View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

DEPARTMENT OF ECONOMICS WORKING PAPER SERIES

The Role of Beliefs and Confidence in Building Social
Networks

Robert P. Gilles
Virginia Tech University

Sudipta Sarangi
Louisiana State University

Working Paper 2005-15
http://www.bus.lsu.edu/economics/papers/pap05 15.pdf

Department of Economics
Louisiana State University
Baton Rouge, LA 70803-6306
http://www.bus.lsu.edu/economics/



https://core.ac.uk/display/7210178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bus.lsu.edu/economics/papers/pap05_15.pdf

The Role of Beliefs and Confidence
in Building Social Networks*

Robert P. Gilles' Sudipta Sarangit

September 5, 2005

Abstract

We examine the process of building social relationships in a non-cooperative
game where such link formation is costly and requires mutual consent. We pro-
vide a noncooperative foundation for several link-based network stability con-
cepts that have been studied in the literature on network formation. In our
model players form myopic beliefs about the feasibility of building direct rela-
tionships with their acquaintances. These beliefs represent how each neighbor of
a player is expected to respond to the initiation of a link by that player. We intro-
duce a stability concept called “monadic stability” where agents play a best re-
sponse to their formed myopic beliefs such that these beliefs are self-confirming.
The resulting equilibrium networks form a class of networks that are shown to
have some very appealing properties.
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1 Trust and link formation

The major thrust of the recent literature on network formation addresses the fun-
damental conflict between stability and efficiency. (Jackson 2005) This analysis is
mainly based on link-based analysis of network stability. Relatively little attention
has been given to how individuals actually build and maintain social relationships.
Jackson and Watts (2002a) and Baron, Durieu, Haller, and Solal (2004) have ex-
amined the evolutionary process of network formation. Page, Wooders, and Kamat
(2005) introduce farsightedness into the process of network formation. However,
these contributions do not investigate in detail how a link is established between two
independent, free and rational individuals. (See also Page and Kamat (2005).)

In this paper we study how links, being the basic building blocks of social net-
works, are formed. We develop a model based on the hypothesis that the creation of
social ties requires some prior interaction, and therefore the process of link forma-
tion under mutual consent principally occurs between social acquaintances. It is well
established that social networks do not emerge among random strangers, but are
primarily formed between acquaintances. This literature is founded on Granovetter
(1973) and confirmed empirically by Friedkin (1980), Wellman, Carrington, and Hall
(1988), and Tyler, Wilkinson, and Huberman (ZOOB)EI Consequently, it is reasonable
to assume that each player has knowledge about the payoffs of other players, and can
formulate expectations about their behavior before undertaking costly actions. From
this viewpoint our contribution fits very well with the theory developed in Brueck-
ner (2003), which is based on the principle that social links are indeed formed only
between acquaintances.

We assume that players have simple, myopic beliefs about how their acquain-
tances will respond if a link is initiated. These beliefs only take into account the
direct benefits that the addition or removal of a single link has for the payoffs of the
other players. Hence, beliefs are based only on the first order marginal payoffs that
can be assigned to links. While these beliefs are myopic it can be argued that they
are realistic and can be formed even in the absence of substantial interaction among
these individuals.

Next we assume that players respond fully rationally to the myopic beliefs that
they have formed about the process of link formation. Hence, decision makers, after

forming their myopic beliefs about other individuals and anticipating their actions,

!More recently new methodologies have been developed to detect community structures in social
networks for testing such hypotheses. We refer to Newman and Girvan (2004) and Newman (2004) for
the details of this methodology.



subsequently formulate their best response given these anticipations. This implies
that individual 1i initiates links with only those individuals that i thinks will benefit
from those (direct) links. In doing so the initiating individual assumes that the re-
spondent will consent to the link and, hence, the incurred link formation costs will
not be invested in vain. This form of sequential rationality that leads to the formation
of the network constitutes the basis of a stability notion called monadic stability.

