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Abstract

We develop a strategic model of information acquisition in networks where
agents pay for all the pieces of information they acquire, including those
through indirect links. The cost of information depends on the value of the
information itself and the distance it traverses in the network. We consider
two possibilities: (i) costs of information increase with distance, and (ii)
they decrease with distance. We show that there is almost no divergence
between the efficient and Nash equilibrium information architectures. We
then explore the implications of a spatial model and study the effect of decay
in networks where information through longer paths is cheaper. Finally, we
also examine a model with costly link formation that combines both types
of cost related assumptions.

JEL Classification: D82, D83
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1 Introduction

Communication forms one of the major pillars of all societies and economic
systems. It results in the dissemination of information, helping well in-
formed agents make better decisions. Often such communication takes place
through a network of bilateral links between the participants. This paper
develops a strategic model of the formation of information networks where
agents choose their own link partners, resulting in different network config-
urations. The network is used to acquire information, and agents pay for
all the information acquired through the network. Network structure deter-
mines the payoffs and hence the set of stable and efficient networks.

Road building in the ancient empires provides the earliest example of
information networks. The legendary Roman roads were intended for the
quick movement of troops, couriers carrying information, and government
officials. Casson (1994) attributes the rise of the Assyrians from 900B.C.
to 612 B.C. to their network of roads, superior organization and discipline.
Casson (1994, pg. 53) explains that one of the secrets of the success of the
even mightier Persian empire was swift and sure communication between
the capital and the most distant centers. Their ‘royal road’, maintained
primarily for government couriers but open to all, ran from Sardis near the
east coast of the Mediterranean, some 1600 miles to Susa − the Persian
capital, not far from the head of the Persian Gulf. Moreover, the Persian
dispatch service was one of the most efficient arms of the state. Govern-
ments however, were not the only ones to build these networks. Medieval
trading communities often had their own informal networks for gathering
information. The Cairo geniza documents have provided a wealth of infor-
mation about such networks.1 Greif (1993) shows that the Maghribi traders
relied on such a network to obtain information about far-flung markets and
ensure contract enforcement among trade partners located in distant lands.

In her book on the social history of American technology, Cowan (1997)
shows how economic activity received a boost with the development of the
telegraph, telephone, wireless and fax. Railways helped link the two coasts
of the continental United States leading to an increase in trade opportuni-
ties (see for example Stover (1999)). Rapid technological advances in recent

1Amitav Ghosh in his book In an Antique Land (1994) traces the life of a slave through
letters between merchants in Cairo and Mangalore (India) via Yemen. The bulk of infor-
mation in such letters was about prices, profits and execution of orders with the merchants
acting as agents for each other locally.
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years such as the Internet and wireless communication have created a global
web which facilitates rapid transmission of information in a hitherto un-
precedented manner. The biggest impact on the economy can be attributed
to the efficiency gains from B2B (business to business) and B2C (business
to consumers) transactions. In a recent study Litan and Rivlin (2002) find
that it has a significant impact (0.25-0.5% annually) on US productivity
growth, while other studies have shown strong synergies between educa-
tion, life expectancy, income and such information networks (International
Telecommunications Union, 1999). Very little of the research in this area
however, takes the motivations of the individual participants in to account.
Our paper examines the formation of information networks by focusing on
the incentives of individual agents in the network.

Information networks were first analyzed by graph theorists in the con-
text of gossip and broadcast problems.2 In a gossip network every individual
posses a unique piece of gossip which needs to be communicated to the oth-
ers (Baker and Shostak (1972)). In the broadcast version on the other hand,
one person wishes to communicate information to all others in the network.
A survey of this literature including the basic problem and its many exten-
sions can be found in Hedetniemi et al. (1991). The focus of this literature
is on the distribution issue and is captured mainly by some aggregate net-
work criterion such as the minimum number of links needed to ensure that
the gossip reaches everyone, or the minimum number of rounds required for
everyone to hear the gossip. This literature rarely considered the costs of
the links or more importantly individual costs and benefits. In other words,
strategic interactions are conspicuously absent from this work.

Jackson and Wolinsky (1996) study strategic behavior in networks using
a stability concept called pairwise stability.3 Soon after the notion of Nash
networks was introduced in a paper by Bala and Goyal (2000a; henceforth
[BG]).4 They assume that link formation is unilateral with the initiating
player incurring all the costs of establishing the link. A link can only be

2The use of networks to study human interaction was pioneered by sociologists in the
1960s. Through an experiment involving farmers in Nebraska and a stockbroker in Boston,
Milgram (1967) showed that on average, people have six degrees of separation.

3Aumann and Myerson (1988) is perhaps the first to introduce a strategic version of
the problem but does not provide a complete characterization of the solution. An excellent
survey of the pairwise stability literature can be found in Jackson (2003).

4A third strand of the literature looks at network formation using cooperative game
theory. For a comprehensive survey see Slikker and van den Nouweland (2001).
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broken by the initiating player. In the model, when player i has a link with
player j, she can access j’s information and the information of all the other
players j is linked to, without having to pay for these indirect links. The
paper analyzes information flow in a directed and undirected network both
in the presence and absence of information decay.

Our paper builds on Nash networks of the Bala and Goyal (2000a) type.
It focuses on the structure of information networks where agents pay for
all acquired information. We assume that every agent has a unique piece
of information with some intrinsic value and would like to gather more in-
formation by linking to other agents. Unlike much of the earlier work, we
incorporate an element of realism by allowing each agent to have a different
endowment of information (see also Galeotti, Goyal and Kamphorst (2004)).
Secondly, information seekers have to pay for all the information they ac-
quire in the network, i.e., we do not allow for free indirect links. In order to
understand the implications of this externality, we require agents to pay for
all the information they receive, including those acquired through indirect
links. Establishing links however is free. Since the externality is stronger in
the case of two-way flow, we focus on this model. Third, instead of using an
exogenously given link cost, we develop an alternative cost formulation with
two components. The first component requires that costs be in direct pro-
portion to the value of information. In other words, information of higher
value costs more. The second component allows costs of information to vary
with the distance it travels in the network.5

We consider two possible cases of relating costs with distance − each
providing a different interpretation of network distance. The first inter-
pretation of network distance is a spatial one while in the second instance
distance is a proxy for time. One allows information coming from a greater
distance to be more expensive. This is applicable to information networks
where physical distance is relevant for exchanging information like interna-
tional phone calls being more expensive than domestic ones. It is also true
for the historical information networks mentioned at the beginning of this
section. With merchant ships serving as the means of communication be-
tween trading partners, greater distance meant greater costs.

