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1 Introduction

Most work on explaining international income differences is based on the underlying assumption

that countries have distinct long-run growth paths. Sala-i-Martin (1996) claims that the primary

reason to concentrate on steady-state analysis is that it is easy to study, and it is therefore a

spring board on which to advance richer explanations of economic growth. Support for steady-state

analysis is even stronger in the empirical literature (for example see Mankiw, Romer andWeil (1992)

(MRW), Nonneman and Vanhoudt (1996) and Dinopoulos and Thompson (2000)) which focuses on

estimating reduced-form steady-state specifications that successfully fit the cross-country data.1

Even though the literature has embraced steady-state analysis, it is widely accepted that in-

come disparities are most likely due to some combination of steady-state differences and transition

towards the steady state.2 In this paper we provide additional evidence supporting the role of

transition dynamics in explaining cross-country income differences. We perform a novel exercise in

which we take the opposite viewpoint to steady-state analysis: namely, we assume that all countries

approach the same balanced growth path, and that their income levels differ because they are at

different points along the transition.

More specifically, we study the transition dynamics predictions of a growth model with en-

dogenous technical progress physical and human capital accumulation, and we evaluate their per-

formance in explaining income disparities across countries. Even though the model in this paper

exhibits certain properties that can stand out in their own right, the focus is on taking the transition

dynamics predictions of the model to the data by using calibration techniques.

The model considered here is an extended version of Jones’ (2002) framework with two modifi-

cations: First, we allow for human capital stock to accumulate endogenously over time, and second,

technology imitation in our model is costly. Following Bils and Klenow (2000), we include the above

two modifications to make the model more appropriate to analyze countries at different levels of

development. We choose Jones’ non-scale growth model — admittedly only one of various candi-

dates — because it has succeeded in reconciling important properties of the data such as increasing

R&D intensity and rising educational attainment levels with constant output growth rates. It is

1MRW explain 78 percent of income variation across 98 countries. Nonneman and Vanhoudt (1996) extend MRW
to include R&D capital and also explain 78 percent of the income variation across the OECD countries.

2For example, King and Rebelo (1993) emphasize the important role of adjustment paths in explaining growth
experiences. Barro and Sala-i-Martin (1995, Ch. 11) report estimates of regional σ-convergence within countries that
allow for a large role for transition dynamics.
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important to mention, however, that the non-scale feature of the model is present only along the

balanced-growth path; scale effects are possible along the transition, as recently pointed out, for

example, by Dinopoulos and Thompson (1998). The model therefore does not impose non-scale

behavior to developing economies that maybe in transition to the steady state. Finally, the non-

scale growth model can generate the customary MRW type steady-state equation as pointed out

by Howitt (2000), a property that will prove helpful in our analysis.

The main finding from this exercise is that transition dynamics are able to explain the cross-

country income level dispersion equally well as steady-state regressions do. It is also shown that

the transition dynamics of the model can explain (in various degrees) other stylized facts on eco-

nomic development such as: cross-country dispersion of growth rates, cross-country dispersion of

saving/investment rates, cross-country equality of real interest rates. Overall, we interpret our

results as suggesting that a world in which nations move along their balanced-growth paths is as

likely as a world in which countries move along adjustment paths toward a common (very long-run)

steady state.

Work related to our approach — using calibration and taking the implications of growth models to

the data — includes Christiano (1989), King and Rebelo (1993), and Chari, Kehoe, and McGrattan

(1997). Implications of the non-scale growth model considered in this paper have been extensively

explored by Eicher and Turnovsky (1999a, 1999b, 2001), and Perez-Sebastian (2000). Unlike us,

these authors do not consider human capital. Recent work that questions steady-state analysis is

Jones (2002); however, he focuses only on the U.S. experience.

The rest of the paper is organized as follows. Section 2 presents the basic model. In this section,

we establish the economic environment and examine the steady-state and transition dynamics

properties of the model. The numerical analysis is presented in section 3. In this section, we

simulate the adjustment path, assess how well it fits the cross-country output data, and how well

it explains various development stylized facts. In section 4, we perform sensitivity analyses on key

parameter values used in the calibration exercise. Section 5 concludes.

2 The Model

In this section we present our model. First, we outline the economic environment under which

households and firms operate. Then we solve the socially optimal problem. Our exposition is
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focused on aggregate technologies. The main reason is that the human capital technology incor-

porated in this paper can not be easily derived from a decentralized setup due to aggregation

problems.3

2.1 Economic environment

The economy consists of identical infinitely-lived agents, and population grows exogenously at rate

n. Agents have preferences only over consumption, and choose to allocate their time endowment

in three types of activities: consumption-good production, R&D effort, and human capital attain-

ment.

Our model economy is characterized by the following three equations: First, at period t, output

(Yt) is produced using labor (LY t) and physical capital (Kt) according to the following aggregate

Cobb-Douglas technology:

Yt = A
ξ
t (ht LY t)

1−α Kα
t , 0 < α < 1 , ξ > 0, (1)

where ht represents the effectiveness of average human capital level on labor; α is the share of

capital; ξ is a technology externality; and At is the economy’s technical level.

Second, the R&D equation that determines technological progress is given by

At+1 −At = µA
φ
t (htLAt)

λ

µ
A∗t
At

¶ψ

, φ < 1, 0 < λ ≤ 1, µ, ψ ≥ 0, A∗t ≥ At, (2)

where LAt is the portion of labor employed in the R&D sector at time t; A∗t is the worldwide stock

of existing technology that grows exogenously at rate gA∗ ; φ is an externality due to the stock of

existing technology; and λ captures the existence of decreasing returns to R&D effort. The above

R&D equation is the one proposed by Jones (1995, 2002) plus a catch-up term
³
A∗t
At

´ψ
, where ψ is a

technology-gap parameter. The catch-up term is also consistent with the “relative backwardness”

hypothesis of Findlay (1978) that the rate of technological progress in a relatively backward country

is an increasing function of the gap between its own level of technology and that of the advanced

country.4

3See footnote 6 for a discussion on the aggregation problem of this approach.
4Nelson and Phelps (1966) are the first to construct a formal model based on the catch-up term. Parente and

Prescott (1994) notice that this formulation implies that development rates increase over time (with A∗
t ), and provide

empirical evidence that is consistent with this implication. Benhabib and Spiegel (1994) find evidence in favor of an
R&D equation with imitation in a large sample of countries.
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Third, we have the schooling equation that determines the way by which human capital ac-

cumulates. The human capital technology follows Bils and Klenow (2000), who suggest that the

Mincerian specification of human capital is the appropriate way to incorporate years of schooling

in the aggregate production function. Following their approach, human capital per capita is given

by

ht = ef(St) , (3)

where f(St) = ηS
β
t , η > 0, β > 0; and St is the labor force average years of schooling at time t.

