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Abstract

Klump and de La Grandville (2000) used the \normalized" Constant Elasticity of Substitu-
tion (CES) specī cation to prove that the Solow growth model exhibits a positive relationship
between per capita output and the elasticity of substitution both in transition and in steady
state. This paper shows that their result does not extend to the Diamond overlapping generations
model. In particular, their result is reversed when capital and labor are relatively substitutable;
countries with a higher elasticity of substitution have lower per capita output and growth.
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1 Introduction

In a recent paper, Klump and de La Grandville (2000) utilized the \normalized" Constant Elasticity

of Substitution (CES) production function in the Solow (1956) growth model and found that a

country endowed with a greater elasticity of substitution experiences greater capital and output

per worker both in transition and in steady state. The objective of this paper is to examine whether

their result carries over to the Diamond (1965) overlapping-generations model. Such examination is

warranted because the Diamond model has increasingly been used in recent years to study economic

growth as an alternative to the Solow model. Our main ¯nding is that the Klump-de La Grandville

result does not hold in the Diamond model; in particular, their result is reversed if the elasticity of

substitution is su±ciently large.

2 The Normalized CES Production Function in the Solow Model

Oliver de La Grandville (1989) suggested that a meaningful examination of the properties of di®er-

ent members of the same family of CES production functions requires the following normalization.

Given the standard intensive-form CES production function f(kt) = A[±k½t + (1 ¡ ±)]
1
½ , where kt

is the capital per worker at time t, choose arbitrary baseline values for capital per worker (¹k),

output per worker (¹y) and the marginal rate of substitution between capital and labor de¯ned by

¹m = [f(¹k) ¡ ¹kf0(¹k)]=f0(¹k) (primes denote derivatives with respect to k). Then, use those baseline

values to solve for the normalized e±ciency parameter A(¾) = ¹y
³
¹k1¡½+¹m
¹k+¹m

´1=½
, and the normalized

distribution parameter ±(¾) = ¹k1¡½
¹k1¡½+¹m as a function of ¾ = 1

1¡½ , the elasticity of substitution.

Substituting these normalized parameters into the initial equation yields the normalized CES pro-

duction function:1

f¾(kt) = A(¾)f±(¾)k½t +[1 ¡ ±(¾)]g 1
½ : (1)

Figure 1 illustrates the de La Grandville normalization. Despite disparate values for ¾, all the

isoquants for a given initial level of output (¹y) are shown to go through the common point (point

A) de¯ned by ¹k (given by ray OA) and ¹m (given by line BAC). As shown by Pitchford (1960),

an increase in ¾ without the normalization causes not only an increase in the curvature of the
1For extensive discussions on the normalized CES function see de La Grandville (1989, p.476), and Klump and

Preissler (2000, pp.44-45).
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Figure 1: Illustration of de La Grandville's normalized CES production function
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isoquant for a given level of output; it also causes the isoquant to shift inward by making factors

more e±cient. The de La Grandville normalization prevents such dispersions.

The de La Grandville normalization generates a family of dynamical paths in the Solow growth

model that depend only on the value of ¾. Paths of capital per worker for three values of ¾ are

shown in Figure 2. Figure 2 di®ers from Figure 1 in Klump and de la Grandville (2000 p.284)

because here the Solow model is recast in a discrete-time setting to facilitate comparison with

the Diamond model below. More speci¯cally, the paths shown in the ¯gure are generated by the

dynamical equation

kt+1 = °
1 +n

f¾(kt);

where ° is the exogenous saving rate out of output per worker, n is the exogenous labor growth

rate and where for simplicity capital is assumed to depreciate fully at the end of each period.

Despite the translation into the discrete-time setting, the Klump-de la Grandville result is

evident; a country having a greater value of ¾ clearly has more capital per worker in transition and

in steady state than a country endowed with a lower value of ¾. It follows that, the greater the

value of ¾, the greater income per worker is both in transition and in steady state.
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Figure 2: Transitional paths of per capita capital for di®erent ES in the Solow model

3 The Normalized CES Production Function in the Diamond Model

In the Diamond (1965) overlapping-generations model a new generation is born at the beginning of

every period. Agents are identical and live for two periods. In the ¯rst period each agent supplies

a unit of labor inelastically and receives a competitive wage

w¾;t = f¾(kt) ¡ktf0¾(kt) = [1 ¡ ±(¾)][A(¾)]½[f¾(kt)]1¡½:

To make the model consistent with the Solow model, assume that agents save a ¯xed proportion

° of the wage income to ¯nance consumption in the second period of their lives. All savings are

invested as capital to be used in the next period's production; that is

kt+1 =
°

1 +n
w¾(kt) =

°
1 +n

[1 ¡ ±(¾)][A(¾)]½[f¾(kt)]1¡½ ´ h¾(kt); (2)

where n is the exogenous labor growth rate and where capital depreciates fully.2 Equations (2)
2Alternatively, we could assume that agents have preferences over consumption in the two periods of their lives
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determines the dynamical path of capital per worker. Then, the dynamical path of output per

worker is obtained from (1).

