
Neglecting Parameter Changes in

Autoregressive Models

Eric Hillebrand

Louisiana State University∗

April 16, 2004

Abstract

We study situations in which autoregressive models are estimated on

time series that contain switches in the data generating parameters and

these switches are not accounted for. The geometry of this estimation prob-

lem causes estimated vector autoregressive models to display a unit eigen-

value, and the sum of the estimated autoregressive parameters of ARMA

and GARCH models to be close to one. This artefact is a confounding fac-

tor in the analysis of persistence. If the existence of parameter changes in

a time series cannot be ruled out, autoregressive models are an inadequate

research tool to capture the dynamics of the series. Data must be analyzed

for possible change-points before the sample period for an autoregressive

model can be specified.
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1 INTRODUCTION

1 Introduction: Estimation of Autoregressive

Parameters in the Presence of Neglected Pa-

rameter Changes

Many economic time series are subject to structural changes. These changes can

be modeled as switches in the parameter vector of the time series model, which

imply shifts in the level of the series, or as shifts in an exogenous level process.

While the literature on the detection of these shifts has grown substantially in

recent years (for example, Andrews 1993, Bai 1994 and 1997, Bai and Perron

1998, Kokoszka and Leipus 1999, Altissimo and Corradi 2003), the literature on

the effects of neglected parameter changes on the parameter estimates is sparser.

Perron (1989) shows that if a Dickey-Fuller test is carried out on a series

that contains shifts in the level or in the trend, the estimate of the first-order

autoregressive coefficient converges to one. Chen and Tiao (1990) show that the

estimate of the first-order sample autocorrelation coefficient will converge to one

if the time series was generated by an ARMA process plus a level process that

undergoes changes. Perron (1990) shows that if a first-order autoregressive model

is estimated on data that contains a shift in a level process, the slope coefficient

converges to one. Hendry and Neale (1991) demonstrate that in the presence of

structural breaks, unit root tests will too often fail to reject the null of a unit

root.

The autoregressive parameters are a measure of the persistence of a time

series. In the GARCH literature, Diebold (1986) conjectures that parameter

changes may cause the sum of the estimated autoregressive parameters to take

values close to one, indicating high volatility persistence when in fact the per-

sistence within regimes of constant parameters is low. Simulation and real data

evidence for this conjecture is provided by Lamoureux and Lastrapes (1990),

Hamilton and Susmel (1994), and Francq et al. (2001). Mikosch and Star-
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1 INTRODUCTION

ica (2000) consider the Whittle estimator of the ARMA(1,1) representation of

GARCH(1,1) and demonstrate that the autoregressive coefficient will be esti-

mated close to one if there are neglected change-points in the data. The relation

between structural breaks and spurious estimation of high persistence is also dis-

cussed in the literature on long memory models (for example, Lobato and Savin

1998, Granger and Hyung 1999, Diebold and Inoue 2001, Granger and Teräsvirta

2001).

The situation is, therefore, that we have evidence from real and from simulated

data that neglected changes in the parameters of an autoregressive time series

cause an overestimation of the autoregressive parameters in the proximity of

a unit root. We also have analytical results for the first-order autoregressive

model and for the first-order sample autocorrelation coefficient for the case of an

exogenous level process that undergoes changes. Recently, Hillebrand (2004) has

provided an argument how neglected changes in the data-generating parameters

of a GARCH(1,1) process, which imply changes in the level of volatility, cause

the convergence of the sum of the estimated autoregressive parameters to unity.

This paper shows that this argument describes in fact a general phenomenon

in the estimation of all autoregressive models. We provide an encompassing the-

ory of parameter estimation of autoregressive models in the presence of neglected

parameter changes, including ARMA, VAR, and GARCH specifications. The

central result is that changes in the parameters of an autoregressive process, if

not accounted for in the estimation, result in an estimated sum of autoregressive

parameters close to one. In the case of vector autoregressions, the largest eigen-

value of the sum of the estimated autoregressive coefficient matrices converges

to one in modulus. This result is a consequence of the geometry of the estima-

tion problem. Therefore, it is not restricted to particular estimation methods,

changes in specific parameters, or to specific change-point structures (single vs.

multiple or deterministic vs. stochastic). In the presence of parameter changes
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2 FIRST-ORDER AUTOREGRESSIVE MODELS

that are not accounted for, autoregressive models are incapable of capturing the

dynamics of the series correctly. They will indicate high persistence even though

the persistence within segments of constant parameters may be low.

The outline of the paper is as follows. Section 2 reviews the AR(1) model to

provide intuition of the situation. Section 3 provides the result that neglected

parameter changes in VAR models lead to a unit eigenvalue in the sum of the

estimated autoregressive matrices. Section 4 shows that this result applies to

ARMA(p,q) models. Section 5 covers GARCH(p,q) models. The contribution

of this paper in the area of GARCH beyond Hillebrand (2004) is that we show

the close connection to other autoregressive models. In fact, we derive the main

result about GARCH as a corollary to the VAR case. Further, we extend the

proof from GARCH(1,1) to the GARCH(p,q) case. Section 6 provides simulation

evidence for VAR and ARMA models. We show that the convergence stated

in Sections 3 and 4 substantially distorts the estimation of persistence in finite

samples and for realistic parameter values. Section 7 discusses a common class

of change-point detectors as a possible remedy for the problem and relates them

to the theory developed here. Section 8 concludes.

2 First-Order Autoregressive Models

For illustration, consider the first-order autoregressive model. The sample period

runs from 1 to T. Assume that there is a single parameter change occurring at

time T1, where the constant changes from c1 to c2:

xt =

⎧⎨
⎩ c1 + φxt−1 + εt, t = 1, . . . , T1

c2 + φxt−1 + εt, t = T1 + 1, . . . , T,
(1)

where c1, c2 ∈ R, c1 �= c2, φ ∈ (−1, 1), and εt is white noise. The segment lengths

T1 and T − T1 be large enough in a sense that will be made precise later.

If the change-point T1 is known, the two segments are estimated separately
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2 FIRST-ORDER AUTOREGRESSIVE MODELS

by OLS and the slope φ is captured consistently. Contrary to that, if the change-

point is unknown and the model

xt = c+ φxt−1 + εt (2)

is estimated on the entire sample that was generated by (1), φ will be estimated

close to one. This effect has a simple geometric reason. In the (xt−1, xt)-plane, the

points of each of the two segments cluster around the means µ1 := c1/(1−φ) and

µ2 := c2/(1 − φ). Given that the segment lengths are not too short, the sample

mean of the series {xt}, t = 1, . . . , T is approximately the same as the sample

mean of the series {xt−1, t = 2, . . . , T}. Therefore, if we plot the xt against the

xt−1, we find two clusters centered at two different points (µ1, µ1) and (µ2, µ2)

on the identity line. Thus, given that µ1 and µ2 are sufficiently different, the

estimator φ̂ of the slope in model (2) will pick up the slope of the identity, not

the in-segment dynamics φ of the data generating process (1). Figure 1 illustrates

the situation.

FIGURE 1 ABOUT HERE

This effect is very general. It is not restricted to a change in the intercept

c but also occurs in the case of a change in φ, as this leads to different means

µ1 = c/(1 − φ1) and µ2 = c/(1 − φ2). Likewise, the effect is not restricted to a

single change-point. If there are several parameter changes, say k − 1, they will

induce k different means µ1, µ2, . . . , µk, which all lie on the identity line in the

(xt−1, xt)-plane. Ignoring the changes and estimating (2) on the entire sample

will force the estimated line to go through all these means, thereby exhibiting

slope equal to one. Also, as it is a geometrical phenomenon, it is not confined

to a particular estimation method. The only assumption we will have to make is

that the asymptotic variance of the estimator vanishes with growing sample size.