The derivative f 0(St) represents the return to schooling estimated in a Mincerian wage regression:

an additional year of schooling raises a worker’s efficiency by f 0(St).
5,6

We assume that, each period, agents allocate time to human capital formation only after output

production has taken place.7 Let LHt be the total amount of labor invested in schooling in the

economy at date t. Assume that at some point in time, say period 1, the average educational

attainment equals zero. Next period, given that consumers live for ever, the average years of

schooling will be S2 =
LH1
L2
, where Lt is the labor size at date t. In period 3, S3 =

LH1+LH2
L3

, and

so on. Hence, the average educational attainment can be written as

St =

Pt−1
j=1 LHj

Lt
. (4)

From equation (4), we can write

St+1 =
St Lt +LHt

Lt+1
, (5)

5For the original discussion on Mincerian wage regressions see Mincer (1974). For recent discussion of the advan-
tages of the Mincerian approach in growth modeling and estimation, see Bils and Klenow (2000), and Krueger and
Lindahl (2001).

6To be fully consistent with the Mincerian interpretation, Hjt =
PLjt

i=1
ef(sit); where sit is the educational at-

tainment of worker i at date t. The mapping between this expression and equation (3) is not straightforward, and
has not been addressed by the literature, with the exception of Lloyd-Ellis and Roberts (2002) who perform only
balanced-growth path analysis in a finitely-lived agent framework. The difficulty arises because different cohorts can
possess different schooling levels. To make both expressions consistent, we could assume that the first generation of
agents pins down the workers’ educational attainment, and that posterior cohorts are forced to stay in school until
they accumulate this educational level. In this way, all workers would have the same years of education (i.e., sit = St

for all i), hence
PLjt

i=1
ef(sit) = Ljt e

f(St). However, introducing this into the model would force us to keep track
of the different cohorts’ years of education across time, thus making the transitional dynamics analysis much more
cumbersome, if not impossible. We leave this important issue to future research.

7The primary reason for the particular timing of events is mathematical tractability. In particular, this timing
allows writing the motion equation of St+1 as a function of St and LHt (see equation (5)). If timing was reversed,
we would obtain the state variable St+1 as a function of St and LH,t+1 that could make the optimal control problem
significantly more difficult to solve.
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which in turn implies

St+1 − St =

µ
1

1+ n

¶µ
LHt

Lt
− nSt

¶
. (6)

It is important to notice that the above human capital technology differs from the one employed in

Jones (2002). In particular, Jones assumes that education investment fully depreciates each period

or, in other words, that human capital does not accumulate. However, the optimal allocation to

investment in education declines along the adjustment path and therefore without human capital

accumulation, human capital index is larger in lower income nations; clearly a counterfactual result.

Our equation (6) does not suffer from this counterfactual result because the value of S rises with

the income level, as the international evidence suggests.

2.2 Social planner’s problem

Let Ct be the amount of aggregate consumption at date t. A central planner would choose the

sequences {Ct, St,At,Kt, LY t, LAt, LHt}∞t=0 so as to maximize the lifetime utility of the representa-

tive consumer subject to the feasibility constraints of the economy, and the initial values L0, K0,

S0, and A0. The problem is stated as follows:

max
{Ct,St,At,Kt,St,LY t,LAt,LHt}

∞X
t=0

ρt


³
Ct

Lt

´1−θ − 1
1− θ

 , (7)

subject to,

Yt = A
ξ
t

³
ef(St)LY t

´1−α
Kα

t , (8)

It = Kt+1 − (1− δ)Kt = Yt −Ct, (9)

At+1 −At = µA
φ
t

³
ef(St)LAt

´λ µA∗t
At

¶ψ

, (10)

St+1 − St =

µ
1

1+ n

¶µ
LHt

Lt
− nSt

¶
, (11)

Lt = LY t + LAt + LHt, (12)

Lt+1

Lt
= 1+ n, for all t, (13)
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A∗t+1

A∗t
= 1+ gA∗ , (14)

L0, S0, K0, A0 given,

where θ is the inverse of the intertemporal elasticity of substitution; ρ is the discount factor; and

δ is the depreciation rate of physical capital. Equation (9) is a feasibility constraint as well as the

law of motion of the stock of physical capital; it states that, at the aggregate level, domestic output

must equal consumption plus physical capital investment, It. Equation (12) is the labor constraint;

the labor force — that is, the number of people employed in the output and the R&D sectors — plus

the number of people in school must be equal to population.

Solving this dynamic optimization problem obtains the Euler equations that characterize the

optimal allocation of labor in human capital investment, in R&D investment, and in consump-

tion/physical capital investment respectively as follows:µ
Ct

Lt

¶−θ (1− α)Yt

LY t
=

ρ

1+ n

µ
Ct+1

Lt+1

¶−θ (1− α)Yt+1

LY,t+1

·
1+ f 0(St+1)

µ
LY,t+1

Lt+1
+

LA,t+1

Lt+1

¶¸
,

(15)

µ
Ct

Lt

¶−θ (1− α)Yt

LY t
=

ρ

1+ n

µ
Ct+1

Lt+1

¶−θ λ (At+1 −At)

LAt
∗

∗
ξYt+1

At+1
+

·
1+ (φ− ψ)

µ
At+2 −At+1

At+1

¶¸ (1−α)Yt+1

LY,t+1

λ(At+2−At+1)
LA,t+1

 , (16)

µ
Ct

Lt

¶−θ

=
ρ

1+ n

µ
Ct+1

Lt+1

¶−θ ·αYt+1

Kt+1
+ (1− δ)

¸
. (17)

At the optimum, the planner must be indifferent between investing one additional unit of labor in

schooling, R&D, and final output production. The LHS of equations (15) and (16) represent the

return from allocating one additional unit of labor to output production. The RHS of equation

(15) is the discounted marginal return to schooling, taking into account labor growth. The RHS

term in brackets arises because human capital determines the effectiveness of labor employed in

output production as well as in R&D. The RHS of equation (16) is the return to R&D invest-

ment. An additional unit of R&D labor generates λ(At+1−At)
LAt

new ideas for new types of producer

durables. Every new design increases next period’s output by ξYt+1

At+1
and R&D production by dAt+2

dAt+1

times (1−α)Yt+1

LY,t+1

h
λ(At+2−At+1)

LA,t+1

i−1
, where the term (1−α)Yt+1

LY,t+1

h
λ(At+2−At+1)

LA,t+1

i−1
gives the value of one
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additional design that equalizes labor wages across sectors. Euler equation (17) is standard and

states that the planner is indifferent between consuming one additional unit of output today and

converting it into capital (thus consuming the proceeds tomorrow).

2.3 Steady-state growth

We now derive the model’s balanced-growth path. Solving for the interior solution, equation (12)

implies that in order for the labor allocations to grow at constant rates, LHt, LY t and LAt must

all increase at the same rate as Lt. This means that the ratio
LHt

Lt
is invariant along the balanced-

growth path. Hence, equation (11) implies that, at steady-state (ss), Sss is constant and is given

by

Sss =
uH,ss

n
, (18)

where uH,ss =
LH

L

¯̄̄
ss

. Equation (18) shows that along the balanced-growth path the economy

invests in human capital just to provide new generations with the steady-state level of schooling.