The alternative cost formulation allows for the cost of information to
vary inversely with distance. This implies longer paths in the network lead

5Distance based cost functions were also used by Johnson and Gilles (2000).
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to information delays or involve waiting and hence are cheaper. This cost
structure is relevant for some types of electronic networks. Network ap-
plications can be characterized by their differing Quality of Service (QoS)
requirements, such as real-time video with high bandwidth and low delay
requirements, or the opposite where bandwidth requirements are flexible
and delay is tolerable. While the technological aspects of this problem have
been extensively studied, there is a growing literature on pricing in computer
networks (see for instance Sairamesh et al. (1995)).

With the advent of cost based service provisioning, network users are
expected to pay for or at least share the cost of each network resource they
utilize (see for example, Herzog, Shenker and Estrin (1997)). Network users
maximize their payoffs in terms of costs and QoS benefits by selecting appro-
priate sets of users with whom to share network resources. In particular this
can be used to model Available Bit Rate (ABR) traffic whose bandwidth
requirements are elastic and suitable for applications like email, file transfer
or web browsing. These applications cannot tolerate any packet (or infor-
mation) loss but have flexible delay or bandwidth requirements. Therefore,
as in the model, users will accept the routing of their data via longer paths
in exchange for lower costs.

This cost formulation is also of theoretical interest since the same set of
incentives govern that behavior in our model can be applied to the Bala and
Goyal (2000a) model and its direct extensions for obtaining their results.
This assumption also allows us to differentiate between the role of full reli-
ability and two-way flow of information in Nash networks.

Following the analysis of the two benchmark models we explore the im-
plications of a spatial model. We study the effect of decay in networks where
information through longer paths is cheaper. An interesting trade-off exists
in this model since decay offsets the desire for agents to have longer paths
in the network. Finally we examine a model with costly link formation that
combines both types of cost related assumptions.

Section 2 describes the basic model. In section 3 we analyze the stabil-
ity and efficiency properties of networks. Section 4 summarizes the main
results and explores alternative formulations that incorporate both cost as-
sumptions. Section 5 concludes.

4



2 Model

Let I = {1, 2, . . . n} be the set of agents with n ≥ 3. For ordered pairs
(i, j) ∈ I × I the shorthand notation ij is used. Agents in the model are
information seekers who gain utility from having more information. Each
individual i ∈ I has an information endowment of value Vi ≥ 0. Vi 6= Vj
corresponds to heterogeneity of agents’ endowments. All agents are aware of
the value of the non-rival information possessed by other agents. Access to
information possessed by other agents can be gained by forming links with
them, and through links established by other connected agents. Agents si-
multaneously form links with other individuals resulting in a network that
permits two-way flow of information between them.

Strategies. Formally, a strategy of agent i ∈ I is a vector gi =
(gi1, gi2, . . . , gii−1, gii+1, . . . , gin) where gij ∈ {0, 1} for each j ∈ I\{i}. If
i forms a link with j, then gij = 1 allowing information to flow from i to
j and from j to i, while if no link exists between i and j then gij = 0,
permitting no information flow. Note that only the initiating agent can
break a link. We restrict attention to fully reliable links and pure strategies.
The set of all strategies of individual i is denoted by Gi. The set of joint
strategies (strategy profiles) is denoted by G = ×ni=1Gi. A strategy profile
g = (g1, g2, . . . ., gn) ∈ G is equivalent to a (directed) network, where each
vertex depicts an agent and each link forms an edge with the arrow pointing
to the person with whom the link is established.6 Hence with this identifi-
cation, G also represents the set of all possible networks. We now introduce
some graph-theoretic definitions for undirected graphs based onWest (1996).

A walk is a sequences of vertices and edges in a graph such that each
vertex belongs only to the preceding and succeeding edge. In a directed
graph this must follow the direction of the arrows. A (open) walk with no
repeated vertices is called a path. A network g is said to be connected
if there is a path between any two agents ij in the network. We use g(i)
to denote the connected subgraph to which player i belongs. A connected
graph with no cycles (or loops) is called a tree.7 A leaf node is a terminal
vertex. Let lij denote the distance from i to j. Then the diameter D of a
graph is the maximum distance lij over vertex pairs ij. A network is said to

6At the risk of abusing notation we will use g to denote both the directed and associated
undirected graph and use other labels to distinguish between different directed graphs.

7Our definition of a tree coincides with the notion of a minimally connected network
described in [BG] for their two-way information flow model.
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be super-connected if it is still connected after the deletion of any link.
We now define some of the common types of networks that arise in our paper.

An empty network (ge) is one where gij = 0 for all pairs ij and a
complete network (gc) is a graph in which every player has a direct link
to every other player. A center-initiated star is an acyclic network where
only one agent (the central agent) establishes a direct link with all the other
(n− 1) agents. Similarly, a periphery-initiated star is an acyclic network
where each of the other (n−1) agents initiate a link with the central agent. A
mixed star is a combination of these two types of stars. A connected acyclic
network with exactly one path is called a chain. Finally, two networks g
and g0 are equivalent if g0 is obtained as a permutation of the strategies of
the agents in g. The equivalence relation partitions G into classes and each
class is referred to as an architecture.

Benefits. The benefits of player i are given by the total information
that she can access from the connected component of the network to which
she belongs, i.e., Bi(g) =

P
j∈g(i) Vj . The process of information transmis-

sion is assumed to be frictionless − information does not decay as it travels
through the network. Also let

P
i∈I Vi = Λ.

Costs of Information. Let dij be the geodesic distance between agents
i and j. The cost incurred by agent i to obtain agent j’s information is given
by φi(Vj , dij).

8 We now list the different properties of the cost function.

1. Property HD: Information of higher value is more expensive, i.e.,

φi(Vj , dij) > φi(V
0
j , dij) for Vj > V

0
j .

We allow distance to influence costs in two possible ways. These two proper-
ties describe alternative notions of distance that are appropriate in different
types of situations.

2. Property LE: Information that comes through longer paths in the
network is more expensive:

φi(Vj , dij + 1) > φi(Vj, dij).

8Cowan (1997) in her book on the social history of technology provides an interesting
historical example of such link costs in the US. Realizing the importance of roads, but
lacking revenues, local governments and often the citizens themselves in the early 1800s,
made roadwork a condition of property ownership.

6



3. Property DC: Information coming through shorter paths in the net-
work is more expensive:

φi(Vj , dij + 1) < φi(Vj, dij).

Property LE is more appropriate in the context of physical distance, where
it is usually more expensive to obtain information from places that are fur-
ther away. International phone calls and mail are usually more expensive
than their domestic counterparts. Property DC serves as a proxy for sit-
uations where distance is correlated with delay. Information that comes
through longer paths involves a longer waiting time and hence is cheaper.
This property is appropriate for information obtained through electronic
networks with ABR traffic. Alternatively it describes the fact that ordinary
mail which is cheaper than express mail is often routed through longer routes
or tickets involving longer travel routes are cheaper.

