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Abstract

We analyse a model of vertical differentiation focusing on the trade-off be-
tween entering early and exploiting monopoly power with a low quality, ver-
sus waiting and enjoying a dominant market position with a superior product.
We show that, in a relevant parameter region, there exists a unique equilib-
rium where the leader enters with a lower quality than the follower. This
happens when the time span spent by the leader as a monopolist matters the
most, i.e., in correspondence of sufficiently low discount rate values, low costs
of quality improvement and high consumers’ willingness to pay for quality.
J.E.L. Classification: L13, O31
Keywords: vertical differentiation, product innovation, monopoly rent



1 Introduction
An apparently well established result in the theory of vertically differentiated
oligopoly states that earlier entrants supply goods of higher quality than
later entrants, in that the high-quality products earn higher profits than
low-quality alternatives (see, inter alia, Gabszewicz and Thisse, 1979, 1980;
Shaked and Sutton, 1982, 1983; Donnenfeld and Weber, 1992, 1995). A
general proof of this result for every convex fixed-cost function of quality
improvement is provided by Lehmann-Grube (1997).1

Two fundamental assumptions are at the basis of this result. The first
is that consumers’ marginal willingness to pay for quality is uniformly dis-
tributed over a given support. Since the density of consumers (i.e., demand)
is the same at any income level, the top-quality market niche is the most
profitable. Therefore, in a static game, firms obviously prefer to enter with
a product characterized by the highest possible quality.
The second assumption concerns the time horizon considered in the above

mentioned literature. Entry in a vertically differentiated market is usually
analyzed within a single-period extensive form game. However, if one models
the entry problem in an explicit dynamic setup, an obvious trade-off imme-
diately appears, even maintaining the previous assumption. In order to enter
with an high quality product, the firm has to wait for the R&D activity to
take place and consequently it looses monopoly profits. However, postpon-
ing entry, the firm is able to produce a higher quality good, obtaining thus
higher profits. A static model does not allow to assess the possibility that
there exists such a trade-off between early innovation and the attainment of
a dominant position in the market.
Although it is generally asserted that quality may result from firms’ R&D

efforts, this aspect of vertical product differentiation has received a relatively
scanty attention, the development phase being summarized by a cost function
which does not account for the time elapsed before the good is produced and
then marketed. To our knowledge, relevant contributions dealing explicitly
with the R&D activity are Beath et al. (1987); Motta (1992); Rosenkranz
(1995, 1997) and Dutta et al. (1995). These papers investigate the incentive
towards R&D cooperation (Motta, 1992; Rosenkranz, 1995) and the rela-
tionship between R&D and the persistence of quality leadership (Beath et
al., 1987; Rosenkranz, 1997). Dutta et al. (1995) analyses strategic timing

1Aoki and Prusa (1997) adopt a specific case of the cost function analysed by Lehmann-
Grube (1997), to investigate the consequences on profits, consumer surplus and social
welfare of the timing of investment in product quality in a vertically differentiated duopoly
where the market stage is played in the price space. To this regard, see also Lambertini
(1999).
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in the adoption of a new technology leading to product differentiation and
quality improvements. All of these papers maintain that being the quality
leader (i.e., supplying the highest quality in the market) entails higher profits
than the rivals.
We present a simple model of vertical differentiation focusing upon the

trade-off between entering early and exploiting monopoly power with a low
quality, versus waiting and enjoying a dominant market position with a su-
perior product. We retain the assumption of a uniform income distribution,
that would make it profitable to produce a high quality good in a static game,
but relax the assumption of a static extensive form game. We prove that in
our model there exists a unique equilibrium where the leader enters with a
lower quality than the follower, for a significant set of parameter values.2

This highlights that an unfavorable position in duopoly (or oligopoly), due
to a lower quality than the rivals’, may well be more than balanced by the
monopoly rent enjoyed ad interim with lower development costs. Therefore,
it appears that the established wisdom stating that early entry goes along
with high quality (and profits) is not robust to a fully fledged investigation
of the role of calendar time in shaping endogenously firms’ incentives.
The intuition for the result is as follows. In our dynamic version of vertical

differentiation, in equilibrium it is still optimal to differentiate. Therefore,
the only possible equilibria prescribe either that the first firm enters with a
high quality and the second one with a lower one or the opposite. The earlier
entrant has the possibility to choose among those two equilibrium outcomes.
He will prefer to enter with a low quality depending upon parameter values,
namely if the cost of R&D is low, the interest rate is low and/or consumers’
marginal willingness to pay for quality is high. The reason is that for these
parameter values, the quality chosen by any firm is high. If the second firm
wishes to enter with a higher quality than the leader, it needs to choose
a very high one and therefore to engage in a very long R&D phase. This
will allow the leader to enjoy the monopoly profits for a very long period,
compensating the eventual loss of profits in the competitive phase.
Several real-world examples can be brought forward to support our analy-

sis. One such example is provided by the evolution of the market for digital
cameras, where earlier entrants (mainly Japanese or South Korean firms)
were primarily interested in meeting the largest possible fraction of the po-
tential demand with low- to mid-quality varieties. Even their top-notch prod-
ucts were (and still are) no match for their highest quality rival that decided

2>From a different setting, Dutta et al. (1995) also derive an equilibrium where the
first entrant produces a lower quality than the second entrant. However, in their model the
later entrant makes more profits. As it will become clear in the remainder, this conclusion
rests upon the shape of the cost function.
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to enter the market only a few years later, namely Leitz Wetzlar, first with
the Digilux 1 and currently with the Digilux 2. It is fairly obvious that the
flow of profits accruing to, say, Fuji, Nikon, Konika Minolta and the like is
individually much larger than Leitz Wetzlar’s. Another example of the same
kind can be found in the medical industry, where the first generation dis-
posable surgical gloves were neither anallergic nor latex-free. In particular,
the second generation of disposable gloves was studied by other firms in the
same industry, to meet the needs of medics, becoming hence anallergic, and
only later, with the third generation, we have observed the availability of
latex-free gloves apt for use with patients subject to the risk of extremely
dangerous anaphylactic shocks. This chain of improvements of course has
ultimately involved the supply of three types of disposable gloves to different
sections of the overall surgical demand, with a monotonically increasing price
schedule reflecting the increase in intrinsic product quality.
The remainder of the paper is structured as follows. The basic model

of vertical differentiation is laid out in section 2. Section 3 describes the
solution of all admissible subgames. The subgame perfect equilibrium of the
whole game is derived in section 4. Finally, section 6 provides concluding
remarks.

2 The Model
Consider a market for vertically differentiated products. Let this market
exist over time t, with t ∈ [0,∞). Two single-product firms, labelled 1 and
2, produce goods of different qualities, q1 and q2 ∈ [0,∞), through the same
technology. Without loss of generality we can assume that firms production
costs are nought, while development costs are

Ci(qi) = c

Z q+qi

q

e−rtdt (1)

with i = 1, 2 and q ≥ 0. Parameters c and r denote the instantaneous R&D
cost and the instantaneous interest rate, respectively. Development costs
Ci(qi) are evaluated at the beginning of the period of investment, therefore
in 0 for firm 1 and in t1 for firm 2. As usual, these costs can be interpreted
as fixed cost due to the R&D effort needed to produce a certain quality. We
characterize the technology represented by the above cost function as follows:

Assumption 1 The instantaneous R&D costs are constant over time and
equal to c. If firm i searches for a period of length ti, then it can
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produce a good at most of quality ti and any other lower quality. Once
entered into the market the firm cannot invest anymore in R&D.