Let lower case letters denote per capita variables, and gx = Gx − 1 denote the growth rate
of x. The aggregate production function, given by equation (8), combined with the steady-state

condition gY,ss = gK,ss delivers the gross growth rate of output as a function of the gross growth

rate of technology as

GY,ss = (GA,ss)
ξ

1−α (1+ n) . (19)

Since GA,ss is a constant, it follows from equation (2) that

GA,ss =
h
(1+ n)λ (GA∗,ss)

ψ
i 1

1+ψ−φ
. (20)

Equation (20) shows the relationship between the technology frontier growth rate and the technol-

ogy growth rate of the model economy. Since ψ
1+ψ−φ

< 1, it is easy to show that there is a unique

point at which

GA,ss = GA∗,ss = (1+ n)
λ

1−φ . (21)

Given the nature of the experiments that we want to carry out, we focus on the special case in

which all countries grow at the same rate in steady state. That is, we assume that GA∗,ss is given
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by expression (21), and therefore so is GA,ss.
8 This in turn implies that

GY,ss = GC,ss = GK,ss = (1+ n)
λξ

(1−α)(1−φ) . (22)

Consistent with Jones (1995, 2002) our balanced-growth path is free of scale effects. The reason

why our model’s long-run growth is equivalent to that of Jones even in the presence of a schooling

sector, is that at steady state the mean years of education, St, reaches a constant level Sss.

2.4 Transition dynamics

The aggregate production function, equation (8), suggests that we normalize variables by the term

A
ξ

1−α

t Lt. We then rewrite consumption, physical capital and output as ĉt =
Ct

A

ξ
1−α
t Lt

, k̂t =
Kt

A

ξ
1−α
t Lt

and ŷt =
Yt

A

ξ
1−α
t Lt

, respectively. Using equation (15) gives

µ
ĉt+1

ĉt

¶θ µuY,t+1

uY t

¶
(GAt)

(θ−1)ξ
1−α

µ
ŷt

ŷt+1

¶
=

µ
ρ

1+ n

¶£
f 0(St+1)(uY,t+1 + uA,t+1) + 1

¤
,

(23)

where uY t and uAt are the labor shares in R&D and final-output production at time t, respectively.

From the R&D equation (2), we get

GAt =
At+1

At
= 1+ υ

h
ef(St)uAt

iλ
T (1+ψ−φ), (24)

where T =
A∗t
At
; and υ = µ (A∗t )

φ−1 Lλ
t , which is a constant.

9 From equation (16) we get

µ
ĉt+1

ĉt

¶θ µ ŷt

ŷt+1

¶µ
uY,t+1

uY t

¶
=

ρ gAt

G
ξ

1−α
(θ−1)+1

At

µ
uA,t+1

uAt

¶
∗

∗
"µ

λξ

1− α

¶Ã
uY,t+1

uA,t+1

!
+

Ã
1

gA,t+1

!
+ (φ− ψ)

#
. (25)

8 Alternatively, we could assume that the technology leader shifts outward the world technological frontier accord-
ing to equation (2) which now reduces to

A∗
t+1 −A∗

t = µA∗φ
t (h∗AtL

∗
At)

λ
,

where
A∗

t

At
= 1 as imitation is not possible at the frontier; and ∗ denotes the value which variables take in the leading

country. In such case G∗
A = 1+ g∗A = (1+ n∗)

λ
1−φ as in Jones (1995, 2002). Assuming that n = n∗, and substituting

G∗
A into equation (20) delivers equation (21).

9To show that υ is constant requires some algebra. Rewriting the equality in its gross growth form,
υt+1

υt
=

Gφ−1
A∗t (1+ n)λ, and given that GA∗t = GA,ss = (1+ n)

λ
1−φ , it follows that

υt+1

υt
= 1. Notice that had A∗

t not grown

according to equation (21), υ could not be constant, making the simulation exercise much more difficult to implement.
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Finally, from equation (17) we get

1+ n

ρ

·µ
ĉt+1

ĉt

¶
(GAt)

ξ
1−α

¸θ
= α

ŷt+1

k̂t+1

+ (1− δ). (26)

The system that determines the dynamic equilibrium normalized allocations is formed by the

conditions associated with three control and three state variables as follows:

Control Variables:

1. Euler equation for labor share in schooling, uHt: Equation (23)

2. Euler equation for labor share in R&D, uAt: Equation (25)

3. Euler equation for consumption, ĉt: Equation (26)

Subject to the constraint uY t = 1− uAt − uHt.

State Variables:

1. Law of motion of human capital, St: Equation (6)

2. Law of motion of technology, At: Equation (24)

3. Law of motion of physical capital

(1+ n)k̂t+1 (GAt)
ξ

1−α = (1− δ)k̂t + ŷt − ĉt, (27)

where

Tt+1 = Tt

µ
GA∗t

GAt

¶
, (28)

and

ŷt = k̂α
t

h
ef(St) uY t

i1−α
. (29)

3 Numerical Analysis

In this section we take the proposed model to the data by means of a calibration exercise. We first

assign values to the parameters. Then, we simulate the transition dynamics, and compare their

predictions to the data. Because there is no analytical solution to our system of Euler and motion

equations presented in the previous section, we resort to numerical approximation techniques. More

specifically, we follow Judd (1992) to solve the dynamic equation system, approximating the policy

functions by employing high-degree polynomials in the state variables.10

10In particular, the parameters of the approximated decision rules are chosen to (approximately) satisfy the Euler
equations over a number of points in the state space, using a nonlinear equation solver. A Chebyshev polynomial
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Table 1: Parameter values used in the simulations: Benchmark case

α 0.36 ξ 0.1 Sss 12.5
ρ 0.96 Gy 1.02 η 0.69
δ 0.06 λ 0.5 β 0.43
n 0.012 φ 0.95 θ 1.19

3.1 Calibration

Because relative values of the cross-country data to which we compare the predictions of the model

are taken with respect to U.S. levels, we calibrate the model parameters using, when possible, U.S.

data as the steady-state outcome. Table 1 presents the parameter values used to carry out the

simulations. We choose a value of 0.06 for the depreciation rate (δ), a value of 0.96 for the discount

factor (ρ) and 0.36 for the capital-share of output (α), which are standard in the literature. To

assign values to per capita income growth rate in steady-state (gy,ss), and to population growth

rate (n), we follow Jones (2002). In particular, we set gy,ss equal to 2 percent, the average growth

of output per hour worked between 1950 and 1993 in the U.S., and n equal to 1.2 percent, the

average growth rate of the labor force in the G-5 countries (France, West Germany, Japan, the

United Kingdom, and the United States) during the period 1950-1993. The reason for using the

average growth rate of labor in the G-5 rather than any other group of countries (or, for that

matter, the whole sample) is that the main role of population growth rate in the model is to move

the world technology frontier in steady state, and clearly the majority of world research effort is

conducted in the G5 countries.11 Regarding the value of the elasticity of output with respect to

the technology, Grilliches (1988) reports estimates of ξ between 0.06 and 0.1. We choose to follow

Eicher and Turnovsky (1999b, 2001) and set ξ = 0.1.

It is not clear what the steady-state value of the average educational attainment ought to be,

given that mean years of schooling has been increasing over the last decades in most developed

countries. We choose to set Sss to 12.5, to match the 1993 U.S. figure reported in Jones (2002).

basis is used to construct the policy functions, and the zeros of the basis form the points at which the system is
solved; that is, we use the method of orthogonal collocation to choose these points. Finally, tensor products of the
state variables are employed in the polynomial representations. This method has proven to be highly efficient in
similar contexts. For example, in the one-sector growth model, Judd (1992) finds that the approximated values of the
control variables disagree with the values delivered by the true policy functions by no more than one part in 10,000.
All programs were written in GAUSS and are available by the authors upon request.

