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Abstract

This paper investigates the significance of Research and Development (R&D) spillovers

through intra- and international trade in intermediate goods for productivity growth in a

panel of OECD industries during 1973-1994. In the model, four different sources of R&D are

identified: R&D conducted in the particular industry itself, R&D conducted in the same in-

dustries in other countries, R&D conducted in other domestic industries, and R&D conducted

in other foreign industries. I find that among R&D sources the most important contributions

to productivity growth come from the domestic R&D efforts. Here, own R&D is important

for both domestic innovation and for the productivity catch-up process. Evidence that inter-

national R&D spillovers also have significant effects on productivity growth is found to be less

robust. My analysis also shows that human capital affects productivity directly as a factor of

production.
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1 Introduction

Many economists believe that differences in technological knowledge are the main source

of productivity differences across countries and industries (see Romer (1990), Parente and

Prescott (1994), and Howitt (2000)). From this perspective, the key question is how to

close these gaps. The recent theoretical models in growth theory and international trade

(see Grossman and Helpman (1991a)) argue that devoting more resources to the R&D

sector and increased economic integration, such as free flows of goods and services, tends to

increase technological knowledge, and this in turn will close the productivity gaps. Trade in

goods may transmit technology in both direct and indirect ways. Firms may directly learn

about new technologies and imitate them; indirectly, they may employ new intermediate

goods, which are embodied in more advanced technologies in the production of final goods.

This paper presents an empirical model in which trade in intermediate goods is a con-

duit for R&D spillovers across industries and countries. In particular, the model relates

productivity growth to R&D intensities through trade in goods. In the model, four differ-

ent types of R&D are identified: R&D conducted in the particular industry itself, R&D

conducted in the same industries in other countries, R&D conducted in other domestic in-

dustries, and R&D conducted in other foreign industries. I examine the significance of each

of these sources for productivity growth in a panel of twelve industries in ten OECD coun-

tries between 1973 and 1994. The model is further extended by incorporating productivity

catch-up and human capital variables to see their effects on both productivity growth and

the significance of the R&D sources.

I find that among R&D sources the most important contributions to productivity growth

come from the domestic R&D efforts. Here own R&D is important for both domestic in-

novation and for the productivity catch-up process. Although international R&D spillovers

have positive effects on productivity growth, these effects are not robust. My analysis also

shows that human capital affects productivity directly as factor of production.

This paper is related to two literatures: inter-industry and international R&D spillovers.
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The studies in inter-industry spillovers literature typically address the rates of return on own

R&D investments and R&D investments in other domestic sectors using firm or industry

level data for a particular country.1 The model presented in this paper, however, considers

not only domestic spillovers, but also international R&D spillovers. The consideration of

international R&D spillovers can provide better picture of the impacts of R&D investment

and spillovers on productivity growth.

The study of international R&D spillovers through trade started with a seminal work

by Coe and Helpman (1995), and has been further explored by Coe et al. (1997), Keller

(1998) and (2000), Lichtenberg and de la Potterie (1998), and Xu and Wang (1999) (see

Keller (2004) for a review of this literature). Most of these works have concentrated on the

R&D spillovers using country-level aggregate data. Keller (2000) considers R&D spillovers

at the industry level with his main focus on spillovers from the same industries in other

countries. An exception is work by Keller (2002b), who also considers R&D spillovers from

other domestic and foreign industries. He concludes that the most important contribution

comes from own R&D, followed by R&D in other domestic industries and R&D in foreign

industries of which the majority comes from other industries.

There are several differences in methodology and data between Keller (2002b) and the

present work. First, Keller’s model, like other models in international R&D spillovers

studies, is based on a first generation endogenous growth model, which exhibits a scale

effect.In contrast, the estimates of this paper are based on a model that is more consistent

with the second generation endogenous models, which does not exhibit any scale effect,

developed by Dinopoulos and Thompson (1998), Young (1998), and Howitt (1999).2 Second,

Keller uses the US domestic and import Input-Output (IO) data to measure the spillovers

from domestic and foreign other industries, which implies that the production structures

and technologies of other countries are the same with the US. In contrast, I control cross-

1See Griliches and Lichtenberg (1984), Scherer (1982), Terleckyj (1977), and Wolff and Nadiri (1993). In
particular, see Nadiri (1993) Table 2 for summary of works in this literature.

2Savvides and Zachariadis (2005) also use a model similar to mine to address technology diffusion from
the G5 countries to the developing countries.
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country heterogeneity by using country specific IO data. Investigating the significance of

country heterogeneity for the technology diffusion process is itself an interesting question to

be explored. Third, this paper also considers the direct and indirect effects of human capital

and own R&D on productivity along with a productivity catch-up variable. Inclusion of

these variables, as will be shown below, considerably affects the size and significance of

estimates.

The plan of this paper is as follows. Section 2 introduces the theoretical framework

that underlies my analysis. Section 3 provides a review of the main features of the data.

Important empirical issues along with the empirical findings and their interpretations are

reported in Section 4. Section 5 offers some concluding remarks.

2 Theoretical Framework

Let industries be denoted by i = 1, . . . , I and countries by c = 1, . . . , C. At any time t, in

each industry i of country c, capital Kic(t), labor Lic(t), and technical efficiency Aic(t) are

combined to produce output Yic(t). The production function takes the form

Yic(t) = Aic(t)F (Kic(t), Lic(t)). (1)

In this production framework, I assumed that technical efficiency is Hicks-neutral and

F (·, ·) satisfies the assumptions of constant returns to scale and diminishing marginal returns

to each input factor. According to the first generation endogenous growth models,3 the

technical efficiency is given by

A(t) = N(t)γ , with Ṅ(t) = ηR(t), (2)

where N(t) denotes the total number of intermediate goods, R(t) is the total R&D effort

spent to develop new products at time t, and γ, η > 0 are parameters. To simplify notation,

above I suppressed the indices on A, N, and R. This specification generates a scale effect,

i.e. productivity growth rate is proportional to L. Jones (1995), however, convincingly

3For details of this type of models, see Romer (1990), Barro and Sala-i-Martin (2004) Chapter 6 and 7,
Grossman and Helpman (1991b) Chapters 3 and 4.
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shows that there is little support, based on time-series behavior of these variables in the

advanced countries, for such a scale effect.

As noted by Barro and Sala-i-Martin (2004) and Aghion and Howitt (1998), this scale

effect will disappear if we consider the following specification for the R&D4

Ṅ

N
= η

R(t)
Y (t)

. (3)

Note that (3) together with the specification for A in (2) imply that productivity growth

is a linear function of R&D intensity:

Ȧ

A
= βd R(t)

Y (t)
, (4)

where βd = ηγ.