Formally in the paper we distinguish between two forms of monadic stability.
First we only consider the networks that are supported through a (myopic) belief
system to which all players formulate a best response. These weakly monadically
stable networks can be interpreted as the steady states of a learning process based
on the formation of myopic belief systems. Weak monadic stability still leads to a
relatively large and unappealing class of networks. Moreover, while these networks
might be steady states of a learning process, they only become true equilibria if the
anticipation behavior according to the myopic belief are confirmed in the actually
played actions. Thus, weak monadic stability demonstrates the fact that networks
amongst mere acquaintances may not always have very desirable properties.

These considerations lead to a second concept, which is simply called “monadic
stability”. Monadically stable networks are steady states of the myopic learning
process in which the beliefs of the individual players are confirmed. Hence, these
networks are supported through the self-confirming equilibria (Fudenberg and Levine
1993) of the learning process based on these myopic belief systems. It should be ev-
ident that the myopically stable networks are the only ones that can be seen as the
equilibrium networks based on the introduced belief systems.

We study the process of link formation in the context of the consent model of
network formation with two-sided costs first developed in Gilles, Chakrabarti, and
Sarangi (2005). This model is based on three simple and realistic principles encom-
passing real-world networks: (1) Link formation should be based on a binary process
of consent. (2) Link formation should in principle be costly. (3) The payoff structure
of network formation should be as general as possible.

In the model a link between any two players i and j is only established when
player j is willing to accept the link initiated by player 1 or vice versa. As suggested
by the second principle, link formation is costly. Costs depend on the strategies cho-
sen by the player in the link formation process and are incurred independent of the
outcome, i.e., even if a link is not established the initiating player still has to pay for
the act of trying to form that link. In the model both players bear an individually
determined cost of link formation. It is due to these two principles that beliefs play a
significant role in the process of link formation.



Following our third modeling principle, we consider a very general payoff struc-
ture that has two components — an arbitrary benefit function and additive link for-
mation costs Note that benefits depend on the resulting network, and the costs
on the link formation strategies chosen by the players. The generality of the payoff
functions adds to the strength of our results.

In Gilles, Chakrabarti, and Sarangi (2005) we show that in general the consent
model has a multitude of Nash equilibria and, consequentially, is not discerning.
Moreover, the empty network is supported by a strict Nash equilibrium. Hence it
is important to understand how link formation leading to a network occurs. In this
paper we show that the introduction of a myopic form of confidence about the re-
sponses of other players in process of link formation suffices to reduce the number of
equilibrium networks. We are able to give a complete characterization of the class of
monadically stable networks. Our main result is that this class is exactly the family of
strictly* pairwise stable networks. These networks form a strict subset of the class of
pairwise stable networks (Jackson and Wolinsky 1996) and have very strong stabil-
ity properties. However, due to these strong stability properties, the class of strictly*
pairwise stable networks might be empty for many network formation situations. But
if there exist such networks, they form the most plausible networks to be formed. For
a complete analysis of these various classes of stable networks we refer to Gilles and
Sarangi (2005).

Another advantage of our model is that we differentiate between familiarity among
individuals who can at best only be acquaintances, and the possibility of explicitly
creating a mutually beneficial but costly relationship between these individuals. The
literature on game theoretic approaches to network formation often allows links cho-
sen by players to be interpreted as confirmations of already established relationships
that occur in a non-modelled process prior to the formulated game Thus, our ap-
proach is more in line with Brueckner (2003), who categorically distinguishes the
set of acquaintances a player has, from the friendship links she establishes between
them. This also places our approach within the context of Granovetter’s notion of
strong social ties. (Granovetter 1973)

Finally, our approach could be interpreted as a starting point for creating a better
understanding of the role of trust in network formation. Namely, following Schu-

2An arbitrary cost structure would require costs to be dependent on the outcome. The payoff speci-
fication then would become game dependent forcing us to give up generality in the results. We believe
that the chosen payoff structure based on arbitrary benefits and additive link formation costs has the
added advantage of capturing what genuinely occurs in a realistic process of link formation.