The above amounts to assuming that any change in the quality level
implies adjustment costs if and only if the change takes the form of a quality
increase. Conversely, once firm i has borne the cost of developing a given
quality, she may decide to decrease the quality of her product costlessly.
For the sake of simplicity we assume that quality is strictly correlated with
the time of entry. More precisely, if firm 1 enters at time t1, its maximum
feasible quality is t1 = q1. Firm 2’s cost of imitation, however, are exactly
equal to the costs of innovation.3 Equivalently, we can assume that firm 2
is compelled to self-develop the innovation, since it might wish to produce a
higher quality good. Therefore, firm 2’s time of entry satisfies the equality
t2 = q1 + q2. In the remainder, we shall label the first entrant as the leader.
Firm 2 enters at date t2 ∈ [t1,∞), and we shall refer to her as the follower.

Assumption 2 Products are offered on a market where consumers have unit
demands, and buy if and only if the net surplus derived from consump-
tion vθ(qk, pi(qk)) = θqk − pi(qk) ≥ 0, where pi(qk) is the unit price
charged by firm i on a good of quality qk, purchased by a generic con-
sumer whose marginal willingness to pay is θ ∈ [θ, θ̄], with θ = θ̄ − 1.
We assume that θ is uniformly distributed with density one over such
interval, so that the total mass of consumer is one. Throughout the
following analysis, we assume partial market coverage.

The above assumption is rather common in vertically differentiated prod-
uct models. Parameter θ measures consumers’ marginal willingness to pay for
quality. Given the previous assumption, if θ̄ increases, the marginal willing-
ness to pay for quality of all consumers increases. Therefore θ̄ can be thought
of as a measure of dimension of the market. Our most relevant assumption
concerns the timing of the game.

Assumption 3 Firm 1 chooses when to enter the market with the new prod-
uct and simultaneously chooses the quality and the price to be offered.
Then firm 2 decides whether to imitate firm 1 and when to enter the
market. Once firm 2 has entered, the two firms choose simultaneously
the quality levels, which become common knowledge. Finally both firms
choose simultaneously the price levels.

3The case for very high imitation costs is supported by empirical findings (see Mansfield
et al., 1981; and Levin et al., 1987).

4



This timing can be justified as follows. Suppose that firm 1 has invented
a new product, but it has to decide the quality level of that product before
entry. Since nobody knows the existence of this new product, only firm 1
can enter first. Thereafter, other firms can imitate firm 1. Suppose only firm
2 has the necessary technology. However, firm 2 has to sustain the R&D
costs before being able to enter and this takes time and precisely the period
between t1 and t2.4

3 Solution of the Game
As usual we will solve the game backwards. However, it is useful before
solving the model to introduce two definitions, concerning firms’ behavior.
In the remainder, we shall refer to the first entrant (firm 1) as the leader,
and to the second entrant (firm 2) as the follower. We are going to examine
two alternative perspectives:

A. The follower enters at t2 with a product whose quality is lower than the
leader’s. We label this case as high-quality leadership.

B. The follower enters at t2 with a product whose quality is higher than the
leader’s. We label this case as low-quality leadership.

3.1 The Price Game

In both cases, over t ∈ [t2,∞), firms compete in prices. We borrow from Aoki
and Prusa (1997) and Lehmann-Grube (1997) the assumption that down-
stream Bertrand competition is simultaneous. Market demands for the high-
and low-quality good are, respectively:

xH = θ̄ − pH − pL
qH − qL

and xL =
pH − pL
qH − qL

− pL
qL

(2)

Duopoly revenue functions are RH = pHxH and RL = pLxL. Solving for the
equilibrium prices, we obtain:

pH = 2θ̄qH
qH − qL
4qH − qL

; pL = θ̄qL
qH − qL
4qH − qL

(3)

4To solve the game we adopt subgame perfection, and we look for simultaneous Nash
equilibria in each stage. Considering the Stackelberg solution would make calculations
more cumbersome without affecting significantly the main results.
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which allow to rewrite the revenue function of firms in terms of qualities only,
as follows:5

RH =
4θ̄
2
q2H(qH − qL)

(4qH − qL)2
(4)

RL =
θ̄
2
qHqL(qH − qL)

(4qH − qL)2
(5)

On the basis of expressions (4-5), previous literature, dealing with single-
period models, establishes that the first entrant would choose to supply the
high-quality good, given that RH > RL. In the remainder, we label the
leader’s quality as q1 and the follower’s quality as either qH or qL, with the
understanding that qH ≥ q1 and q1 ≥ qL.

3.2 The Follower’s Quality Choice

We characterize the optimal problem when the follower chooses to enter with
a lower or a higher quality than the leader. In the final sections of the paper
we will use this characterization in order to solve the game and in particular
to ascertain the conditions which will induce the follower to enter either with
a lower or with a higher quality. We will define the two situations entry from
below and entry form above respectively and will be analyzed in a sequel.

3.2.1 Follower’s entry from below

The follower’s profits when entering from below are Π2L, where the subscript
2 denotes the follower (firm 2) and the subscript L denotes that the firm has
lower quality than the competitor. Namely, they are:

Π2L =

Z ∞

q1+qL

RLe
−rtdt− c

Z q1+qL

q1

e−rtdt =

RL
e−(q1+qL)r

r
− c

r

¡
e−q1r − e−(q1+qL)r

¢
=

θ̄
2

r

µ
q1qL(q1 − qL)

(4q1 − qL)2
e−rqL +

c

θ̄
2e
−rqL − c

θ̄
2

¶
e−rq1

5The proof is omitted here, as it is provided by several authors (Gabszewicz and Thisse,
1979; Choi and Shin, 1992; Motta, 1993; Aoki and Prusa, 1997; Lehmann-Grube, 1997).
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where the last equality uses (5). Hence the follower problem can be written
as:

max
qL

Π2L (qL, q1) = max
qL

θ̄
2

r

µ
q1qL(q1 − qL)

(4q1 − qL)2
e−rqL +

c

θ̄
2e
−rqL − c

θ̄
2

¶
e−rq1 (6)

We are now able to state a useful result, instrumental for solving the game.

Lemma 1 When entry occurs from below, the follower’s problem can be
transformed into an equivalent one, which depends only on the exogenous
parameter δ ≡ rc/θ̄

2.

Proof. If we set:

γ ≡ c

θ̄
2 , δ ≡ rc

θ̄
2 , γq̃L ≡ qL γq̃1 ≡ q1

and substitute in (6) we obtain:

r

c
Π2L (γq̃L, γq̃1) =

µµ
q̃1q̃L(q̃1 − q̃L)

(4q̃1 − q̃L)2
+ 1

¶
e−δq̃L − 1

¶
e−δq̃1 (7)

Maximizing the right hand side of (7) with respect to q̃L is equivalent to (6).

