
                 
 
 

             
 

        DEPARTMENT OF ECONOMICS WORKING PAPER SERIES 
 
 

       Two-Level CES Production Technology in the Solow and Diamond 
Growth Models 

 
Chris Papageorgiou 

Louisiana State University 
 

Marianne Saam 
University of Frankfurt 

 
 
 

                               Working Paper 2005-07 
http://www.bus.lsu.edu/economics/papers/pap05_07.pdf

 
 
 
 
 

Department of Economics 
Louisiana State University 

Baton Rouge, LA 70803-6306 
http://www.bus.lsu.edu/economics/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7210179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bus.lsu.edu/economics/papers/pap05_01.pdf


Two-Level CES Production Technology in the Solow

and Diamond Growth Models∗

Chris Papageorgiou

Department of Economics

Louisiana State University

Baton Rouge, LA 70803

Email: cpapa@lsu.edu

Marianne Saam

Department of Economics

University of Frankfurt

D-60054 Frankfurt

Email: msaam@wiwi.uni-frankfurt.de

March 3, 2005

Abstract

The two-level CES aggregate production function - that nests a CES into another CES
function - has recently been used extensively in theoretical and empirical applications of
macroeconomics. This paper examines its theoretical properties and establishes existence and
stability conditions of equilibria under the Solow and Diamond growth models. In addition,
it examines the effect of changes in substitution parameters on transitional growth and steady
states. It is shown that in the Solow model, the sufficient condition for a steady state is fulfilled
for a larger range of substitution parameter values than with the basic CES function. In the
Diamond model an increase in substitution parameters results in higher transitional growth
under weaker conditions than with the basic CES function.
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1 Introduction

The two-level “nested” CES production technology, pioneered by Sato (1967), has recently

been used widely in macroeconomics. Its flexibility coming from the substitution parameters

and the inclusion of an additional input makes it an attractive choice for many applications

in economic theory and empirics. Researchers interested in issues such as Griliches’ capital-

skill complementarity, or the wage differential between skilled and unskilled workers, have made

extensive use of the two-level CES production technology with capital, skilled labor and unskilled

labor as inputs.1

The function has been introduced to study primarily distributional aspects of the aggregate

economy. Surprisingly, little has been done in exploring growth aspects of the economy using this

function. We explore the properties of the two-level CES function and its effect on the Solow and

Diamond models, the basic workhorses of growth theory. In particular, we study the effects of

changes in the substitution parameters. We hope that our work will prompt other researchers to

(a) fully study growth models using this rich functional form (b) further explore how changes in

substitution parameters affect growth.

The paper establishes existence and stability conditions of equilibria under the Solow (1956)

and Diamond (1965) growth models. Moreover it examines how changes in the input-substitution

parameters underlying capital-skill complementarity can affect economic growth in transition and

steady state. We take advantage of recent contributions by Klump and de La Grandville (2000),

Miyagiwa and Papageorgiou (2003) and Palivos and Karagiannis (2004) that examine the effect of

the elasticity of substitution between capital and labor on growth under the Solow and Diamond

models with two inputs.2

We obtain the following results: For a given fraction of unskilled labor we can express the

1At the empirical front, Krusell et al. (2000) estimate a variant of the nested CES function with exogenous
technical progress for the U.S. between 1962 and 1993. An elasticity between the capital-skill aggregate and unskilled
labor above one and an elasticity within the aggregate below one indicate strong capital-skill complementarity. In
addition, using the nested CES function and data on a panel of 73 countries Duffy et al. (2004) conclude that
neither the presence of capital-skill complementarity nor the skill level for which it matters are universal. In the
theoretical literature, models of capital-skill complementarity or biased technical change generally focus on technical
progress that affects efficiency parameters. For example Goldin and Katz (1998) model the transition between four
technologies. Each is characterized by a nested Leontief-Cobb-Douglas function, a special case of the nested CES
function. Acemoglu (1998) considers skill-biased technical progress that raises the efficiency of skilled labor. Finally,
Caselli and Coleman (2004) use the two-level CES production technology in a model that examines the notion of a
world technology frontier.

2We consider changes in substitution parameters as exogenous. Benabou (forthcoming) and Miyagiwa and
Papageorgiou (2004) model endogenous changes in substitution parameters.
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substituability between total labor (skilled and unskilled) and capital by a single aggregate elasticity

of substitution. This aggregate elasticity of substitution changes with capital accumulation. In the

Solow model, the sufficient condition for a steady state is fulfilled for a larger range of substitution

parameter values than with the basic CES function. In addition, an increase in substitution

parameters has a positive impact on transitional growth and the steady state. In the Diamond

model unstable equilibria occur when the elasticity of substitution is lower than the capital share.