Our formulation of the costs of information differs significantly from the
one used in [BG] and Jackson and Wolinsky (1996) since we assume costless
links. Consequently, different network structures affect the cost of each piece
of information by altering the geodesic distance between agents. A strategy
in our context thus may be interpreted as the act of establishing the infras-
tructure for information networks and may provide a better interpretation
of examples like phone calls.

Duplication Costs. Since links themselves are costless in the model,
there is no constraint to prevent the duplication of links. Such double links
are of no strategic importance and can generate uninteresting multiple equi-
libria. Consequently, to eliminate situations where players establish bidi-
rectional links with each other, we impose a penalty for duplication. Let
∆gi = {j : gij = 1 and gji = 1} be the set of agents with whom player
i has double links in network g. Each double link imposes a small posi-
tive penalty ε > 0 (ε ¿ min{Vi}) on both players.9 Note that the penalty
needs to be imposed on both players as strategies are chosen simultaneously.

9Although these duplication cost may seem like an artificial construct, their sole pur-
pose is to rule out strategically uninteresting equilibria. Also, this may be viewed as a
penalty for wasting resources to establish unnecessary infrastructure. Link duplication has
interesting consequences primarily in the context of reliability problems (see for instance
Bala and Goyal (2000b) and Haller and Sarangi (2003)).
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Payoffs. The payoffs to player from the network g are given by

Πi(g) =
X
j∈g(i)

(Vj − φ(Vj , dij))− ε |∆gi | (1)

where i 6= j with φ(Vj , dij) either having the DC or the LE property. We
also introduce the following functional form for the payoff function that is
used to obtain additional insights in the paper.

Πi(g) =
X
j∈g(i)

Ã
Vj − Vj

dij

!
− ε |∆gi | (2)

where i 6= j.10 Note that this payoff function satisfies properties HD and
DC. A direct link always gives a payoff of zero, while the indirect links yield
positive payoffs. It is this property of the above payoff function that allow
us to focus directly on the significance of paying for information obtained
through indirect links. Observe also that the cost of information never ex-
ceeds its value. This assumption is maintained throughout the paper.

Equilibrium. Given a network g, let g−i denote the network that re-
mains when all of agent i’s links have been removed. Let g = gi ⊕ g−i
where the symbol ⊕ indicates that g is formed by the union of links in gi
and g−i. A strategy gi is said to be a best response of agent i to g−i if:
Πi(gi ⊕ g−i) ≥ Πi(g0i ⊕ g−i) for all g0i ∈ Gi. Let BRi(g−i) denote the set of
agent i’s best response to g−i. A network g = (g1, . . . , gn) is said to be a
Nash network if gi ∈ BRi(g−i) for each i, i.e., agents are playing a Nash
equilibrium. A strict Nash network is one where agents are playing strict
best responses.

Efficiency. The commonly used welfare measure is defined as the sum
of the payoffs of all agents. Formally, let W : G → R be defined as:
W (g) =

P
i∈I Πi(g) for g ∈ G . A network g is efficient if W (g) ≥ W (g0)

for all g0 ∈ G. We now illustrate the implications of our cost function through
two examples by comparing the equilibrium outcomes to those of [BG]. Both
examples use equation (2) as the payoff function.

Example 1 (Distance): We first examine the consequences of incorpo-
rating distance in costs assuming Vi = V for all i ∈ I. Let g12 = g14 =

10When gij = 0 (or gji = 0), then no link exists between players i and j and their
benefits and costs are both zero.
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g31 = 1, and gij = 0 for all other ij ∈ I × I. This is a Nash network in
the [BG] formulation where each agent pays a cost 0 < c ≤ V = 1 only
for her direct links. However, when φ(Vj, dij) = V/dij, player 3 would be
able to minimize her cost by removing the current link, and choosing either
g34 = 1 or g32 = 1, which would keep one of them at a distance of 3 units.
Thus, this network is not Nash for the specified payoff function. But the
new tree described in the next example where agent 3 links to one endpoint,
is an equilibrium under equation (2) as well as in [BG]. Thus, even when
the value of information is the same for all players, distance or delay alters
the cost of information acquisition and plays a crucial role in determining
the equilibrium.

Example 2 (Value of Information): Assume that Vi = i, i = 1, 2, 3, 4.
Let the network g1 be defined as g12 = g14 = g34 = 1, and gij = 0 for all
other ij ∈ I × I. Let the network g2 be defined as g12 = g14 = g32 = 1, and
gij = 0 for all other ij ∈ I×I. First, let the cost of acquiring j’s information
be

α

dij
where α > 0 is a constant. Now, the cost varies only with distance

and not with the value of information. Under this cost function all players
get the same payoff from both g1 and g2 and each of these graphs is an
equilibrium network. Similarly if we apply the cost model of [BG], both
these graphs constitute equilibrium configurations as well.

Next consider equation (2) where higher valued information is costlier.
With this cost function, each player will want to keep the players with larger
values of information as far away as possible. The payoff of agent 3 is now
higher in the network g2 where it links to player 2 instead of player 4 because
of the lower costs. The network g1 is no longer an equilibrium, i.e., the fact
that more information costs more is critical. Thus it is easy to see that if
the costs are a function of the value of information and distance traveled
by the information, in equilibrium, the players will have to be careful about
their selection of direct link partners.

3 Equilibrium and Efficiency

This section contains our results for the two benchmark cost formulations.
We begin by describing Nash networks. This is followed by the characteri-
zation of efficient networks.
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3.1 Equilibrium Outcomes

Our first result pertains to the basic architecture of an equilibrium informa-
tion network.

Theorem 1: Let the payoff function be given by (1) and HD hold.
Then: ( i) Under property LE, the (directed) complete graph is the only
Nash equilibrium. ( ii) Under property DC, every Nash network is either
empty or a tree. However, not every tree is Nash.

Proof: See Appendix.

Note that the above theorem holds when all agents have identical en-
dowment values, i.e., the network distance component is the driving force
behind this intuitive result. Also we know from Cayley’s formula (West
(1996)) that there are a finite number of equilibria. Cayley’s formula states
that for a vertex set of size n there are nn−2 trees and the last part of The-
orem 1 clearly indicates that this formula only provides an upper bound
on the number of equilibria. Not all trees are Nash as some agent can get
higher payoffs by deviating to form another tree.

We next use equation (2) to investigate the equilibrium properties of
certain popular architectures like the chain and star graphs. Besides,

the chain is the largest diameter graph and the star is the smallest diameter
graph where agents have positive benefits from indirect links.

Proposition 1: Let the payoffs be given by equation (2) and assume
that player i has value Vi with V1 ≤ V2 ≤ · · · ≤ Vn. Then the following
chains are the only strict Nash networks for k = 1, 2, . . . , n.

Insert Figure 1 here.

Proof: See Appendix.