Notice that c and θ̄2 enter precisely in the same way into the problem. The
discount rate r has an independent effect, since it enters in the definition of
δ, but not in that of q̃L. We are now in a position to prove that the follower’s
problem has a solution and to characterize it.

Proposition 2 When entry occurs from below, the follower’s problem has a
solution if δ ∈ [0, 1/16] and the solution is characterized by:

argmax
q̃1

Π2L (γq̃L, γq̃1) =
4− 7x− δ (4− x)3

δx (1− x) (4− x)
≡ q̃∗L

where
x =

q̃L
q̃1
=

qL
q1
.

Proof. See the Appendix.
The transformation q̃L = xq̃1 allows us to express the first order condition

as a linear function of q̃1, simplifying considerably the calculations we will
have to carry out below, when substituting the follower’s equilibrium strategy
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into the leader’s problem, as it is necessary for computing the sub-game
perfect equilibria. For future reference, notice also that:

∂q̃L
∂x

=
−8− x− 7x (1− x)− δ (x+ 2) (4− x)3

δ (1− x)2 (4− x)2
< 0 (8)

hence q̃L is a monotonically decreasing function of x in the relevant range.

3.2.2 Follower’s entry from above

In this paragraph we proceed in an analogous way as the previous one. The
follower’s profits if it enters with the high quality good are denoted by Π2H ,
where the subscript 2 denotes the follower (firm 2) and the subscript H
denotes that the firm has higher quality than the competitor. The follower
profit can be written as follows:

Π2H = RH

Z ∞

q1+qH

e−rtdt− c

Z q1+qH

q1

e−rtdt

RH
e−t2r

r
− c

r

¡
e−q1r − e−(q1+qH)r

¢
=

θ̄
2

r

µ
4q2H(qH − q1)

(4qH − q1)2
e−rqH +

c

θ̄
2e
−rqH − c

θ̄
2

¶
e−rq1

where the last equality is obtained using (4) . The follower problem is there-
fore:

max
qH

Π2H (qH , q1) = max
qH

θ̄
2

r

µ
4q2H(qH − q1)

(4qH − q1)2
e−rqH +

c

θ̄
2 e
−rqH − c

θ̄
2

¶
e−rq1 (9)

Also in this case we can prove that the problem can be transformed in a
simpler one, as stated in the following proposition.

Lemma 3 When entry occurs from above, the follower’s problem can be
transformed into an equivalent one, which depends only on the exogenous
parameter δ ≡ rc/θ̄

2.

Proof. If we set:

γ ≡ c

θ̄
2 , δ ≡ rc

θ̄
2 , γq̃H ≡ qH γq̃1 ≡ q1
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an substitute into (9) we obtain:

r

c
Π2H (γq̃H , γq̃1) =

µµ
4q̃2H(q̃H − q̃1)

(4q̃H − q̃1)2
+ 1

¶
e−δq̃H − 1

¶
e−δq̃1 (10)

Maximizing the right hand side of (7) with respect to q̃H is equivalent to
solving problem (9).
Finally, the existence of a solution for the follower entering from above is

ensured by the following proposition.

Proposition 4 When entry occurs from above, the follower’s problem has a
solution, which is characterized by

argmax
q̃1

Π2H (γq̃H , γq̃1) =
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)
≡ q̃∗H

where
x =

q̃1
q̃H
=

q1
qH

.

Proof. See the Appendix.
Notice again that the transformation q̃1 = xq̃H allows to express the first

order condition as a linear function of q̃1, which simplifies considerably the
solution of sub-game perfect equilibrium strategies of the previous stages of
the game. Finally, notice for future reference that:

∂q̃H
∂x

=
1

4

4 (8 + x+ 7x (1− x))− (x+ 2) (4− x)3 δ

δ (1− x)2 (4− x)2

It is easy to check that:

∂

∂x
q̃H

µ
x|δ = 4(4−3x+2x

2)
(4−x)3

¶
=

2x (x+ 5)

(4− x)2 (1− x) δ
> 0. (11)

Hence, noticing that ∂q̃H/∂x is decreasing in δ, we have that ∂q̃H/∂x > 0 in
the relevant range. Therefore, q̃H (x) is monotonically increasing in x.

3.3 The Leader’s Quality Choice

The leader has to take two choices on the quality level: one when it enters
as a monopolist and the other when it has to cope with the entry of the
competitor. On the basis of Assumption 1, the second level of quality cannot
exceed the monopoly one. As usual, we start by analyzing the last quality
choice, that when the follower enters.
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3.3.1 The Quality in the Last Stage Game

As for the follower, we characterize the optimal choice when entering with
a higher quality than that expected from the follower and with a lower one.
In the following sub-sections we will determine the conditions inducing the
follower to enter either with a lower or with a higher quality than the leader’s.
We will define the two situations as entry from below and entry form above
respectively and they will be analyzed in a sequel.

Leader’s entry from above First of all notice that once firm 2 had en-
tered, firm 1 wishes to produce at the highest quality level in the product
space. It is sufficient to compute the derivative of RH with respect to qH
and check that it is always positive. Recall that the R&D costs were already
borne and therefore irrelevant in this stage. Hence:

∂

∂qH
RH = 4θ̄

2
qH
4q2H − 3qHq2 + 2q22
(4qH − q2)

3

which is positive if 4q2H − 3qHq2 + 2q22 > 0. However:

4q2H − 3qHq2 + 2q22 ≥ 4q22 − 3q2q2 + 2q22 = 3q22 ≥ 0

where the first inequality is an implication of qH ≥ q2. Since q1 ≤ qM , where
qM is the quality level of monopolist’s product, we can summarize the result
in the following lemma.

Lemma 5 If the leader enters with the high quality good, then it will produce
a good of the same quality level before and after follower’s entry.

Leader’s entry from below After firm 2 had entered the market, the
leader’s optimal quality level is q1 = 4qH/7, if it entered with a low quality.
In fact, in analogy with the entry from above, we have:

∂

∂qL
RL = θ̄

2
q2H

4qH − 7q1
(4qH − q1)

3 = 0

which indeed implies q1 = 4qH/7.
Recalling that: qH = γq̃H and q1 = γq̃1, the equality q1 = 4qH/7 implies

also q̃1 = 4q̃H/7. Moreover, recall that in the proof of Proposition 4 we set
x = q̃1/q̃H , which for the analysis above must be: x = 4/7. Substituting in
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the follower’s first order condition, we obtain:

q̃H =
2

7
· 7− 24δ

δ

which is meaningful if and only if:

δ =
c

θ̄
2 r ≤

7

24

Under the above condition we have:

q̃1 =
8

49
· 7− 24δ

δ

This discussion implies:

Lemma 6 If (i) the leader has entered with the low quality good and (ii)
the quality chosen after the follower’s entry is lower than that chosen in the
monopoly phase, then the equilibrium quality levels in the duopoly phase are:

q̃1 =
8

49
· 7− 24δ

δ
, q̃2 =

2

7
· 7− 24δ

δ

provided that: δ = cr/θ̄
2 ≤ 7/24.