In addition, an increase in substitution parameters results in higher transitional growth under

weaker conditions than with the basic CES function.

In the next section we extend the Klump-de La Grandville “CES normalization” for the two-

level CES function. We also discuss capital-skill complementarity and define the aggregate elasticity

of substitution as implied by the two-level CES function. In sections 3 and 4 we analyze the effect

of the input-substitution parameters of the two-level CES function under the Solow and Diamond

growth models, respectively. Section 5 concludes.

2 Building Blocks

2.1 Klump-de La Grandville CES normalization

Normalization of basic CES function

Production functions with two inputs, constant returns to scale and a constant elasticity of

substitution between capital and labor are characterized by three parameters: an efficiency param-

eter, a distribution parameter (or alternatively by two non-neutral efficiency parameters) and a

substitution parameter. The substitution parameter determines the curvature of the isoquant. As

shown by Klump and de La Grandville (2000, henceforth KL), normalization makes it possible to

“straighten” the isoquant in an arbitrary point without shifting it, while holding the efficiency and

the distribution parameters constant. As shown in the k-y-diagram of Figure 1, this means that

any point on a CES function can be chosen as a baseline value for a family of functions that are

tangent to it. More precisely, a family of normalized CES functions is defined by baseline levels

of per capita capital, k0, per capita output, y0, and wage to the interest rate ratio, µ0 = w0

r0
. The

functions belonging to any family differ only in the elasticities of substitution σ, where σ = 1
1−ψ

and −∞ ≤ ψ ≤ 1.
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0 k k
0

 y
0

Figure 1: CES functions with a common baseline point

Normalization of two-level CES function

We consider a three-factor two-level production technology with capital (K), skilled labor (Ls)

and unskilled labor (Lu) as inputs. The “first level” of the two-level CES function is given by a

CES function

X = B[βKθ + (1 − β)Lθs]
1

θ . (1)

This CES function is then nested into another CES function, representing the “second level” given

by

Y = A[αXψ + (1 − α)Lψu ]
1

ψ . (2)

Substituting (1) into (2) yields the two-level CES function

Y = A[αBψ(βKθ + (1 − β)Lθs)
ψ

θ + (1 − α)Lψu ]
1

ψ . (3)

There are two points worth making about equation (3). First, our formulation includes, in

addition to the standard technology parameter A, a second technology parameter, B. This is done

because it makes normalization easier to handle, facilitating the application of the chain rule for

derivatives. Second, although there are two other possibilities of nesting the two-level CES function,

we prefer the formulation given by equation (3) which is consistent with the rest of literature. Fallon

and Layard (1975) and Krusell et al. (2000) present empirical evidence in support of (3) and explain

why including skilled labor and capital in the first level aggregate is the most plausible variant of
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nesting.3

Next, we apply the KL normalization to the two-level nested CES function. The baseline point

is defined according to KL by a set of baseline values given by {Y0, X0, K0, Lu0, Ls0}. The

population is composed of skilled and unskilled workers (N = Ls + Lu, N0 = Ls0 + Lu0, u = Lu
N ).

The baseline values in intensive form are given by: ỹ0 = Y0

Lu0
, x̃0 = X0

Lu0
, x̂0 = X0

Ls0
, k̂0 = K0

Ls0
,

y0 = Y0

N0
, x0 = X0

N0
and k0 = K0

N0
. Lowercase variables designate per capita variables, the tilde

denotes values per unskilled worker, and the hat denotes values per skilled worker. It is assumed

throughout the paper that k > k0 and x > x0. The factor prices of capital, skilled and unskilled

labor are r, ws and wu. The price of a unit of aggregate X in terms of output is pX . Moreover we

define the income shares πX = pX x̃
ỹ and πK = rk̂

x̂ . The baseline values of relative factor prices are

µ0 and ν0.

The normalization of the parameters of the production function is obtained from the following

conditions:
ws0
r0

= ν0 =
1 − β

β
k̂1−θ

0 , (4)

X0 = B[βKθ
0 + (1 − β)Lθs0]

1

θ , (5)

wu0
pX0

= µ0 =
1 − α

α
x̃1−ψ

0 , (6)

Y0 = A[αXψ
0 + (1 − α)Lψu0]

1

ψ . (7)

The normalized parameters are

A = ỹ0

(

x̃1−ψ
0 + µ0

x̃0 + µ0

) 1

ψ

, (8)

α =
x̃1−ψ

0

x̃1−ψ
0 + µ0

, (9)

and

B = x̂0

(

k̂1−θ
0 + ν0

k̂0 + ν0

) 1

θ

, (10)

β =
k̂1−θ

0

k̂1−θ
0 + ν0

. (11)

3For more discussion on the nesting of the two-level CES function see Fallon and Layard (1975).
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The parameters of each CES function with two arguments depend only on their own baseline

values and their substitution parameters. This is a consequence of the strong separability of the

nested CES function (see, Sato 1967). We now turn to our first proposition. (All proofs are in the

Appendix.)