Steady states for k (denoted by ¤) are solutions to the polynomial equation

k ¡ h¾(k) = 0: (3)

If ¾ ¸ 1 (½ 2 [0; 1]), there always exists one unique positive steady state for k¤, since lim
k!0

h0¾(k) > 1 and lim
k!+1

h0¾(k) = 0. If ¾ < 1 (½ < 0), there are either zero or two positive and distinct

steady-state values for k¤; depending on the value of the scale factor A(¾).3

We now turn to our two main ¯ndings. (All proofs are in the Appendix.)

Theorem 1 Suppose that a country is represented by the one-sector Diamond model with a nor-

malized CES aggregate production function. If ½ ¸ ¹m
¹k , for any kt > ¹k,

(A) the higher the elasticity of substitution the lower the level of capital and output per worker at

any stage of the transition path, and

(B) the higher the elasticity of substitution the lower the growth rates of capital and output per

worker along the transitional path.

Theorem 2 Suppose that a stable steady state exists in the one-sector Diamond model with a

normalized CES aggregate production function. If ½ ¸ ¹m
¹k , the higher the elasticity of substitution,

the lower the steady-state level of capital and output per worker.

Figure 3 illustrates the dynamical paths of capital per worker in the Diamond model for ½ ¸ ¹m
¹k ,

where we set ¹m = 1 and ¹k = 5. As ¾ increases from 1:25 to 5 and to 1, the level of capital per

worker falls both in transition and in steady state for any kt > ¹k; thereby reversing the Klump-de

La Grandville result.4

given by U (c1t ; c
2
t+1) = (1 ¡ °)ln c1t + ° ln c2t+1, where c

i
t+j is period i consumption by the representative agent in

period t + j, j = 0; 1. The representative agent maximizes U(c1t ; c
2
t+1) subject to the constraint, c1t +

c2t+1
R¾;t+1

· w¾;t ,
where w¾;t and R¾;t+1 represent the returns to labor and capital, respectively. Maximization yields the transition
equation, kt+1 = °

1+nw¾(kt), which is equivalent to equation (2).
3When there are two positive steady states, the larger of the two is locally asymptotically stable. In this case,

the trivial steady state (k¤ = 0) is also locally asymptotically stable. The domains of attraction of the two stable
steady states are distinct, and depend on whether the initial capital stock lies above or below the locally unstable
equilibrium. The conditions for and characterization of multiple equilibria in the Diamond (1965) model (see e.g.
Azariadis 1993, pp.198-204) remain una®ected by the normalization.

4Parametric examples of the dynamic relationship between yt+1 and yt are available upon request.
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Figure 3: Transitional paths of per capita capital in the Diamond model when ½ ¸ ¹m
¹k

Moreover, if ½ < ¹m
¹k the relationship between the ¾ and the level of capital per worker is not

unique because, as shown in Figure 4, the dynamical paths of k for di®erent values of ¾ cross each

other at some kt > ¹k.5

Why do our results contrast with those of Klump and de La Grandville? The Diamond model

di®ers from the Solow model in one important respect: individual savings come out of wage income

in the former and out of total (wage and rental) income in the latter. A useful way to demonstrate

the di®erence is o®ered by Galor (1996). Suppose that the fraction saved out of wage income, °w,

di®ers from the fraction saved out of rental income, °r, possibly because of di®erences in preferences

or endowments among agents. Then the law of motion for capital per worker in the normalized

CES production function is

kt+1 =
°w

1 + n
£
f¾(kt) ¡ f 0¾(kt)kt

¤
+

°r

1 +n
f0¾(kt)kt: (4)

5In constructing Figure 4, we set ¹m = 3, ¹k = 5 to keep the diagram from getting cluttered.
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Figure 4: Transitional paths of per capita capital in the Diamond model when ½ < ¹m
¹k

Since °w = °r = ° in the Solow model while °w = ° and °r = 0 in the Diamond model, the

dynamical path in the former contains the additional term, °
1+nf

0
¾(kt)kt, that represents savings

out of rental income.