3This is, for example, the foundation for the notion of two-way flow Nash networks introduced by
Bala and Goyal (2000) where a link initiated an agent functions like a telephone call.



macher (2003), we identify four main characteristics of trust that are represented
in our approach: First, players make decisions based on their beliefs about others
without being really familiar with them. Hence such decision-making is fraught with
uncertainty. Second, the player initiating the link is vulnerable since links are costly
and can be turned down. Thus in order to initiate links players must have confidence
in their respondents. This already forms the starting point for studying trust in net-
work formation. Third, since players have beliefs about their acquaintances there is a
certain degree of predictability. This is also related to the underlying hypothesis that
all players are acquaintances of each other. Fourth, the environment is characterized
by interdependence and mutuality since the social network is formed through a link
formation process based on mutual consent.

2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-
cooperative games and networks. The section concludes with a brief overview of
the consent model of network formation with two-sided costs. We follow the nota-
tion and terminology outlined in Jackson (2005) and Gilles, Chakrabarti, and Sarangi
(2005).

2.1 Non-cooperative games

A non-cooperative game on a fixed, finite player set N = {1,...,n} is given by a
list (A4, 71)ien Where for every player i € N, A; denotes an action set. For every
ac€ Aandie N,weuse a i = (ar,...,ai1,0dis1,...,0n) € A = ]_[j#Aj to
represent the actions selected by the players other than i. Let 7t;: A — R denote
player 1’s payoff function with A = A; x --- x A, being the set of all action tuples,
and 7t = (my,...,7m): A — RN be the composite payoff function.

An action a; € A; for player i € N is called a best response to a_; € A_; if for
every action b; € A; we have that 7ti(ai, a_;i) > 7i(by, a_4). An action tuple @ € A is
a Nash equilibrium of the game (A, 7t) if for every player i € N

(@) > myi(by, @) for every action b; € Aj.

Hence, a Nash equilibrium @ € A satisfies the property that for every player i € N
the action @; is a best response to @_;.



2.2 Networks

In introducing the basic networks terminology we use established notation from Jack-
son and Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2005). The reader
may refer to these sources for a more elaborate discussion.

We limit our discussion to non-directed networks on the player set N. In such
networks the two players making up a single link are both equally essential and the
links have therefore a bi-directional nature. Formally, if two players i,j € N with 1 # j
are related we say that there exists a link between players them. We use the notion of
a link to formalize the presence of some social relationship between individuals i and
j. We use the notation ij to describe the binary link {i, j}. Let gy = {ij | i,j € N, 1 #j}
be the set of all potential links.

A network g on N is now introduced as any set of links g C gn. In particular, the
set of all feasible links gy itself is called the complete network and go = @ is known
as the empty network. The collection of all networks is defined as

GN={glgCgnl

The set of (direct) neighbors of a player i € N in the network g is given by
Ni(g) ={ie N|ij e gjC N.

Similarly we introduce

Lilg) ={ij e gn|j € Nilg)} Cg

as the link set of player i in the network g. It only contains links with i’s direct
neighbors in g. We apply the convention that for every player i € N, L; = Li(gn) =
{ij | 1 #j} is the set of all potential links involving player 1.

For every pair of players i,j € N with 1 # j we denote by g + ij = g U {ij} the
network that results from adding the link ij to the network g. Similarly, g—1ij = g\{ij}
denotes the network obtained by removing the link ij from network g.

Relationship building—formalized in a link formation process—results into a network
and within a network, benefits for the players are generated depending on how they
are connected to each other. For every player i € N, the function o;: GN — R
denotes her network payoff function. This function assigns to every network g C gn
a value oi(g) that is obtained by player i when she participates in network g. The
payoffs obtained through the function o;(g) should be interpreted as the net payoffs
that player i realizes through participating in the network g, i.e., player i’s gross
benefits from network g minus all costs of participating in g induced by player i.



The composite network payoff function is now given by ¢ = (071,...,0n): GN —
RN. Note that the empty network gy = @ generates (reservation) values o(go) € RN
that might be non-zero.