Proposition 1 At given input values an increase in each substitution parameter in the two-level

CES function (3) has a positive impact on output per capita.

This proposition builds on KL theorems for the two-factor case. A summary of KL results for

normalized CES functions, which are used throughout the paper, is given in the ((24)-(23)). Notice

that Proposition 1 is independent of any model assumption and therefore holds for both the Solow

and Diamond growth models.4

2.2 Capital-skill complementarity and the two-level CES function

Using the two-level CES function the skill premium is governed by the following equation:

ln

(

ws
wu

)

= ln

(

B
α(1 − β)

1 − α

)

+
ψ − θ

θ
ln
[

βk̂θ + (1 − β)
]

+ (ψ − 1) ln

(

Ls
Lu

)

. (12)

Defining the value of capital-skill complementarity as the percentage increase in the skill premium

resulting from a one percent increase in capital per skilled worker yields

∂ ln
(

ws
wu

)

∂ ln k̂
= (ψ − θ)πK , (13)

where ψ − θ > 0 implies capital-skill complementarity, and πK determines its magnitude

additionally. Thus capital-skill complementarity means relatively higher complementarity between

capital and skilled labor than between the capital-skill aggregate and unskilled labor.

2.3 Aggregate elasticity of substitution

Capital-skill complementarity compares the ease of substitution of both kinds of labor (skilled and

unskilled) with capital. It is an important concept for explaining income distribution between

the three inputs. Transitional and long-run growth, however, depend less on capital-skill com-

plementarity than on what we call the aggregate elasticity of substitution. Instead of comparing

4This proposition was independently shown by Dupuy (2004) and Dupuy and de Grip (2004). Their proof without
normalization is more complex.
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the substitution parameters of both kinds of labor, this elasticity aggregates them into a single

value. For a given fraction of unskilled labor u we aggregate skilled and unskilled labor to the total

number of workers. We then compute the aggregate elasticity of substitution between capital and

the number of workers. It corresponds to the usual elasticity of substitution of a function with

two arguments. While this elasticity is constant for the basic CES function, it is variable for the

two-level CES function.5 The following lemmas describe formally two of its properties that are

important for our subsequent investigation of the Solow and Diamond growth models:

Lemma 1 For a given fraction of unskilled workers u the elasticity of substitution between capital

K and the number of workers N in the two-level CES function (3) is an harmonic mean of the

two-factor elasticities within each CES function, 1
1−ψ and 1

1−θ :

σ =

[

1

σ

]−1

=

[

(1 − θ)
1 − πK

1 − πXπK
+ (1 − ψ)

πK(1 − πX)

1 − πXπK

]−1

= [(1 − θ)(1 − g) + (1 − ψ)g]−1 .

Lemma 2

(i) If θ and ψ have opposing signs or if |θ| > |ψ|, limk→0 σ = max[ 1
1−θ ,

1
1−ψ ]

and limk→∞ σ = min[ 1
1−θ ,

1
1−ψ ].

(ii) If ψ > θ > 0 or 0 > θ > ψ, both limits are equal to 1
1−θ .

5We note that the aggregate elasticity of substitution is declining in k in most cases. Other theoretical and
empirical studies point to an increasing elasticity of substitution. But keeping in mind that we assume a constant
technology and constant skill-levels, the result of a decreasing elasticity of substitution appears less surprising. Hicks
(1932) already speculated about a declining elasticity of substitution that ”may be counteracted by invention” (p.
132).
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3 The Solow Model

3.1 Existence and stability of steady states

We now introduce the two-level CES function into the basic Solow model. We assume that total

population, skilled and unskilled labor grow at the same rate n, what leaves the fraction of unskilled

labor u constant. Also, for simplicity of exposition we assume θ 6= ψ and θ, ψ 6= 0. The savings

ratio is s, the depreciation rate δ.

The equation of capital accumulation is as usual:

k̇ = sy − (n+ δ)k. (14)

The condition for a steady state is

sy∗ = (n+ δ)k∗

⇔ sA[αBψ(βk∗θ + (1 − β)(1 − u)θ)
ψ

θ + (1 − α)uψ]
1

ψ = (n+ δ)k∗, (15)

where (∗) denotes steady-state values. As with two inputs, the economy can experience continuous

decline, converge to a constant steady state or grow endogenously in the long-run.