In an environment where industries interact with each other in various ways, such as

by selling goods and exchanging information domestically and internationally, the technical

efficiency of an industry will not only be a function of its own R&D effort, but also of the

R&D efforts of other domestic and foreign industries. To capture these additional effects,

let Rd
ic denote the domestic R&D investment in industry i in country c, Rod

ic denote the total

R&D spillovers from other domestic industries, Rsf
ic denote the total R&D spillovers from

industry i in other countries, and Rof
ic denote the total R&D spillovers from other industries

in other countries. The technical efficiency Aic is then assumed to be of the following form

Ȧic

Aic
= βd Ric

Yic
+ βod Rod

Yic
+ βsf Rsf

ic

Yic
+ βof Rof

ic

Yic
, (5)

where βd, βod, βsf , and βof are positive parameters.

An important question is how R&D investment of one industry affects another industry.

In this paper, I assume that R&D spillovers occur across industries through trade in inter-

mediate goods. Specifically, I assume that at any time the total amount of R&D that is

transferred from industry j to industry i is industry j’s R&D investment times the fraction

4Howitt (1999), for example, develops a Schumpeterian growth model with no scale effect and the model
states that in the long-run productivity growth rate is an increasing function of R&D intensity, i.e. R/Y.
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of output of industry j sold to the industry i:

Ȧic

Aic
= βd

ic

Ric

Yic
+βod

ic

1
Yic

∑
j 6=i

Mjic

Yjc
Rjc +βsf

ic

1
Yic

Mf
iic

Mf
ic

∑
k 6=c

Mikc

Yik
Rik +βof

ic

1
Yic

∑
j 6=i

Mf
jic

Mf
jc

Rf
jc (6)

In the second term, Mjic is the total amount of goods sold by industry j to industry

i in country c. Thus, the total amount of R&D that spillovers from sector j to sec-

tor i is
∑

j 6=i(Mjic/Yjc)Rjc. Construction of the third term is as follows. The total

amount of R&D spillovers from sector i in other countries to country c is defined as

Rf
ic =

∑
k 6=c(Mikc/Yik)Rik, where Mikc is the total amount of goods sold by industry i

in country k to country c. Mf
ic is the total amount of goods sold by industry i in all other

countries to country c, i.e. Mf
ic =

∑
k 6=c Mikc and Mf

iic is the total amount of imported

goods of industry i sold to industry i in country c. Thus, the amount of R&D spillovers

from the same industry in other countries to the industry i in country c, Rsf
ic , is Rf

ic mul-

tiplied by the fraction Mf
iic/M

f
ic of total amount of imported goods i sold to industry i.

The fourth term is similarly constructed. Here Rf
jc denotes total amount of foreign R&D

spillovers from industry j in other countries to country c, i.e. Rf
jc =

∑
k 6=c(Mjkc/Yjk)Rjk.

This is brought by Mf
jc amount of goods and it is then distributed across all industries, and

each industry i thus gets Mf
jic/M

f
jc share of Rf

jc.

This weighting scheme is used by Lichtenberg and de la Potterie (1998), Xu and Wang

(1999), and Lichtenberg and de la Potterie (2001) in international technology diffusion

studies and it has been used in previous empirical studies of inter-industry technology flows,

see Terleckyj (1977), Scherer (1982), and Wolff and Nadiri (1993).5 There is an alternative

weighting scheme, which uses bilateral trade shares, proposed by Coe and Helpman (1995)

and has been used in most of the empirical studies of international technology diffusion, see

Coe and Helpman (1995), Coe et al. (1997), Keller (2001) and (2002b). I choose the first

weighting scheme for two reasons. First, the bilateral trade shares weighting scheme reflects

5Long before the advent of endogenous growth theory, researchers estimated the relationship between
productivity growth and R&D intensities. In fact, (5) is an extended version of the model that has been
used in the inter-industry technology flow studies. The model presented in equation (5), however, considers
not only domestic spillovers, but also international R&D spillovers.
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the direction of R&D spillovers, but not their intensity. In other words, it incorporates only

the composition of trade and not the level of trade.6 In contrast, with the above weighting

scheme, as I will show below, my model incorporates both of these effects and has a more

correct theoretical and intuitive interpretation. Second, Lichtenberg and de la Potterie

(1998) convincingly argue that the bilateral trade shares weighting scheme is theoretically

subject to more “aggregation bias” than the first one.7 But I will also report results based

on the bilateral trade shares in section 4.4.

Note that equation (6) can further be rearranged as follows:

Ȧic

Aic
= βd

ic

Ric

Yic
+ βod

ic

∑
j 6=i

Mjic

Yic

Rjc

Yjc
+ βsf

ic

Mf
iic

Mf
ic

∑
k 6=c

Mikc

Yic

Rik

Yik
+ βof

ic

∑
j 6=i

Mf
jic

Yic

Rf
jc

Mf
jc

, (7)

where the terms M/Y within summations denote trade intensity. Intuitively, equation

(7) says, for example, that the impact of R&D investment in industry j of country c on

productivity growth in industry i of country c is proportional to trade intensity Mjic/Yic

of industry i of country c with respect to industry j of country c multiplied by the R&D

intensity Rjc/Yjc of industry j in country c.

An advantage of this specification is that it incorporates both the level and the com-

position of trade. To see this, consider for example the second summation term on the

right hand side of equation (7). Let Mic =
∑

j 6=i Mjic denote the total amount goods

sold by other domestic industries to industry i and mjic = Mjic/Mic denote the bilat-

eral trade share. Then the summation of
∑

j 6=i(Mjic/Yic)(Rjc/Yjc) could be written as

(Mic/Yic)
∑

j 6=i mjic(Rjc/Yjc). Here Mic captures the the level of trade and mjic picks up

the composition of trade effect.

Implicit in (5), and hence in (6), is the assumption that all goods are endowed with the

latest technology. However, diffusion of technology may take time. To capture this fact, I

6According to his weighting scheme, if two countries, for example, has the same trade composition, they
will have the same foreign R&D effect.

7Aggregation bias refers to the implication that a merger between two countries or industries always
increases the amount of R&D spillovers. For example, under the Coe-Helpman weighting scheme if two
merging countries were the same size, the foreign R&D capital stocks would be doubled by merger. For
details, see Lichtenberg and de la Potterie (1998)
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introduce a lag structures in (5). With this modification, the discrete time presentation of

(5) is given by

4 lnAic,t = βd Ric,t−1

Yic,t−1
+

∑¯̀

τ=1 βod
` Rod

ic,t−`

Yic,t−1
+

∑¯̀

`=1 βsf
` Rsf

ic,t−`

Yic,t−1
+

∑¯̀

`=1 βof
` Rof

ic,t−`

Yic,t−1
, (8)

where 4 denotes the difference operator, i.e. 4 lnAic,t = ln Aic,t− lnAic,t−1, ¯̀denotes the

maximum length of lag, and βν
` with ν = od, sf, of are parameters. Here Rν

·,t−` is defined

as in (6) with R&D investments are lagged by ` periods. For my empirical implementation,

I will set ¯̀ = 3. One may still believe that a three-year lag is not enough to capture the

process of technology diffusion. In section 4.4, I will consider an alternative case where

instead of using R&D investments, I use R&D stocks. The qualitative results, however,

remain largely the same.