Several examples of standard network payoff functions for both noncooperative
and cooperative games are reviewed in Jackson (2005). Additionally, in van den
Nouweland (1993), Dutta, van den Nouweland, and Tijs (1998), Slikker (2000),
Slikker and van den Nouweland (2000), and Garratt and Qin (2003) these network
payoff functions are based on underlying cooperative games from where a lot of the
networks literature originated. For a review of this strand of the literature we refer
to van den Nouweland (2005).

2.3 Link-based stability concepts

We now present the definition of several stability conditions. We begin by introducing
stability concepts that allow for adding and breaking links separately before consid-
ering them together. Note that the stability concepts introduced below are based on
the properties of the network itself rather than strategic considerations of the players.
This latter viewpoint has been introduced seminally by Jackson and Wolinsky (1996)
and is further advocated in Jackson and Watts (2002b), Jackson (2005), and Bloch
and Jackson (2004).

First we introduce some auxiliary notation: Let o: GN — RN be some network
payoff function. For a given network g € G, we now define the following concepts
for o:

(a) For every ij € g the marginal benefit of this link for every player i € N is given
by

Di(g,1j) = oi(g) — oi(g —1j) € R. (1)

(b) For every player i € N and link set h C Li(g) the marginal benefit to player i
of the link set h in g is given by

Di(g,h) = oi(g) —oi(g—h) € R @

Using these additional tools we can give a precise description of the various link-
based stability concepts.

Definition 2.1 Let o be a network payoff function on the player set N.



(a) A network g C gy is link deletion proof for ¢ if for every player i € N and
every j € Ni(g) it holds that Di(g,1j) > 0.
Denote by D(o) C GN the family of link deletion proof networks for o.

(b) A network g C gy is strong link deletion proof for o if for every player i € N
and every h C Li(g) it holds that Di(g,h) > 0.
Denote by Ds(c) C GN the family of strong link deletion proof networks for o.

(c) Anetwork g C gn is link addition proof if for all players i,j € N: oi(g +1j) >
oi(g) implies oj(g +1ij) < oj(9).
Denote by A(c) C GN the family of link addition proof networks for o.

(d) Anetwork g € GN is strict link addition proof for ¢: GN — Riifforalli,j € N
it holds that ij ¢ g implies that oi(g + ij) < 0i(g).
Denote by Ag(o) C GN the family of strict link addition proof networks for o.

() A network g € GN is strict* link addition proof for ¢: GN — R if for all
1,j € N it holds that ij ¢ g implies that oi(g + ij) < oi(g).
Denote by A%(c) C GN the family of strict* link addition proof networks for o.

The two link deletion proofness notions are based on the severance of links in a
network by individual players. In particular, the notion of link deletion proofness
considers the stability of a network with regard to the deletion of a single link. This
concept was seminally introduced in Jackson and Wolinsky (1996). Strong link dele-
tion proofness considers the possibility that a player can delete any subset of her
existing links. Clearly, strong link deletion proofness implies link deletion proof-
ness. For further details on this concept we refer to Gilles, Chakrabarti, Sarangi, and
Badasyan (2005) and Bloch and Jackson (2004).

Similarly, link addition proofness (Jackson and Wolinsky 1996) considers the ad-
dition of a single link by two consenting players to an existing network. A network
is link addition proof if for every pair of non-linked players, at least one of these two
players has negative benefits from the addition of a link between them. Hence, in a
network requiring consent this link will never be added. Strict link addition proofness
that when adding a non-existent link both players have non-positive payoffs.

Strict link addition proofness requires that for every pair of non-linked players,
both of these players have non-positive benefits from adding the link between them,
i.e., it requires that neither player wants to add a link. Clearly in a network requiring
consent this link will never be added making it a significant strengthening of the link
addition proofness requirement.



Strict* link addition proofness is a new concept, which has not yet been consid-
ered in the literature. It is a stronger condition than strict addition proofness in the
sense that any link that is added to the network leads to strictly negative marginal
benefits for the participating players. It is clear that A¥(c) C As(o) C A(o).

The simplest notion combining both addition and deletion proofness was seminally
introduced by Jackson and Wolinsky (1996) as a stability concept called pairwise
stability. It combines link deletion proofness with link addition proofness. Given that
these two proofness conditions can be strengthened in various ways it is possible to
define a variety of modifications of this concept. We now present some definitions
below.