Proposition 2 Under the Solow model with the two-level CES function (3) the following holds:

(i) If θ and ψ have not the same sign, a steady state k∗ > 0 always exists.

(ii) For ψ and θ both positive, a steady state k∗ > 0 exists iff Aα
1

ψBβ
1

θ ≤ n+δ
s , otherwise k∗ → ∞.

(iii) For ψ and θ both negative, a steady state k∗ > 0 exists iff Aα
1

ψBβ
1

θ > n+δ
s , otherwise k∗ = 0.

(iv) All positive steady states are unique and stable.

Alternatively to our proof, the result on endogenous growth (ii) follows from studying the

limiting behavior of the aggregate elasticity of substitution (see Palivos and Karagiannis 2004).

If both parameters are positive or negative the results for the two-level CES function correspond

to the results for the basic CES function shown by Klump and Preissler (2000). A notable difference

arises if the parameters have opposing signs. In the Solow model with the basic CES function the

only value of the substitution parameter which is sufficient to guarantee a positive steady state is

zero (Cobb-Douglas function). With the two-level CES function we obtain a much weaker sufficient

condition. Whenever the substitution parameters have opposing signs a positive steady state exists.



Two-level CES Production Technology in the Solow and Diamond Growth Models 8

0 0

(n+δ)k 

sy 

(n+δ)k 

sy 

k k* k 

Figure 2: Both ψ and θ < 0

0

k*

   

(n+δ)k 

sy 

k 

Figure 3: ψ and θ have opposing signs

00
k* k k 

(n+δ)k 

(n+δ)k sy 

sy 

Figure 4: Both ψ and θ > 0
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3.2 Effects of substitution parameters on transition and steady state

Under the Solow model the effects of an increase in any of the substitution parameters carry over

from the basic CES function to the two-level CES function:

Corollary 1 Given k with k > k0, an increase in any of the substitution parameters ψ and θ

has a positive effect on the growth rate of capital k̇k under the Solow model.

Looking at (14) this follows from Proposition 1.

Proposition 3 Under the Solow model with the two-level CES function (3) an increase in any

of the two substitution parameters ψ and θ has a positive effect on the steady state k∗.

Goldin and Katz (1998) argue that during early industrialization capital became more comple-

mentary to unskilled labor, whereas in the twentieth century capital became more complementary

to skilled labor. Our results show in a simple way why both changes can have spurred economic

growth. With reference to the definition of capital-skill complementarity in section 2.2., we can

read the change of technology in the first phase as an increase in θ and the change in the second

phase as an increase in ψ. Both increases have a positive impact on transitional growth in the Solow

model. The effects are not as unambiguous if capital accumulation depends on the distribution of

income.

4 The Diamond model

In the Diamond model with two inputs the effects of the elasticity of substitution on growth and

the steady state differ from the Solow model in two ways. First the elasticity of substitution affects

the uniqueness and stability of steady states, second a higher elasticity of substitution does not

always have a positive effect on growth and the steady state. We show to what extent the results

carry over to the model with skilled and unskilled labor.

The reason for the differences to the Solow model is that growth now depends on the distribution

of income. In the Diamond model with logarithmic utility, savings turn out to be a constant fraction

of wage income. We restrict our attention to this case. As in the Solow model, we assume θ 6= ψ

and θ, ψ 6= 0 as well as constant population growth and a constant fraction of unskilled labor.
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4.1 Existence and stability of steady states

With the two-factor CES function the model has one stable positive steady state if the elasticity

of substitution is greater or equal to one (⇔ ψ ≥ 0). Endogenous growth does not occur. If

the elasticity of substitution is smaller than one the model has either one stable and one unstable

positive steady state or it does not have any (Azariadis 1996 p.203.). With three inputs the average

wage w is the weighted sum of the two wage rates. The equation of capital accumulation is

kt+1 = syt(1 − πXt + πXt(1 − πKt)) = swt, (16)

and the condition for a steady state

sw∗ = k∗, (17)

where s is now the savings ratio out of wages only.

The stability of a steady state hinges on the derivative ∂w/∂k.

Proposition 4 In the Diamond model with constant savings out of wages and the two-level CES

function (3) the following holds:

(i) If θ and ψ are both positive, exactly one positive steady state exists and it is stable.

(ii) If θ and ψ have not the same sign, at least one positive steady state exists. The lowest and the

highest are stable.

(iii) If ψ and θ are both negative, there are either multiple positive steady states or none (except

for s∂w∂k only once tangent to kt = kt+1). In the case of multiple steady states the lowest is unstable

and the highest is stable.

(iv) Unstable steady states only occur if the aggregate elasticity of substitution σ is lower than the

capital share πXπK .