3 Data Description

3.1 Data Sources and Measurements

This section provides an overview of the data. The details about data sources and the

construction of variables along with some statistics are reported in the appendix. I draw on

a number of data sources to construct the industry level panel data set. The data on value

added, investment, labor, compensation of labor, and price indices come from the Structural

Analysis (STAN) database, OECD (1998d). OECD also compiles other databases that are,

in terms of coverage, compatible with the STAN database. I use the OECD (1998a) Business

Enterprise R&D (ANBERD) database for R&D investment data, the OECD (1998b) the

Bilateral Trade Database (BTD) for international trade data, and the OECD (1995) and

(2005) Input-Output (IO) database for the data on flows of domestic and imported goods

across industries. The most attractive feature of these databases is that they are primarily

based on member countries’ annual National Accounts by activity tables. OECD compiles

these tables in such a way that the final tables in all of these databases are one-to-one

comparable in terms of industrial classification and coverage.

After cleaning and deleting missing values, I have constructed a panel data set on twelve
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manufacturing industries in ten countries between 1973 and 1994. The countries are Aus-

tralia (AUS), Canada (CAN), Denmark (DNK), France (FRA), West Germany (GER),8

Italy (ITA), Japan (JPN), the Netherlands (NLD), the United Kingdom (UK), and the

United States (US). The twelve manufacturing industries are comprised of industries at

two- to three-digit ISIC (International Standard Industrial Classification) level: food, bev-

erage, and tobacco (ISIC 31), textile, apparel, and leather (ISIC 32), wood products and

furniture (ISIC 33), paper products, and printing (ISIC 34), chemical products and drugs

(ISIC 351+352), rubber and plastic products (ISIC 355+356 ), non-metallic mineral prod-

ucts (ISIC 36), basic metal industries (ISIC 37), metal products (ISIC 381), non-electrical

equipment and machinery and professional goods (ISIC 382+385), electrical machinery

(ISIC 383), and transport equipment (ISIC 384). The average share of the total value-

added of these industries in the total gross domestic product across countries is about 22%

between 1973 and 1994, and R&D expenditures of these industries comprise about 90% of

the world’s entire business enterprise R&D expenditures.

Technical efficiency (productivity) growth calculations at the industry level require real

data on industry outputs and inputs of primary factors and intermediate goods. Price

indices for intermediate goods are not available, so I calculated value-added productivity

growth rates. With the data on real value-added, real physical capital stocks, and labor

inputs, the Divisia-Tornquist technical efficiency (productivity) growth rates are measured

as

∆ ln(Aic,t) = ln
(

Yic,t

Yic,t−1

)
− ᾱic,t ln

(
Lci,t

Lci,t−1

)
− (1− ᾱic,t) ln

(
Kci,t

Kci,t−1

)
, (9)

where ᾱic,t = 0.5(αic,t + αic,t−1) and αic,t is the labor share of the value-added. This for-

mulation is based on the assumptions that market are competitive and F exhibits constant

returns to scale.

Two important points were considered in the measurement of productivity growth. First,

the observed labor shares are quite noisy and sometimes exceed one. Following Harrigan

8The OECD continued to report statistics for West Germany until 1995.



9

(1997), I estimated a smoothed labor share series ᾱic,t from a regression

αic,t = δic + φi ln
(

Kic,t

Lic,t

)
+ εic,t, (10)

where the coefficient on the capital labor ratio is allowed to vary across industries. The

smoothed labor shares are then used as labor cost shares in measuring productivity growth.

Second, in measuring productivity growth, I also adjusted labor inputs by taking labor

hours into account. This adjustment is important because according to the OECD (1998b)

employment data, annual average working hours per employee vary substantially across

countries; for example, in 1985 a French manufacturing worker on average worked 400

hours less than a Japanese manufacturing worker. In the robustness section, I will present

results for the case when productivity growth is measured with unadjusted input factors.

3.2 Descriptive Statistics

Table 1 reports descriptive statistics on the key variables for the aggregate manufacturing

sector across countries between 1973 and 1994. The second and third columns of Table

1 show that countries vary substantially in terms of their shares of total GDP (value-

added) and total R&D in the sample.9 For example, most of the production and R&D

activities has been done in the United States, Japan, and Germany. The third column

denotes R&D intensity, which is calculated by dividing total amount of R&D investment in

twelve manufacturing industries to total amount of GDP generated by twelve manufacturing

industries, of each country.

The import intensity for each country is calculated by dividing total imports of twelve

manufacturing industries from the rest of the countries in the sample by the total value

added of twelve manufacturing industries. Trade intensities across countries also show

considerable variation. While Japan and the US are comparatively less open countries,

Denmark and the Netherlands are the most open countries in the sample. The last column

of Table 1 shows the growth rates of cross-section (across industries) standard deviations

9Here, total GDP of a given country does not refer to its whole-economy GDP. It refers to the sum of
the value-added of its twelve manufacturing industries. Similarly, total R&D refers to the sum of the R&D
investments of its twelve manufacturing industries.
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Table 1: Descriptive Statistics Across Countries, 1973-1994 Averages, (%)
Share of Share of R&D Import

Total GDP Total R&D Intensity Intensity TFP Std(Ln(TFP))

COUNTRY in Sample in Sample Rc/Yc Mc/Yc Growth Growth

Australia 1.5 0.5 1.9 67.3 1.5 -0.2

Canada 2.9 1.4 2.6 108.4 0.8 -2.8

Denmark 0.5 0.3 2.9 128.8 2.3 -4.8

France 8.0 6.9 5.3 65.4 2.6 -0.5

Germany 13.2 11.9 5.4 52.0 2.1 -1.6

Italy 7.0 2.6 2.0 49.4 3.7 -5.2

Japan 19.3 19.1 5.5 13.6 1.3 -3.6

Netherlands 1.6 1.4 5.2 180.4 3.2 -5.5

United Kingdom 7.0 6.4 5.4 81.2 2.0 -1.0

United States 39.0 49.5 7.9 31.0 2.1 -3.8
Notes: Rc, Yc, and Mc denote the R&D investment, value-added, and total import (from other

countries in the sample) of row country c.

of the logs of TFP within a given country. This column gives information about within

country convergence. Convergence within a country can also be interpreted as a sign of

cross-industry links. With this interpretation, this column reveals that there is relatively

strong integration across domestic industries in Denmark, Italy, and the Netherlands.