Definition 2.2 Let o be a network payoff function on the player set N.

(@) A network g € GN is pairwise stable for o if g is link deletion proof as well as
link addition proof.
Denote by P(o) = D(c) N .A(c) C GN the family of pairwise stable networks for
the payoff function o.

(b) A network g € GN is strictly pairwise stable for o if g is strong link deletion
proof as well as strict link addition proof:
Denote by Ps(0) = Ds(c) N As(o) € GN the family of strict pairwise stable
networks for the payoff function o.

(¢) A network g € GN is strictly* pairwise stable for o if g is strong link deletion
proof as well as strict* link addition proof.
Denote by P*(0) = Ds(o) N A%L(o) C GN the family of strict* pairwise stable
networks for the payoff function o.

In the present paper we focus on the strongest combined requirement—strictly* pair-
wise stable networks. Given that players use the simplest myopic beliefs to activate
links, it is reasonable to use such a strong requirement. Normally the class of strict*
pairwise stable networks is a strict subset of the family of pairwise stable networks.
It is possible that in many cases this class is empty. We therefore first address the
question when these two classes of networks coincide. We identify three conditions
under which the main proofness conditions result into the same networks.

First, the network payoff function o is network convex if for every network g € GV,
every player i € N and every link set h C Li(g):

Z Di(g,1j) > 0 implies Di(g,h) > 0.
ijeh



Second, the network payoff function ¢ is link uniform if for every network g € GV,
and all players i,j € N with ij ¢ g it holds that

0i(g) < oi(g +1j) implies 03(g) < 03(g +ij).
With these properties we can now state an equivalence result.
Proposition 2.3 Let the network payoff function ¢ be link uniform.

(a) Let o be discerning in the sense that for every link addition proof network g €
A(o) it holds that for all i,j € N with ij ¢ g it does not hold that oi(g) =
0i(g +1j) as well as oj(g) = 05(g + 1j). Then it holds that A%(c) = A(o).

(b) If ois discerning on A(c) as well as network convex, then it holds that

P;(0) = Ps(0) = P(0).

Proof. The proof of this equivalence result is fully based on the Equivalence Theorem
in Gilles and Sarangi (2005).

To show assertion (a), we first refer to assertion (b) of the Equivalence Theorem
in Gilles and Sarangi (2005) which concludes that under link uniformity it holds
that A(o) = As(o). Hence for any network g € A(o) and ij ¢ g it holds that
oi(g) > oi(g +1ij) as well as o3(g) > o05(g + ij). Also by link uniformity we deduce
that

oi(g) = oi(g +1ij) implies oj(g) < oj(g +1j) < oj(g),

which in turn implies that oj(g) = o0j(g + 1j). This contradicts that o is discerning
on A(o). Hence, 0i(g) < oi(g + 1j) as well as oj(g) < oj(g + 1j). This implies that
g € A%(o). We now conclude that

Ajs(o) C As(o) = Alo) C Ai(o).

which implies the assertion.

To show assertion (b) of Proposition we note that this is an immediate con-
sequence of assertion (a) above and assertion (a) of the Equivalence Theorem in
Gilles and Sarangi (2005), which states that network convexity implies equivalence
of strong link deletion proofness and link deletion proofness. ]



2.4 The consent model of network formation

We base our analysis of confidence in link formation in the setting of the “con-
sent model of network formation” with two-sided link formation costs. In Gilles,
Chakrabarti, and Sarangi (2005) we provide a non-cooperative model of network for-
mation under consent based on Myerson’s model of network formation under binary
consent (Myerson 1991, page 448). Myerson’s model incorporates the fundamental
idea that pairs of players have to agree mutually on building links in any process
of network formation. In Gilles, Chakrabarti, and Sarangi (2005) we extended this
approach by introducing additive link formation costs. Here we provide a brief sum-
mary of this model.