As πXπK and σ < 1 decline jointly in most cases, it is difficult to exclude more than one

unstable equilibrium analytically. But with plausible parameter values the condition for instability

will only be fulfilled for a small range of the capital stock. Unstable equilibria become impossible

as soon as the capital share has fallen below the lower bound of the elasticity of substitution. In

simulations we have never found more than one unstable equilibrium.
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4.2 Effects of substitution parameters on transition and the steady state

With two factors of production Miyagiwa and Papageorgiou (2003) and independently Irmen (2001)

have shown that the elasticity of substitution has a threshold above one (⇔ ψ > 0) for which its

impact on wages is always negative. It is moreover possible to show that irrespective of σ the

impact is negative for a certain range of k with k > k0.

With a fixed savings ratio capital accumulation depends only on the average wage w. Given a

capital stock kt > k0 the influence of a higher substitution parameter ψ on next period’s capital

stock kt+1 is
∂kt+1

∂ψ
= s

∂wt
∂ψ

, (18)

and analogously
∂kt+1

∂θ
= s

∂wt
∂θ

. (19)

Using results (24)-(23) from KL and omitting the time subscript we obtain from (16)

∂w

∂ψ
=

∂y

∂ψ
(1 − πXπK) − yπK

∂πX
∂ψ

= −
y

ψ2

(

πX ln

(

πX0

πX

)

+ (1 − πX) ln

(

1 − πX0

1 − πX

))

(1 − πXπK)

−yπKπX(1 − πX) ln

(

x

x0

)

, (20)

and

∂w

∂θ
=

∂y

∂θ
(1 − πXπK) − yπX

∂πK
∂θ

− yπK
∂πX
∂θ

−
y

θ2
πX

[

((1 − πK) + πK(1 − πX)(1 − ψ))

(

πK ln

(

πK0

πK

)

+ (1 − πK) ln

(

1 − πK0

1 − πK

))]

−yπXπK(1 − πK) ln

(

k

k0

)

. (21)

Proposition 5 In the Diamond model with constant savings out of wages and the two-level CES

function (3), ∂kt+1

∂ψ and ∂kt+1

∂θ are always negative in an interval (k0, k0 + ǫ], ǫ being an arbitrarily

small positive number.

Proposition 6a

(i) For k → ∞, ∂kt+1

∂ψ is positive if ψ < 0 or θ < 0, or if ψ > θ > 0.

(ii) For k → ∞, ∂kt+1

∂ψ is negative if θ > ψ > 0.
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Proposition 6b

(i) For k → ∞, ∂kt+1

∂θ is positive if ψ < 0 or θ < 0, or if θ > ψ > 0.

(ii) For k → ∞, ∂kt+1

∂θ is negative if ψ > θ > 0.

We are not able to exclude multiple changes in the sign of the derivatives in Proposition 6 an-

alytically. But in simulations we have not obtained multiple changes for k > k0. So far the

immediate impact of substitution parameters on the transitional growth rate kt+1

kt
has been exam-

ined, the results are easily extended to the impact on the steady state.

Proposition 7a An increase in ψ has a positive effect on a stable steady k∗ > k0 state and a

negative effect on an unstable steady state if

∂w

∂ψ |k=k∗
> 0.

An increase in ψ has a negative effect on a stable steady state k∗ > k0 and a positive effect on an

unstable steady state if
∂w

∂ψ |k=k∗
< 0.

Proposition 7b An increase in θ has a positive effect on a stable steady state k∗ > k0 and a

negative effect on an unstable steady state if

∂w

∂θ |k=k∗
> 0.

An increase in θ has a negative effect on a stable steady state k∗ > k0 and a positive effect on an

unstable steady state if
∂w

∂θ |k=k∗
< 0.



Two-level CES Production Technology in the Solow and Diamond Growth Models 14

0

k
t

dk
t+1

/dψ 

k
0
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Introducing the two-level CES function narrows down the range of parameter values for which

an increase in one of them can have a negative effect on transitional growth and stable steady

states independently of k. With two inputs a sufficient condition for this is σ > 1
π0

(Irmen 2001).

With three inputs, a more restricted necessary condition is obtained: Both parameters have to be

positive and the one that is increased has to be lower than the one that remains constant.

Under capital-skill complementarity there is always a capital stock k above which higher

substituability of unskilled labor rises transitional growth and stable steady states, even if both

substitution parameters are high. The reason is that wages of skilled labor remain high enough to

support capital accumulation. We can conclude that in most cases not the substitution parameters

alone but a low capital stock will be the reason for negative effects of higher substitution.