Table 2 reports summary statistics for industries. It shows that the shares of total GDP

and total R&D in the sample, and R&D intensities vary considerably by industry.10 For

example, while on average 13% of total GDP comes from food industry, the share of total

R&D conducted in this industry is about 2%. Most of the R&D activities have taken place

in Chemical, Machinery, Electrical, and Transport industries.

The fourth and fifth columns in Table 2 show that trade intensities in R&D intensive

industries are considerably higher than those in other industries. Note that these are also

industries where productivity growth is relatively high. The last column in Table 2 shows

the growth rates of cross-section (across countries) standard deviations of the logs of TFP

10Here total GDP (R&D) of a given industry refers to the sum of the value-added (R&D investment) of
that industries across all countries in the sample. I used whole-economic purchasing power parity exchange
rates for conversions to international dollar.
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Table 2: Descriptive Statistics for Industries, 1973-1994 Averages, (%)
Share of Share of R&D Import

Total GDP Total R&D Intensity Intensity TFP Std(Ln(TFP))

INDUSTRY in Sample in Sample Ri/Yi Mi/Yi Growth Growth

Food 13.3 2.0 1.0 36.4 1.2 -4.1

Textile 6.8 0.6 0.5 69.2 2.4 1.3

Wood 4.2 0.3 0.4 33.2 1.3 -3.2

Paper 9.6 1.0 0.6 21.0 1.1 -1.8

Chemical 9.4 17.1 11.1 53.3 3.9 -5.8

Plastic 3.8 1.8 2.9 30.7 2.1 -0.1

Mineral 3.9 1.3 2.0 19.9 1.6 -0.2

Basic Metal 6.6 2.4 2.2 51.0 3.2 -3.9

Metal 7.6 1.5 1.2 20.1 1.8 -1.5

Machinery 13.4 19.1 8.7 56.0 2.2 -1.8

Electrical 10.1 23.3 14.2 46.0 3.5 -1.6

Transport 11.3 29.6 16.0 70.0 1.8 -2.1
Notes: Ri, Yi, and Mi denote the R&D investment, value-added, and total import (from other
countries in the sample) of row industry i.

within a given industry. In other words, it gives information on the convergence in a given

industry across countries. It is important to see that there is rapid convergence in the R&D

and/or trade intensive industries, which is consistent with the model proposed above. I

will now turn to empirical implementation to see to what extent the above observations are

robust.

4 Empirical Implementation

4.1 Econometric Framework and Issues

The starting point for the econometric framework is equation (8). I impose further con-

ditions on this equation. First, I assume a 3-year lag structure, i.e. ¯̀ = 3. Second, the

productivity growth is affected by some unobserved characteristics, which are likely to be

correlated with the included explanatory variables. Some of these unobserved characteris-

tics may be time invariant, such as institutional or geographic differences; or some of them
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may be time specific common macroeconomic shocks which affect productivity growth in

all countries. With these modifications, the benchmark econometric specification will be

4 lnAic,t = αic + αt + βd Ric,t−1

Yic,t−1
+

∑3
`=1 βod

` Rod
ic,t−`

Yic,t−1
+

∑3
`=1 βsf

` Rsf
ic,t−`

Yic,t−1

+

∑3
`=1 βof

` Rof
ic,t−`

Yic,t−1
+ εic,t, (11)

where αic denotes the industry-country specific fixed effect, αt denotes time dummy, and

εic,t is the error term. In presenting results, following Kocherlakota and Yi (1997) and

Savvides and Zachariadis (2005), I report the sum of the coefficients of lags to measure the

effects of variables on economic growth, i.e. βν =
∑3

`=1 βν
` , for ν = od, sf, of. In section

4.4, I extend this framework by including human capital and productivity catch-up effects.

Since specification (11) does not contain productivity levels and R&D capital stocks,

which are sensitive to their initial benchmark estimates, the possible measurement errors are

reduced considerably. I have also estimated productivity growth based on different initial

physical capital stocks and the results remain mostly similar.

Although we included industry-country specific fixed effect and time dummy to reduce

the correlation between the explanatory variables and error term, estimates obtained by

using least-square procedure still may not be consistent. For example, when firms antic-

ipate shocks, they will adjust their R&D and trade accordingly. To reduce such effects,

I use smoothed trade intensities in my estimates.11 Moreover, including lagged R&Ds in

our specification will further mitigate the possible simultaneity problem. Of course, these

are not entirely satisfactory solutions and the best is to use instrumental variable (IV) ap-

proach. Unfortunately, there are no good external instrumental variables to deal with this

endogeneity issue. Following the literature, I will, therefore, rely on my specifications.

Estimation of equation (11) requires internationally comparable data on output, R&D

investment, and import. Following much of the productivity and R&D spillovers literature,

for example Dollar and Wolff (1993), Bernard and Jones (1996), Griffith et al. (2004), and

11For 1973-80 period, I used average of the trade intensities over this period; for 1981-87, I used the
average of 1981-87; and for 1988-94, I used the average of 1988-94.



13

Keller (2002a) and (2002b), I use whole-economic purchasing power parity (PPP) exchange

rates to convert these variables. As a robustness check, I also present results based on

Sorensen and Schjerning (2003) industry specific PPP exchange rates.12

4.2 Basic Results

The regression results for equation (11) are reported in Table 3 in Columns (3.1) through

(3.4). Column (3.1) shows regression results when the only regressor is own R&D intensity.

The coefficient βd is 0.357 with a standard error of 0.090. This is consistent with previous

industry level estimates by Zachariadis (2003) and Griffith (2004). Column (3.2) shows

regression results, when the second term in equation (11) is included. The estimated coef-

ficient is 2.009 and it is highly statistically significant. This estimate is within the range of

previous estimates in inter-industry technology flow studies (see Nadiri (1993) Table 2 for

summary of works in this literature).13 The coefficient βd decreased to 0.286 and according

to R̄2 and AIC,14 this one is preferable to (3.1). In column (3.3), the spillovers from the

same industry in other countries are included. Coefficient of this effect is positive and sta-

tistically significant at the 5% level. Column (3.4) presents results including the spillovers

from other foreign industries. The coefficient on this term is positive and significant again

at the 5% level.

The size of coefficients are quite different, as are their standard errors. To get a better

understanding of the size of the effects reported in Column (3.4), Column (3.5) reports the

12I have not used Sorensen and Schjerning (2003) industry specific PPP exchange rates in my main analysis
for the following reasons. First, those rates are not available for all industries in my sample. Second, these
are expenditure-based, rather than production-based conversion factors, and are not fully appropriate to
determine international comparability of productivity analysis (see Sorensen and Schjerning (2003)).