Let N = {1,...,n} be a given set of players and ¢: GN — RN be a fixed, but
arbitrary network payoff function representing the gross benefits that accrue to the
players in a network. For every player i € N, we introduce individualized link forma-
tion costs represented by c; = (cyj)j4 € RT\M. (Here, for some links ij € gy it might
hold that ci; # cji.) Thus, the pair (@, c) represents the basic benefits and costs of
link formation to the individuals in N.

For every player i € N we introduce an action set

A= {(ly)j4 | &5 €{0,1}} 3)

Player i seeks contact with player j if {;; = 1. A link is formed if both players seek
contact, i.e., {; = &1 = 1.
Let A = [ [icn At where { € A. Then the resulting network is given by

gl) ={egnlly=1Li=1} “@

as stated, link formation is costly. Approaching player j to form a link costs player i
an amount cy; > 0. This results in the following game theoretic payoff function for
player 1i:
m(0) = @ilg(0) = Y - cy )
A
where c is the link formation cost introduced at the beginning of this section.

The pair (@,c) thus generates the non-cooperative game (A, ) as described
above. We call this non-cooperative game the consent model of network formation
with two-sided link formation costs, or for short the “consent model”[| We summarize
the characterization of the Nash equilibria of the consent model.

*While we limit our discussion to the two-sided cost setting in the current paper, Gilles, Chakrabarti,
and Sarangi (2005) also discuss the consent model with one-sided link formation costs. Due to severe
coordination problems this model performs even worse than the model with two-sided link formation
costs.
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Lemma 2.4 (Gilles, Chakrabarti, and Sarangi 2005) Let ¢ and c > 0 be given as
above. A network g C gy is supported by a Nash equilibrium in the consent model
(A, m) if and only if g is strong link deletion proof for the net payoff function \ given by

Pilg) = @ilg) — Y ¢y
j€Ni(g)
For a proof of this result we refer to Gilles, Chakrabarti, and Sarangi (2005).

A consequence of Lemma is that the empty network go = & is supported
as a Nash equilibrium in the consent model (A,7). Furthermore, gy can even be
supported through a strict Nash equilibrium. This is a very undesirable result from
the consent model; it implies that equilibrium concepts based on different notions of
stability have to be developed to explain the emergence of non-trivial social networks.

3 Monadic stability

In this section we introduce an equilibrium concept for network formation models
that incorporates a (limited) form of boundedly rational anticipation or “myopic con-
fidence” into the process of link formation. This equilibrium concept, called monadic
stability, captures the idea that social networks are mainly formed between acquain-
tances who have already have some beliefs about each other. Hence, our main mod-
eling assumption is that social networks arise only from links between a priori ac-
quaintances and not among random strangers.

That social relations are mainly formed between acquaintances is confirmed em-
pirically by Wellman, Carrington, and Hall (1988) using data from the East York
area. This approach also forms the foundation of the model in Brueckner (2003),
who models friendship based on links between players chosen from a given set of
acquaintances. In the context of our model, it is assumed that all players in N are ac-
quainted with each other without explicitly modeling how they get acquainted with
each other. Moreover, we assume that each player has knowledge about the payoffs
of the other players and formulates expectations about how the other players will
respond to link proposals.

Under monadic stability, a player assumes that other players are likely to respond
affirmatively to a proposal to form a link if the addition of this link is profitable for
them, i.e., only the implications of direct links affect the expectations. Note that since
further consequences are not taken into account, this form of behavior introduces a
rather myopic form of forward looking behavior. This limited form of farsightedness
thus models the anticipation of a player in a very specific manner—these beliefs

11



assume that other players will do the “correct” thing when asked whether to form
a link or not based only on that link. Also, this formulation of the belief structure
retains a fair degree of realism in the model.

We now formalize these myopic belief systems for the case of two-sided link for-

mation costs.

Let (¢,c) be a network payoff function and link formation cost. Let (A, ) be the
consent model with two-sided link formation costs generated by (¢, c).

Within this setting we are now able to introduce myopic beliefs of players regard-
ing the actions undertaken by the other players in the network formation process.
This forms the foundation for the formulation of confidence in link formation.