While the above configurations are the only strict Nash networks, the
set of chain networks that are Nash includes other configurations as well.
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Using the assignment of values described above a chain given by the links
g21 = g23 = 1 and gkk+1 = 1 for all k ∈ I\{1, 2} is also Nash. Clearly, when
Vi = V for all i, any chain is Nash and chains where each player makes only
one direct link are strict Nash. The formation of these chains can be inter-
preted in an alternative way − one that allows us to predict the equilibrium
outcome in a sequential version of the game.

Remark 1: In a sequential version of this game, (a) When Vi = V for
all i, the chain is the only subgame perfect equilibrium, (b) Under endowment
heterogeneity, the chain configurations shown above are the only subgame
perfect equilibria.

Sketch of Proof : Since the paper does not develop the sequential game
formally, we provide only a sketch of the proof. For (a) consider a player k
for whom |g(k)| = n− 1. By Theorem 1 the last player to join the network
will not add any links. Next let |g(k)| < n−1. If k belongs to the connected
component, then by Theorem 1 player gik = 0 for i ∈ g(k). Recall forming
more than one link reduces payoff and since all players have the same value,
she can form this single link with any j /∈ g(k). Finally, let g(k) = ∅. In this
case player k is better off forming a link to any player in the connected com-
ponent of the network. We now argue that player k will not choose to link
to a player in the middle of the network. Let player k establish a link to a
node j somewhere in the middle of the chain instead of either terminal node.
The chain is now divided into two parts around node j which we denote by
gA and gB. If k severs the link to j and instead connects to the node at the
extreme end of gA (without loss of generality), then the distance to all the
players in gB will be increased while the distance to those in gA will remain
the same. Since, all the values are equal, this change will increase the total
payoff of k and players will always be better off by removing a branch and
forming a bigger chain. Hence the result in (a) follows. The proof of part
(b) is similar.

We now analyze the popular star configurations. Their appeal lies in
their in simple structure and the fact that they not only arise frequently in
information networks, but are also a commonly observed social phenomenon
(see for instance Rogers and Kincaid (1981) and Wellman and Berkowitz
(1988)).

Proposition 2: Let the payoffs be given by equation (2). Then ( i) The
center-initiated star network is always Nash. ( ii) The periphery-initiated

11



star can never be Nash for n ≥ 6.
Proof: See Appendix.

It is easy to see that the center-initiated star is Nash even if all agents
possess the same value of information. However, it is not strict Nash since
the central agent gets a payoff of zero in equilibrium. The intuition for why
periphery-initiated stars are not Nash for n ≥ 6 is fairly straight-forward.
When the number of players in the game increases, the amount of informa-
tion at stake also increases, and players in the network now wish to increase
their distance from other players in the network. This creates an incentive
to access the center of the star through indirect links, increasing the dis-
tance to other players, thereby increasing payoffs. However, for n < 6 it
may be possible to arrange the agents in such a way (with the lowest value
agent at the centre) that a periphery-initiated star is Nash.We show this
next through an example.

Example 3:When n < 6, periphery-initiated stars can be Nash. Con-
sider a periphery-initiated star with n = 4. Let V1 = 1, V2 = V3 = V4 = 6.
Player 1 who is the central agent will not add any links. But each of the
peripheral agents can delete their current link and form a link to some other
peripheral agent. Since each peripheral agent has the same value, they will
all behave identically. In the periphery-initiated star, each of them has a cost
of 1+262 = 7. If one of them deviates to the alternative strategy of linking to
another peripheral agent, then the new cost will be 6+ 1

2 +
6
3 = 8

1
2 which is

higher than the previous one. Hence this particular star is in equilibrium.

Proposition 2 also states that mixed star networks can only be Nash
when conditions for both non-mixed type stars are satisfied. Consequently,
the agent with the lowest value must always be the central agent in such
a network and the number of peripheral agents initiating links must not
exceed five.

Proposition 3: When Vi = V for all i, and equation (2) is satisfied, a
Nash network will never contain a periphery-initiated star as a subgraph.11

Proof: See Appendix..

From Proposition 3, we know that when Vi = V for all i, Nash networks

11Note that a star network must have at least 3 peripheral nodes connected to a central
node.
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can consist only of center-initiated stars and chains. One such equilibrium
network is the caterpillar. A caterpillar is a tree in which each vertex has at
most two non-leaf neighbors. Note that under endowment heterogeneity, the
chain subgraph of the caterpillar will have to satisfy the conditions identified
in Proposition 1. However, even with homogeneous endowments not all
concatenations of center-initiated stars and chains will be in equilibrium.
The network shown below is composed of chains and center-initiated star
and yet is not in equilibrium.

Insert Figure 2 here.

In Figure 2 player a would be better off by linking to player b. Due to this
new link, the number of agents that are at maximal distance from agent a
is the largest and the set of agents at minimal distance is the lowest.

3.1.1 Costly Direct Links

Suppose we now assume that each direct link has cost c > 0 along with
property HD, and LE or DC making the duplication penalty redundant.
Let µdi (g) be the set of agents with whom player i has a direct link. Then
the payoff to player i from the network g is given by

Πi(g) =
X
j∈g(i)

(Vj − φ(Vj, dij))− c
¯̄̄
µdi (g)

¯̄̄
. (3)

Remark 2: Assumption DC and payoffs with costly direct links. Since
the proofs are similar, we only state which of our current results hold under
this new payoff specification. We find that Theorem 1(b) still holds and
Theorem 1(a) holds as long as 0 < c < φ(V, 2)− φ(V, 1). Using a modified
version of equation (2) we find that our result about periphery-initiated star
still holds BUT a center-initiated star will no longer be Nash. Our result
about chain networks is also valid as long as link formation yields positive
net benefits.

Remark 3: Assumption LE and payoffs with costly direct links.12 Longer
graph distances affect net benefits negatively via increased operating costs

12We thank an anonymous referee for bringing this to our attention.
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and due to the additional costs incurred to prevent information decay or
erosion of quality of routing/service (Kannan, et al. (2004)). In a recent
paper on game theoretic routing Fabrikant et al. (2003) also have a pay-
off function where routing through more nodes is costlier. For small direct
link costs it is easy to see that complete networks will still be equilibria,
while for large link costs one would expect minimally connected networks
as in [BG]. For very large link costs the empty network is both Nash and
efficient. In the intermediate range a number of possibilities can arise and
in the subsequent section we shed more light on this.

3.1.2 Assumption DC and How it Relates to the Literature

We now provide a key insight about Nash networks and discuss its relation-
ship to the rest of the literature.