13This coefficient is relatively high compared with most of the previous estimates in that literature (average
is around 1.0). There are, however, two reasons for my high estimate. First, I calculated TFP growth rates
by using value-added, capital, and labor data, whereas calculations in inter-industry literature are based on
output, capital, intermediate inputs, and labor data. As pointed out by Nadiri (1993), TFP growth rates
based on value-added approach is about twice as high as the TFP growth rates based on the output approach.
Second, I only consider twelve manufacturing industries, whereas those studies consider sectors at a more
disaggregated levels together with other non-manufacturing sectors (typically 20-30 sectors). Presumably,
with these modifications my point estimate would be around the average of the previous estimates.

14Akaike Information Criterion (AIC) is defined as AIC = ln(e′e/N)+ 2K/N , where e′e is the sum of the
residual squares, N is the number of observations, and K is the number of estimated parameters. Lower
values for AIC are preferred.
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Table 3: Regression Results for Benchmark Specification
Coefficient 3.1 3.2 3.3 3.4 3.5

R&D Effects from

Own Industry βd 0.357* 0.286* 0.178** 0.229* 0.190

(0.090) (0.093) (0.100) (0.099)

Other Domestic Inds βod 2.009* 2.196* 1.973* 0.205

(0.744) (0.784) (0.777)

Same Foreign Inds βsf 1.967* 1.357* 0.195

(0.492) (0.543)

Other Foreign Inds βof 5.348* 0.333

(1.337)

Adjusted R2 0.178 0.183 0.187 0.195

Akaike Infor. Crt. -5.726 -5.730 -5.734 -5.744
Notes: Dependent variable is 4 lnAic,t. There are 2640 observations between 1973 and 1994.
All equations include industry-country specific constants and time dummies. βν =

∑3
`=1 βν

` , for
ν = od, sf, of. Numbers in parentheses are heteroskedastcity-consistent standard errors. Column
(3.5) shows the standardized coefficients of the Column (3.4). * (**) means the corresponding
coefficient is significant at the 5% (10%) level.

sum of standardized coefficients, which are obtained by multiplying the regression coefficient

by the sample standard deviation of the explanatory variable and dividing by the sample

standard deviation of the dependent variable. Thus, for example, a standardized coefficient

of 0.190 means that a one-standard-deviation increase in the own industry R&D variable

will increase the productivity growth by 0.190 standard deviations. Column (3.5) states

that in terms of standardized coefficients the effects of the first three sources are largely the

same.15

4.3 Extension of The Model

In the basic framework, differences in human capital across countries are ignored. The effect

of human capital on productivity growth is emphasized in both theoretical and empirical

growth literature, see Romer (1990), Grossman and Helpman (1991a), Engelbrecht (1997),

and Griffith et al. (2004). Engelbrecht (1997), for example, extends the Coe and Helpman

15Sample means (standard deviations) of R/Y, Rod/Y, Rsf/Y, and Rof/Y are 0.038 (0.051), 0.007 (0.006),
0.003 (0.009), and 0.003 (0.004), respectively.
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(1995) study of international R&D spillovers by including a human capital variable. He

finds that human capital both directly and indirectly affects productivity.

Following Gammell (1996) and Griffith et al. (2004), I use country-level data on the

fraction of the adult population that has attained higher education from Barro and Lee

(2002) as a proxy for human capital (see Appendix). Note that education is measured at a

country, not industry-country level. This is because there are no internationally comparable

industry-country level human capital data. In any case, it may be appropriate to use

country-level data on human capital to the extent that there is an externality within a

country.

Human capital can affect productivity in two ways. First, it can directly affect pro-

ductivity. Second, it can indirectly effect productivity by facilitating technology transfer.

Intuitively, one might expect that given the same level of trade shares, countries which have

higher human capital will benefit more from technology transmission through trade.

To consider these effects of human capital on productivity growth, I add human capital

and interaction terms, where human capital is multiplied by R&D spillovers, into equation

(11). Column (4.2) of Table 4 reports the results. Human capital term is positive and sta-

tistically significant. Note that only the interaction term H ∗SF is significant and negative.

Although with these coefficients the average marginal contribution of R&D spillovers from

the same foreign industries is positive (3.396− 6.142×H = 2.352, where H is sample mean

of H), having a significant negative coefficient for the interaction term is not plausible: it

would imply that countries with more human capital will benefit less from the foreign R&D

spillovers. Other interaction terms, however, are not statistically significant.

Several other authors have showed factor productivity convergence among OECD coun-

tries and/or industries, but main reasons for this convergence are diverse (see, for example

Dowrick and Nguyen (1989), Benhabib and Spiegel (1994), Engelbrecht (1997), Griffith et

al. (2004)), and Cameron et al. (2005). To control for the impact of other productivity

catch-up factors, following Dowrick and Nguyen (1989), Engelbrecht (1997) and Coe et al.

(1997), I therefore include a catch-up term CU, which is defined as ln(yim,t−1/yic,t−1), where
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Table 4: Extended Model: Productivity Catch-up and Human Capital Effects are Included
Benchmark Human Catch-up No Spill. Preferred Beta

Case Capital Included Interact. Results Coeff.

(4.1) (4.2) (4.3) (4.4) (4.5) (4.6)

R&D Effects from

Own Industry (RD) 0.229* 0.217* 0.167** 0.203* 0.202* 0.168

(0.099) (0.101) (0.102) (0.101) (0.101)

Other Domestic Inds. (OD) 1.973* 1.960* 1.498 1.450* 1.462** 0.152

(0.777) (1.107) (1.101) (0.537) (0.774)

Same Foreign Inds. (SF) 1.357* 3.996* 3.238* 0.794 0.835*** 0.117

(0.543) (1.025) (1.177) (0.540) (0.525)

Other Foreign Inds. (OF) 5.348* 7.289* 7.123* 4.493* 4.496* 0.276

(1.337) (1.918) (2.335) (1.284) (1.665)

Human Capital (H) 0.238* 0.238* 0.133* 0.138* 0.252

(0.077) (0.077) (0.051) (0.050)

Productivity Catch-up (CU) 0.011 0.015 0.020*** 0.091

(0.017) (0.017) (0.013)

Interaction Effects

H* OD -1.126 -1.313

(3.312) (3.283)

H* SF -6.142* -5.096*

(2.186) (2.235)

H* OF -5.118 -8.043

(5.751) (6.047)

H* CU 0.052 0.048

(0.102) (0.098)

RD* CU 0.626* 0.620* 0.619* 0.213

(0.184) (0.185) (0.185)

Adjusted R2 0.195 0.203 0.214 0.209 0.210

Akaike Infor. Crt. -5.744 -5.750 -5.762 -5.760 -5.761
Notes: Dependent variable is 4 lnAic,t. All equations include industry-country specific constants
and time dummies. Numbers in parentheses are heteroskedastcity-consistent standard errors.
Column (3.5) shows the standardized coefficients of the Column (4.5). * (**) [***] means the
corresponding coefficient is significant at 5% (10%) [12%] level.
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yic denotes the labor productivity and yim,t−1 = Max{yic,t−1 : c ∈ C} denotes the maximum

labor productivity in industry i across all countries, into (11). A positive and significant

coefficient for this term represents evidence of convergence across countries.