11Coe, Helpman and Hoffmaister (1997) report that in 1990, industrial countries accounted for 96% of the worlds
R&D expenditure.
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From equations (18), (23) and (26), it can be easily shown that the values of Sss, n and Gy,ss

imply an interest rate (given by the RHS of (26)) at steady state of 7.9 percent that is well within

U.S. observations.12 In turn, substituting the values of the steady-state interest rate, ρ, n and

Gy,ss into equation (15) imply that the inverse of the intertemporal elasticity of substitution (θ)

is 1.19, which is well within the empirical estimates.13 Following Bils and Klenow (2000), we use

Psacharopoulos’ (1994) cross-country sample on average educational attainment and Mincerian

coefficients to estimate η and β. Given f(S) = ηSβ, we can construct the regression

ln (Minceri) = a+ b lnSi + εi, (30)

where Minceri = f 0(Si) is the estimated Mincerian coefficient for country i; a and b equal ln(ηβ)

and (β − 1), respectively; and εi is a disturbance term. We obtain η = 0.69 and β = 0.43 which

are very close to estimates by Bills and Klenow (2000).

Finally, we calibrate the R&D technology parameters. As a benchmark case, we set λ = 0.5, and

using equation (21) we recover the value of φ = 0.95.14 Given that the effect of the parameter ψ is

purely transitional, we follow Parente and Prescott (1994) and calibrate it to replicate miraculous

experiences.15 In particular, we choose ψ so as to reproduce the relative output per worker path

between 1960 and 1990 in Japan and between 1963 and 1990 in S. Korea.16 We choose to calibrate ψ

for these two economies because they have experienced distinctly different development experiences,

notwithstanding their equally impressive growth rates (Japan grew at 5.2 percent per year and S.

Korea at 6.5 percent per year during the relevant periods), therefore making it possible to obtain

values for ψ that are potentially quite different. The S. Korean development experience implies a

value for ψ of 0.18, whereas the Japanese development experience implies that ψ equals 0.22. The

initial values of the stock variables and the output data used to calibrate ψ, as well as the accuracy

measures are presented in table 2.

12For example, King and Rebelo (1993) reports average real rates of return for the period 1926-1987 on different
U.S. securities that vary between 0.42 and 8.80 percent.

13Estimates of θ by Hall (1988), and Attanasio and Weber (1993) range from 1 to 3.5. For a recent discussion on
estimates of θ see Guvenen (2002).

14In the next section, we perform a sensitivity analysis on key parameters of the model.
15As in Parente and Prescott (1994), we smooth the data series involved in the calibration of ψ using the Hodrick-

Prescott filter with the smoothing parameter equal to 25.
16S. Korea’s rapid convergence toward U.S. income levels began around 1963. Japanese convergence, on the other

hand, started right after WWII. Unfortunately, the Japanese Education Department does not possess estimates of
the average educational attainment before 1960. We are grateful to Tomoya Sakagami who has attempted to obtain
these data for us.
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Table 2: Variable values used to calibrate ψ, and accuracy measures

Initial Relative Levels In 1990 Average Error∗(%) Max. Error∗(%)

Country ψ
K per S Y per

worker years worker

Y per

worker
C uY uA C uY uA

Japan 0.18 16.9% 10.2 20.6% 60.3% 0.01 0.01 0.01 0.03 0.05 0.04
Korea 0.22 11.6% 3.2 11.0% 42.2% 0.07 0.20 0.07 0.30 0.93 0.32

Non-oil
sample

0.18
0.22

5.4% 2.7 10.4%
5.4% 2.7 10.4%

–
–

0.20 0.49 0.13
0.19 0.48 0.14

0.91 2.38 0.56
0.89 2.32 0.59

∗ We assess the Euler equation residuals over 10,000 state-space points using the approximated rules. For each variable, the

measure gives the current value decision error that agents using the approximated rules make, assuming that the (true) optimal

decisions were made in the previous period. Santos (2000) shows that the residuals are of the same order of magnitude as the

policy function approximation error.

3.2 Transition dynamics predictions

Unlike steady-state regressions, in this section we assume that all countries belong to the same

transitional path, approaching a unique, common balanced-growth path. Specifically, we perform

two experiments as follows: First, we simulate the dynamics of a representative economy and study

how well its adjustment path represents the cross-country data on key variables such as the state

variables, interest rates, investment rates, and output growth rates. Second, we propose a similar

in spirit exercise to that of MRW which however tries to assess how much of the cross-country

output variation can be explained by transition dynamics.17 The primary motivation for these two

experiments is to examine how well the transitional dynamics of the proposed model can explain

cross-county per capita income dispersion and other important stylized facts.

To carry out the first experiment, we need to estimate the policy rules that take state variables

from given initial values to the steady state. Doing so requires the following two conditions: (a)

given that the further away we move from the balanced-growth path the lower the accuracy degree

of the numerical approximation, we choose the initial values so that the numerical approximation

provides a maximum-error measure of about 2 percent (see table 2); (b) we start the adjustment

17In addition, we have investigated the asymptotic speed of convergence implied by the model — the rate by
which a country’s output converges to its balanced growth path once the country is sufficiently close to its long-run
equilibrium. In our model, this speed is given by the largest eigenvalue among those contained in the unit circle.
Parameter values in the neighborhood of those employed in our calibration deliver speeds of convergence that vary
between 1.06%−2.08%, consistent with most empirical evidence. Our results are consistent with the finding of Eicher
and Turnovsky (1999b, 2001), that moving from one-sector to multi-sector non-scale growth models with endogenous
technological change leads to severe reduction in the asymptotic speed of convergence, and allows convergence speeds
to vary across time and variables.
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paths inside the cloud of cross-country observations that compose our comprehensive sample.18

Given conditions (a) and (b), we pick an initial value for the relative physical capital stock per

worker of 5.4 percent, an initial value for the average educational attainment of 2.7 years, and an

initial value for relative total factor productivity (TFP) of 55.2 percent so as to generate a relative

GDP per worker level of 10.4.19,20

The goal of the first experiment is to see how well the transition dynamics of the model can

explain important stylized facts such as cross-country dispersion of growth rates, cross-country

dispersion of saving/investment rates, and cross-country equality of real interest rates. Figure 1

depicts cross-sectional data, along with off-steady-state predictions for physical capital, average

years of schooling, TFP, interest rates, investment rates, and relative output growth. It is evident

that the plotted data show wide cross-country dispersion in all variables, except for real interest

rates that are quite uniform across nations above the 25th percentile. State variables (K,S,A)

generally increase with the relative level of output, and investment and growth rates generally

depict weak inverted-U shapes, starting low and achieving their maximum values for middle-income

nations.21

With fixed initial and final values of the state variables, the question is how well the transition

path follows the data cloud in between. If we look at the charts on the left of figure 1 (panels (A),

(C) and (E)), the primary finding is that the simulated dynamics seem to fit well across the state-

variable observations. These charts illustrate a number of other points worth noting. First, notice

that a larger degree of relative backwardness (i.e., a larger value of ψ) induces faster technology

catch-up, and slower human capital accumulation, making the adjustment paths better fit the data.