This includes all common estimation methods for autoregressive models.
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3 VECTOR AUTOREGRESSIVE MODELS

3 Vector Autoregressive Models

Consider the first-order vector autoregression

xt = c+ Φxt−1 + εt, (3)

where c, xt ∈ R
N , Φ ∈ R

N×N , εt is N -dimensional white noise and the sample

size is T .

Assume that there are k−1 points in the sample where the parameters change

(k regimes)

x
(i)
t = ci + Φix

(i)
t−1 + εt, t = Ti−1 + 1, . . . , Ti, (4)

for i = 1, . . . , k, T0 = 0 and Tk = T . All eigenvalues of the Φi matrices are inside

the unit circle. Within each regime, the data points will cluster around

µi := (I − Φi)
−1ci.

Denote by Ei(·) := E(·|xTi−1
) the expectation conditional on the initial value

of segment i, and define Vari(·), covi(·, ·) analogously. We will often use that

the expected value of xt, t = Ti−1 + 1, . . . , Ti, conditional on the initial value in

segment i has the representation

Eixt = (I − Φi)
−1(I − Φ

t−Ti−1

i )ci + Ei[

t−Ti−1−1∑
j=0

Φj
iεt−j] + Φ

t−Ti−1

i xTi−1

= µi +O(Φ
t−Ti−1

i ), (5)

where O(Φ
t−Ti−1

i ) is a deterministic term that vanishes with growing t − Ti−1,

t < Ti, as the eigenvalues of Φi are all inside the unit circle.

If the changing regimes are not accounted for and the model (3) is estimated

on the entire sample {x1, x2, . . . , xT}, an effect analogous to the AR(1) case oc-

curs: The geometrical fact that the different segments i imply different means

µi that lie on the identity of the (N × N)-dimensional space (xt−1, xt) leads to

6



3 VECTOR AUTOREGRESSIVE MODELS

the phenomenon that the global estimate Φ̂ will have a unit eigenvalue. This

holds true provided that the segment lengths are not too short and the µi are

sufficiently distinct.

In order to show this, a technical lemma is necessary:

Lemma 1. Let xt be a time series that has a representation (5). Then, the global

sample mean x̄ =
∑T

t=1 xt/T has the representation

x̄ =
1

T

k∑
j=1

(Ti − Ti−1)µi + o(1)T .

Here, o(1)T denotes a term that vanishes as the sample size T becomes large. It

is assumed that as T becomes large, all segment sizes Ti − Ti−1 become large.

The proof is provided in the Appendix. In order for the main result of this

section to hold, it is sufficient that the sizes of at least two of the segments grow

with T to infinity.

In the case of VAR models, ordinary least squares estimation is equivalent

to maximum likelihood or generalized method of moments estimation and the

estimates are asymptotically normally distributed:

√
T (Φ̂ − Φ)

T→∞∼ N (0,Σ), (6)

where Σ is a symmetric positive definite matrix.

We will use this property of standard estimators in a slightly different way.

Consider the covariance of the estimator Φ̂ with a single observation xt and apply

the Cauchy-Schwarz inequality

cov(Φ̂, xt) = E

[
(Φ̂ − EΦ̂)(xt − Ext)

]
≤
√

Var(Φ̂) Var(xt), (7)

The second moment of a covariance-stationary VAR process xt is finite. From

(6) we have that the variance Var(Φ̂) of the estimator, which is the diagonal of

Σ divided by T , vanishes with order T . Therefore, the property (6) translates to

cov(Φ̂, xt) = o(1)T . (8)
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3 VECTOR AUTOREGRESSIVE MODELS

In other words, the influence of a single observation on the estimator Φ̂ vanishes

with growing sample size.

Together with Lemma 1, we can state the main result for vector autoregres-

sions.

Theorem 1. If a first-order vector autoregressive model (3) is estimated on a

time series that has a representation (5) and that underwent (k − 1) parameter

changes, the matrix Ei(Φ̂) = E(Φ̂|xTi−1
) has a unit eigenvalue with corresponding

eigenvector ei := µi − 1/T
∑k

j=1(Tj − Tj−1)µj. This holds true in all segments

i = 1, 2, . . . , k, up to terms that vanish with growing segment sizes Ti − Ti−1.

The proof is provided in the Appendix.

Consider the VAR(p) model

x̃t = c̃+ Φ1x̃t−1 + Φ2x̃t−2 + . . .+ Φpx̃t−p + ε̃t, (9)

where x̃t, c̃, ε̃t ∈ R
N and Φi ∈ R

N×N . The unconditional mean of this process is

µ̃ = (1 −∑p
j=1 Φj)

−1c̃. The model has the VAR(1) representation

xt = c+Mxt−1 + εt, (10)

where

xt =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̃t

x̃t−1

...

x̃t−p+1

⎤
⎥⎥⎥⎥⎥⎥⎦
, c =

⎡
⎢⎢⎢⎢⎢⎢⎣

c̃

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2 . . . Φp−1 Φp

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, εt =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε̃t

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and I is the N × N identity matrix. Consider the case in which the process

underwent (k − 1) parameter changes:

x
(i)
t = ci +Mix

(i)
t−1 + εt, t = Ti−1 + 1, . . . , Ti, (11)

for i = 1, . . . , k; T0 = 0, and Tk = T . From Theorem 1 we have the following

corollary.
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4 AUTOREGRESSIVE MOVING AVERAGE MODELS

Corollary 1. Consider a VAR(p) model that is estimated on a time series that

underwent (k − 1) parameter changes, and these changes are not accounted for.

Then, by the VAR(1) representation (10) and thereby representation (5), where

M replaces Φ, Theorem 1 applies. In that case, the matrix Ei(Φ̂1 + Φ̂2 + . . . +

Φ̂p) has an asymptotic unit eigenvalue with corresponding eigenvector ẽi = µ̃i −
1/T

∑k
j=1(Tj − Tj−1)µ̃j.

The statement is proved in the Appendix.

4 Autoregressive Moving Average Models

Consider the ARMA(p,q) model

x̃t = c̃+ φ1x̃t−1 + . . .+ φpx̃t−p + εt + ψ1εt−1 + . . .+ ψqεt−q, (12)

or

Φ(L)x̃t = c̃+ Ψ(L)εt,

where ε is white noise, c̃ ∈ R, and Φ(L) and Ψ(L) have roots outside the unit

circle. Write (12) in vector notation

xt = c+ Φxt−1 + Ψεt, (13)

where xt = (x̃t, x̃t−1, . . . , x̃t−m+1)
′, c = (c̃, 0, . . . , 0)′ ∈ R

m, εt = (εt, εt−1, . . . , εt−m)′ ∈
R

m+1, and m = max{p, q}. The matrix Φ of autoregressive coefficients is given

by

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1 φ2 . . . φp−1 φp [0]

1 0 . . . 0 0 [0]

0 1 . . . 0 0 [0]
...

...
. . .

...
...

...

0 0 . . . 1 0 [0]

[0] [0] . . . [0] [1] [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m.
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4 AUTOREGRESSIVE MOVING AVERAGE MODELS

The matrix Ψ of moving average coefficients is given by

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0 ψ1 . . . ψq [0]

0 0 . . . 0 [0]

0 0 . . . 0 [0]
...

...
. . .

...
...

0 0 . . . 0 [0]

[0] [0] . . . [0] [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m+1×m+1,

where ψ0 = 1. The symbols [0] and [1] mean that in the respective cases where

q < m or p < m, the matrix is filled with zeros and lower diagonal ones in the case

of Φ. Stack the intercept c and the autoregressive coefficients into a parameter

vector θ = (c, vechΦ) and define1

µ(θ) := (I − Φ)−1c =
c̃

1 − φ1 − . . .− φp

.