Column (4.3) shows the results when productivity catch up along with its interaction

with human capital and own R&D effects are included. This and interaction terms are all

positive; but only the R&D interacted term is statistically significant. Inclusion of these

effects have considerably reduced the sizes and the significance of the direct own R&D and

R&D effect from other domestic industries. The significance of RD ∗CU reflects the Cohen

and Levinthal (1989) and Griffith et al. (2004) findings that own R&D is important for

both domestic innovation and for the productivity catch-up process, i.e. it has two faces in

development process.

Results in Column (4.3) are to some extent different from the Engelbrecht (1997) findings

for OECD countries. He finds that human capital has both direct and indirect effects on

productivity growth. Column (4.3), however, states that the second effect is insignificant.16

Insignificance of this interaction term, however, is consistent with the Benhabib and Spiegel

(1994) results, where they also obtain insignificant effect when they restricted their sample

to wealthiest countries in their sample.

In Column (4.4), interactions with R&D spillovers terms are excluded. The productiv-

ity catch-up (CU) and its interaction with human capital (H*PC) terms are still insignifi-

cant. While R&D effect from the same industry in other countries is now insignificant at

conventional levels, the other R&D sources have positive and highly significants effect on

productivity growth.

Column (4.5) is my preferred specification and it is the same with Column (4.4), except

now the H*CU term is also excluded.17 The results are mostly the same with that in

16Engelbrecht’s (1997) findings in regard to the catch-up and human capital interacted with catch-up
terms are puzzling. He obtains opposite signs for the catch-up and human capital interacted catch-up terms.
Since his definition of catch-up term is the reciprocal of mine (i.e. ln(yic,t−1/yim,t−1)), his human capital
interaction term has wrong sign (see, Columns v and vi in Table 3 in his paper), implying that more human
capital leads to a slower catch-up process.

17I also consider the case where I excluded only the CU term. However, the H*CU term still remains
insignificant.
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Column (4.4). Now, however, the productivity catch-up and the R&D spillovers from the

same industry in other countries are significant at the 12% level.

Finally, Column (4.6) shows the standardized coefficients of Column (4.5). According to

this column, the direct effect of own R&D now has a higher impact on productivity growth

than that of R&D spillovers from other domestic and the same foreign industries. Indeed,

given that own R&D also has second face, it is clear that the effect of own R&D is much

higher than that in the benchmark specification. Comparing (4.5) and (4.6) with benchmark

cases in Column (3.4) and (3.5) uncovers another striking result that has not been noticed

by previous studies in inter-industry technology flow. Notice that the magnitude of the

coefficient of R&D spillovers from other domestic industries is reduced substantially. As

pointed out before, previous estimates of this coefficient have been relatively large (the

average is around 1.0) and researchers have speculated that this most probably stems from

the omission of foreign R&D effects (see, Xu and Wang (1999)). But my analysis reveals that

the effects of foreign R&D spillovers are not significant on the magnitude of this coefficient.

The important reason is the omission of productivity catch-up term in previous estimates.

4.4 Robustness

In this section I evaluate sensitivity of basic results to alternative approaches to measure-

ments of various variables. Table 5 reports the regression results under different specifica-

tions and Table 6 shows the corresponding standardized coefficients.18

Recall from section 3.1 that in calculating productivity growth the labor data were ad-

justed. Column (5.2) of Table 5 reports results where productivity growth rate is calculated

when this input factor is not adjusted. While R&D spillovers effects from the same indus-

tries in other countries is not significant, the productivity catch-up term became significant

at the 10% level. The qualitative results about other coefficients remained by and large the

18Results in Table 5 based on regressions identical with that in Column (4.5) in Table 4, i.e. I exclude
human capital interacted with R&D spillovers and productivity catch-up terms. Inclusion of these interaction
terms yield qualitatively same results as in (4.3) and (4.4) in Table 4; except under the alternative weighting
scheme the H∗OD term is negative and statistically significant, while interaction with foreign R&D spillovers
terms are insignificant. Results are available upon request to the author.
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Table 5: Robustness of Results Related to Measurement of Variables
Extended Unadjusted Industry R&D BTS US IO

Case TFP PPP Stock Scheme used

(5.1) (5.2) (5.3) (5.4) (5.5) (5.6)

R&D Effects from

Own Inds. (RD) 0.202* 0.209* 0.220** 0.035* 0.317* 0.324*

(0.101) (0.106) (0.113) (0.014) (0.096) (0.096)

Other Dom Inds. (OD) 1.462** 1.369** 1.364* 0.182** 0.170* 0.173*

(0.774) (0.782) (0.692) (0.108) (0.050) (0.049)

Same Frgn Inds. (SF) 0.835*** 0.596 0.908* 0.045 0.006 0.008**

(0.525) (0.537) (0.461) (0.090) (0.004) (0.005)

Other Frgn Inds. (OF) 4.496* 5.113* 4.757* 0.439* 0.005 0.003

(1.665) (1.549) (1.487) (0.171) (0.003) (0.003)

Human Capital (H) 0.138* 0.118* 0.118* 0.099* 0.164* 0.162*

(0.050) (0.050) (0.050) (0.050) (0.051) (0.050)

Catch-up (CU) 0.020* 0.027** 0.020 0.031* 0.030* 0.034*

(0.013) (0.014) (0.014) (0.013) (0.012) (0.012)

RD* CU 0.619* 0.529* 0.621* 0.567* 0.436* 0.409*

(0.185) (0.191) (0.185) (0.177) (0.180) (0.180)

Adjusted R2 0.210 0.219 0.210 0.207 0.218 0.218

Akaike Infor. Crt. -5.761 -5.737 -5.761 -5.759 -5.771 -5.771
Notes: Dependent variable is 4 lnAic,t. All equations include industry-country specific constants
and time dummies. Numbers in parentheses are heteroskedasticity-consistent standard errors. *
(**) [***] means the corresponding coefficient is significant at the 5% (10%) [12%] level.

same.

Column (5.3) reports results when industry-specific PPP exchange rates are used. As

indicated above, industry-specific PPP exchange rates are not available for all industries.19

Here results qualitatively are similar with that in Column (5.1); except now both of the

foreign R&D spillovers terms are significant at the 5% level.