Remark 4: Consider any model where the cost of information never ex-
ceeds its (positive) value and links are fully reliable. The (undirected) Nash
network will always be a tree if (1) the information flow is two-way, and (2)
the cost of information is more if it comes via a shorter path. Since the cost
of information never exceeds its value, a player’s total payoff never decreases
as she gets access to more players. This ensures that every Nash graph is
connected. The two-way flow and (full) link reliability assumptions ensure
that no links need be duplicated. Next suppose that the Nash network g is
a tree but the cost of information is less if it comes through a shorter path.
In this case it is easy to see that every node will form a direct link with
every other node leading to a complete network in which no player can be
worse off. Clearly, the network g could not have been Nash. Thus a Nash
network will not contain any cycles. Hence every Nash network satisfying
the above two conditions will be a tree.

It can be argued that these conditions are also applicable to other spec-
ifications of the payoff function in the literature, including the one in [BG].
In their model, each agent pays a cost c > 0 for each of her direct links, but
does not pay anything for knowing others through her direct links. One way
to interpret this is that in [BG] direct links are costly while indirect links are
free, i.e., information that comes through a shorter path is more expensive!
Assumption DC may be construed as a general form of this relationship
where indirect links also impose positive costs in a specific manner. More-
over, even the agent that does not form the link acquires the information
for free, i.e., information is free regardless of the path length. This explains
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the emergence of minimally connected networks in equilibrium.

Galeotti, Goyal and Kamphorst (2004) extend the basic [BG] framework
by introducing endowment heterogeneity as well as different link formation
costs. By assuming heterogeneity in endowments but not in costs, they also
find minimally connected networks. This is because agents in their model
have incentives similar to agents in our model. Heterogeneity in costs leads
to a more general result where equilibrium networks are minimal networks in
the sense that deletion of link increases the number of components. The in-
tuition for this result is also similar except that in this case heterogeneity in
costs can lead to multiple minimal components in equilibrium. Thus their
claim that “. . . even in settings with considerable heterogeneity, strategic
models of network formation yield sharp predictions and equilibrium net-
works exhibit high centrality and small average distances.” is not surprising
at all.

Next consider Bala and Goyal (2000b) where links can fail with a uni-
form probability p ∈ (0, 1). In equilibrium they find super-connected net-
works when the size of the player set increases and the costs of information
are not very high. Here too information obtained through indirect links is
free but as the size of the networks increases, the expected value of infor-
mation coming through shorter paths now decreases (because of the prob-
abilities involved) instead of being constant as in [BG]. Alternatively the
implicit cost of information increases with distance, i.e., without additional
links expected indirect benefits decrease when the size of society increases.
This gives rise to super-connected networks. Consequently, in Theorem 1
as longer paths always increase the cost of information, we get the limiting
case of super-connectedness − the complete network. However in Haller and
Sarangi (2003) where different links can have different failure probabilities,
such super-connected networks may not arise in equilibrium.13

Note that while both the assumptions in Remark 3 prevent the forma-
tion of cycles, they lead to different network formation behaviors. With the
undirected flow of benefits, the non-initiating agent is the one who does not
have an incentive to add links, while the presence of free indirect benefits
provides every agent an incentive to form the least possible number of links.
Consequently, recall that in the one-way flow version of [BG], a wheel is the

13Note that while decay and link failure probability both lead to cycles, the incentives
in both cases are different. For more on this topic see Haller and Sarangi (2003).
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equilibrium architecture, i.e., only one of the non-initiating agents in the
chain adds a link forming a wheel. Further, as information coming through
longer paths is still cheaper every agent forms the lowest number of neces-
sary links. On the other hand in the two-way flow model of [BG] equilibrium
outcomes are stars which is also the case in our model.

Later in the paper we retain the two-way flow requirement but relax the
assumption that information coming through longer paths is cheaper, i.e.,
indirect benefits may even have increasing costs. We find that this leads to
a particular type of cyclical networks: k − regular networks. In contrast,
Caffarelli (2004) finds that in the long run the system converges to a state
that consists of starred wheels − wheels in which some agents are like the
center of a star. He considers directed flow of benefits with indirect links
providing free benefits. However, agents incur a maintenance or usage cost
which is a convex function of the number of agents observed, i.e., there is
an optimal number of agents each agent wishes to observe. Since it is a one-
way flow model with free indirect link benefits, he finds that the equilibrium
architecture will be a wheel (and not a regular network) where the number
of agents depends on the usage cost. Not surprisingly this wheel also has
star like features since this allows agents to limit the number of other players
they observe.

3.2 Efficient Networks

We now examine network structures that maximize the sum of the payoffs
of all agents and compare them with the Nash networks.

Theorem 2: Let the payoff function be given by (1). Then, ( i) Under
property LE, the (directed) complete graph is the only efficient network. ( ii)
Under property DC, the chain is the only efficient network.

Proof : See Appendix.

The above statements are also true for the case when Vi = V for all i ∈ I.
In order to better characterize the chains obtained under Theorem 2(b), we
now introduce a multiplicative cost function. Let φ(Vj , dij) = ρ(Vj)γ(dij),
where ρ(.) is an increasing function of V and γ(.) is a decreasing function of
dij. Hence the payoff function can be written as

Πi(g) =
X
j∈g(i)

[Vj − (ρ(Vj)γ(dij))]− ε |∆gi | . (4)
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Using (4) we can obtain a chain which allows us to specify the precise loca-
tion of the agents in the network.14

Proposition 4: Let the payoff function be given by (4) and assume that
player i has value Vi with V1 ≤ V2 ≤ · · · ≤ Vn. Then the chain shown below
(Fig. 3) is efficient.

Insert Figure 3 here.

Proof : See Appendix.

Theorem 2( ii) tells us that efficient networks are also chains. The sim-
ilarity between the strict Nash and efficient architectures stems from the
fact that every agent pays for all the information they acquire. The crucial
difference with the earlier models is the absence of the externality accru-
ing from the free indirect links. Therefore depending on the cost function
we find that efficient networks, like Nash networks, are either complete or
minimally connected. Further, when all agents have identical values of in-
formation, the set of Nash networks is the same as the efficient networks.
When agents have different values of information, the two sets do not always
coincide because the value of information affects the location of agents.

4 Model Variations

In this section we summarize the main findings of this paper and explore
some further modeling ramifications. Our first conclusion is that even in
the absence of free indirect benefits there can be a conflict between stability
and efficiency. Although the chain architecture is both stable and efficient,
due to the heterogeneity of agent endowments, the two networks are not
identical. Only when Vi = V for all i ∈ I does the Nash network coincide
with the efficient one. Second, we find that the properties LE and DC lead
to completely opposite equilibrium networks.

Next, the value of the endowment plays no role when costs satisfy the
LE property. For the DC cost model, heterogeneous endowments only affect
the location of agents in the efficient and stable networks. At best they

14The payoff function described in (2) is a special case of this.
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can eliminate the co-ordination problem associated with the equal value of
information model. However, when the player set is small, under the DC cost
model the value of endowments seems to play a role. Under certain values
of heterogeneous endowments the periphery-initiated star can be sustained
as Nash by assigning the role of the central agent to the lowest value agent
− a possibility that does not exist in the equal values model. However, as n
increases, increasing the total net benefits at stake, agents no longer wish to
have all the other agents at a distance of two units. Longer path lengths can
lower total costs (by increasing the distance to other high valued agents),
leading to a break down of the periphery initiated star.