Second, the simulated physical and human capital levels tend to diverge with respect to the rich

countries’ data. This is the result of calibrating the steady state to U.S. data. The two variables’

divergent processes, however, offset each other and as a result, the technology path captures well

18Our comprehensive sample (79 countries) consists of the MRW’s non-oil nations for which average years of
schooling per worker are available from the STARS (World Bank) database, minus Ireland, which is eliminated from
the sample due to implausibly high schooling figures. For further discussion on the data, see the data appendix.

19Notice that for relative GDP per worker level of 10.4 our numerical approximation commits a maximum error of
2.38 percent in accordance to condition (a), see table 2.

20In our simulation exercise, TFP is broadly defined and includes everything not already captured by the other
two stock variables, S and K.

21Following Jones (1997), we compute real interest rates (return to capital) as the marginal product of capital,
that is, αY/K. As Jones, we find that the resulting returns for countries below the 25th percentile are highly
heteroskedastic, and that some nations present returns above 100 percent. The main pattern that we observe,
however, is a large amount of uniformity in the returns to capital above the 25th percentile.
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Figure 1: Adjustment paths for the non-oil sample: Benchmark case
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the observations.

Finally, let us pay attention to the charts on the right of figure 1. Below the 30th percentile in

panel (F), output-growth predictions are too large, thus our model overpredicts output growth at

early stages of development. Above the 30th percentile, however, predictions fall across the cloud

of observations, thus our model does much better in predicting output growth at later stages of

development. In addition, panels (B) and (D) show that predictions capture the uniformity of the

real interest rates (return to capital) above the 25th percentile, and are consistent with investment

rates above the 35th percentile. As is the case with output growth our model is weaker in replicating

interest and investment rates at early development.

Our first experiment has shown that transition dynamics capture fairly well the cross-country

equality of the real interest rates, and generate investment rates that are plausible, even though

lower investment ratios at early levels of development would better capture the dispersion of the

data. The main explanation for this lower dispersion of the predictions is probably a larger degree of

market imperfections and distortions in less developed countries, something that the model can not

explain, and that can be perceived as a source of differences in steady states or in convergence speeds

along the transition. The predicted output growth rates, on the other hand, are clearly impossible

for countries with relative real GDP below the 30th, but reasonable for more developed nations.

For the sake of comparability between transition dynamics predictions and steady-state regression

predictions, it is important to mention that steady-state predictions are not very successful in

accounting for the observed cross-country income growth dispersion either. Steady-state growth

regressions of the MRW type need to make use of transitional factors to be able to minimally fit

the data.

3.3 Can transition dynamics explain the cross-country output data?

We now turn attention to the main issue of the paper: How well can the transition dynamics of

the model explain cross-country income dispersion? More specifically, our second experiment tries

to assess quantitatively how well the transition dynamics fit the output per worker data. This is

important because fitting the cross-country income data is where steady-state regressions achieve

their great success and therefore such an experiment is well motivated. Since, we want to compare

the transition dynamics predictions of our model with those of steady-state income regressions, we

need to construct a measure of fit for transition dynamics that can be compared with a measure of
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Figure 2: Adjustment-path predictions of GDP per worker for 51-nation sample: Benchmark case
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Note: GDPW and KW denote GDP per worker and physical capital per worker, respectively.

fit in level regressions (namely the OLS R2).

Taking logs in the Cobb-Douglas representation of the aggregate production function, and

substituting inputs for their balanced-growth values, we end up with a standard in the literature

steady-state econometric equation

log ŷ = τ̂0 + τ̂1 log k̂ + τ̂2 log Ŝ + ε, (31)

where ŷ is the estimate of output per worker; k̂ and Ŝ represent estimates of k and S, respectively,

derived from steady-state conditions using investment rates; τ̂i’s are estimated coefficients; and ε

is a random disturbance term. Evidently, in order for the underlying model to be consistent with

the data, estimated coefficients must be plausible according to the weight assigned by the national

accounts to the different inputs. To each combined value (τ̂1 log k̂+ τ̂2 log Ŝ) the regression assigns

a predicted output level in log-scale, and all of the predicted output levels are in turn translated

into a measure of fit (the OLS R2).

Following an equivalent procedure, we first calculate for each country the combined value

ef(S)(1−α)[K/(LA + LY )]
α implied by the data, imposing the calibrated parameter values. Notice

that this extended state variable represents the per worker human capital term (i.e. ef(S)(1−α)), and

the per worker physical capital term (i.e. [K/(LA+LY )]
α), as specified in the production function

given by equation (8). Second, to each country’s value of the combined state variable, we assign

the output per worker level Y/(LA + LY ) predicted by the transition path.
22

22Because the simulated adjustment path is a discrete set of pairs
¡
ef(S)(1−α) [K/(LA + LY )]

α , Y/(LA + LY )
¢
, we
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Table 3: Measure of fit for adjustment-path predictions of log-GDP per worker: Benchmark case

Country groups
Pseudo-R2

ψ = 0.18 ψ = 0.22

51-country sample
21-OECD

0.736 0.764
0.710 0.759

As mentioned previously, to generate the adjustment path simulation, we employ initial values

for the relative per worker physical capital stock, and the average educational attainment of 5.4

percent and 2.7 years, respectively. It works out that these two initial values imply a minimum

value of the relative extended state-variable of 18.9 percent. The sample that we employ to compute

the measure of fit must then consists of those 51 nations that provide values of the extended state

variable above 18.9 percent.23

Figure 2 displays the actual output data (plot), and the predicted output data for the two

values of ψ (continuous lines). To assess the fit of the adjustment paths, we employ the following

statistic which is equivalent to the OLS R2:

Pseudo-R2 = 1−
PN

j=1 (x̂j − xj)
2PN

j=1

³
xj − 1

N

PN
p=1 xp

´2 ,

where x̂j and xj are the predicted and actual values of variable x for country j, respectively; and

N is the number of countries included in the sample. Our variable x must be the natural log of

relative GDP per worker to make the pseudo-R2 comparable to the R2 reported in steady-state

regressions.

For the adjustment path predictions expressed in natural logs, table 3 reports estimates of the

pseudo-R2. As it is shown, the transition path can explain up to 76 percent of the relative output

per worker variation in both the 51-non-oil and the 21-OECD samples. These numbers compare

pretty well with theR2 obtained by steady-state regressions. For example, MRW report a maximum

R2 of 78 percent for their non-oil sample, and 28 percent for the OECD group. Nonneman and

Vanhoudt (1996), in turn, obtain an R2 of 78 percent for OECD nations. These numbers are just

a bit above the ones delivered by the transition predictions.