Assume that there are k−1 points where θ changes in the data-generating process:

x
(i)
t = ci + Φix

(i)
t−1 + Ψεt, t = Ti−1 + 1, . . . , Ti, (14)

for i = 1, . . . , k where T0 = 0 and Tk = T . Within each regime, the data points

will cluster around

µi := µ(θi) =
ci

1 − φ1,i − . . .− φp,i

.

The expected value of xt conditional on the initial value in segment i is given by

Ei(xt) = (I − Φi)
−1(I − Φ

t−Ti−1

i )ci + ΨEi

[
t−Ti−1−1∑

j=0

Φj
iεt−j

]
+ Φ

t−Ti−1

i xTi−1

= µi +O(Φ
t−Ti−1

i ), t = Ti−1 + 1, . . . , Ti,

same as in (5). Therefore, Lemma 1 applies to processes generated by (14).

Common estimators of ARMA models have an asymptotic distribution with a

1If φj is the j-th column of the matrix Φ, the column vector vechΦ is given by

(φ′1, φ
′
2, . . . , φ

′
n)′.
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4 AUTOREGRESSIVE MOVING AVERAGE MODELS

symmetric positive definite covariance matrix that vanishes with growing sample

size (e.g., Brockwell and Davis 1991, p 258 for the MLE, and Harris 1999 for

alternative GMM estimators). Therefore, (8) applies and the following corollary

is proven.

Corollary 2. If an ARMA model (13) is estimated on a time series that has

a representation (5) and that underwent (k − 1) parameter changes, the matrix

Ei(Φ̂) = E(Φ̂|xTi−1
) has a unit eigenvalue with corresponding eigenvector ei :=

µi − 1/T
∑k

i=1(Ti − Ti−1)µi. This holds true in all segments i = 1, 2, . . . , k, up to

terms that vanish with growing segment sizes Ti − Ti−1.

This result shows that in the presence of neglected parameter changes, ARMA

models exhibit the same artefact error in the estimation of persistence as VAR

models. Before we proceed to give an illustrating example, we note that Theorem

1 and Corollary 2 provide a new way to prove the result of Chen and Tiao (1990).

They show that for an ARMA model with random level shifts, the k-th sample

autocorrelation coefficient

ρ̂(k) =

∑T−k
t=1 ytyt+k∑T

t=1 y
2
t

−→T→∞ 1 in probability.

The ordinary least squares estimator φ̂k of the simple regression of the centered

series

xt − x̄ = φk(xt−k − x̄) + εt,

where x̄ =
∑T

t=1 xt/T , is identical to ρ̂(k) for yt = xt − x̄. Theorem 1 and

Corollary 2 show that for the case k = 1, φ̂1 converges to one with increasing

segment sizes. It is straightforward to extend the proof of Theorem 1 to the

case of a general lag k, because only the terms involving the initial values of

the segments will change. The estimator φ̂k still captures the unity slope of the

identity.
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4 AUTOREGRESSIVE MOVING AVERAGE MODELS

We consider an example that illustrates Corollary 2. Assume that we have a

data set that we assume to be generated by a simple ARMA(1,1) process

xt + φxt−1 = c+ εt + ψεt−1.

In fact, it is generated by the process

xt − 0.3xt−1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.05 + εt + 0.1εt−1 for t ∈ {1, . . . , T1}

0.10 + εt + 0.1εt−1 for t ∈ {T1 + 1, . . . , T2}

0.15 + εt + 0.1εt−1 for t ∈ {T2 + 1, . . . , T},

(15)

where εt ∼ N (0, 1e-4), T1 = 3000, T2 = 6000, T = 9000. The situation is shown

in Figure 2. The data are centered at zero by subtracting the global sample

mean. Again, the alignment of the clusters along the identity of the subspace

(xt−1, xt) causes the estimate of the autoregressive coefficient to pick up slope

one. The three small hyperplanes correspond to the estimations when the correct

segmentation is considered and when an ARMA(1,1) model is estimated on each

segment. The large hyperplane is the result of a global fit of a single ARMA(1,1)

model to the whole data set. The locally estimated persistence parameters are

all of the magnitude φ̂local ≈ 0.30 whereas the globally estimated slope is φ̂global =

0.98.

FIGURE 2 ABOUT HERE.
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5 GARCH

5 Generalized Autoregressive Conditional

Heteroskedasticity

Consider the GARCH(p,q) model. Let rt be the returns of a financial instrument,

then

rt = E(rt|Ft−1) + εt = f(b) + εt t = 1, . . . , T,

εt|Ft−1 ∼ N (0, ht),

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i, (16)

where f(b) is some conditional mean function with parameters b, for example

a linear model x′tb with exogeneous variables xt, and εt is a conditionally het-

eroskedastic disturbance. The parameters of the conditional variance function

are ω ∈ R, αi ∈ (0, 1), and βi ∈ (0, 1) such that
∑q αi +

∑p βi ≤ 1. In the case

where equality holds, we have the integrated GARCH or IGARCH(p,q) model.

The conditional variance equation in (16) can be written in vector form

ht = ω + Aε2
t−1 +Bht−1, (17)

where ht = (ht, ht−1, . . . , ht−m+1)
′ andm = max{p, q}, ε2

t = (ε2t , ε
2
t−1, . . . , ε

2
t−m+1)

′,

and ω = (α0, 0, . . . , 0)′. The coefficient matrices A and B are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α2 . . . αq [0]

0 0 . . . 0 [0]
...

...
. . .

...
...

0 0 . . . 0 [0]

[0] [0] . . . [0] [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m,
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5 GARCH

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 β2 . . . βp−1 βp [0]

1 0 . . . 0 0 [0]

0 1 . . . 0 0 [0]
...

...
. . .

...
...

...

0 0 . . . 1 0 [0]

[0] [0] . . . [0] [1] [0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m.

The symbols [0] and [1] mean that in the respective cases where q < m or p < m,

the matrix is filled with zeros and, in the case of B, lower diagonal ones until it

has the dimension m×m.

Unlike the case of ARMA(p,q) models, there are no observations of ht and

εt available, the rt are the only data. Therefore, in order to evaluate the log-

likelihood

L(θ) = −T
2

log 2π − 1

2

T∑
t=1

log ht − 1

2

T∑
t=1

ε2t
ht

,

the residual εt and the conditional variance ht must be estimated from an initial

guess for the parameter vector

θ := (b, α0, α1, α2, . . . , αq, β1, β2, . . . , βp)
′

and then updated at every iteration step of the optimization. If we had direct ob-

servations, this would clearly be better information about the market’s volatility.

For the purposes of this analysis, we will assume that there are direct observations

of ht and εt. We will show that when there are neglected changes in the variance

parameters of θ in the data-generating process, the sum
∑q α̂i +

∑p β̂i will be

equal to one in the limit, because one of the eigenvalues of the matrix Φ̂ = Â+ B̂

will be one in modulus, up to terms that vanish with growing segment lengths.

We make the conjecture that in the case where the ht have to be estimated, the

same effect will occur. Hillebrand (2004) provides simulation evidence for the

validity of this conjecture.
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5 GARCH

Consider the case where there are k − 1 points in time where the variance

parameters in the data-generating θ change:

ht(θi) = ωi + Aiεt−1(θi)
2 +Biht−1(θi), t = Ti−1 + 1, . . . , Ti, (18)

where i = 1, . . . , k and setting T0 = 0 and Tk = T . The parameter vector within

segments is denoted θi. It contains the parameters b of the conditional mean equa-

tion, which do not change from segment to segment, and the segment-dependent

parameters of the conditional variance α0,i, α1,i, . . . , αq,i, β1,i, . . . , βp,i. We will

establish that within each parameter regime, the ht cluster around

µi := Eht(θi) = (1 − Ai −Bi)
−1ωi =

(
α0,i

1 − λi

, 0, . . . , 0

)′
∈ R

m, (19)

where λi =
∑q

m=1 αm,i +
∑p

n=1 βn,i.