5 Conclusion

Motivated by revived interest in flexible aggregate production functions, we considered the

Solow and Diamond growth models under a two-level CES function. Existence and stability

conditions for steady states were derived. In addition, the effect of substitution parameters on

transitional growth and steady states was examined. Our results show that beyond using different

substitution parameters for skilled and unskilled labor to analyze distributional aspects, such as

wage differentials, we should also consider their effect on growth.
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Appendix

Results on the CES function with two factors

KL show the following results for the basic CES function. They are written down for both levels

of our function:

ỹ

ỹ0
=

y

y0
=

(

1 − πX0

1 − πX

) 1

ψ

,
x̂

x̂0
=

x

x0
=

(

1 − πK0

1 − πK

) 1

θ

(22)

x̃

x̃0
=

x

x0
=

(

πX(1 − πX0)

πX0(1 − πX)

) 1

ψ

,
k̂

k̂0

=
k

k0
=

(

πK(1 − πK0)

πK0(1 − πK)

) 1

θ

. (23)

∂πX
∂x

=
ψ

x
πX(1 − πX),

∂πK
∂k

=
θ

k
πK(1 − πK) (24)

∂πX
∂ψ

= πX(1 − πX) ln

(

x

x0

)

,
∂πK
∂θ

= πK(1 − πK) ln

(

k

k0

)

(25)

∂ỹ

∂ψ
= −

ỹ

ψ2

(

πX ln

(

πX0

πX

)

+ (1 − πX) ln

(

1 − πX0

1 − πX

))

∂x̂

∂θ
= −

x̂

θ2

(

πK ln

(

πK0

πK

)

+ (1 − πK) ln

(

1 − πK0

1 − πK

))

(26)

Proof of Lemma 1

The aggregate elasticity of substitution is defined as

σ =
w/r

k ∂w/r∂k

. (27)

As in the two-factor case

w

r
=

1 − πXπK
πXπK

k. (28)

We obtain the derivative of the capital share making use of (24):

∂πXπK
∂k

= πK
∂πX
∂x

∂x

∂k
+ πX

∂πK
∂k

= πK
ψ

x
πX(1 − πX)πK

x

k
+ πX

θ

k
πK(1 − πK)

=
πXπK
k

(ψπK(1 − πX) + θ(1 − πK)). (29)

With (28) and (29) we obtain

σ =
1 − πXπK

(1 − ψ)πK(1 − πX) + (1 − θ)(1 − πK)
.� (30)
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Proof of Lemma 2

With g = πK(1−πX)
1−πXπK

as the weight in the harmonic mean we rewrite the result from Lemma 1 as

1

σ
= (1 − θ) + (θ − ψ)g. (31)

We rewrite g as

g =
πK

1−πK
1−πX

+ πK
. (32)

If ψ and θ have opposing signs, the limits are straightforward. Note that for ψ > 0 > θ the limit

of πX for k → ∞ is lower than one because x is bounded. In this case

lim
k→0

g = 1 lim
k→∞

g = 0. (33)

For θ > 0 > ψ:

lim
k→0

g = 0 lim
k→∞

g = 1. (34)

If the substitution parameters have the same sign, we evaluate the limit of 1−πK
1−πX

using (22) and

(23):

1 − πK
1 − πX

= (1 − πK0)

(

πX0

1 − πX0

) θ
ψ
(

1

πX

) θ
ψ

(1 − πX)
θ
ψ
−1

(35)

Plugging the result into (32) we obtain: For ψ > θ > 0 and 0 > θ > ψ

lim
k→0

g = 0 lim
k→∞

g = 0, (36)

for θ > ψ > 0

lim
k→0

g = 0 lim
k→∞

g = 1, (37)

and for 0 > ψ > θ

lim
k→0

g = 1 lim
k→∞

g = 0. (38)

Plugging the results (33)-(38) into (31) yields Lemma 2 (i) and (ii).�
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Proof of Proposition 1

As Lu and Ls do not depend on ψ and θ, it follows from (26) that

∂y

∂ψ
> 0 (39)

and

∂x

∂θ
> 0. (40)

The impact of θ on y is obtained as

∂y

∂θ
=
∂y

∂x

∂x

∂θ
> 0.� (41)

Proof of Proposition 2

For θ, ψ > 0 we show the condition for endogenous growth

lim
k→∞

k̇

k
= lim

k→∞
sA



αBψ

(

β + (1 − β)

(

1 − u

k

)θ
)

ψ

θ

+ (1 − α)
(u

k

)ψ





1

ψ

− (n+ δ) > 0

⇔ Aα
1

ψBβ
1

θ >
n+ δ

s

(42)