For example, when ¾ = 1 (capital and labor are perfect substitutes), equation (4) reduces to

kt+1 =
°¹y ¹m

(1 +n)(¹k + ¹m)
+

°¹y
(1 +n)(¹k + ¹m)

kt;

in the Solow model. Thus, kt+1 is a linear positive function of kt with the vertical intercept at
° ¹y ¹m

(1+n)(¹k+¹m) and the slope °¹y
(1+n)(¹k+¹m) . On the other hand, in the Diamond model equation (4)

reduces to

kt+1 =
° ¹m¹y

(1 +n)(¹k + ¹m)
:

Thus, kt+1 is a horizontal line at ° ¹m¹y
(1+n)(¹k+¹m)

.6 Then, as k grows from the common initial value ¹k,

the entire capital intensity path of the Solow model lies above the path of the Diamond model.
6The former line is depicted by the parametric curve ¾ ¼ 1 in Figure 2, while the latter line is depicted by the

parametric curve ¾ =1 in Figure 3.

6



Now, to get an intuition of our result di®erentiate equation (4) with respect to ¾ to obtain:

@kt+1

@¾
=

°w

1 + n

·
(1 ¡ ¼t)

@f¾(kt)
@¾

¡ f¾(kt)
@¼t
@¾

¸

| {z }
@wt
@¾ (?)

+
°r

1 +n

·
¼t

@f¾(kt)
@¾

+ f¾(kt)
@¼t
@¾

¸

| {z }
@rkt
@¾ (+)

; (5)

where ¼t ´ f0¾(kt)kt
f¾(kt) is the rental income share. The ¯rst and the second term on the RHS of equation

(5) show the change in wage and rental incomes, respectively, due to a change in ¾. The second

expression is clearly positive while the ¯rst is generally ambiguous in sign. No matter what, the

second expression must dominate the ¯rst in the Solow model (where °w = °r = °) since @kt+1@¾ > 0

as shown by Klump and de La Grandville (2000).

In the Diamond model (where °w = ° and °r = 0) the second expression in equation (5) is

absent. Within the ¯rst expression, (1 ¡¼t)@f¾(kt)@¾ represents a positive e®ect of ¾ on wage income

due to an increase in labor productivity for a given wage income share (1 ¡¼t). The second term

¡f¾(kt)@¼t@¾ represents a negative e®ect of ¾ on wage income due a decrease in the wage income

share triggered by substitution of capital for labor. If the wage income share (1 ¡¼t) is su±ciently

small, then the negative e®ect dominates and our result follows. Indeed ½ ¸ ¹m
¹k implies (1¡¹¼) < 1=2

which is su±cient to obtain our result.7

4 Conclusion

In this paper we have shown that the positive relationship between the elasticity of substitution

and economic growth discovered recently by Klump and de la Grandville does not carry over to

the Diamond model. Thus, whether the elasticity of substitution has a positive or negative e®ect

on economic growth depends on our view of the world, that is, on the particular framework (Solow

vs. Diamond) we believe as a better representation of the world.

Both our work and that of Klump and de la Grandville take the elasticity of substitution as

exogenous. However, as pointed out by Hicks (1932), the aggregate elasticity of substitution itself

is likely to be in°uenced by factors that also a®ect economic growth. Thus, endogenizing the

elasticity of substitution in the context of a growth model seems like a natural next step in this

line of research.

7Since ¹¼ = ¹k
¹k+¹m implies that ¹m

¹k ´ 1¡¹¼
¹¼ ; substitution into ½ ¸ ¹m

¹k yields ¹¼ ¸ 1
1+½ . Given that ½ 2 (0; 1] under

½ ¸ ¹m
¹k , ½ ¸

¹m
¹k ¯nally implies ¹¼ ¸ 1=2.
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Appendix

Proof of Theorem 1

Rewrite equation (2) as

kt+1 =
°

1 +n
[f¾(kt) ¡ ktf 0¾(kt)]

=
°

1 +n
[f¾(kt) (1 ¡¼t)] ;

where ¼t ´ f 0¾(kt)kt
f¾(kt)

is the rental income share. Di®erentiating with respect to ¾ yields

@kt+1
@¾

= °
1 + n

·
(1 ¡ ¼t)

@f¾(kt)
@¾

¡ f¾(kt)
@¼t
@¾

¸
:

Substituting @f¾(kt)@¾ = ¡ 1
¾2

1
½2yt

h
¼t ln ¹¼

¼t + (1 ¡¼t) ln 1¡¹¼
1¡¼t

i
and @¼t@¾ = 1

¾2 (1¡¼t)¼t ln kt¹k from Klump

and de La Grandville (2000, pp.284-285) yields

@kt+1

@¾
= ¡ °

1 + n

½(1 ¡ ¼t)yt
¾2½2

·
¼t ln

¹¼
¼t

+(1 ¡¼t) ln
1 ¡ ¹¼
1 ¡¼t

¸
+

y
¾2 (1 ¡ ¼t)¼t ln

kt
¹k

¾

= ¡ °
1 + n

(1 ¡¼t)yt
¾2½2

·
¼t ln

¹¼
¼t

+ (1 ¡ ¼t) ln
1 ¡ ¹¼
1 ¡¼t

+ ½2¼t ln
kt
¹k

¸
; (A1)

where ¹¼ = ¹k
¹k+¹m. From

¹¼
¼t

=
Ã ¹k

kt
yt
¹y

!½
;

1 ¡ ¹¼
1 ¡ ¼t

=
µyt

¹y

¶½
;

we obtainkt¹k = ¹¼
¼t

1¡¼t
1¡¹¼ . Substituting this into the last term in the brackets of equation (A1) gives

@kt+1
@¾

= ¡ °
1 +n

(1 ¡ ¼t)yt
¾2½2

·
¼t ln

¹¼
¼t

+(1 ¡ ¼t) ln 1 ¡ ¹¼
1 ¡¼t

¡ ½¼t ln
µ

¹¼
¼t

1 ¡ ¼t
1 ¡ ¹¼

¶¸
:

Since the logarithmic function is strictly concave, we have that

ln
¼t
¹¼

<
¼t
¹¼

¡ 1 ) ¡ ln
¼t
¹¼

> 1 ¡ ¼t
¹¼

) ln
¹¼
¼t

> 1 ¡ ¼t
¹¼

; (A2)

ln
1 ¡¼t
1 ¡ ¹¼

<
1 ¡ ¼t
1 ¡ ¹¼

¡ 1 ) ¡ ln
1 ¡¼t
1 ¡ ¹¼

> 1 ¡ 1 ¡ ¼t
1 ¡ ¹¼

) ln
1 ¡ ¹¼
1 ¡¼t

> 1 ¡ 1 ¡¼t
1 ¡ ¹¼

; (A3)

ln
µ ¹¼

¼t
1 ¡¼t
1 ¡ ¹¼

¶
<

¹¼
¼t

1 ¡¼t
1 ¡ ¹¼

¡ 1 ) ¡ ln
µ ¹¼

¼t
1 ¡¼t
1 ¡ ¹¼

¶
> 1 ¡ ¹¼

¼t
1 ¡¼t
1 ¡ ¹¼

: (A4)
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Assume that ¾ > 1 (½ 2 (0;1]) and kt > ¹k: Multiplying both sides of the ¯nal inequalities in (A2),

(A3) and (A4) by ¼t; (1 ¡ ¼t) and ½¼t, respectively, yields the following inequality:

¼t ln
¹¼
¼t

+(1 ¡¼t) ln
1 ¡ ¹¼
1 ¡¼t

¡ ½¼t ln
µ

¹¼
¼t

1 ¡ ¼t
1 ¡ ¹¼

¶

> ¼t
µ

1 ¡ ¼t
¹¼

¶
+(1 ¡¼t)

µ
1 ¡ 1 ¡ ¼t

1 ¡ ¹¼

¶
+ ½¼t

µ
1 ¡ ¹¼

¼t
1 ¡ ¼t
1 ¡ ¹¼

¶

=
¼t
¹¼

(¹¼ ¡¼t) +
1 ¡¼t
1 ¡ ¹¼

(¼t ¡ ¹¼) +
½

1 ¡ ¹¼
(¼t ¡ ¹¼)

= (¼t ¡ ¹¼)
µ1 ¡¼t

1 ¡ ¹¼
+

½
1 ¡ ¹¼

¡ ¼t
¹¼

¶

=
µ ¼t ¡ ¹¼

1 ¡ ¹¼

¶ µ
1 ¡ ¼t + ½ ¡ ¼t(1 ¡ ¹¼)