Definition 3.1 Let { € A be an arbitrary action tuple. For every player i € N we define
i’s belief system as expectations about direct links {* € A based on { by

(i) foreveryj #iwithij € g({) we let

o U =0if @j(g(l) —ij) + ;i > ;(g(0)) and
° ﬂ}i*: if @;(g(l) —1j) +c5i < @;(g(l)),

(i) foreveryj #iwithij & g({) we let

* ﬂ}i*:()if@j(g(ﬂ)‘i'iﬂ—cii< ®;(g(L)) and
o =11 @i(g(0) +1ij) — ;i > @;(g(0)),

(iii) and for allj,k € N with j # 1 and k # 1 we define E}ﬁ = .

In the myopic belief system introduced here each player assumes that other players
will respond according to their direct incentives to form a link or not. Of course, these
beliefs are rather limited since they may seem unreasonable if players can engage in
some forward looking behavior. On the other hand, these beliefs are myopic and
rather simple and can arise in the absence of substantial interaction among agents,
i.e., even among mere acquaintances. Hence, these beliefs form an excellent starting
point for link formation. The definition used allows for a sequential form of rational-
ity in the reasoning of the players during the network formation process which is at
the foundation of the following definitions of stability.

Definition 3.2 Let (¢, c) be given.

(@) A network g € GN is weakly monadically stable if there exists some action
tuple T € A such that g = g(?) and for every player i € N: {; € A; is a best
response to @i_*i € A_; for the payoff function .

12



(b) A network g € GN is monadically stable if there exists some action tuple { € A
with g = g(1) for which g is weakly monadically stable such that for every player
i € N player i’s myopic beliefs T* are confirmed, i.e., for every j # i it holds that
o =15
Weak monadic stability of a network is founded on the principle that every player
i € N anticipates—as captured by her expectations about direct links—that other
players will respond “correctly” to her attempts to form a link with them. Note that
{_; is fully replaced by (*; in the standard best-response formulation of equilibrium
for player i and is therefore irrelevant for the decision making process of i. Hence,
a player will agree to form a link with i when it is myopically profitable to form this
link. Similarly, unprofitable direct links initiated by i will be turned down.

Monadic stability strengthens the above concept by requiring that the beliefs of
each player are confirmed in the resulting equilibrium. Hence, we impose a self-
confirming condition on the equilibrium. This describes the situation that all players
are fully satisfied with their beliefs; the observations that they make about the re-
sulting network confirm their beliefs about the other players’ payoffs. This can be
explained as the outcome of a process of updating the initial beliefs. The notion
of self-confirming equilibrium was developed seminally by Fudenberg and Levine
(1993).

To delineate the two monadic stability concepts for networks, we discuss a three
player example. This example shows that the set of monadically stable networks is
usually a strict subset of the weakly monadically stable networks.

Example 3.3 Consider three players N = {1,2 3} and assume that c;; = 1 for all
players i € N and all potential links ij € L, i.e., we assume uniform link formation
costs. Let the network payoff function ¢ be given by the table below. This table
identifies whether the network in question is weak monadically stable—indicated by
M,,—or whether it is monadically stable—indicated by M.

Network ©1(g) | ©2(9) | @3(g) || Stability
Jo=0 0 0 0 My
g1 ={12) 0 3 0

g2 = {13} 0 0 3

g3 = {23} 0 0 0

gs=1{12,13} | 3 0 0

g5 =1{12,23} | 2 3 3

ge=1{13,23} | 2 2 5 My
97 = gN 3 5 6 M

—
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We consider four networks in this example explicitly, namely go, g5, g¢ and g7 = gn.

Network go: First we claim that this network is strongly pairwise stable for the given
payoff structure. Indeed, it is trivially SLDP and, given the network payoff
function, it is link addition proof as well.