4.1 Spatial Distance

Following Johnson and Gilles (2000) we will now assume that the agents
have a fixed location on R . Player i ∈ I is located at xi and the set
X = {x1, . . . , xn} ⊂ [0, 1] with x1 = 0 and xn = 1 represents the spa-
tial distribution of players. Without loss of generality assume that xi < xj
if i < j. This implies that for all i, j ∈ I, the distance between players i
and j is given by dij = |xi − xj| ≤ 1. Thus, instead of a network based dis-
tance metric, we now have costs dependent on the spatial distance between
players. The results obtained under property DC remain unaltered since
incentives of agents do not change. Next consider the cost function with
the LE property. Since the agents are arranged on R , for any three agents
i < j < k, we have dij + djk ≥ dik. Consequently, the complete graph will
still be Nash, but other networks like the chain can now also be supported as
Nash. The large set of stable networks in Johnson and Gilles can therefore
be attributed to the indirect link externality.

4.2 Information Decay

We now examine the implications of information decay. Clearly decay cre-
ates an incentive for the agents to form shorter paths. To study information
decay in the DC cost model we now introduce a variation of equation (2).
For the sake of simplicity let

Πi(g) =
X
j∈g(i)

Ã
Vj(1− δdij)− Vj

dij

!
− ε |∆gi | (5)

where δ ∈ (0, 1) is the decay parameter. Observe that a direct link now
yields a payoff of −δVi, and as before this functional form enables us to
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focus on the indirect links.

Proposition 5: Let n ≥ 3 and let the payoff function be given by (5).
Then for δ ∈ (1/4, 1] the empty network is the unique Nash network. For
δ ∈ (0, 1/4], every Nash network is connected.

Proof : See Appendix.

This proposition can also be viewed in another way. A connected network
for which δ > 1/2D, where D is the diameter of the graph, cannot be Nash.
In contrast to our earlier finding under the DC model, we now show that
under equation (5) a periphery-initiated star will indeed be Nash over a
range of the decay parameter.

Proposition 6: Let the payoffs be given by (5) and 1/6 < δ ≤ 1/4. ( i)
Then periphery-initiated stars are the unique Nash networks. ( ii) In case
the value of endowment differs across agents, the value is minimal for the
central agent.

Proof : See Appendix.

In the absence of decay, the periphery-initiated star fails to be Nash when
the player set increases, since agents wish to increase their distance from
other high endowment agents. However, decay acts as a countervailing force
to this cost based incentive. We find that since longer paths decrease the
benefit obtained from the information itself, for certain values of the decay
parameter agents continue to access other high information agents through
the central agent. Based on these two propositions we can make some further
observations that charecterize the types of possible Nash networks.

• Since direct links yield negative payoffs, under the decay model a
center-sponsored star and mixed star will never arise in equilibrium.
In fact, even if direct links yield nonnegative benefits, but the benefits
from indirect links are higher, periphery sponsored stars are the more
likely outcome.

• Next observe that i’s payoff from a link with player j equals zero

when she is at a distance d = 1+
√
1−4δ
2δ from j. Consequently one

δ → 0, player i prefers longer paths. Therefore as in the previous
section we expect that minimally connected networks will form the
Nash networks. The same holds for efficiency.
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• Next observe that in this case it is possible to have cyclic networks as
well as acyclic networks in equilibrium. For instance with n = 7 and
Vi = 1 for all i ∈ N , the chain network is Nash for δ = 0.02. Further
it turns out that δ > 0.1355, the chain is no longer Nash. For example
with δ = 0.14 the circle where every player has a payoff of 0.6533 is the
Nash network. Furthermore, the circle network is no longer Nash for
δ ≥ 0.194. In this range all players have negative payoff in the circle
and will prefer shorter paths. In fact the periphery-sponsored star is
Nash in this range.

To sum up, we find that for very high δ the empty network is stable
and for very low δ the outcome is similar to the DC model. Players prefer
longer paths and both efficient and Nash networks will tend to be minimally
connected. We also find that when δ ≤ 1/6, cyclical networks can be sta-
ble, but for δ > 1/6, the Nash network again is the minimally connected
periphery-sponsored star. Thus Nash networks are trees for both high and
low δ and have cycles in the intermediate range. The low δ trees however
have large diameters and the high δ trees have low diameters.

Further it can be shown that if δ < 1/N2 then a Nash network must be
acyclic and the chain network discussed above is an example of this. Simi-
larly a Nash network will be acyclic for δ < 1/3D2 where D is the diameter
of the graph.

Finally note that decay is of no consequence under the LE cost model.
Under the LE property, information decay reinforces every agent’s incentive
to establish a direct link to all the other agents leading to the complete
network.

4.3 Combining Assumptions LE and DC

We now introduce a model with costly link formation that combines both
assumptions LE and DC. The payoff of player i in the network g is given by

Πi(g) =
X
j∈g(i)

(Vj − φ(Vj, dij))− c
X
j 6=i
gij (6)

where c ≥ 0 is the cost of forming a link.
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Assumption U: We will now assume that costs of link formation decline
up to a distance d∗ and then increase. In other words

φi(Vj , dij + 1) < φi(Vj , dij) for dij ≤ d∗
φi(Vj , dij + 1) > φi(Vj , dij) for dij > d

∗.

Thus we have a U-shaped cost function with declining costs up to d∗.15

For simplicity we also assume that Vi = 1 for all i ∈ N . Also let V ∗ =
d∗P

dij=1
(1− φ(1, dij)). It is now possible to state the following result.

Theorem 3: Let the payoffs be given by (6). Then under assumption U,
when c > V ∗ the empty network is the unique Nash network. When c ≤ V ∗
then every Nash network is connected.

Proof : We know that for dij ≤ d∗,
P

dij≤d∗
(1 − φ(1, dij)) is increasing

with distance and every player has an incentive to form a minimal number
of links. However when c > V ∗, gij = 0 for all ij ∈ I × I. Moreover for
dij > d

∗ no player wants to form a link since (1 − φ(1, d∗ + 1)) < V ∗ < c.
Hence the empty network is the unique Nash network. The second part
follows from the fact that it is desirable to link to all agents and since the
inequality is reversed every agent is willing to form at least one link.

When c ≤ V ∗, a fairly large class of networks are still permissible as
equilibria. To understand more about equilibrium networks in this range we
will consider two different cases.