This mean-changing structure of the data-generating process is not accounted

for in the estimation. The estimated variance model is

ht = ω̂ + Âε2
t−1 + B̂ht−1. (20)

Let Eiht denote the expected value with respect to the start value in segment

i = 1, . . . , k:

Eiht := E(ht|FTi−1
).

In order to show that Theorem 1 applies to GARCH, we need

1. a representation of Eiht and Eiε
2
t as in (5), that is, as the unconditional

mean plus vanishing terms;

2. the applicability of Lemma 1 to ht and ε2
t , that is, a representation of

the global sample means as a weighted average of in-segment means plus

vanishing terms;

3. an equivalent of property 8, that is, an asymptotic distribution of the es-

timator with symmetric positive definite covariance matrix that vanishes

with growing sample size.
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The following lemma provides the representation (5) for GARCH.

Lemma 2. The expected values Eiht and Eiε
2
t of a stationary GARCH(p,q) model

conditional on the initial value hTi−1
have the representation

Eiε
2
t = Eiht = µi +O(Φt−Ti

i ), (21)

where Φi = Ai +Bi, t ∈ {Ti−1 + 1, . . . , Ti}, and µi = (1 − Ai −Bi)
−1ωi.

The proof is provided in the Appendix. With this representation, Lemma

1 applies to the sample mean of the conditional variance process h̄ and to the

sample mean of the squared error process ε2
t .

h̄ =
1

T

k∑
i=1

(Ti − Ti−1)µi + o(1)T ,

ε2 =
1

T

k∑
i=1

(Ti − Ti−1)µi + o(1)T . (22)

The analogue to property (8) for GARCH models is as follows.

Assumption 1. The influence of a single realization of the processes ε2
t and ht

on the estimator θ̂ vanishes with growing segment size:

covi(θ̂, ε
2
t ) = cov(θ̂, ε2

t )|FTi−1
= o(1)Ti−Ti−1

∀ t
covi(θ̂, ht) = cov(θ̂, ht)|FTi−1

= o(1)Ti−Ti−1
∀ t.

Applying the Cauchy-Schwarz inequality as in the derivation of (8), we obtain

that the assumption is tantamount to assuming that the product of the variances

of the estimator θ̂ and of ε2
t and ht, respectively, vanishes with the sample size.

The variances of ε2
t and ht are finite (Bollerslev 1986), so in order for the assump-

tion to hold, the variance of θ̂ must vanish with growing sample size.

For instance, the asymptotic distribution of the maximum likelihood estimator

θ̂ of the GARCH(1,1) parameters θ = (µ, α0, α1, β)T is given by

√
T (θ̂ − θ) ∼T→∞ N (0,Σ)

16



5 GARCH

where Σ is a symmetric positive definite matrix that arises from the outer product

of the likelihood score (Weiss 1986, Bollerslev and Wooldridge 1992, Lumsdaine

1996). Hence, the variance of θ̂ vanishes with order T and the assumption is sat-

isfied. For GARCH(p,q), however, no asymptotic distribution theory is available

yet. Therefore, the property is stated as an assumption here. The conjecture

that the estimator behaves as in the GARCH(1,1) case is commonly made and

most software packages return t-statistics as if it did.

We have all prerequisites to show the following corollary of Theorem 1.

Corollary 3. If a GARCH model (20) is estimated on a time series that is

generated by (18) and that underwent (k − 1) parameter changes, the matrix

Ei(Φ̂) = E(Â + B̂|FTi−1
) has a unit eigenvalue with corresponding eigenvector

ei := µi − 1/T
∑k

j=1(Tj −Tj−1)µj. This holds true in all segments i = 1, 2, . . . , k,

up to terms that vanish with growing segment sizes Ti − Ti−1.

The proof is provided in the Appendix.

Corollary 4. It follows immediately that in the case where EiΦ̂ has a unit eigen-

value, the characteristic polynomial

zm − Ei(α̂1 + β̂1)z
m−1 − Ei(α̂2 + β̂2)z

m−2 − . . .− Ei(α̂m + β̂m) = 0

has a unit root and therefore

Eiλ̂ = Ei

(
m∑

l=1

α̂l +
m∑

j=1

β̂j

)
= 1.

Figure 3 shows a synthetic GARCH(1,1) series with a single change in α0. The

two different data-generating parameter vectors induce two distinct expected val-

ues µ1 = Eht(θ1) and µ2 = Eht(θ2). The spheres in Figure 3 are centered at these

expected values. The data points (ht−1, ε
2
t−1, ht) of the segments cluster around

these respective means. The clusters exhibit slopes in both subspaces, reflecting

the data-generating α1 in the (ε2
t−1, ht)-subspace and the data-generating β in
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6 SIMULATIONS

the (ht−1, ht)-subspace. These slopes cannot be captured by the single estimation

hyperplane that has to go through both segments. The relative position of the

two means dominates.

FIGURE 3 ABOUT HERE.

As the mean of the {ht} and the mean of the {ht−1} is equal for sufficiently

long segments, a line connecting two different means in the (ht, ht−1)-subspace has

slope equal to one. Therefore, β will be estimated close to one. The remaining

autoregressive parameter α̂1 is chosen residually such that α̂1 + β̂ < 1 as the

estimated process ĥt would explode otherwise.

FIGURE 4 ABOUT HERE.

In real estimation problems, the εt and the ht cannot be observed but have

to be estimated along with the parameters: ε̂t = ε̂t(b̂) and ĥt = ĥt(α̂0, α̂1, β̂).

Figures 4 and 5 show the estimated data points (ĥt−1(θ̂), ε̂
2
t−1(θ̂), ĥt(θ̂)) for the

same synthetic series shown in Figure 3. The estimation hyperplane is the same

as in Figure 3. By construction, all points lie on the estimation hyperplane.

However, the two-cluster structure is still visible, the data points still cluster

around the unconditional means. The figures show that the phenomenon carries

over to the case where h is unobservable.

6 Simulations

We simulate parameter changes in VAR and ARMA models in this section. It

is demonstrated that the convergence analyzed in Sections 3 and 4 causes severe

distortions in the estimates of autoregressive parameters in finite samples. For

simulations of the GARCH model, we refer to Hillebrand (2004).
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6.1 VAR Simulations 6 SIMULATIONS

6.1 VAR Simulations

To explore the implications of Theorem 1, we conduct an experiment motivated

by the VAR study of Bernanke and Mihov (1998). To distinguish between differ-

ent monetary policy target hypotheses, Bernanke and Mihov consider a structural

VAR system for total reserves and non-borrowed reserves, the federal funds rate,

real GDP, the GDP deflator, and the Dow Jones index of spot commodity prices.

All data are monthly and the sample ranges from 1965:1 through 1996:12.2 Be-

sides the entire sample, the authors consider the sub-samples 1965:1–1979:9 (11),

1979:10–1996:12 (12), 1984:2–1996:12 (7), and 1988:9–1996:12 (11). The numbers

in parentheses are the highest lags that the authors find to be significant, the lag

order for the entire sample is 13.