3.3.2 Monopoly Phase

After having discussed the choices in the competition game, we have to de-
scribe what happens in the monopoly phase. As usual, we start by describing
the price policy and then the choice of quality, distinguishing between entry
with high and low quality, respectively.

The Monopolist’s Price In the monopoly phase, revenues are RM =
p
¡
θ̄ − p/qM

¢
, where qM is the quality level chosen by firm 1 when it is a

monopolist. The first order conditions for the price is:

θ̄qM − 2p
qM

= 0

and hence p = θ̄qM/2. Substituting again in the profits, it yields RM =

θ̄
2
qM/4.
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Leader’s entry from above The profit function of firm 1 when entering
from above are denoted by Π1H , where subscript 1 denotes the leader, while
subscript H denotes that the leader entered with the plan to set a higher
quality than the follower’s. Hence:

Π1H (qL, qM) = RM

R qM+qL
qM

e−rtdt+RH

R∞
qM+qL

e−rtdt− c
R qM
0

e−rtdt =

RM
e−rqM − e−(qM+qL)r

r
+RH

e−(qM+qL)r

r
− c

(1− e−rqM )
r

=

qM θ̄
2

4

e−rqM − e−r(qM+qL)

r
+
4θ̄
2
q2H(qH − qL)

(4qH − qL)2
e−r(qM+qL)

r
− c

(1− e−rqM )
r

Moreover, recall that the corresponding follower’s problem is that where it
enters from below. In that case, we have been able to express the follower’s
problem in terms of one parameter only, δ ≡ rc/θ̄

2, thus simplifying it sig-
nificantly. It turns out that this is possible also for the leader’s problem.

Lemma 7 When firm 1 enters from above, the leader’s problem can be trans-
formed into an equivalent one which depends only on the exogenous parameter
δ ≡ rc/θ̄

2.

Proof. The profit function of the leader is equivalent to:

r

θ̄
2Π1H (qL, qM) = 4

q21 (q1 − qL)

(4q1 − qL)
2 e
−r(qM+qL)+

+
1

4

¡
1− e−rqL

¢
e−rqMqM − c

θ̄
2

¡
1− e−rqM

¢
We already know from the above analysis that, when the follower enters,
the leader will produce the highest quality and hence we have q1 = qM .
Therefore, the leader’s problem is equivalent to maximizing:

ΠMH (qL, q1) = 4
q21 (q1 − qL)

(4q1 − qL)
2 e
−r(q1+qL)+

1

4
e−rq1q1− 1

4
e−r(q1+qL)q1+γe−rq1−γ

where ΠMH = θ̄
2
Π1H/γ. Setting again:

γ ≡ c

θ̄
2 , δ ≡ rc

θ̄
2 , γq̃L ≡ qL γq̃1 ≡ q1
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we obtain:

ΠMH (γq̃L, γq̃1) = γ

µ
4q̃21 (q̃1 − q̃L)

(4q̃1 − q̃L)
2 e−δq̃L − 1

4
q̃1e

−δq̃L +
1

4
q̃1 + 1

¶
e−δq̃1 − γ

Then, defining:

ΠH (q̃L, q̃1) =
1

γ
ΠMH (γq̃L, γq̃1) + γ =µµ

4q̃1 (q̃1 − q̃L)

(4q̃1 − q̃L)
2 −

1

4

¶
q̃1e

−δq̃L +
1

4
q̃1 + 1

¶
e−δq̃1

we obtain that maximizing Π1H is equivalent to maximize ΠH , which depends
only on δ.
The above lemma allows us to simplify considerably the leader’s problem,

even though it remains indeed rather cumbersome. In fact, we have to opti-
mize using backward induction, which implies that we have to introduce the
follower’s first order condition inside the leader’s problem. However, using
again the variable x = q̃L/q̃1 = qL/q1, the profit function of the leader can
be further transformed in the following:

ΠH (xq̃1, q̃1) =
1

4

µµ
1− 8 + x

(4− x)2
xe−δxq̃1

¶
q̃1 + 4

¶
e−δq̃1

Finally, using q̃L and considering the fact that it is monotone in x for (8),
the leader’s problem is equivalent to:

max
x

ΠH

Ã
4− 7x− δ (4− x)3

δ (1− x) (4− x)
,
4− 7x− δ (4− x)3

δx (1− x) (4− x)

!
(12)

which is still computationally a complicated problem, but in principle it is
the maximization of a function of a single variable and a single parameter.
Therefore the function can be easily represented graphically. Finally, recall
that we need to impose δ ≤ (4− 7x) / (4− x)3 in order to make the follower’s
problem meaningful. Given the additional restrictions x ≤ 4/7 and δ ≤ 1/16
(see the proof of Proposition 2), we can carry out an exploration of the
monopolist profit function in Figure 1, highlighting the existence of a global
maximum for any given value of δ.
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Figure 1: Profit of the leader when entering from above

The monopolist’s first order condition is:

DH (x, δ) =
∂

∂x
ΠH

Ã
4− 7x− δ (4− x)3

δ (1− x) (4− x)
,
4− 7x− δ (4− x)3

δx (1− x) (4− x)

!
= 0 (13)

cannot be solved analytically. However, we can draw the implicit plot in
Figure 2. The dotted line plots the locus δ = (4− 7x) / (4− x)3. There-
fore, only the area below the dotted line satisfies δ < (4− 7x) / (4− x)3.
The continuous line below the dotted one is the locus of the global maxima
of the profit function, as established by comparing Figure 1 and 2.We can
summarize the graphical analysis above in the following proposition.

Proposition 8 The problem of the leader entering with the high quality and
correctly anticipating that the follower will respond with a lower quality has
a solution, characterized by ∂ΠH/∂x = 0 for any δ ∈ [0, 1/16].

Leader’s entry from below The analysis of this case is very similar to
that of the previous one. The profit function of firm 1 when entering from
below is denoted by Π1L where the subscript 1 denotes the leader, while
the subscript L denotes that the leader entered with the plan to set a lower
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Figure 2: First order condition for the leader when entering from above

quality than the response of the follower. We have:

Π1L = RM

R qM+qH
qM

e−rtdt+RL

R∞
qM+qH

e−rtdt− c
R qM
0

e−rtdt =

RM
e−rqM − e−(qM+qH)r

r
+RL

e−(qM+qH)r

r
− c

1− e−rqM

r
=

qM θ̄
2

4

e−rqM − e−(qM+qH)r

r
+ θ̄

2 qHqL (qH − q1)

(4qH − q1)
2

e−(qM+qH)r

r
− c

(1− e−rqM )
r

.

Moreover, recall that the corresponding problem of the follower is that where
it enters from below. Also in that case we were able to express the follower’s
problem as depending on one parameter only, δ ≡ rc/θ̄

2. Likewise, for the
leader’s problem we can formulate the following:

Lemma 9 When firm 1 enters from below, the leader’s problem can be trans-
formed into an equivalent one which depends only on the exogenous parameter
δ ≡ rc/θ̄

2.

