarantee an an-
titheses of a price index to satisfy all the axioms of Axiomatic Index Number
Theory. This leads to the study of the “antitheses of the axiomatic proper-
ties” , an interesting idea introduced by Vogt ([5]) that deserves more study,
in order to fully understand the action of the antithesis groups on the set of
price indexes and the chance to utilize Group Theory to obtain new results in
Axiomatic Index Number Theory.
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