Case (i): Let c→ 0. In this case we get a model that is very similar to
the decay model analyzed above. When d∗ is very high, i.e., as d∗ → ∞,
then regardless of the fact that links are free, the equilibrium architecture is
a chain network. Similarly, when d∗ → 1, we will get the complete networks
as the equilibrium Nash architecture. In between this range just as in the
decay model equilibrium architectures will depend on the precise value of
d∗ and both periphery-initiated stars as well cycles could arise in equilibrium.

Case (ii): Intermediate cost range. Formally this implies that c ≤ V ∗,
but unlike Case (i) costs are not close to zero, i.e., c >> 0. Again when

15This section is based on a payoff specification suggested by an anonymous referee and
provides a very general model of Nash networks. We are grateful to the referee for this
suggestion.
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d∗ → ∞, despite the costly nature of link formation, the distance effect
dominates and chains are the only Nash networks. Now let d∗ → 1. We
know that if links are costless, then gc is the Nash network. However with
costly link formation only a finite number of links will be profitable for each
player. Hence as d∗ → 1, we will find k−regular networks in equilibrium. In
the intermediate range for d∗ cyclic networks can be supported as equilib-
ria. These networks can be wheels, or wheels with spokes, or even starred
wheels as in Caffarelli (2004) depending on which effect dominates. Yet for
some parameter values it is also possible to have periphery-initiated stars
in equilibrium. It is difficult to make more detailed remarks for this range
without using a more precise formulation for the payoff function.

5 Conclusion

The paper identifies the nature of stable and efficient information networks
when agents have to pay for information acquired through indirect links as
well. Further the properties of stable networks are investigated by intro-
ducing costs of link formation. The range of possible equilibrium networks
and the conditions under which they can occur are stated. The paper sheds
light on the role of assumptions like two-way information flow, free indirect
benefits and full reliability in models of Nash networks.

One interesting extension would be to introduce reliability issues in the
model. Another, perhaps more interesting problem, would be to impose the
restriction that each agent could only form a limited number of links. Such a
link formation capacity constraint would lead to interesting insights on net-
work formation because informationally advantaged agents will now form
links only with other such agents. While it will lead to minimal network
architectures, more importantly, it can lead to social stratification based on
the information endowment of agents.

6 Appendix

1. Proof of Theorem 1 : (i) Consider a connected graph g 6= gc. Such a
g cannot be in equilibrium.16 Let gij = gji = 0. Then dij > 1. Without

16In part (ii) we show why all equilibrium graphs must be connected.
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loss of generality set gij = 1. Under property LE, φ(Vj , 1) < φ(Vj, dij).
Hence g cannot be an equilibrium network. Further, since this is true for
all dij > 1, player i can minimize her costs by establishing direct links with
all the players. As a similar reasoning holds for all i ∈ I, gc will be the
equilibrium network. Finally the link duplication penalty ensures that this
complete graph is a directed network.

(ii) First, consider a disconnected network with k components, i.e., Cj ,
j = 1, 2, . . . , k. If |Cj | < 2 for all j, a player is indifferent between forming
and not forming links. Consequently, ge will be Nash but not strict Nash.
This also holds when Vi ≤ φ(Vi, 1). To prove that it must be a tree, we will
first show that the Nash network must be connected. Let g be a disconnected
Nash network with components C1 and C2 where (at least) one component
is at least of size 2. Without loss of generality, let |C2| ≥ 2 and agent j ∈
C1. If j links to a player in C2 then there is some j0 ∈ C2 who is at least two
links away from j. By connecting to C2, player j will get a positive payoff.
Hence g cannot be Nash. Next, we show that a connected Nash network
will contain no cycles, i.e., it must be minimally connected. Suppose not.
Then there exists a Nash network with at least one cycle. Consider the
cycle j1j2j3 · · · jrj1. Then either gjrj1 = 1, or gj1jr = 1. If gjrj1 = 1, then
jr wants to delete the link since φ(V1, 1) > φ(V1, dij) for dij > 1. Similarly
if gj1jr = 1, j1 will delete the link. Hence a Nash network cannot contain
the cycle described above. Finally (direct link) cycles between two agents
are ruled out by the duplication penalty. Hence, the Nash network will be
a tree.

For the second part the following counter-example suffices. Let g12 =
g23 = g24 = 1, with no other links existing in the graph. Let V2 = 2,
V3 = 1, and V4 = 3. V1 can take any value. Using equation (2), player
1 can get the information of all the other three and has to pay a cost of
(2V2 + V3 + V4)/2 = 4. If player 1 deletes the current link to 2 and instead
links to player 3, then her total benefits will not change but her cost reduces
to V3+(V2/2)+(V3/3) = 3. Clearly, the original tree is not in equilibrium.

2. Proof of Proposition 1 : Since the chain is a tree by Theorem 1 it
is a candidate for Nash. Also note that a player who establishes a new
link to a second player earns a payoff of zero from this direct link making
her indifferent to forming it. The only tree where every player has the
smallest number of direct links is the chain. Hence a strict Nash network
must be a chain. Now we show that in the above graph each player is
playing their unique best response. First consider player k. If player k
deletes the link with player 1 and links to player j, then her costs will be
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[Vj + (Vj−1 + Vj+1)/2 + ...] > [V1 + (V2/2) + (V3/3) + ...]. Hence player k
will not gain by changing her strategy. Similarly, any other player m ∈
I\{1, k}, will incur a larger cost by deviating from the current strategy.
Thus, this particular group of chains is in equilibrium.

3. Proof of Proposition 2 : (i) A center-initiated star is a tree where the
central agent has a payoff of zero. However, she cannot increase her payoffs
by deleting any of her current links. All other agents can only add links
since they do not have any links to remove. Forming extra links will lead to
cycles that only reduce their current payoff. Thus, no agent can improve his
or her payoff by deviating from the current strategy and the center-initiated
star is Nash.

(ii) Let agent j’s endowment be Vj with V1 ≤ V2 ≤ · · · ≤ Vn. First
we will argue that in equilibrium the central agent must have the lowest
value. Suppose not. Then there exists agent j 6= 1 who is the central
agent. Since this is a star agent 1 has a link to agent j. Then k ∈ I\{j,1}
will receive a higher payoff by linking to player 1. Hence player 1 has to
be the central agent. Let the initial periphery-initiated star with agent
1 in the center be denoted by gps. Let agent k, 2 < k ≤ n, alter her
strategy by deleting the link to 1 and establishing a link to player 2 since
direct links should always be to the agent with least value. For gps to be
Nash, we need Ck(g

ps) − Ck(g0) ≤ 0. This difference can be written as
{3V1+(Λ−V1−Vk)−4V2}/6 ≤ 0. Now, (Λ−V1−Vk) ≥ (n− 2)V2 since V2
is the smallest value in the set I\{1, k}. Hence {3V1−4V2+(n−2)V2}/6 ≤ 0,
or (n− 2)V2 ≤ 4V2 − 3V1. This is inconsistent if (n− 2) ≥ 4 i.e., for n ≥ 6.
Hence, the result.