15



Proof. The leader profits can be rewritten as:

r

θ̄
2Π1L (qM , qH , qL) =

qHqL (qH − qL)

(4qH − qL)
2 e−r(qM+qH) +

1

4

¡
1− e−rqH

¢
e−rqM qM − c

θ̄
2

¡
1− e−rqM

¢
Setting as usual:

γ ≡ c

θ̄
2 , δ ≡ rc

θ̄
2 , γq̃M = qM γq̃L ≡ qL, γq̃H ≡ qH

we have that:

ΠML (q̃M , q̃H , q̃L) =
1

γ
Π1L (γq̃M , γq̃H , γq̃L)− γ = (14)µµ

q̃H q̃L
q̃H − q̃L

(q̃L − 4q̃H)2
− 1
4
q̃M

¶
e−δq̃H +

1

4
q̃M + 1

¶
e−δq̃M

where it is obvious that maximizing ΠML with respect to q̃M is equivalent to
maximizing Π1L with respect to qM .
In principle here we have to consider two cases. In fact, for δ ≤ 7/24 it is

possible that the leader offers a higher quality good when monopolist than
after the follower had entered. We will prove that this is not the case.

Proposition 10 Irrespective of whether the leader enters with the low or
the high quality, the quality of the leader after the follower had entered the
market coincides with the optimal monopoly quality, i.e., q1 = qM .

Proof. See the Appendix.
Given the above proposition we can analyze only the cases where the

monopolist’s choice is binding in the duopoly phase, that is, where q̃M = q̃L.
In such a case, setting q̃M = q̃L = q̃1 the leader’s profits (14) become:

ΠL (q̃H , q̃1) = ΠML (q̃1, q̃H , q̃1) =µµ
q̃H q̃1

q̃H − q̃1

(4q̃H − q̃1)
2 −

1

4
q̃1

¶
e−δq̃H +

1

4
q̃1 + 1

¶
e−δq̃1

Even though we have simplified also this problem, it is still computationally
cumbersome. However, using again the variable x = q̃1/q̃H = q1/qH , the
problem can be further transformed into the following:
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ΠL (q̃H , xq̃H , δ) =
1

4

µµ
1− 12− 4x+ x2

(4− x)2
e−δq̃H

¶
xq̃H + 4

¶
e−δxq̃H

Finally, using q̃H , which is monotone in x for (11), the leader’s problem
is equivalent to:

max
x

ΠL

Ã
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)
, x
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)

!
(15)

Once again we resort to graphical analysis because it is impossible to find
a closed form solution. However, we have again a function of one variable
and one parameter and the graphical analysis can help us to characterize the
solution. Using restriction δ ≤ 4 (4− 3x+ 2x2) / (4− x)3, we can produce a
graphical exploration of the problem in Figure 3. It shows that the function
has a unique global maximum for each value of δ. Moreover, the first order
condition is:

0 = DL (x, δ) =

∂
∂x
ΠL

Ã
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)
, x
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)

!
(16)

and it is not solvable analytically. However, its implicit plot is in Figure 4.We
can summarize the graphical analysis above in the following proposition.
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Figure 4: Leader’s first order condition when entering from below

Proposition 11 The problem of the leader entering with the low quality and
correctly anticipating that the follower will respond with a higher quality has
a solution, characterized by ∂ΠL/∂x = 0 for any δ.

4 Is it Convenient to Enter the Market with
a High-quality Product?

Now we can solve for the subgame perfect equilibrium of the whole game by
determining whether the leader will enter with a high or a low quality. We
first prove a preliminary result.

Lemma 12 No equilibrium with the follower entering the market with a
lower quality than the leader does exist if δ = rc/θ̄

2
> 1/16.

Proof. It is a direct consequence of the restriction δ ≤ 1/16.
We are now in the position to prove the main lemma of this section.

Lemma 13 There exists a δ̄ such that, for δ ∈ £0, δ̄¢ there is no subgame
perfect equilibrium with the follower entering the market and the leader pro-
ducing the high quality good, while for δ ∈ ¡δ̄, 1/16¤ = ¡δ̄, 0.062 5¤ there exists
no equilibrium with the follower entering the market and the leader producing
the low quality good. The value of δ̄ is approximately: δ = 0.0203125.
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Proof. We solve numerically equations (13) and (16), finding the optimal
x for the two problems for various values of δ. The computed values are re-
ported in the Table 1-3 of the Appendix in columns denoted respectively by
xHL and xLH . By using the expression for q̃1, we can compute q̃∗1 (xHL (δ) , δ)
and q̃∗L (xHL (δ) , δ) = xHL (δ) · q̃∗1 (xHL (δ) , δ), the optimal values of trans-
formed variables replacing qL and q1. By using q̃H we can compute, instead,
q̃∗H (xLH (δ) , δ) and q̃

∗
1 (xLH (δ) , δ) = xLH (δ) · q̃∗H (xLH (δ) , δ). Given the var-

ious level of qualities, the profits of the monopolist entering from above and
entering from below can be computed and are drawn in Figure 5. It can be
seen that the profit of the low quality monopolist are higher for lower level
of δ and lower thereafter. The two curves cross at δ̄.
The above proposition suggests that the equilibrium should have the fol-

lowing form: when δ < δ̄ the leader enters with a low quality good and the
follower responds with a higher quality and for δ > δ̄ the opposite is true
(while when δ = δ̄ both equilibria are available). However, before proving
such a result we need to exclude the profitability of other possible deviations.
First, the leader might have an incentive to monopolize the market. Second,
if the leader enters with a high quality it might be the case that the follower
wishes to enter with an even higher one, that is to leap-frog the leader. Third,
if the leader enters with a low quality the follower might find it convenient to
undercut the leader’s quality. The next three propositions take care of these
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three possibilities, respectively.

Proposition 14 For δ sufficiently small, there exists no subgame perfect
equilibrium where the leader succeeds in monopolizing the market. In partic-
ular, δ ≤ 1/16 is a sufficient condition for the leader not to be able to prevent
the entry of the follower.

Proof. In order to prove the proposition, we must check that he follower
can always enter with a lower quality for any choice of the leader, making
positive profits. Recall that the optimal choice of the follower is expressed
by q̃1, which is re-written for convenience as:

q̃L =
4− 7x− δ (4− x)3

δ (1− x) (4− x)

We know that x must satisfy the inequality:

δ ≤ 4− 7x
(4− x)3

Recall also that profits for the follower entering with the low quality are:

r

c
R2L (γq̃L, γq̃1) =

µµ
q̃1q̃L(q̃1 − q̃L)

(4q̃1 − q̃L)2
+ 1

¶
e−δq̃L − 1

¶
e−δq̃1

and using again the definition of q̃L and the fact that q̃L = xq̃1, profits can
be re-written as: µ

4− 7x
(4− x)3 δ

e−
4−7x−δ(4−x)3
(1−x)(4−x) − 1

¶
e−δq̃1

Notice that if δ = (4− 7x) / (4− x)3, then the follower’s profits are nought,
otherwise they are positive for any admissible values of x and δ.
The only possible candidate equilibrium strategy profiles left are those

with the leader entering with the low quality and the follower responding
with a higher one and the other where the opposite happens, depending on
the value of the composite parameter δ. However, we still have to ascertain
whether it is optimal for the follower to respond with a higher (lower) quality
if the leader enters with a low (high) one. This is done in the following two
propositions.