As discussed in section 2, the diffusion process may take longer than three periods. To

19Industry-specific exchange rates are available only for food, beverage, and tobacco industry, equipment
and machinery industry, and total manufacturing industry. For fabricated metal products industries (i.e.
metal sector (ISIC 381), electrical equipment sector (ISIC 383), and transport sectors (ISIC 384)) I used
equipment and machinery industry conversion factors; for all other industries which do not have industry
specific PPP, I used total manufacturing PPP.
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Table 6: Standardized Coefficients of Table 5.
Extended Unadjusted Industry R&D BTS US IO

Case TFP PPP Stock Used used

(6.1) (6.2) (6.3) (6.4) (6.5) (6.6)

R&D Effects from

Own Industry (RD) 0.168* 0.170* 0.168** 0.194* 0.263* 0.269*

Other Dom Inds. (OD) 0.152** 0.135** 0.143* 0.110* 0.264* 0.271*

Same Frgn Inds. (SF) 0.117*** 0.080 0.123* 0.049 0.137 0.164**

Other Frgn Inds. (OF) 0.276* 0.303* 0.273* 0.169* 0.188 0.105

Human Capital (HK) 0.252* 0.212* 0.217* 0.181* 0.299* 0.295*

Productivity Catch-up (PC) 0.091*** 0.118** 0.091 0.136* 0.134* 0.153*

RD*PC 0.213* 0.178* 0.214* 0.194* 0.151* 0.141*
Notes: Dependent variable is 4 lnAic,t. * (**) [***] means the corresponding coefficient is
significant at the 5% (10%) [12%] level.

address this issue, I consider the following specification

4 lnAic,t = αic + αt + βd Sic,t−1

Yic,t−1
+ βod

Sod
ic,t−1

Yic,t−1
+ βf

Sf
ic,t−1

Yic,t−1
+ βof

Sof
ic,t−1

Yic,t−1

+βhH + βcCU + βrc Sic,t−1

Yic,t−1
∗ CU + εic,t,

where S denote R&D stocks, which are calculated by using perpetual inventory method

with 10% depreciation rate (see Griliches (1980) for R&D stocks constructions). Column

(5.4) presents the results of this regression. This results qualitatively are very similar to

that in (5.1); with the exceptions that while foreign R&D effects from the same industries

is not significant even at the 15% level, productivity catch-up term is significant at the 5%

level.

In constructing the R&D spillovers terms, I used trade to output ratios as a weighting

scheme. As discussed in section 2, there is an alternative scheme, proposed by Coe and

Helpman (1995), used in most of the international R&D spillovers literature. In this scheme,

R&D spillovers are calculated by using bilateral trade shares (see Coe and Helpman (1995)

and Keller (2002b)). Column (5.5) represents results, when I used this weighting scheme in

estimating the extended model. Note that here foreign R&D spillovers are not statistically

significant at conventional levels. Other terms are positive and usually highly significant.
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Column (5.6) repeats Column (5.5) by using the U.S. IO tables, as Keller (2002b) does.

Results are very similar with that in (5.5), except R&D spillovers from the same industries

in other countries now have significant effect on productivity growth. How are these results

comparable with Keller’s findings? He estimates a nonlinear specification between TFP

and R&D stocks20 and he compares the relative size of the marginal contributions of R&D

stocks to productivity levels, i.e. ∂Aic/∂Sν
ic, for ν = d, od, sf, of. He finds that in terms of

marginal productivity of each channel, about 50% of productivity increase comes from own

R&D expenditures, 30% of it comes from R&D in other domestic industries, and finally

20% from R&D expenditures in foreign industries most of which comes from other foreign

industries. Notice that coefficients in this paper represent the marginal contributions of

R&D intensities to productivity growth. Thus, coefficients in Column (6.6) are not one-to-

one comparable with his. But it is encouraging to see that under both approaches domestic

sources play the most significant role. The effects of foreign R&D spillovers are different

than the Keller’s findings: while he finds that other foreign industries contribute more

significantly to TFP level, this source does not have a significant effect to the TFP growth

in my case (i.e. Column (5.6)).21

How important is to use common IO tables for all countries? Comparison of Column

(5.5) with (5.6) gives a partial answer to this question. Although with U.S. IO tables

the model fits data slightly better than the model with country-specific IO tables, some

estimates and their significance are different under these two cases. These differences become

more obvious when the standardized coefficients in columns (6.5) and (6.6) are compared. I

have also experimented by using other countries IO tables instead of the U.S. and conclusion

remain mostly the same: using common IO tables for all countries, the fit can be as good as

the main results, but the point estimates and standardized coefficients (especially, of foreign

20Specifically, he estimates ln Aic = αic +αt +β ln
�
Sd

ic + βodSod
ic + βsfSsf

ic + βofSof
ic

�
, where Sν

ics denote

R&D stocks for different sources, which are calculated by using bilateral trade shares, see Keller (2002b)
21His finding about the effect of spillovers from other foreign industries is not robust. When he uses

technology flow matrix, which is based on patent data, this effect becomes insignificant at the 10% level and
its contribution declines by 50%.



22

R&D effects) are significantly different across each specification.22

5 Concluding Remarks

In this paper, I have addressed the problem of R&D spillovers in a panel of OECD industries.

I developed a simple and econometrically tractable model in which the technology flows

among industries through trade in goods. This model incorporates four different types of

R&D investments that might affect productivity growth. The first one is the effect of R&D

conducted in an industry itself, the second is the effect of R&D conducted in the same

industries in other countries, the third is the effect of R&D conducted in other domestic

industries that supply inputs, and the fourth is the effect of R&D conducted in other

foreign industries that supply inputs. I examine the significance of each of these sources for

productivity growth in a panel of twelve industries in ten OECD countries between 1973

and 1994. The model is further extended by incorporating human capital and productivity

catch-up effects.

My analysis shows that among these four different R&D effects the most important con-

tributions are coming from domestic R&D efforts. Own R&D is found to be important for

both domestic innovation and for the productivity catch-up process. Although international

R&D spillovers have positive effects on productivity growth, these effects are not robust.

My analysis also shows that human affects productivity directly as factor of production.

There are several directions that the present work can be extended. First, my human

capital treatment was incomplete in two dimensions. I used country level education data in-

stead of industry specific educational attainment and I did not take into account differences

in skill composition of labor. Construction of industry level skill composition and education

attainment data sets will be an important task in its own right. Once we have this data,

the role of human capital can be addressed properly (see works by Harrigan (1999), Machin

and Van Reneen (1998), and Griffith et al. (2004), where to some extent they incorporate

22The same conclusion holds even under first weighting scheme. Results are available upon request to the
author.
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these additional adjustments).23

Second, although bilateral trade data shows flows of goods at the industry level, these

industries include many goods for which the technology content is relatively low. Conse-

quently their role in transferring technologies will not be significant. For example, for a

panel of OECD countries, Xu and Wang (1999) convincingly argue that trade in capital

goods is more appropriate to assess the impact of international R&D spillovers. In the

present context, the appropriate approach is to look at detailed technology content of each

industry, and consider only trade in goods which have higher technology content. Third,

some other channels could also be incorporated into this model. Lichtenberg and de la

Potterie (2001), for example, investigate the significance of inward and outward foreign

direct investment (FDI) along with trade as conduits for R&D spillovers. Keller (2001),

on the other hand, considers the importance of trade, distance, and FDI in transmitting

technologies. Incorporating these additional channels and investigating the significance of

each will be an important step.