If θ, ψ < 0 the condition for the existence of a positive steady state k∗ is

lim
k→0

sA













1

αBψ

(

β + (1 − β)
(

k
1−u

)−θ
)
ψ

θ

+ (1 − α)
(

k
u

)−ψ













− 1

ψ

− (n+ δ) > 0

Aα
1

ψBβ
1

θ >
n+ δ

s
. (43)

If ψ < 0 and θ > 0, we see that the condition for endogenous growth is never fulfilled

lim
k→∞

sA











1

1

αBψ
�
β+(1−β)( 1−u

k )
θ
�
−
ψ
θ

+ (1 − α)
(

k
u

)−ψ











− 1

ψ

− (n+ δ) = −(n+ δ), (44)
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and a steady state k∗ always exists

lim
k→0

sA











1

1

αBψ
�
β+(1−β)( 1−u

k )
θ
�
−
ψ
θ

+ (1 − α)
(

k
u

)−ψ











− 1

ψ

− (n+ δ) = ∞− (n+ δ) > 0. (45)

In an analogous way it is shown that a steady state always exists for ψ > 0 and θ < 0. From (44)

and (45) follows easily that endogenous growth never occurs if both parameters are negative and

that k∗ > 0 if at least one parameter is positive.

Part (iv) follows from the declining marginal product of capital.�

Proof of Proposition 3

sy∗ = (n+ δ)k∗ (46)

⇔ I(θ, ψ, k∗) = y∗ −
n+ δ

s
k∗ = 0. (47)

Because (46) is fulfilled for every k∗, dI=0 for any variation of θ or ψ.

∂I

∂θ
+

∂I

∂k∗
∂k∗

∂θ
= 0

⇔
∂y

∂x

∂x

∂θ |k=k∗
+

[

∂y

∂x

∂x

∂k |k=k∗
−
n+ δ

s

]

∂k∗

∂θ
= 0 (48)

and

∂k∗

∂θ
= −

(

∂y
∂x

∂x
∂θ

∂y
∂x

∂x
∂k − n+δ

s

)

|k=k∗

(49)

It follows from the positive marginal product of y and (26) that ∂y
∂x

∂x
∂θ is positive. The condition

for ∂k∗

∂θ > 0 is therefore

∂y

∂x

∂x

∂k |k=k∗
<
n+ δ

s
. (50)

Replacing with (46) yields

∂y

∂x

∂x

∂k |k=k∗
<
y∗

k∗
. (51)
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It means that the marginal product is lower than the average product. As the two-level CES

function has a declining marginal product for ψ < 1 and θ < 1, it is true. The derivative with

respect to ψ follows analogously from

∂I

∂ψ
+

∂I

∂k∗
∂k∗

∂ψ
= 0.� (52)

Proof of Proposition 4

From the steady state condition (17) follows

s(1 − πXπ
∗
K)y∗ = k∗ ⇔

1

s
= (1 − πXπ

∗
K)
y∗

k∗
(53)

A steady state is stable if and only if

∣

∣

∣

∣

s
∂w

∂k

∣

∣

∣

∣

k=k∗
< 1

⇔
(

sπXπK
y

k
[(1 − ψ)(1 − πX)πK + (1 − θ)(1 − πK)]

)

|k=k∗
< 1. (54)

To obtain (54) we used ∂y
∂x

∂x
∂k = πXπK

y
k and (29).

To proof (i)-(iii) we study the limiting behavior of ∂w/∂k. From Proposition 2 follows: If at least

one parameter is negative, the marginal product of capital πXπK
y
k converges to a positive finite

value for k → 0 and to zero for k → ∞. If both parameters are positive, it converges to infinity for

k → 0 and to a positive finite value for k → ∞. Evaluating the marginal product and the income

shares in (54) we obtain limk→∞

(

s∂w∂k
)

= 0 irrespective of ψ and θ. If θ, ψ < 0 limk→0

(

s∂w∂k
)

= 0.

If at least one parameter is positive limk→0

(

s∂w∂k
)

= ∞. As ∂w
∂k is continuous, part (i)-(iii) follows.�

To show (iv) we plug (53) and the aggregate elasticity of substitution from Lemma 1 into (54) and

obtain the following necessary and sufficient condition for stability:

π∗

σ∗
< 1 ⇔ π∗ < σ∗. (55)

Part (iv) follows.�
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Proof of Proposition 5

At k = k0 and x = x0,
∂w
∂ψ and ∂w

∂θ are 0 because the logarithms in (20) and (21) are 0.

With ΦX = πX ln
(

πX0

πX

)

+ (1 − πX) ln
(

1−πX0

1−πX

)

(20) is rewritten as

∂w

∂ψ
= −

y

ψ2
(1 − πX)(πXπK)

[

ΦX
1 − πKπX

πKπX(1 − πX)
+ ψ2 ln

(

x

x0

)]

(56)

The term − y
ψ2 (1 − πX) remains negative as k increases. As Irmen (2001) we differentiate the

expression in brackets with respect to k.