We estimate the reduced-form VAR model

xt = c+

p∑
j=1

Φjxt−j + εt, (23)

where xt, c, εt ∈ R
6 and Φj ∈ R

6×6. The lag order and the ordering of the variables

in x is as listed above. According to Corollary 1, we consider the largest eigenvalue

of the matrix
∑p

j=1 Φ̂j. For the entire sample and all sub-samples, the largest

eigenvalue is of the order of 1 in modulus (between 0.996 and 1.095), except for

the 1988:9–1996:12 sample, where it is estimated at 3.24. The estimated processes

are all non-stationary or almost non-stationary. This result is not sensitive to the

lag order of the VARs, the largest eigenvalues are close to one for lower lag orders

as well. This finding does not indicate that neglected parameter changes are in

the data, even though they may contribute. As the VAR is specified in levels,

however, it is more likely that genuine unit roots in the data are picked up by

the VARs.

We transform the data to obtain stationary estimated VAR processes. For

non-borrowed reserves, total reserves, real GDP, and the Dow Jones index of

2Ben Bernanke kindly provides the data set on his web site.
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spot commodities prices, we use log-differences. For the federal funds rate and

the GDP deflator, we use first differences. We scale all variables so that they

are of the order of magnitude 0.01. The Akaike information criterion favors a

VAR(3) specification while the Bayes information criterion favors VAR(1). For

both specifications and all samples, the largest eigenvalue of
∑p

j=1 Φ̂j is well below

one. For example, for the entire sample and the VAR(1) specification it is 0.402

and for the VAR(3) specification it is 0.504.

We set up a simulation experiment to study the effects of change-points in

the data. The Dow Jones commodity index price series shows a change-point in

the 1970’s that is caused by the oil price shock. Before 1974, the series oscillates

around a mean of 100; after 1978, it oscillates around a mean of 250. We take

this regime changing behavior as a prototype for a synthetic time series that we

add to the data mentioned above. For 108 observations, corresponding to 1965:1

through 1973:12, we generate white noise with mean 0.01 and standard deviation

0.001. We construct an equidistant grid of 11 points between 0.01 and 0.025

for the mean of the second segment corresponding to 1979:1 through 1996:12.

Call this grid µ2(k), k = 1, . . . , 11, where µ2(1) = 0.01 and µ2(11) = 0.025.

The observations of the second segment are then white noise with mean µ2(k)

and standard deviation 0.001. This gives eleven different jump size scenarios

k, including zero, the stationary case. For the 60 observations corresponding

to 1974:1 through 1978:12, we construct a smooth transition from µ1 = 0.01 to

µ2(k) plus zero-mean white noise with the same standard deviation of 0.001, so

that there is no discontinuous jump in the series.

For every jump size scenario, we generate 10,000 runs. In each run, a synthetic

time series of the type described above is simulated and added to the set of

differenced time series of real data. Then, a VAR(1) and a VAR(3) specification

are estimated on the data set including the synthetic series. As the stochastic

process that underlies the synthetic time series is white noise, the lag structure
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6.2 ARMA Simulations 6 SIMULATIONS

of the VAR will change within the segments of constant means. We store the

modulus of the largest eigenvalue of
∑p

j=1 Φ̂j. Thus, in every jump size scenario,

the experiment results in two series of 10,000 observations each, one for the

VAR(1) case and one for the VAR(3) case.

FIGURE 6 ABOUT HERE.

Figure 6 shows the means and the two-sided 95-percent quantiles of the mod-

ulus of the largest eigenvalue of
∑p

j=1 Φ̂j for the 11 jump size scenarios. The

estimated largest eigenvalue grows to one with increasing jump size. For the

jump size of 0.01 to 0.025, which was obtained from the level series of the Dow

Jones commodity price index (divided by 10,000), the result is almost a unit

root. As the largest eigenvalue is well below one for the real data set (VAR(1):

0.402, VAR(3): 0.504), this result is caused by the synthetic time series. As the

stochastic process of the synthetic series is white noise, the estimated almost unit

root is an artefact that is caused by the deterministic change in the mean of the

white noise process. This illustrates the point of Theorem 1.

6.2 ARMA Simulations

For the ARMA case, simulation experiments in three persistence environments

will be carried out: low, medium, and high persistence. The data-generating

process is ARMA(2,2); all model orders up to ARMA(2,2) will be estimated on

the data.

The basic element of the experiments is an ARMA(2,2) time series of 5000

observations. The generator is

xt − φ1xt−1 − φ2xt−2 =

⎧⎨
⎩ c1

c2

⎫⎬
⎭+ ηt + ψ1ηt−1 + ψ2ηt−2, (24)

where c1 holds for the first 2500 observations and c2 for the second 2500 obser-

vations. The respective persistence environment defines the values of φ1 and φ2

21



6.2 ARMA Simulations 6 SIMULATIONS

according to Table 1. The values of ψ1 and ψ2 are fixed at 0.20 and 0.70 in all

experiments and environments. The constant c1 is fixed at 1e-5 in all experiments

and environments.

In each environment, ten experiments are carried out. The value of c2 is

set according to Table 2, causing a jump in the constant of the data-generating

process. Starting from c2 = 1e-5 (no jump) in the first experiment, c2 is increased

linearly to 1e-2. For every experiment, we generate 10,000 series of (24) and

estimate ARMA(2,2), ARMA(1,1), ARMA(1,2), and ARMA(2,1) on it.

TABLES 1 and 2 ABOUT HERE.

Figures 7 through 9 present the results of the 10 experiments in every persis-

tence environment. In all environments, the mean of the estimate of the sum of

the autoregressive parameters grows close to one with increasing jump size in the

constant.

The solid line in each of the Figures 7 through 9 shows the simulation sample

means φ̂1 + φ̂2 of the sum of the estimates of the autoregressive parameters of

the ARMA(2,2) specification. The error bars are the 0.95 quantiles of these

estimations.

As the estimates φ̂1 + φ̂2 grow to one with increasing jump size in the con-

stant, the 0.95 quantiles decrease monotonically in all three environments. They

are smallest in the high persistence environment and largest in the low persis-

tence environment. In the high and medium persistence environments, the esti-

mation of an ARMA (2,1) model gives almost the same result as the estimation

of ARMA(2,2). As is expected, ARMA(1,1) and ARMA(1,2) estimates are up-

ward biased because of the misspecification of the autoregressive lag structure

(see in particular the first experiment in each environment, where there is no

jump). Again, the low persistence environment is an exception, as ARMA(2,2)

is downward biased in the first experiment, ARMA(2,1) appears unbiased, and
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7 CHANGE-POINT DETECTION

ARMA(1,1) and ARMA(1,2) are upward biased.

Regardless of bias and misspecification, the effect under study dominates with

increasing jump size as the distance in the respective means of the segments grows

larger. This illustrates the point of Corollary 2.

7 Change-Point Detection

From a practical perspective, what can be done to avoid the error in the estima-

tion that stems from parameter change-points? Before the data sample for an

autoregressive model can be specified, a change-point detection study has to be

carried out. A comprehensive review of the literature on change-point detection

is beyond the scope of this study. However, we will briefly discuss a detection

method that is of particular interest in our context.

Bai (1994, 1997) proposes the following test statistic to detect parameter

changes:

S2
k :=

k∑
t=1

(yt − ȳk)
2 +

T∑
t=k+1

(yt − ȳ∗k)
2,

where k is the hypothetical change-point, ȳk =
∑k

t=1 yt/k is the sample average

in the first segment implied by k and ȳ∗k =
∑T

t=k+1 yt/(T − k) is the sample

mean in the second segment. Then, k̂ = argmink(S
2
k) is the estimator of a single

change-point in the series. The detector can be applied sequentially to cover the

multiple-change-points case. It can be shown that the estimator can be defined

equivalently as k̂ = argmaxk|Vk|, where

Vk =

√
k(T − k)

T
(ȳ∗k − ȳk).