4. Proof of Proposition 3 : First, we prove that a periphery-initiated
star itself is never Nash when all values are equal. The central agent in such
a star has payoff zero and the acyclicity principle prevents it from forming

any additional links. Each peripheral agent has a cost V (1 + (n − 2)1
2
).

This peripheral agent can initiate a link to another peripheral agent only
after deleting the current link to the center. In that case, her cost will be

V (1 +
1

2
+ (n− 3)1

3
) which is less than the previous one.

When periphery-initiated star forms a subgraph of some tree, then one
or more of its edges will be connected to some other component of the tree
(see Figure 5). Let the central agent have κ branches excluding the branch
associated with agent a with diameters D1, D2, . . . ,Dκ. Without loss of
generality, we assume D1 ≤ D2 ≤ . . . . ≤ Dκ. Let µ(j,Di) denote the
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number of players that are Di links away from node j. In the above graph
µ(a, 1) ≥ 1 and µ(a, 2) ≥ k. Also, for any Di > Dκ, we set µ(a,Di) = 0. Let
player a now delete its current link and form a link to the player at farthest
end of the longest diameter branch. Denote the new network by g0. In g0,
µ(a, 1) is the same as before while µ(a, 2) is reduced by (k − 1). Also, now,
µ(a,D) ≥ 1 for any D such that Dκ ≤ D ≤ (D1 + Dκ). Since the total
number of players is fixed and the distance from some of the players has
increased whereas the number of nodes that are 2 links away has decreased,
the cost component for player a has decreased. Thus, a periphery-initiated
star, where a peripheral agent has a choice of making a link to one end of
the whole tree, can never form a component of a Nash network.

5. Proof of Theorem 2 : (i) Under property LE, there is no conflict
between efficiency and stability. The network that minimizes the costs of
all agents also minimizes the overall cost since both efficiency and stability
require all agents to be as close to each other as possible. (ii) Under property
DC, only a connected network can be efficient. Moreover since cycles will
raise the cost of acquiring information only trees can be efficient graphs.
Next we argue that only the chain is efficient. Consider a tree with diameter
k (0 < k < n−1). If k = n−1, then we have a chain. Let dij = k 6= 1. Then
there exists a star network somewhere in the graph in the path between i
and j since at least one vertex has two edges emanating from it. Without
loss of generality, let such a star be at a distance m (0 < m < k) from j.
Since the star has at least two arms one of these links can be rearranged to
increase the diameter. The diameter now becomes k+1 and irrespective of
the agent who forms this new link the total cost is lowered for the entire
tree. This eliminates all other trees except chains as efficient graphs.

6. Proof of Proposition 4 : Consider an arbitrary chain given by j1, . . . , jn.
Then using equation (3) we can write the total cost of this network as

nX
i=1

nX
k=1

{ρ(Vjk)γ(|k − i|) + ρ(Vji)γ(|i− k|)} (7)

where |k − i| denotes the distance between agents k and i. We can com-
pute the total costs using the table shown below, where djijk measures the
geodesic distance between agents ji and jk.
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djijk j1 j2 j3 · · · jn Total
j1 0 1 2 n− 1 H(j1)
j2 1 0 1 n− 2 H(j2)
...
jn n− 1 n− 2 n-3 0 H(jn)

Note that H(ji) is the sum of the path lengths from agent ji to all the other

agents or H(ji) =
nP
k=1

γ(djijk) for all i ∈ I. Clearly for the chain shown
we have H(ji) = H(jn−i). We can rewrite the total cost of this chain as
n/2P
i=1

©
ρ(Vji) + ρ(Vjn−i+1)

ª
H(ji). This sum will ne minimized if for increas-

ing order of H(ji), the order of its coefficients, i.e., {ρ(Vji) + ρ(Vjn−i+1)}
is decreasing. This implies that the two nodes with the highest value of
information must be farthest apart and those with the smallest should be
the least apart. This given us the chain shown in the figure.

7. Proof of Proposition 5 : Consider player i in the network g, and an
arbitrary player k at a geodesic distance dik = d from player i. If d = 1
and player k has no other links, player i is better off deleting this link. Let
d > 1. Then i’s payoff from k is given by Vk(

d−1
d − δd). This is positive only

when f(d) = d−1
d2

> δ. However, f(d) is a decreasing function of d which
attains a maximum at 1/4. Hence if δ > 1/4, the empty network is Nash.

For δ ≤ 1/4 we show that every Nash network must be connected using
contradiction. Consider a non-empty Nash network g with two components
C1 and C2. Without loss of generality let |C1| ≥ |C2| and let j ∈ C1 and
let i ∈ C2. Since δ ≤ 1/4 we know that d−1

d − δd ≥ 0 for d ≥ 2. Given
that n ≥ 3, Πj(g + ij) ≥ Πj(g). Hence g could not have been Nash and for
δ ≤ 1/4 every Nash network must be connected. This completes the proof
of the second part.

8. Proof of Proposition 6 : We will only prove part (ii) since (i) is easily
obtained from this. Let player 1, the lowest value agent be the center of
the star. She cannot improve her payoffs by altering her strategy. Player
i ∈ I\{1} can either add more links, or sever the link to the center and
make one or more links to other nodes. Using (5) it is easy to verify that
increasing the number of direct links reduces total payoffs. Next consider
making exactly one link to a non-central node (say player 2) while deleting
the link to player 1. Let gps be the original star graph and g0 = gps −
gk1 + gk2, (1 < k < n) the modified graph. For gps to be the Nash we
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need Πk(g
ps)− Πk(g0) ≥ 0. We can write the difference between these two

payoffs as (V1 − V2)(δ − 1
2
) +

nP
j=3,j 6=k

Vj(δ − 1
6
). Note that the diameter of

the underlying undirected graph is 2. Using this it is easy to verify that
for δ > 1/4, the graph itself is not connected. This provides the upper
bound on δ. Next (V1 − V2)(2δ − 1)/2 ≥ 0 for δ ≤ 1/4 and the whole
expression is positive when δ > 1/6. Thus, a periphery-sponsored star
graph will be Nash if 1/6 < δ ≤ 1/4. This is also true when Vi = V since
Πk(g

ps)−Πk(g0) = (n− 2)(6δ − 1)V/6. To show uniqueness, recall that the
star architecture is the only possible network with D < 3. A center-initiated
star or mixed star is never Nash since the central agent has negative payoffs.
Hence the periphery-initiated star is the unique Nash equilibrium.
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Figure 1: A Chain which is Nash 
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Figure 3: An Efficient Chain 
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Figure 2: A concatenation of the Center-initiated Star and a 
Chain which is not in equilibrium 