∂[...]

∂k
=

∂ΦX

∂πX

∂πX
∂k

(

1 − πKπX
πKπX(1 − πX)

)

+ ΦX

∂ 1−πXπK
πXπK(1−πX)

∂k
+
ψ2

x

∂x

∂k

= ln

(

πX0(1 − πX)

πX(1 − πX0)

)

∂πX
∂k

(

1 − πKπX
πKπX(1 − πX)

)

+ ΦX

∂
(

1−πXπK
πXπK

)

∂k
+
ψ2

x

∂x

∂k

(57)

For k = k0, x = x0 follows

∂[...]

∂k
= 0 + 0 +

ψ2

x0
> 0 ⇔

∂w

∂ψ
< 0. (58)

The results for a change in θ are obtained in the same way. Again ∂w
∂θ is zero at the baseline point.

As the derivatives of πX , πK and ΦK with respect to k are zero at this point, ∂2w
∂θ∂k is negative. For

k0 + ǫ, ∂w
∂θ is thus negative.�

Proof of Proposition 6 a and b

Using (23) we rewrite (20) as

lim
k→∞

∂w

∂ψ
= lim

k→∞

(

−y

ψ2

)

[

(

πX ln

(

πX0

πX

)

+ (1 − πX) ln

(

1 − πX0

1 − πX

))

(1 − πXπK)

+ ψπKπX(1 − πX) ln

(

πX(1 − πX0)

πX0(1 − πX)

)

]

. (59)

For θ < 0 or ψ < 0, y has an upper bound and πXπK converges to zero. In functions of the type

z ln z the logarithm converges more slowly, limz→0 z ln z = 0. The expression in square brackets

converges thus to lnπ0 or ln (1 − π0).

If both parameters are positive, the aggregate elasticity of substitution plays a central role through
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its weighting variable g = πK(1−πX)
1−πXπK

.

For the case that ψ > θ > 0 we rewrite (59)

lim
k→∞

∂w

∂ψ
= lim

k→∞

(

−y

ψ2

)

(1 − πXπK)

[

(

πX ln

(

πX0

πX

)

+ (1 − πX) ln

(

1 − πX0

1 − πX

))

+gπX ln

(

πX(1 − πX0)

πX0(1 − πX)

)

]

. (60)

With (22) we see that in y(1 − πX) the convergence of y to infinity dominates for 1 > θ, ψ > 0.

Because (1− πXπK) = 1− πX + πX − πXπK also y(1− πXπK) converges to infinity. From Lemma

1 and 2 (ii) follows that for ψ > θ > 0, g converges to 0. Because of the properties of the natural

logarithm it converges faster than ln
(

πX(1−πX0)
πX0(1−πX)

)

. Thus for ψ > θ > 0

lim
k→∞

∂w

∂ψ
= −∞[lnπ0 + 0] = ∞.� (61)

For θ > ψ > 0 we rewrite

lim
k→∞

∂w

∂ψ
= lim

k→∞

(

−y

ψ2

)

(1 − πX)πK

[

(

πX ln

(

πX0

πX

)

+ (1 − πX) ln

(

1 − πX0

1 − πX

))

1

g

+πX ln

(

πX(1 − πX0)

πX0(1 − πX)

)

]

. (62)

From Lemma 1 and 2 (i) follows that for θ > ψ > 0, g converges to 1. Thus Proposition 6 a (ii)

follows:

lim
k→∞

∂w

∂ψ
= −∞[lnπ0 ∗ 1 + ∞] = −∞.� (63)
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Proposition 6 b for ∂w
∂θ is obtained in an analogous way. With (23) we rewrite (21)

∂w

∂θ
= −

y

θ2
πX

[

((1 − πK) + πK(1 − πX)(1 − ψ))

(

πK ln

(

πK0

πK

)

+ (1 − πK) ln

(

1 − πK0

1 − πK

))

+θπK(1 − πK) ln

(

πK
πK0

1 − πK0

1 − πK

)

]

(64)

For ψ or θ < 0 one sees that limk→∞

(

∂w
∂θ

)

> 0.

For ψ, θ > 0 the proof is analogous to 6 a. The behavior of g
1−g is considered.�

Proof of Proposition 7 a and b

From the steady state condition (17) we obtain with the implicit function theorem

∂k∗

∂ψ
=

(

s∂w∂ψ

1 − s∂w∂k

)

|k=k∗

. (65)

and the analogous derivative for θ. Propositions 7a and b follow using Propositions 5, 6a and 6b.�
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