23To construct labor data adjusted for skill is more feasible than the first task. The United Nations has
UNIDO database which shows wage bills of production and nonproduction workers in individual industries.
Following Harrigan (1999) and Jorgenson and Fraumeni (1992), one can construct quality-adjusted labor
input as translog index of two types of labor: production and nonproduction workers. Machin and Van
Reneen (1998) have constructed industry-level education data from census surveys for seven OECD countries.
However, this data set is not publicly available.
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A Data Sources and Construction

The data in this chapter covers ten countries and twelve manufacturing sectors over the

period of 1973-1995. The sample of countries, industries, and time coverage I used in my

analysis was dictated by the availability of the data.

A.1 Data on Production, Capital Stocks, and Labor

Data on production, capital formation, and labor (number of employees) was taken from the

STAN databases (1998d) and (2002). One of the important points in productivity analysis is

the comparability of price deflators of sectors across countries. When the quality dimension

has been taken into account in calculation of price deflators, the quality-adjusted (hedonic)

deflators exhibit rapid deflation. From the STAN database manual it was not clear for

which of these countries and to what extent deflators were used. My research suggests that

the price deflators of the electrical equipment (ISIC 383) sectors of Japan, the UK, and

the US might have been quality-adjusted. In Japan, for example,the price deflator declines

about 300% between 1975 and 1990. In these cases, I have used the (simple) average of

the price deflators of metal products (ISIC 381), non-electrical machinery and professional

products (ISIC 382/5), and transport equipment (ISIC 384).

The STAN investment data was multiplied by a gross fixed capital formation price

deflator of total manufacturing sector derived from the ISDB (1998c).24 After constructing

the real gross fixed capital formation for each sector in each country, I estimated capital

stocks by using the perpetual inventory method,

Kic,t+1 = (1− δ)Kic,t + Iic,t, ∀i, c, t, (12)

where K, I, and δ denote the capital stocks, investment, and depreciation rate, respectively;

subscripts i, c, and t denote industry, country, and time. Benchmark capital stock series

were calculated by

Kic,1970 =
Iic,1970

gic + δ
, (13)

24For Japan, gross fixed capital formation price deflator was not available and I used aggregate gross fixed
capital formation price deflator derived from annual National Accounts.
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where gic is the average growth rate of investment series over 1970-1990. The depreciation

rate was set to 8%, which is the average of the depreciation rates of equipment and machinery

(11.68%) and non-residentially buildings (3.14%) (see Katz and Herman (1997)).

For the number of workers I used STAN (1998d) database.25 The employee data includes

all people engaged in production. The average annual hours per manufacturing worker were

taken from Gronningen Industry Database and ISDB (1998c) database.

Data on the percentage of adult population that has attained higher education from

Barro and Lee (2002) educational attainment database. Following Harrigan (1997) and

Griffith et al. (2004), I have linearly interpolated the data.

A.2 Data on R&D Expenditures

Data on R&D expenditure comes from OECD ANBERD (1998a) database. The data covers

both publicly and privately funded business enterprise R&D expenditures over the period

of 1973-1997.26 R&D expenditures also cover compensation for labor done in R&D sector,

which is estimated to comprise (about) 50% of total R&D expenditure, Coe and Helpman

(1995). One of the most important issues in constructing R&D intensity is finding an

appropriate deflator for R&D expenditures. For each industry, following Coe and Helpman

(1995), I assume that its R&D deflator is the simple average of the wage index and the

industry output deflator. I used the aggregate manufacturing price deflator as a proxy to

the wage index.27 I have used whole-economy PPP to convert real R&D expenditures into

internationally comparable levels.

25A few missing values were estimated from STAN (2002) employment trends.
26The data for Federal Germany R&D is available until 1993. The ANBERD database, however, con-

tains total R&D expenditure conducted in unified Germany since 1991. Using the growth rate of R&D
expenditures in unified Germany in 1993, I estimated R&D expenditure of Federal Germany for 1994.

27I have also experimented by using sectoral output deflator as R&D expenditure deflator, which is another
common practice in R&D literature, see for example Machin and Van Reenen (1998) and Griffith et al.
(2004). The estimated coefficients and their statistical significance remained by and large the same as the
main results.
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A.3 Data on Bilateral Trade

Data on bilateral trade comes from OECD BTD (1998b) database. The database covers

the values of bilateral imports from all other OECD countries, and as well as some other

partner countries in thousands of dollars at current prices over the period of 1970-1995.28

A.4 Data on Input-Output Tables

The data on domestic and imported goods flows come from the OECD (1995) and OECD

(2005) IO databases. To my best knowledge, I am the first who use the second one. The

most appealing feature of the IO database is that it covers both domestically produced and

imported interindustrial flows of goods and services. There are two important issues with

IO tables. First, the benchmark IO tables are usually (but not necessarily) constructed by

five or seven years intervals. Therefore, the database does not contain yearly IO tables for

countries. Moreover, the database is not covering all countries IO tables in a time-consistent

manner. But for all countries except Italy, the database contain IO tables at least for three

different years. In particular, it contains one set of IO tables for a year in late seventies

(usually for 1977), and one set for a year in mid-eighties (usually for 1985), and one set for

early nineties (usually for 1985). I used 1977 IO tables for 1973-1980, 1985 IO tables for

1981-1987, and 1990 IO tables for 1988-94 periods.29 I also experimented by using these

time varying IO tables, but qualitative results remain by and large the same. Second, the

import IO tables show the distribution of total imports, i.e. the total imports from the rest

of the world, not from the partner countries in our sample. Consequently, in the empirical

implementation, I will assume import IO table coefficients for my sample will be the same

as the import IO table coefficients in the IO database.

28For Federal Germany, data is available until 1991. I used United Germany trade flows in my analysis
for the period between 1991-1994. From various sources I estimated the flow of trade for some industries for
Federal Germany for the period of 1991-1994, but those flows were 5% to 10% less than the United Germany
total flows. Consequently, their impact on my estimates was limited.

29For Italy, I had IO tables for two years: one for 1985 and another for 1992. I estimated missing years
by using these two available table sets along with other IO tables for other countries.
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