How can one interpret our results in the context of the existing empirical literature? Our

results imply that the transition dynamics of an R&D model with endogenous human capital can

use interpolation methods to generate the predicted output level.
23An asterisk identifies these 51 nations in the data table contained in the Appendix.
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Table 4: Measure of fit for adjustment-path predictions of log-GDP per worker: Sensitivity analysis

λ φ θ Implied values
Pseudo-R2

51-country sample 21-OECD sample
ψ = 0.18 ψ = 0.22 ψ = 0.18 ψ = 0.22

0.25 0.95 1.19 gy,ss = 1.00% Sss = 13.1 0.687 0.719 0.551 0.634
0.25 0.95 1.38 gy,ss = 1.00% Sss = 12.5 0.731 0.756 0.668 0.727

0.75 0.95 1.19 gy,ss = 3.00% Sss = 11.9 0.748 0.773 0.759 0.793
0.75 0.95 1.13 gy,ss = 3.00% Sss = 12.5 0.716 0.748 0.698 0.748

0.50 0.70 2.20 gy,ss = 0.31% Sss = 12.5 0.794 0.799 0.792 0.802
0.50 0.50 3.00 gy,ss = 0.19% Sss = 12.5 0.802 0.802 0.813 0.817

ψ = 0.10 ψ = 0.30 ψ = 0.10 ψ = 0.30
0.50 0.95 1.19 gy,ss = 2.00% Sss = 12.5 0.655 0.791 0.522 0.802

explain the cross-country output variation as well as the more popular steady-state regressions can.

Our findings do not discredit in any way the common steady-state regression exercises. They do

however provide evidence that transition dynamics maybe at least as important as steady-states in

explaining income differences.

4 Robustness Analysis of the Results

In this section, we perform a sensitivity analysis of our results to changes in key parameter values.

In particular, we focus on the R&D technology parameters, the population growth rate, the discount

factor, and the elasticity of final output with respect to technology. We mainly study how changes

in these parameters affect our measure of fit (Pseudo-R2) that assesses the capacity of the model

to explain the cross-country dispersion of output per worker.

It is known from Jones (1995) and Eicher and Turnovsky (1999b, 2001) that the type of non-

scale R&D growth models that we use is highly sensitive to the returns to scale and the shares of

technology and labor in the R&D sector. In order to study the robustness of our results, we carry

out sensitivity analyses for different values of the parameters λ, φ, and ψ.

Estimates of the labor share in the R&D sector, λ, found in the literature vary from 0.2 (Kortum

(1993)) to 0.75 (Jones and Williams (2000)) We start the robustness analysis by examining how

the measure of fit changes when we replace our baseline value of λ = 0.5 with the more extreme

values λ = 0.25, 0.75. As shown in the first row of results in table 4, when we reduce λ from 0.5
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to 0.25, the adjustment path generates a pseudo-R2 up to 72 percent for the 51-country sample

and up to 63 percent for the 21-OECD sample. As expected the decrease in λ results in lower

steady-state per worker income growth rates (gy,ss falls from 2 percent to 1 percent). But the effect

of lowering λ on the measure of fit comes mainly from the increase in the steady-state educational

attainment level, Sss, which goes from 12.5 up to 13.1 years, and moves the predictions of S away

from the cloud of points.24 The second row of table 4 confirms this point. In particular, we show

that when we modify θ to obtain the baseline value Sss = 12.5, the measure of fit increases up to

76 percent for the 51-country sample and 73 percent for the 21-OECD sample. When, on the other

hand, the parameter λ is 0.75 (see third row of results in table 4) then the pseudo-R2 rises to 77

and 79 percent for the 51-country and 21-OECD samples, respectively. The forth row of results in

the table (in which we modify θ to obtain the baseline value Sss = 12.5), once again confirms that

the induced variation in the steady-state average educational level is the main cause of the change

in the measure of fit. In short, the underlying intuition for the increase in the pseudo-R2 as the

parameter λ rises is the same as that explaining the benchmark case: a lower rate of human capital

formation coupled with a faster technological catch-up process make the predictions better fit the

data in figure 1.

The empirical literature does not offer much guidance in choosing a reasonable value for technol-

ogy externality φ. In our benchmark case, the value for this parameter (φ = 0.95) is pinned down

by the balanced-growth equation (22). Some authors like Eicher and Turnovsky (1999b, 2001),

however, argue that a value of φ = 0.95 may be too large. The fifth and sixth rows of results in

table 4 show that lower values of φ actually improve the fit of the predicted dynamics. For example,

the pseudo-R2 takes on values up to 80 percent for both country samples considered when φ = 0.70

and we maintain Sss = 12.5. The pseudo-R2 increases to 82 percent for the 21-OECD sample when

φ declines further to 0.50.25

To understand the forces that drive the increase in the pseudo-R2 when φ declines, let us focus

on figure 3 that presents the adjustment-path predictions in the case where we assume a low value

24The inverse relationship between λ and Sss is the result of labor reallocation between the schooling sector and
the R&D sector. For example, a decline in λ decreases the return to working in the R&D sector, therefore making
the R&D activity relatively less attractive than schooling. This triggers labor movement from the R&D sector to the
schooling sector, and then Sss increases.

25In this exercise, we modify the value of θ to maintain Sss = 12.5. As before, if instead the parameter θ remains
equal to 1.19 then the fit becomes worse, because Sss rises. However, when θ = 1.19 and φ = 0.50, the pseudo-R2 is
larger than the numbers in the first row of table 4, and to save space we have omitted this case.
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Figure 3: Adjustment paths for the non-oil sample: φ = 0.50 case
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Table 5: Measure of fit for adjustment-path predictions of log-GDP per worker: Sensitivity analysis

ρ n ξ θ Implied values
Pseudo-R2 (ψ = 0.18)

51-country 21-OECD

0.96 0.020 0.10 1.19 gy,ss = 3% Sss = 9.0 0.795 0.761
0.96 0.020 0.10 0.66 gy,ss = 3% Sss = 12.5 0.676 0.613

0.96 0.012 0.06 1.19 gy,ss = 1% Sss = 13.0 0.761 0.747
0.96 0.012 0.06 1.31 gy,ss = 1% Sss = 12.5 0.783 0.789

0.97 0.012 0.10 1.19 gy,ss = 2% Sss = 16.4 0.502 0.114
0.97 0.012 0.10 1.71 gy,ss = 2% Sss = 12.5 0.765 0.761
0.95 0.012 0.10 1.19 gy,ss = 2% Sss = 9.8 0.804 0.824
0.95 0.012 0.10 0.66 gy,ss = 2% Sss = 12.5 0.648 0.534

of φ = 0.50. Compared to figures 1 and 2, the improvement is evident in all the panels. The smaller

value of φ in the R&D equation reduces the total productivity of R&D effort for any given level

of A, thus lowering the economy’s capacity to grow, as shown in panel (F).26 At the same time,

however, equation (24) and the definition of v that follows imply that a reduction of φ is equivalent

to a relatively bigger advantage of technological backwardness. The result is that, compared to

the benchmark case, output growth at early stages of development is achieved devoting more labor

to the R&D sector and less to schooling. This, in turn, generates a relatively larger accumulation

of technology (panel (E)) and smaller human capital formation (panel (C)). The better fit of the

average educational attainment and TFP predictions explain the improvement in the pseudo-R2

delivered by the predicted income levels (see panel (G)). Finally, the lower elasticity of substitution

between present and future consumption (a larger value of θ) is responsible for the lower investment

rates and the improved fit shown in panel (D).27

We now examine how sensitive is the measure of fit to variations in the catch-up term ψ. We

know from our previous results that the pseudo-R2 rises with ψ; the question now is by how much

it can vary. Once again we have no guidance about reasonable values of ψ. We decide to try values

of 0.1 and 0.3 so that the calibrated values of ψ for Japan and S. Korea (0.18 and 0.22 respectively)

26Notice that when φ = 0.50, gy,ss decreases to 0.19 percent, a value that might not be impossible in light of new
findings by Jones (2002). He argues that the long-run income growth rate for the U.S. can be considerably smaller
than the average value experienced during the last century. Compared to our benchmark, another implication of such
decline in growth rates is that the half life of the convergence process doubles, going from 41 up to 82 years.