¹¼

¶

=
µ ¼t ¡ ¹¼

1 ¡ ¹¼

¶ µ
1 + ½ ¡ ¼t

¹¼

¶

=
µ

¼t ¡ ¹¼
1 ¡ ¹¼

¶ "
1 + ½ ¡

Ã
¹k + ¹m

¹k

!
k½t ¹k1¡½

k½t ¹k1¡½ + ¹m

#
; (A5)

where the last equality comes from the fact that ¼t =
k½t ¹k

1¡½

k½t ¹k
1¡½+¹m. The function

Á(kt) ´
"
1 + ½ ¡

Ã
¹k + ¹m

¹k

!
k½t ¹k1¡½

k½t ¹k1¡½ + ¹m

#
;

is monotonically decreasing with the horizontal asymptote at ½¡ ¹m
¹k : Therefore, if ½ ¸ ¹m

¹k , Á(kt) ¸ 0.

Then since ¼t¡¹¼
1¡¹¼ ¸ 0, the last expression in (A5) is non-negative. Consequently, @kt+1@¾ < 0.

To prove that output per worker is a decreasing function of the ¾ when ½ ¸ ¹m
¹k and k > ¹k;

rewrite @yt+1@¾ as
@yt+1

@¾
=

@yt+1

@kt+1

@kt+1

@¾
:

We have just shown that @kt+1@¾ < 0 for ½ ¸ ¹m
¹k and k > ¹k. Given that @yt+1@kt+1

is positive for all

kt+1 > 0, then @yt+1@¾ < 0. This completes the proof of Theorem 1A.

To prove Theorem 1B, de¯ne the growth rate of capital per worker by gk = kt+1
kt

¡ 1 and the

growth rate of output per worker by gy = yt+1
yt ¡ 1. Di®erentiation yields

@gk
@¾

=
1
kt

@kt+1

@¾
< 0; 8 ½ ¸ ¹m

¹k
; and k > ¹k;

@gy
@¾

=
1
yt

@yt+1
@¾

< 0; 8 ½ ¸ ¹m
¹k

; and k > ¹k:

This completes the proof.
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Proof of Theorem 2

At steady state, kt = kt+1 = k¤ and therefore equation (2) reduces to the polynomial equation

(3). Di®erentiating k¤ with respect to ¾ yields

@k¤¾
@¾

=
°

1+n (w
¤
¾)
0

1 ¡ °
1+n(w

¤
k)
0 ; (B1)

where (w¤¾)
0 =

h
(1 ¡ ¼¤)@f

¤
@¾ ¡ f¤ @¼¤@¾

i
and (w¤

k)
0 =

h
(1 ¡¼¤)(f¤)0 ¡ f¤ @¼¤@k¤

i
. By Theorem 2, (w¤

¾)
0 <

0 for ½ ¸ ¹m
¹k and k¤ > k, so the numerator is negative. To show that the denominator is positive,

solve the de¯nition of ¼¤ = (f¤)0k¤
f¤ and the steady-state polynomial equation k¤ = °

1+n [f¤ ¡ (f¤)0k¤]

simultaneously for f¤and (f¤)0 to obtain

f¤ =
(1 + n)

°
k¤

1 ¡¼¤
; (B2)

(f¤)0 = (1 +n)
°

¼¤

1 ¡ ¼¤
: (B3)

Substituting equations (B2), (B3) and @¼¤@k¤ = ½¼¤(1¡¼¤)
k¤ into (w¤

k)
0 gives

(w¤
k)
0 = (1 ¡¼¤)(1 +n)

°
¼¤

1 ¡ ¼¤
¡ (1 + n)

°
k¤

1 ¡¼¤
½¼¤(1 ¡ ¼¤)

k¤

= (1 + n)
°

(1 ¡ ½)¼¤:

Then °
1+n(w

¤
k)
0
= (1 ¡ ½)¼¤ and hence 1 ¡ °

1+n (w
¤
k)
0
= 1 ¡ (1 ¡ ½)¼¤ > 0. Therefore @k

¤
@¾ < 0.

To prove that the steady-state output per worker is a decreasing function of the ¾ when ½ ¸ ¹m
¹k

and k > ¹k; once again rewrite @y
¤

@¾ as

@y¤

@¾
=

@y¤

@k¤
@k¤

@¾
:

Given that @y
¤

@k¤ > 0 for all k¤ > 0; and @k¤@¾ < 0 for ½ ¸ ¹m
¹k and k > ¹k as shown above, @y

¤
@¾ < 0 as

desired.
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