This statistic is a re-scaled measure of the distance between the two segment

sample means implied by a hypothetical change-point k. The change-point is

estimated where this difference is maximal. Denote ck =
√
k(T − k)/T and

let k∗ be a single parameter change-point. Neglecting terms that correct for
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initial conditions and assuming for simplicity that µ2 > µ1, it is an elementary

observation that

E|Vk| ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ck
k∗
k

(µ2 − µ1) for k > k∗,

ck
T−k∗
T−k

(µ2 − µ1) for k < k∗,

ck(µ2 − µ1) for k = k∗.

The distorting factors k∗/k and (T − k∗)/(T − k) when the hypothetical change-

point k is not equal to the actual change-point k∗ are both less than one. There-

fore, E|Vk| is maximized, up to terms that vanish with growing segment sizes, at

the actual single change-point k∗.

In the univariate case with a single change-point, the “eigenvectors” e1 and

e2 in Theorem 1 are scalars and given by

e1 = µ1 − k∗

T
µ1 − T − k∗

T
µ2 =

T − k∗

T
(µ1 − µ2)

e2 = µ2 − k∗

T
µ1 − T − k∗

T
µ2 =

k∗

T
(µ2 − µ1).

Thus, we see that at the actual change-point k∗, Bai’s test statistic has the

expected value

E|Vk∗| ≈
√
|e1| |e2|,

where we neglected initial value terms.

Intuitively, the difference in the in-sample means causes e1 and e2 to be non-

zero. In the case where there are no parameter changes, equation (28) in the

proof of Theorem 1 reads zero equals zero. Therefore, it is self-suggesting to

look at a statistic that searches for the point of maximal distance in the segment

sample means.

Kokoszka and Leipus (1999) suggested a similar detector for parameter changes

in ARCH models. The detector statistic is defined as

Vk =
k(T − k)

T 2

(
1

k

k∑
j=1

r2
t −

1

T − k

T∑
j=k+1

r2
t

)
,
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where rt is the log return from a financial asset and the estimate of the change-

point is given by k̂ = argmaxk|Vk|, as before. This statistic considers the distance

in the means of the squared return series of a financial instrument. Here, at the

actual change-point k∗,

E|Vk∗| ≈
√
k∗(T − k∗)

T

√
|e1,1| |e2,1|,

where the ei,1 are the first entries in the eigenvectors ei from Corollary 3.

8 Conclusion

We consider situations where autoregressive models are estimated on data that

contain unknown switches in the data-generating parameters such that the entire

time series has different local means. In this case, the sum of the estimated

autoregressive parameters (or the largest eigenvalue of the sum of the estimated

autoregressive coefficient matrices) is close to one.

The reason for this error in the estimation is that the local means of the

different segments are aligned on the identity hyperplane in the (xt, xt−1, xt−2, . . .)

space of an autoregressive time series x. The estimators of the autoregressive

coefficients take on the unit slope of the identity. The phenomenon is geometric

and therefore not confined to a specific estimator. Neither does it depend on a

specific stochastic structure of the parameter switches; a single jump can suffice,

given that it is large enough.

The apparent unit root indicates high persistence when in fact the persistence

within segments of constant parameters may be low. Thus, the estimation error

is a confounding factor in persistence analysis. For example, the fact that the

sum of the estimated autoregressive parameters of GARCH models sum up to

almost one regardless of the financial asset under study was taken as evidence of

high persistence in volatility. It is still possible that high persistence arises from
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genuine unit roots or fractional integration, for example, and not from struc-

tural breaks. The analysis presented here shows, however, that in the presence

of neglected structural breaks, autoregressive models are incapable of correctly

capturing the persistence. This holds for higher-order autoregressive models in

the same way as for simple first-order specifications.

The results also explain earlier findings that in the presence of structural

breaks in ARMA processes, the first order sample autocorrelation coefficient con-

verges to one (Chen and Tiao 1990) and unit root tests fail to reject the null

hypothesis too often (Perron 1989, Hendry and Neale 1991).

The direct practical implication of the result is that when the existence of

parameter changes in the time series under study cannot be ruled out, autore-

gressive models are an inadequate research tool to capture the dynamics of the

series. Therefore, a careful change-point detection study has to be undertaken

before autoregressive models can be fitted to a data set.

Acknowledgments

The paper benefited from discussions with and comments from George Papani-

colaou, Carter Hill, Atsushi Inoue, Remigijus Leipus, Caio Almeida, Knut Sølna,

and the participants of the Statistics Seminar at Stanford. Any remaining errors

are mine.

References

Altissimo, F. and V. Corradi, 2003. Strong Rules for Detecting the Number of

Breaks in a Time Series. Journal of Econometrics 117: 207–244.

Andrews, D. W. K. 1993. Tests for Parameter Instability and Structural Change

with Unknown Change Point. Econometrica 61(4): 821–856.

Bai, J. 1994. Least Squares Estimation of a Shift in Linear Processes. Journal

of Time Series Analysis 15(5): 453–472.



REFERENCES 27

Bai, J. 1997. Estimating Multiple Breaks One at a Time. Econometric Theory

13: 315–352.

Bai, J. and P. Perron, 1998. Estimating and Testing Linear Models with Mul-

tiple Structural Changes. Econometrica 66(1): 47–78.

Bernanke, B. S. and I. Mihov, 1998. Measuring Monetary Policy. Quarterly

Journal of Economics. 869–902.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity.

Journal of Econometrics 31, 307–327.

Bollerslev, T., Wooldridge, J.M. 1992. Quasi-maximum likelihood estimation

and inference in dynamic models with time-varying covariances. Econo-

metric Reviews 11, 143–172

Brockwell, P. J. and R. A. Davis, 1991. Time Series: Theory and Methods.

Springer: New York.

Chen, C. and Tiao, G.C. 1990. Random Level-Shift Time Series Models, ARIMA

Approximations, and Level-Shift Detection. Journal of Business and Eco-

nomic Statistics 8(1): 83–97.

Diebold, F.X. 1986. Modeling the persistence of conditional variances: A com-

ment. Econometric Reviews 5, 51–56.

Diebold, F.X., Inoue, A. 2001. Long memory and regime switching. Journal of

Econometrics 105, 131–159.
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Granger, C.W.J., Teräsvirta, T. 2001. A simple nonlinear time series model

with misleading linear properties. Economics Letters 62, 161–165.

Hamilton, J.D., Susmel, R. 1994. Autoregressive conditional heteroskedasticity

and changes in regime. Journal of Econometrics 64, 307–333.

Harris, D. 1999. GMM Estimation of Time Series Models. In: Matyas, L. (ed.)

Generalized Method of Moments Estimation. Cambridge University Press,

Cambridge, pp 149–170.

Hendry, D.F. and A.J. Neale 1991. A Monte Carlo study of the effects of struc-

tural breaks on tests for unit roots. In: P. Hackl and A.H. Westlund (Eds.)

Economic Structural Change, Analysis and Forecasting. pp. 95-119, Berlin:

Springer-Verlag.

Hillebrand, E. 2004. Neglecting Parameter Changes in GARCH Models. Forth-

coming in the Annals Issue of the Journal of Econometrics on Modeling

Structural Breaks, Long Memory and Stock Market Volatility.

http://www.bus.lsu.edu/economics/faculty/ehillebrand/personal/

Kokoszka, P. and R. Leipus, 1999. Testing for Parameter Changes in ARCH

Models. Lithuanian Mathematical Journal 39(2): 182–195.