27Adjustment paths similar to those in figure 3 were produced for all parameter values of λ, φ, ψ, n, ρ and ξ consid-
ered in tables 4 and 5. Since they do not add anything significant to the analysis, they are omitted but are available
by the authors upon request.
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are within our chosen range. The last row of table 4 reports our findings. In particular, for ψ = 0.1

the pseudo-R2 is 66 percent for the 51-country sample and 52 percent for the 21-OECD sample,

and for ψ = 0.3 pseudo-R2 increases to 79 percent and 80 percent, respectively. Therefore, the

decrease in the pseudo-R2 can be substantial for low values of ψ.

Table 5 provides the measure of fit for changes in other important parameters: the population

growth rate (n), the discounting coefficient (ρ), and the elasticity of final output with respect to

technology (ξ). Because the pseudo-R2 is always larger for ψ = 0.22, the table presents results only

for the ψ = 0.18 case. An alternative value of n is given by its average growth rate in the sample.

As we include more developing nations, the average population growth rate increases. For instance,

the average n for the 51-country sample equals 2 percent. Compared to the numbers in the first

column of table 3, the first row of table 5 shows that if we set n = 0.02, the pseudo-R2 goes up

to 80 and 76 percent. The reason is the decline in Sss that equals 9.0 in the new scenario. If we

modify θ to obtain the baseline value Sss = 12.5 (then θ = 0.66), the measure of fit decreases to 68

and 61 percent. This occurs for two reasons: the higher growth rate of output per worker caused by

the increase in n, and the larger elasticity of intertemporal substitution (1/θ). The primary effect

of these two changes in our experiments is always a faster human capital formation, which as we

know is bad for the fit.

We next move the value of ξ. When we try the lower bound reported in Griliches (1988) (i.e.,

ξ = 0.06), the pseudo-R2 increases (third and fourth rows of results in table 5). Now, the lower

value of the elasticity of final output with respect to technology requires a larger initial technology

gap to generate the same relative TFP (given by Aξ in equation (1)). This larger initial technology

gap, in turn, increases the initial productivity of R&D, and R&D investment rises at the expense

of schooling. The consequence is relatively faster TFP growth and slower human capital formation,

which is good for the fit.

Finally, the effect of changes in the value assigned to ρ are presented in rows five to eight in

table 5. The fifth row suggests that if the discounting parameter rises to 0.97, future production

capacity becomes more valuable for agents, and the steady-state average educational attainment

increases to 16.4 years. This clearly moves the predicted evolution of S away from the cloud of

points, producing a much lower pseudo-R2 for output per worker that equals 50 percent for the

51-country sample and 11 percent for the 21-OECD group. The next row shows that when we

fix Sss = 12.5, the fit actually improves. In particular, the pseudo-R
2 rises to 77 and 76 percent,
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respectively. The reason now is the value of θ = 1.71 that makes present and future consumption

more complementary, and therefore human and physical capital accumulation proceed more slowly.

The smoother path of schooling years is responsible for the better fit. Exactly the opposite reason

explains why the pseudo-R2 declines to 65 and 53 percent when we set ρ = 0.95 and fix Sss = 12.5

(last row in table 5): it requires increasing the degree of substitutability between present and future

consumption so that θ = 0.66. However, in the seventh row of the table we see that if we do not fix

Sss, ρ = 0.95 makes Sss decline to 9.8 years and, as a consequence, the fit improves with respect

to the benchmark case.

To summarize, the sensitivity analyses on key parameters reveal that for sensible parameter

values the predicted income levels explain no less than 72 percent and 67 percent of the observed

log-income variability across our 51-country sample and 21-OECD sample, respectively. Values of

λ above 0.5 (and values of ξ below 0.1) take these percentages up to 77 and 79, respectively. In

addition, the measure of fit increases above 80 percent if we reduce φ below 0.7. On the other hand,

the fit can decrease below 67 percent if we allow the steady-state average educational attainment,

Sss, to be above 12.5 years or θ to be lower than 1. However, this seems to us unreasonable because

the maximum value of the average years of education in our samples corresponds to the U.S. and

equals 11.35, and because values of θ below 1 go against the available empirical evidence.28 The

pseudo-R2 can also decrease below 67 percent if we let the catch-up term, ψ, take on values below

0.18; however, we do not know if values that low are reasonable. We conclude that our results are

quite robust to sensible changes in the shares of labor and technology in the R&D sector, and in

other important parameters.

5 Conclusion

In this paper we have studied the capacity of transition dynamics to explain income disparities

across nations. In particular, we have taken the dynamic predictions of a non-scale R&Dmodel with

endogenous human capital to the data by considering two experiments. First, we have simulated the

dynamics of a representative economy and studied the adjustment paths of key economic variables.

Second, we have assessed quantitatively how well the transition dynamics fit the output per worker

28In the Barro and Lee (2000) dataset, the maximum number of years of schooling corresponds to the U.S., whose
labor force in 2000 had, on average, 12.05 years of formal education. Regarding empirical estimates of θ, see footnote
13.
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data by proposing a similar in spirit exercise to that of MRW.

Our key finding is that transition dynamics are as successful in fitting the cross-country output

per worker data as steady-state regressions. How can we reconcile this finding with the evidence

against absolute convergence and in favor of conditional convergence? Standard convergence tests,

like Barro and Sala-i-Martin (1995), implicitly assume that the half-life of convergence is the same

among countries. Hence, one possibility that can reconcile our finding with absolute convergence is

that the time required to complete a given portion of the adjustment path varies across economies.

From this viewpoint, the diffusion of ideas will ensure ultimately convergence among nations, and

country-specific fundamentals such as institutions, geography, and climate would not determine the

steady-state outcome but the half-life of the convergence process. Whether or not this is the case

is an empirical issue that we believe deserves further research.

In addition, we have shown that dynamic predictions of the model can explain (in various

degrees) important stylized facts on economic development. In particular, transitional dynamics

capture fairly well the cross-country equality of the real interest rates, and generate investment

rates that are plausible especially when the share of technology in R&D is not high. Transition

dynamics are less successful in explaining the cross-country dispersion of output growth rates:

the predicted rates are impossibly high for the less-developed countries, but reasonable for more

developed nations. However, as we explained, this failure is also a feature of steady-state regressions.

The main implication of our results for the empirical growth literature is that by focusing our

attention only on reduced form balanced-growth predictions we maybe disregarding a substantial

part of the story about economic growth. The potential payoff of finding ways to better integrate

steady state and transition dynamics conditions can be large, especially in level regression analysis.

Indeed, some researchers, e.g. Jones (2002), have already begun to venture along this path. Our

work also suggests that transition dynamics analysis must play a more extensive role in discrimi-

nating among growth theories, especially in light of the recent improvements achieved on numerical

algorithms.
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Data Appendix

Data sets and computer programs

The data and programs used in this paper are available by the authors upon request.

• Income (GDP) and its components [Source: PWT 5.6]
Cross-country GDP per worker and real investment shares are taken from the Penn World Tables

(PWT), Version 5.6 as described by Summer and Heston (1991). This data set is available on-line

at: http://datacentre.chass.utoronto.ca/pwt/index.html.