Proposition 15 If δ ∈ ¡δ̄, 1/16¤ , the leader enters with a high quality and
the follower will always respond with a lower one.
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Proof. The only thing we need to check is whether the follower responds
with a lower quality. This proof is conceptually similar to that of Lemma
13. We can compute numerically q̃∗1 (xHL (δ) , δ) and q̃∗L (xHL (δ) , δ). With
the two levels of quality we can compute numerically firm’s 2 profit as from
equation (7). Moreover, using the first order condition of the follower when
entering from above, we can compute numerically the corresponding value
of x, for any given q1 and δ. Those values of x are reported in the tables of
the Appendix in the column denoted as xHH . Thereafter we can compute
q̃∗H (q̃

∗
1, δ) = q̃∗1 (xHL (δ) , δ) / xHH , which is the optimal response if the follower

tries to leap-frog the leader. Finally, we use q̃∗1 (xHL (δ) , δ) and q̃∗H (q̃
∗
1, δ) to

compute the follower’s profit when deviating and entering with the high
quality using (10). We provide here the graphical representation of the two
levels of profit of the follower showing that the follower makes higher profits
when producing the low quality and therefore that she will never deviate
from the low quality.

Proposition 16 If δ ∈ £0, δ̄¢, the leader enters with a low quality and the
follower will always respond with a higher one.

Proof. The only thing we need to prove is that the follower responds with
a higher quality and does not undercut the leader. Relying on the proof of
Lemma 13, we can compute q̃∗H (xLH (δ) , δ) and q̃∗1 (xLH (δ) , δ). With the
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two levels of quality we can compute numerically Firm’s 2 profit as from
equation (10). Moreover, using the first order condition of the follower when
entering from below, we can compute numerically the appropriate value of
x, for any given q1 and δ. Those values of x are reported in the tables of
the Appendix in the column denoted as xLL. Finally we can compute and
hence q̃∗L (q̃

∗
1, δ) = xLL· q̃∗1 (xLH (δ) , δ), the follower’s optimal deviation when

she tries to undercut the leader, and then use q̃∗1 (xLH (δ) , δ) and q̃∗L (q̃
∗
1, δ)

to compute the follower’s profit when deviating and entering with the low
quality using (7). We provide here the graphical representation of the two
profit levels of the follower showing that the follower never deviates from the
high quality for any δ < δ̄ ≈ 0.0203125.
Therefore we can summarize the above analysis in the following corollary.

Corollary 17 For δ ∈ £0, δ̄¢ , there is a unique subgame perfect equilibrium
with the follower entering the market and the leader producing the low quality
good. For δ ∈ ¡δ̄, 1/16¤ there exists a unique subgame perfect equilibrium with
the follower entering the market and the leader producing the high quality
good. For δ = δ̄ both equilibria do exist. The value of δ̄ is approximately δ =
0.0203125.

A few remarks are now in order. First, a trivial one, refers to δ = δ̄. For
that value of δ both equilibria hold. However, while the leader is indifferent
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between the two equilibria, the follower makes higher profits if the leader en-
ters with he low quality. Second, recall that δ = rc/θ̄

2. The two Propositions
15 and 16 together imply that in the interval [0, 1/16] there exist a subgame
perfect equilibrium parameterized on δ and such that for low δ, δ ∈ £0, δ̄¤,
the leader will enter with low quality, while with high ones, δ ∈ ¡δ̄, 1/16¤, he
will choose a high quality. That is, the leader will enter with the high quality
for low levels of r and with the high quality for high levels of r, for given c
and θ̄.
The intuition of the result is as follows. For low δ0s, the quality chosen

by both firms is significantly higher, in both candidate equilibria, with low
and high quality leadership alike. In particular the follower’s quality is very
high in both allocations. However, it is significantly higher when it enters
with the highest quality, as can be checked in Figure 8. This implies that the
leader will remain a monopolist for a significantly longer period if it enters
with the low quality than with the high one. This is the driving force that
makes it convenient to enter with the low quality when δ is low. It is also
rather intuitive that c should have similar effects as r, while θ̄ should have
the opposite ones. That is, any decrease in c and/or r, and any increase in
θ̄, imply a decrease in δ.
Finally, we should like to assess our results against those of Lehmann-

Grube (1997) and Dutta et al. (1995), so as to evaluate how different as-
sumptions about the time horizon and the technology affect the features of
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the subgame perfect equilibrium. Lehmann-Grube (1997) generalizes the
analysis conducted by Shaked and Sutton (1982, 1983) to account for a tech-
nology which is convex in the quality level, but remains in a single-phase
model where there exist no monopoly periods. This produces the result that
surplus extraction is maximized when the firm locates at the top of the avail-
able quality spectrum.
In Dutta et al. (1995), it is assumed that (i) per-period operative duopoly

profits are proportional to relative quality and are symmetric; (ii) adoption
(entry) dates are endogenous, while (iii) the growth of quality over time is
not endogenously determined by firms; (iv) unit production cost is flat w.r.t.
quality; and (v) innovation costs are summarized by the waiting time before
the adoption. In this setup, the authors find that a later entrant obtains
larger profits than an earlier entrant, and no monopoly rent is dissipated at
the subgame perfect equilibrium.
In our setting, the entry timing is endogenously linked to quality improve-

ment, and the cost borne to supply superior qualities can be high enough to
offset the advantage attached to serving rich customers. The interplay of
these factors may entail that, in some relevant parameter ranges, all firms
would prefer to enter early with an inferior quality rather than late with a
superior one.

5 Concluding Remarks
We have investigated the bearings of R&D expenditures in continuous time
over the entry process in a market for vertically differentiated goods.
We have shown that entering first and enjoying an ad interim monopoly

rent may counterbalance the incentive towards the supply of high quality
goods in duopoly after the entry of a second innovator. Indeed, we have
proved that this is the only subgame perfect equilibrium in a significant range
of parameters, namely, the parameter region where discounting is low, quality
improvements are comparatively inexpensive and the marginal willingness to
pay for quality is high. all of these elements contribute to make the monopoly
phase more attractive from the leader’s standpoint, ultimately inducing the
first entrant to supply a low-quality variety.
The foregoing analysis shows that the established wisdom produced by

previous literature in this field does not properly account for the role of time
and its interaction with R&D technology in determining firms’ incentives.
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Appendix

Proof of Proposition 2. Differentiating (7) for q̃L we obtain the first order
condition:

−e−δ(q̃1+q̃L) · (7q̃L − 4q̃1) (q̃1)
2 + δq̃1q̃L (q̃1 − q̃L) (4q̃1 − q̃L) + δ (4q̃1 − q̃L)

3

(4q̃1 − q̃L)
3 = 0

One could obviously solve the first and second order conditions for q̃L, even
though the solution of a third order polynomial is rather cumbersome. How-
ever, if we set q̃L = xq̃1, the first order condition is equivalent to:

q̃31
¡
7x− 4 + δq̃1x (1− x) (4− x) + δ (4− x)3

¢
= 0

hence:

q̃1 =
4− 7x− δ (4− x)3

δx (1− x) (4− x)
(a1)

and:

q̃L = xq̃1 =
4− 7x− δ (4− x)3

δ (1− x) (4− x)

Notice that in order to have q̃L ≥ 0 we must impose

0 ≤ δ ≤ 4− 7x
(4− x)3

which in turn implies:

0 ≤ x ≤ 4
7
, (a2)

and correspondingly:

0 ≤ δ ≤ 1

16
.