Lamoureux, C.G., Lastrapes, W.D. 1990. Persistence in variance, structural

change, and the GARCH model. Journal of Business and Economic Statis-

tics 8, 225–234.

Lobato, I.N., Savin, N.E. 1998. Real and spurious long-memory properties of

stock-market data. Journal of Business and Economic Statistics 16, 261–

268.

Lumsdaine, R. 1996. Consistency and asymptotic normality of the quasi-maximum

likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1)

models. Econometrica 64, 575–596.



REFERENCES 29

Mikosch, T., Starica, C. 2000. Change of structure in financial time series, long

range dependence and the GARCH model. University of Aarhus, Aarhus

School of Business, Centre for Analytical Finance, Working Paper No. 58.

Perron, P. 1989. The Great Crash, the Oil Price Shock, and the Unit Root

Hypothesis. Econometrica 57(6): 1361–1401.

Perron, P. 1990. Testing for a Unit Root in a Time Series With a Changing

Mean. Journal of Business and Economic Statistics 8(2): 153–162.

Weiss, A. A. 1986. Asymptotic theory for ARCH models: Estimation and test-

ing. Econometric Theory 2, 107–131.



APPENDIX 30

Appendix

Proof of Lemma 1. Write xt = Eixt + zt, t = Ti−1 + 1, . . . , Ti, where zt is the

deviation from the expected value conditional on the initial value of segment i.

Then, by the law of large numbers,

1

Ti − Ti−1

Ti∑
Ti−1+1

zt = o(1)Ti−Ti−1
.

The sample mean can be written as

x̄ =
1

T

T∑
t=1

xt,

=
1

T

T1∑
t=T0+1

E(1)xt +
1

T

T1∑
t=T0+1

zt

+ . . .+
1

T

Tk∑
t=Tk−1+1

E(k)xt +
1

T

Tk∑
t=Tk−1+1

zt,

=
1

T

T1∑
t=T0+1

E(1)xt + . . .+
1

T

Tk∑
t=Tk−1+1

E(k)xt + o(1)T ,

given that as T becomes large, all segment sizes Ti − Ti−1 become large. With

(5), we obtain

x̄ =
T1 − T0

T
µ1 +

T2 − T1

T
µ2 + . . .+

Tk − Tk−1

T
µk

+
1

T

k∑
i=1

Ti∑
t=Ti−1+1

O(Φ
t−Ti−1

i ) + o(1)T .

Observing that 1/T
∑k

i=1

∑Ti

t=Ti−1+1O(Φ
t−Ti−1

i ) = o(1)T , Lemma 1 is proven.

Proof of Theorem 1. Consider observation x
(i)
t in segment i. For notational brevity,

the superscript i on xt, t = Ti−1+1, . . . , Ti, will be suppressed. Subtract the global

sample mean x̄ = 1/T
∑T

t=1 xt = ĉ+Φ̂x̄ and take expectations conditional on the

initial value of the segment:

Ei(xt − x̄) = Ei(Φ̂(xt−1 − x̄)). (25)
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At this point, the idea of the proof becomes clear already. The common property

of the estimator Φ̂ stated in (8) together with the representation of x̄ in Lemma

1 as a deterministic sum plus vanishing terms will allow us to decompose the

expected value of the product on the right-hand side into the product of the

expected values plus vanishing terms. As Ei(xt − x̄) ≈ Ei(xt−1 − x̄) �= 0, there

must be eigenvectors of EiΦ̂ corresponding to the eigenvalue one.

Hence, apply (8) to the right-hand side of (25):

Ei(Φ̂(xt−1 − x̄)) = EiΦ̂Eixt−1 + o(1)Ti−Ti−1
− Ei(Φx̄).

Apply Lemma 1 using the decomposition xt = Eixt + zt employed in its proof.

Ei(Φ̂(xt−1 − x̄)) =

EiΦ̂Eixt−1 + o(1)Ti−Ti−1
− 1

T

k∑
j=1

(Tj − Tj−1)µjEiΦ̂

− 1

T

k∑
j=1

Tj∑
t=Tj−1+1

Ei(Φ̂zt) − 1

T

k∑
j=1

Tj∑
t=Tj−1+1

Ei(Φ̂Φ
t−Tj−1

j xTj−1
) (26)

From (8) we have that

covi(Φ̂, xt) = covi(Φ̂, zt) = o(1)Ti−Ti−1
,

so that 1/T
∑k

j=1

∑Tj

t=Tj−1+1 Ei(Φ̂zt) = o(1)T . The influence Φ
t−Ti−1

i xTi−1
of the

initial value of the segment on xt is deterministic and therefore Ei(Φ̂Φ
t−Ti−1

i xTi−1
) =

Ei(Φ̂)Φ
t−Ti−1

i xTi−1
. Thus,

Ei(Φ̂)

T

k∑
j=1

Tj∑
t=Tj−1+1

Φ
t−Tj−1

j xTj−1
= O(1/T ),

as all eigenvalues of the Φj are inside the unit circle and the segment sizes Tj−Tj−1

grow as T grows. Therefore, we have so far that

Ei(xt − x̄) = Ei(Φ̂(xt−1 − x̄)) =

EiΦ̂

[
Eixt−1 − 1

T

k∑
j=1

(Tj − Tj−1)µj

]
+ o(1)Ti−Ti−1

+ o(1)T +O(1/T ).(27)
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Applying Lemma 1 to the left-hand side of (25), we get

Ei(xt − x̄) = Eixt − 1

T

k∑
j=1

(Tj − Tj−1)µj + o(1)T .

The only difference to the expression in brackets on the right-hand side of (27)

is that we take conditional expectations of the lag of xt there. From (5), we have

Eixt−1 = µi +O(Φ
t−Ti−1−1
i )

Eixt = µi +O(Φ
t−Ti−1

i ).

Using this and plugging in from (27), (25) becomes[
µi − 1

T

k∑
j=1

(Tj − Tj−1)µj

]
= EiΦ̂

[
µi − 1

T

k∑
j=1

(Tj − Tj−1)µj

]

+O(Φ
t−Ti−1

i ) +O(Φ
t−Ti−1−1
i ) + o(1)Ti−Ti−1

+ o(1)T +O(1/T ), (28)

or

ei = Ei(Φ̂)ei +O(Φ
t−Ti−1−1
i ) + o(1)Ti−Ti−1

+ o(1)T +O(1/T ).

The vector ei does not vanish for all i = 1, . . . , k as long as at least two of the

µj are not equal, that is, there is at least one parameter change. Therefore, ei

is an eigenvector of EiΦ̂ corresponding to the eigenvalue one, provided that the

sample size T and the segment size Ti − Ti−1 are large enough.

Proof of Corollary 1. From Theorem 1 we know that if the regime changing struc-

ture is not accounted for in the estimation, the matrix EiM̂ has an asymptotic

unit eigenvalue with corresponding eigenvector ei = µi − 1/T
∑k

j=1(Tj −Tj−1)µj,

where

µi = (I −Mi)
−1ci =

⎡
⎢⎢⎢⎢⎢⎢⎣

(I −∑p
j=1 Φi,j)

−1c̃i

(I −∑p
j=1 Φi,j)

−1c̃i
...

(I −∑p
j=1 Φi,j)

−1c̃i

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

µ̃i

µ̃i

...

µ̃i

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Then, the first N rows of the equation ei = Ei(M̂)ei + o(1)T read

ẽi = µ̃i − 1

T

k∑
j=1

(Tj − Tj−1)µ̃j = Ei(

p∑
j=1

Φ̂j)ẽi + o(1)T ,

and Corollary 1 is proven.