• Physical capital stocks [Source: STARS, PWT 5.6, and perpetual inventory approach]
For the non-oil cross-country sample, we follow the perpetual inventory approach. The capital

stock is calculated by summing investment from its earliest available year (1960 or before) to 1986

with the depreciation rate set at 6 percent. The initial capital stock is determined by the initial

investment rate, divided by the depreciation rate plus the growth rate of investment during the

subsequent ten years. In the calibration of the parameter ψ, the Japanese physical capital stock in

1960 and S. Korean physical capital in 1963 are obtained by deflating the 1965 PWT data (which

unfortunately do not extend to 1960), using growth rates implied by the STARS physical capital

data.

• Labor force [Source: PWT 5.6]
The cross-country data set on the labor force is also taken from the Penn World Table, Version 5.6.

• Education [Source: STARS (World Bank)]
Annual data on educational attainment are the sum of the average number of years of primary,

secondary and tertiary education in labor force. These series were constructed from enrollment

data using the perpetual inventory method, and they were adjusted for mortality, drop-out rates

and grade repetition. For a detailed discussion on the sources and methodology used to build this

data set see Nehru, Swanson, and Dubey (1995).

• Return to capital
Annual data on return to capital (rt) is calculated as

rt = α
Y

K
.

Countries in the comprehensive sample

Our comprehensive sample includes the 79 countries from the Mankiw, Romer and Weil (1992)

non-oil sample for which annual data on income, raw labor, human capital, and investment rates

were available for every year of the MRW sample period, 1960-1985. The table below provides a list

of these nations along with the 1960-1985 average value of relevant variables for each country. An

asterisk (∗) denotes the 51 nations included in the sample used to carry out the second experiment.
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Mean values of relevant variables for 79 countries
GDP per Capital per Educational Investment

Country worker worker Attainment over GDP
(bill. US$) (bill. US$) (years) (%)

Algeria∗ 9590.3 19927.6 2.40 21.81
Argentina∗ 14514.6 25128.8 6.30 17.09
Australia∗ 24598.2 73327.1 6.48 29.05
Austria∗ 18550.5 45706.7 8.71 25.81
Bangladesh 3455.2 1698.0 2.52 4.51
Belgium∗ 22559.7 58855.3 7.84 24.15
Bolivia∗ 5131.9 9916.2 4.14 18.77
Brazil∗ 8571.2 14648.2 3.04 19.88
Cameroon 2116.8 1165.5 1.58 7.78
Canada∗ 25663.6 60720.3 8.91 23.31
Chile∗ 10404.8 21791.6 5.98 18.69
China 1378.9 2877.9 3.22 19.61
Colombia∗ 7657.8 12274.0 3.43 16.10
Costa Rica∗ 9195.0 5566.6 6.01 15.65
Cyprus∗ 9114.0 25260.0 6.85 27.97
Denmark∗ 19857.8 54802.1 8.31 26.37
Ecuador∗ 7451.9 14550.8 4.11 22.93
Egypt 4643.7 1699.1 3.51 4.57
El Salvador 5627.3 1821.6 3.43 8.45
Ethiopia 647.9 290.8 0.23 4.95
Finland∗ 17654.8 61188.7 8.08 35.38
France∗ 21948.0 58143.7 7.98 27.47
Germany∗ 21868.3 48559.8 8.43 28.57
Ghana 2329.7 1901.5 2.86 6.34
Greece∗ 11610.7 26284.0 7.68 25.99
Guatemala∗ 7117.2 6729.0 2.66 9.40
Haiti 1861.3 792.7 1.85 4.97
Honduras∗ 4257.4 5934.4 3.16 14.16
Iceland∗ 17861.0 48412.5 7.46 29.60
India 2056.9 2587.4 2.28 13.63
Indonesia 2504.2 2496.9 2.81 14.64
Israel∗ 17082.7 39880.0 4.50 27.55
Italy∗ 20119.9 55748.5 6.89 28.71
Ivory Coast 3429.1 2051.2 0.84 12.07
Jamaica∗ 5866.5 16367.1 6.80 22.97
Japan∗ 12085.7 31960.9 10.64 33.93
Jordan∗ 9771.7 10174.4 2.97 14.12
Kenya 1760.3 3615.8 2.36 16.32
Korea. Rep∗ 5766.5 5231.2 4.93 21.44

Note: * denotes the 51 nations included in the sample used to carry out the second experiment.
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Mean values of relevant variables for 79 countries, cont.

Country GDP per Capital per Educational Investment
worker worker Attainment over GDP

(bill. US$) (bill. US$) (years) (%)

Madagascar 1706.8 344.04 3.15 1.14
Malawi 1129.2 1332.74 3.32 8.16
Malaysia∗ 10581.6 22547.62 5.77 29.54
Mali 1609.8 1007.26 0.96 5.84
Mauritius∗ 7338.8 8191.28 6.37 8.36
Mexico∗ 16929.0 29987.27 5.46 14.92
Morocco 6379.8 6724.14 2.14 9.98
Mozambique 1541.0 443.78 2.20 1.36
Myanmar 1276.8 1145.10 2.36 8.94
Netherlands∗ 28218.4 78868.48 8.25 20.40
New Zealand∗ 39480.7 39480.79 8.38 24.44
Nigeria 3036.2 4988.88 2.00 9.88
Norway∗ 27407.2 89938.15 9.29 28.68
Pakistan 4075.2 3622.92 1.94 10.16
Panama∗ 10140.8 21008.28 7.01 16.76
Paraguay∗ 6451.4 9543.62 5.70 16.40
Peru∗ 8605.0 18792.87 6.12 16.90
Philippines∗ 4678.4 8643.77 7.33 16.02
Portugal∗ 11464.4 28693.64 5.34 21.02
Rwanda 1567.2 561.09 2.64 6.12
Senegal 2638.8 1640.40 1.75 3.56
Sierra Leone 991.6 174.71 1.92 1.38
Singapore∗ 17883.6 48914.37 6.77 38.80
Spain∗ 21162.8 59324.44 6.79 21.84
Sri Lanka 1943.2 2363.75 6.01 12.40
Sudan 2605.6 3923.26 1.57 13.40
Sweden∗ 25875.4 70883.61 9.63 19.66
Switzerland∗ 29446.0 101275.38 6.73 28.60
Tanzania 967.4 1097.57 2.02 10.80
Thailand∗ 4657.4 6973.21 5.45 16.74
Tunisia∗ 8629.6 11304.46 4.48 13.36
Turkey∗ 7009.6 15438.82 4.22 22.14
Uganda 1637.6 431.07 2.39 1.82
U.K.∗ 22472.8 47706.21 9.94 16.60
U.S.∗ 32684.6 83918.58 11.35 21.14
Uruguay∗ 10773.0 24664.08 7.53 12.84
Venezuela∗ 19210.6 47992.71 6.02 15.48
Zaire 1171.6 721.89 3.67 5.60
Zambia∗ 2493.6 8950.54 4.06 9.52
Zimbabwe∗ 3271.0 6270.08 4.36 12.34

Note: * denotes the 51 nations included in the sample used to carry out the second experiment.
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