The second order condition is:

− e−δ(q̃1+q̃L)

(4q1 − q2)
4

£
2q21 (4q1 − 7q2) (4q1 − q2) δ + 2q

2
1 (8q1 + 7q2)+

− ¡(q1 − q2) q1q2 + (4q1 − q2)
2¢ (4q1 − q2)

2 δ2
¤
< 0

and setting q̃L = xq̃1 it becomes:

− e−δ(1+x)q̃1

(4− x)4 q̃1

£
2 (7x+ 8)− xδ2 (1− x) (4− x)2 q21+
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−δ (4− x)
¡
14x− 8 + (4− x)3 δ

¢
q1
¤
< 0

Using (a1), the condition becomes equivalent to:

− 1

x (1− x)

£
(4− 7x) (4− x)3 δ +

¡
14x3 − 47x2 + 40x− 16¢¤ > 0

or:
(4− 7x) (4− x)3 δ +

¡
14x3 − 47x2 + 40x− 16¢ < 0

Notice that (a2) implies that the polynomial is increasing in δ. Therefore
if the inequality is satisfied for δ = (4− 7x) / (4− x)3 is satisfied for all
meaningful parameter values. For this value of δ, the second order condition
becomes equivalent to:

2x
¡
7x2 + x− 8¢ < 0

which is always satisfied.¥

Proof of Proposition 4. Differentiating (10) for q̃H we obtain the first
order condition:

−e−δ(q̃1+q̃H)·¡
(4q̃H − q̃1)

3 + 4q̃2H (q̃H − q̃1) (4q̃H − q̃1)
¢
δ − 4q̃H (4q̃2H − 3q̃H q̃1 + 2q̃21)

(4q̃H − q̃1)
3 = 0

If we set q̃1 = xq̃H , the numerator becomes:

q̃3H
¡
4δ (1− x) (4− x) q̃H − 4

¡
4− 3x+ 2x2¢+ δ (4− x)3

¢
which is nought if:

q̃H =
4 (4− 3x+ 2x2)− δ (4− x)3

4δ (4− x) (1− x)
. (a3)

Notice that in order to have q̃H ≥ 0 we must impose:

0 ≤ δ ≤ 4(4− 3x+ 2x
2)

(4− x)3
≤ 4
9

(a4)

The second order condition is:

− e−δq̃1e−δq̃H

(4q̃H − q̃1)
4

£
8q̃H (4q̃H − q̃1)

¡
2q̃21 + 4q̃

2
H − 3q̃1q̃H

¢
δ + 8 (q̃1 + 5q̃H) q̃

2
1+

− ¡4 (q̃H − q̃1) q̃
2
H + (4q̃H − q̃1)

2¢ (4q̃H − q̃1)
2 δ2
¤
< 0
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and setting again q̃1 = xq̃H , it is equivalent to:

q̃3H
£−4δ2 (1− x) (4− x)2 (q̃H)

2 + 8x2 (x+ 5)+

δ (x− 4) ¡−8 ¡−3x+ 2x2 + 4¢+ (4− x)3 δ
¢
q̃H
¤
> 0

which computed in (a3) becomes:

− (−3x+ 2x2 + 4) (4− x)3 δ + 4 (−24x+ 35x2 − 20x3 + 2x4 + 16)
1− x

> 0.

Now note that the numerator is decreasing in δ. Therefore if the inequality
is satisfied for the highest value of δ, then it is always satisfied. Using (a4)
the numerator of the above expression becomes:

−8x2 ¡x2 + 4x− 5¢ > 0,
always met except for x ∈ {0, 1}, where it is nought.¥

Proof of Proposition 10. Notice that the proposition can be false only
for the leader entering from below when δ ≤ 7/24. Relying on this fact, we
proceed to characterise the proof by contradiction. From Proposition 6 we
would have:

q̃1 = q̃L =
8

49

7− 24δ
δ

, q̃2 = q̃H =
2

7

7− 24δ
δ

and substituting in (14) we obtain:

ΠML (q̃M , q̃H , q̃L) =

µµ
1

168

µ
7− 24δ

δ

¶
− 1
4
q̃M

¶
e−

2
7
(7−24δ) +

1

4
q̃M + 1

¶
e−δqM

Differentiating the above expression:

− 1

168
e−δqM

³
168δ − 42 + 42δq̃M + (49− 24δ − 42δq̃M) e 487 δ−2

´
= 0

and hence the quality level is characterized by:

q̃M =
(49− 24δ) e 487 δ−2 + (4δ − 1) 42

42δ
³
e
48
7
δ−2 − 1

´
However, again by Proposition 6 the following inequality should hold: q̃M ≥
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q̃L and hence:

(49− 24δ) e 487 δ−2 + (4δ − 1) 42
42δ

³
e
48
7
δ−2 − 1

´ ≥ 8

49

7− 24δ
δ

which after some manipulations becomes:

1

294

7e−2+
48
7
δ + 984e−2+

48
7
δδ + 42 + 24δ

δ
³
e−2+

48
7
δ − 1

´ ≥ 0

The numerator is positive. Therefore the inequality implies δ > 7/24, a
contradiction.¥
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Table 1: Numerical solutions of the firms’ problems.
Low value of δ.