Proof of Lemma 2. The expected value of (18) conditional on the start value of

the segment is given by

Eiht = ωi + Ai(Eiη
2
t−1 × Eiht−1) +BiEiht−1

= ωi + ΦiEiht−1,

where Φi = Ai +Bi, ηt is an m-vector of standard normal random variables and

“×” denotes element-wise multiplication. The GARCH(p,q) model is stationary

if and only if the roots of

zm − (α1,i + β1,i)z
m−1 − (α2,i + β2,i)z

m−2 − . . .− (αm,i + βm,i) = 0,

lie inside the unit circle. The roots are the eigenvalues of Φi. Here, αj = 0 for

j > q in the case where m > q or βj = 0 for j > p in the case where m > p.

From the stationarity of the GARCH process it follows therefore that 1 − Φi

is invertible and

Eiht = (1 − Φi)
−1(1 − Φ

t−Ti−1

i )ωi + Φ
t−Ti−1

i hTi−1

= µi + Φ
t−Ti−1

i (hTi−1
− µi) = µi +O(Φ

t−Ti−1

i ).

The conditional term is the autoregressive matrix operating on the distance of

the initial value from the unconditional mean. It vanishes with growing sample

size.

Proof of Corollary 3. Subtract the global sample mean from (20):

ht − h̄ = Â(ε2
t−1 − ε2) + B̂(ht−1 − h̄). (29)



APPENDIX 34

Apply the representation in Lemma 2, Assumption 1, and Eiε
2
t = Eiht from the

distribution assumption in (16) to obtain

Ei(ht − h̄) = Ei

[
Â(ε2

t−1 − ε2) + B̂(ht−1 − h̄)
]

= Ei(Â+ B̂) Ei

(
ht−1 − 1

T

k∑
i=1

(Ti − Ti−1)µi

)
+ o(1)T + o(1)Ti−Ti−1

,

where the o(1)T -term stems from the application of Lemma 2 and the o(1)Ti−Ti−1
-

term from the application of Assumption 1. This is the equivalent of equation

(27) in the proof of Theorem 1 with ht replacing xt and Φ = A+B. The rest of

the proof proceeds in exactly the same way as the proof of Theorem 1.
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Table 1: Values of the autoregressive parameters of the data generating ARMA(2,2) processes

in the three persistence environments. The moving average parameters were ψ1 = 0.20 and

ψ2 = 0.70 in all three environments.

persistence: high low medium

φ1 0.50 0.20 0.20

φ2 0.45 0.10 0.65

φ1 + φ2 0.95 0.30 0.85

Table 2: Ten jump sizes of the intercept of the data generating ARMA(2,2) processes in all

three persistence environments.

experiment 1 2 3 4 5 6 7 8 9 10

c 1e-5 1e-3 2e-3 3e-3 4e-3 6e-3 7e-3 8e-3 9e-3 1e-2
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Figure 1: Graph of data generated from model (1) with parameters φ = 0.50,

σ = 0.01, c1 = 1e-5, c2 = 0.05, N = 5000, and N1 = 2500. The points cluster

around the unconditional in-segment means 2e-5 and 0.10. If an autoregressive

model is fitted globally to the whole data set, the estimated slope will be close

to one, the slope of the identity.
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Figure 2: Data generated from model (15) and plotted in the (xt−1, εt−1, xt)

space. The data were centered by subtracting the global sample mean of 0.14.

The three separate hyperplanes are the estimation hyperplanes when the data

are correctly segmented and three separate ARMA(1,1) models are estimated.

The large hyperplane with slope close to one in the (xt−1, xt)-subspace is the

estimation hyperplane when the parameter switches are ignored and a single

ARMA(1,1) model is estimated on the entire time series. Exactly as in Figure

1 for the AR(1) case, the alignment of the segment clusters along the identity

line in the (xt−1, xt)-subspace causes the global estimate of the autoregressive

parameter φ to take a value close to one.
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Figure 3: Plot of the data points (ht−1, ε
2
t−1, ht) for an annualized synthetic

GARCH(1,1) series with a single change-point in α0. The {εt} and {ht} are

generated by the parameters α0,1 =2e-5 and α0,2 =5e-5, α1 = 0.10 and β =

0.50. The length of the entire series is T = 4200 and the changepoint T1 is

set at one half of T . The spheres are centered at the unconditional, stationary

expected values Eh
(1)
t = 250 ∗ 2e-5/(1 − 0.1 − 0.5) = 0.0125 and Eh

(2)
t = 250 ∗

5e-5/(1−0.1−0.5) = 0.03125. The fact that a single hyperplane is fitted through

both segments, reflected by the two point clusters, leads to a sum of estimated

autoregressive parameters close to one. It can be seen that the slope of the

clusters with respect to the (ht−1, ht)-subspace, which is β = 0.5, is largely

overestimated. The estimator β̂ picks up the slope of the identity. The slope

of the clusters with respect to the (ε2
t−1, ht)-subspace, which is α1 = 0.1, is

underestimated. The estimated parameters are α̂0 = 2.6e-5, α̂1 = 0.018, and

β̂ = 0.981. The estimation hyperplane was obtained by standard quasi-maximum

likelihood GARCH estimation.
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Figure 4: Plots of the estimated data points

(ĥt−1(α̂0, α̂1, β̂), ε̂2
t−1(µ̂), ĥt(α̂0, α̂1, β̂)), for the same synthetic data series

considered in Figure 3. By construction, all the points are lying on the

hyperplane according to the estimates α̂0 = 2.6e-5, α̂1 = 0.018, and β̂ = 0.981.

However, the two-cluster structure is still visible. The geometry of the situation

is similar, with point clusters around the unconditional means.
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Figure 5: Same situation as in Figure 4 from a different viewpoint than in Figures

3 and 4. From this viewpoint, the two clusters can be seen more distinctly.
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Figure 6: The simulation object is a VAR of 7 variables. Six variables are from

the Bernanke and Mihov (1998) data, the seventh is synthetic white noise with

a jump in the mean. The ordinate shows the modulus of the largest eigenvalue

of the sum of the estimated autoregressive coefficient matrices
∑p

j=1 Φ̂j. The

curves plot the means and 95 percent quantiles of 10,000 simulations for each of

11 different jump sizes scenarios (abscissa). The largest eigenvalue grows to one

in modulus with growing jump size.
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Figure 7: Plot of the simulation results in the high persistence environment

according to Tables 1 and 2. The solid line shows the mean of the sum of the

autoregressive parameters of the ARMA(2,2) model over the 10000 simulation

runs for each jump size. The error bars are the 95 percent quantiles of the

estimator. The dashed lines give the means of the sum of the autoregressive

parameters when other model specifications are estimated on the simulated data.

It is clearly visible for all model orders that the larger the jump size, the closer

the sum of the estimated autoregressive parameters is pushed towards one.
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Figure 8: Plot of the simulation results in the medium persistence environment

according to Tables 1 and 2. The solid line shows the mean of the sum of the au-

toregressive parameters of the ARMA(2,2) model over the 10000 simulation runs

for each jump size. The error bars are the 95 percent quantiles of the estimator.

The dashed lines give the means of the sum of the autoregressive parameters

when other model specifications are estimated on the simulated data. The esti-

mated mean of the sum of the autoregressive parameters increases towards one

with increasing jump size.
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Figure 9: Plot of the simulation results in the low persistence environment ac-

cording to Tables 1 and 2. The solid line shows the mean of the sum of the au-

toregressive parameters of the ARMA(2,2) model over the 10000 simulation runs

for each jump size. The error bars are the 95 percent quantiles of the estimation.

The dashed lines give the means of the sum of the autoregressive parameters

when other model specifications are estimated on the simulated data. The esti-

mated mean of the sum of the autoregressive parameters increases towards one

with increasing jump size.