Entry from below Entry from above
δ xLH xLL xHL xHH

0.000625 0.5710955777 0.4252061589 0.4237058956 0.2092704695
0.001250 0.5710989664 0.4215844866 0.4203553403 0.2074909267
0.001875 0.5711018893 0.4179537220 0.4169942492 0.2056948230
0.002500 0.5711043377 0.4143137629 0.4136224093 0.2038821871
0.003125 0.5711063032 0.4106645062 0.4102396054 0.2020530634
0.003750 0.5711077769 0.4070058473 0.4068456203 0.2002074979
0.004375 0.5711087500 0.4033376809 0.4034402348 0.1983455435
0.005000 0.5711092133 0.3996598999 0.4000232276 0.1964672625
0.005625 0.5711091574 0.3959723970 0.3965943754 0.1945727202
0.006250 0.5711085732 0.3922750625 0.3931534528 0.1926619948
0.006875 0.5711074507 0.3885677869 0.3897002322 0.1907351684
0.007500 0.5711057807 0.3848504580 0.3862344841 0.1887923325
0.008125 0.5711035528 0.3811229631 0.3827559768 0.1868335893
0.008750 0.5711007573 0.3773851884 0.3792644768 0.1848590436
0.009375 0.5710973838 0.3736370179 0.3757597481 0.1828688159
0.010000 0.5710934220 0.3698783352 0.3722415530 0.1808630310
0.010625 0.5710888610 0.3661090221 0.3687096516 0.1788418249
0.011250 0.5710836905 0.3623289590 0.3651638019 0.1768053412
0.011875 0.5710778990 0.3585380248 0.3616037600 0.1747537347
0.012500 0.5710714757 0.3547360970 0.3580292799 0.1726871712
0.013125 0.5710644090 0.3509230515 0.3544401135 0.1706058225
0.013750 0.5710566875 0.3470987630 0.3508360106 0.1685098810
0.014375 0.5710482994 0.3432631042 0.3472167191 0.1663995359
0.015000 0.5710392326 0.3394159465 0.3435819850 0.1642749982
0.015625 0.5710294752 0.3355571593 0.3399315520 0.1621364858
0.016250 0.5710190143 0.3316866107 0.3362651620 0.1599842274
0.016875 0.5710078378 0.3278041673 0.3325825548 0.1578184683
0.017500 0.5709959325 0.3239096932 0.3288834683 0.1556394605
0.018125 0.5709832856 0.3200030513 0.3251676384 0.1534474724
0.018750 0.5709698835 0.3160841028 0.3214347991 0.1512427825
0.019375 0.5709557124 0.3121527066 0.3176846822 0.1490256846
0.020000 0.5709407591 0.3082087198 0.3139170180 0.1467964828
0.020625 0.5709250091 0.3042519977 0.3101315343 0.1445554960
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Table 2: Numerical solutions of the firms’ problems.
Intermediate value of δ.

Entry from below Entry from above
δ xLH xLL xHL xHH

0.021250 0.5709084481 0.3002823939 0.3063279576 0.1423030611
0.021875 0.5708910616 0.2962997593 0.3025060119 0.1400395220
0.022500 0.5708728346 0.2923039433 0.2986654198 0.1377652416
0.023125 0.5708537521 0.2882947929 0.2948059018 0.1354805970
0.023750 0.5708337985 0.2842721533 0.2909271764 0.1331859775
0.024375 0.5708129580 0.2802358667 0.2870289604 0.1308817922
0.025000 0.5707912150 0.2761857738 0.2831109687 0.1285684678
0.025625 0.5707685527 0.2721217130 0.2791729145 0.1262464329
0.026250 0.5707449547 0.2680435198 0.2752145090 0.1239161526
0.026875 0.5707204040 0.2639510277 0.2712354616 0.1215780901
0.027500 0.5706948832 0.2598440676 0.2672354799 0.1192327367
0.028125 0.5706683748 0.2557224678 0.2632142698 0.1168805932
0.028750 0.5706408607 0.2515860543 0.2591715353 0.1145221874
0.029375 0.5706123228 0.2474346499 0.2551069787 0.1121580586
0.030000 0.5705827422 0.2432680753 0.2510203005 0.1097887570
0.030625 0.5705521000 0.2390861482 0.2469111995 0.1074148657
0.031250 0.5705203767 0.2348886833 0.2427793726 0.1050369829
0.031875 0.5704875525 0.2306754927 0.2386245150 0.1026557079
0.032500 0.5704536073 0.2264463850 0.2344463204 0.1002716774
0.033125 0.5704185202 0.2222011666 0.2302444803 0.0978855505
0.033750 0.5703822707 0.2179396398 0.2260186850 0.0954979899
0.034375 0.5703448369 0.2136616045 0.2217686227 0.0931096840
0.035000 0.5703061971 0.2093668569 0.2174939800 0.0907213469
0.035625 0.5702663289 0.2050551901 0.2131944419 0.0883337068
0.036250 0.5702252095 0.2007263935 0.2088696914 0.0859475081
0.036875 0.5701828157 0.1963802531 0.2045194100 0.0835635313
0.037500 0.5701391237 0.1920165513 0.2001432774 0.0811825600
0.038125 0.5700941095 0.1876350669 0.1957409718 0.0788054078
0.038750 0.5700477480 0.1832355747 0.1913121692 0.0764329080
0.039375 0.5700000141 0.1788178457 0.1868565444 0.0740659098
0.040000 0.5699508820 0.1743816469 0.1823737701 0.0717052971
0.040625 0.5699003253 0.1699267414 0.1778635173 0.0693519571
0.041250 0.5698483171 0.1654528876 0.1733254556 0.0670068124
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Table 3: Numerical solutions of the firms’ problem.
High value of δ.

Entry from below Entry from above
δ xLH xLL xHL xHH

0.041875 0.5697948299 0.1609598402 0.1687592523 0.0646707925
0.042500 0.5697398357 0.1564473490 0.1641645734 0.0623448659
0.043125 0.5696833057 0.1519151595 0.1595410828 0.0600300129
0.043750 0.5696252105 0.1473630125 0.1548884429 0.0577272307
0.044375 0.5695655203 0.1427906439 0.1502063139 0.0554375448
0.045000 0.5695042043 0.1381977848 0.1454943546 0.0531619999
0.045625 0.5694412313 0.1335841613 0.1407522217 0.0509016549
0.046250 0.5693765691 0.1289494940 0.1359795701 0.0486575954
0.046875 0.5693101851 0.1242934986 0.1311760528 0.0464309355
0.047500 0.5692420458 0.1196158850 0.1263413209 0.0442227972
0.048125 0.5691721169 0.1149163575 0.1214750236 0.0420343272
0.048750 0.5691003633 0.1101946149 0.1165768081 0.0398666744
0.049375 0.5690267493 0.1054503495 0.1116463198 0.0377210423
0.050000 0.5689512381 0.1006832480 0.1066832018 0.0355986197
0.050625 0.5688737922 0.0958929905 0.1016870953 0.0335006319
0.051250 0.5687943732 0.0910792507 0.0966576396 0.0314283115
0.051875 0.5687129417 0.0862416955 0.0915944716 0.0293829044
0.052500 0.5686294573 0.0813799851 0.0864972263 0.0273656750
0.053125 0.5685438792 0.0764937725 0.0813655364 0.0253779143
0.053750 0.5684561647 0.0715827035 0.0761990324 0.0234209261
0.054375 0.5683662708 0.0666464162 0.0709973427 0.0214960158
0.055000 0.5682741531 0.0616845411 0.0657600932 0.0196044799
0.055625 0.5681797662 0.0566967009 0.0604869077 0.0177476705
0.056250 0.5680830636 0.0516825096 0.0551774074 0.0159268892
0.056875 0.5679839975 0.0466415730 0.0498312113 0.0141435302
0.057500 0.5678825190 0.0415734883 0.0444479358 0.0123989271
0.058125 0.5677785781 0.0364778434 0.0390271949 0.0106944486
0.058750 0.5676721233 0.0313542170 0.0335686000 0.0090314093
0.059375 0.5675631020 0.0262021781 0.0280717598 0.0074112368
0.060000 0.5674514598 0.0210212859 0.0225362806 0.0058352248
0.060625 0.5673371415 0.0158110892 0.0169617657 0.0043047257
0.061250 0.5672200899 0.0105711263 0.0113478159 0.0028211172
0.061875 0.5671002466 0.0053009246 0.0056940290 0.0013857253
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