Second, we argue that this network is weakly monadically stable. We claim that
it is supported by the strategy tuple ¢, = ((1, 1), (0,0), (0,0)). Now we compute

£(1)* - (_) (]>0)) (1)0))
62* - ((O)])>_) (070))
£3* — ((])O)>(O)O)v_)

We emphasize that in this case Player 1 believes that both other players are
willing to make links with him, because there are direct benefits to forming
such links. However, the other players believe that Player 1 will not attempt to
make a link with them, because she has no direct (net) benefit from doing so.
Now we determine that

« B1 (L) =
o B> (B%*) = (0,0) is the unique best response to E(z)*, and
¢ B (1) -

Observe that Player 1 incurs link formation costs in this case and, hence, 711 (£o)
—2 and 7'[2(20) = 7'[3(30) =0.
Also, note that gg is not monadically stable. In the strategy tuple {y player 1’s

(1,1) is the unique best response to (8(1)*,

(0,0) is the unique best response to (’,(3)*.

belief system is not confirmed. He expects the other two players to form links
with him, although they do not do so.

Network gs: We argue that this network is not weakly monadically stable. The ob-
vious candidate action tuple to support gs is given by {5 = ((1,0),(1,1),(0,1)).
We compute

E;‘,* — (_)(]>]))(0)]))
KZ* - ((])O)>_) (Ov]))
£3* — ((])])>(])O)v_)

We now derive that

e B3 ((3;*) = (1,0) is the unique best response to (’,;*,
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e B2 (€2*) = (1,0) is the unique best response to ¢2*, and

e B3 (€2*) = (0,0) is the unique best response to £3*.

From this it is clear that g5 cannot be supported by (5. This illustrates that weak
monadic stability requires playing best response to a specific set of beliefs for
each i € N. Without such a restriction on the beliefs it would be possible to
support any strategy as weakly monadic stable. Moreover, observe that agents
only form beliefs about the behavior of their acquaintances with regard to direct
links, making it myopic but realistic. In fact, because of this, it is possible that
monadically stable equilibria do not exist. Finally, note that other action tuples
can be ruled out in similar fashion.

Network gg: First, we claim that this network is SLDP, but that it is not link addition
proof. Strong link deletion proofness follows trivially from the zero payoffs
listed for g, and g3. Link addition proofness is not satisfied since adding the
link 12 would make player 2 better off, while player 1 is indifferent.

Second, we argue that this network is weakly monadically stable. We show
that g¢ is supported by the action tuple {c = ((0,1),(1,1,),(1,1)). Again we
compute

& =(—0,1,(1,1)
Ez*: ((1)1)»_»(1)1))
& =(0,1,(1,1),-)

From this we conclude that

* (0,1)and (1, 1) are both best responses to {¢", L.e., B1 (£5%) = {(0,1), (1,1,
e B2 (€Z) = (1,1) is the unique best response to (Z*, and

e 33 (22*) = (1,1) is the unique best response to 22*.

This shows that { is indeed a best response to the generated myopic beliefs. We
therefore conclude that g¢ is weakly monadically stable. On the other hand, g¢
is not monadically stable. Indeed, in {¢ the beliefs of player 2 are not confirmed.

Network g7: First, we claim that this network is strictly* pairwise stable. Strong
link deletion proofness follows trivially from the payoffs listed for all other
networks. The net payoffs in these networks are at most the net payoff in g7
for all players. The second condition is trivially satisfied since there are no links
that are not part of g7 = gn.
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Second, we argue that this network is weakly monadically stable. We show

that g7 is supported by the action tuple {; = ((1,1),(1,1,), (1,1))E] Again we

compute

0= (= (1,1,(1,1)
QZ*: ((])1)»_)(])]))
e?)*: ((])1)»(])]))_)

From this we conclude that

e (1,0) and (1,1) are both best responses to {}*, i.e., B1 (£3*) ={(1,0),(1,1)},

e B2 (¢%*) = (1,1) is the unique best response to £2*, and

e B3 (£3*) = (1,1) is the unique best response to (3*.

This shows that {7 is indeed a best response to the generated myopic beliefs.

We therefore conclude that g7 is weakly monadically stable.

Furthermore, all players’ beliefs are confirmed in {;. Thus, we conclude that g

is monadically stable for {.

provide a more general characterization.

Weak monadic stability

This example clarifies the relation between weak monadic stability and the link based

stability concepts introduced earlier. Using the insights from this example we now

¢

The following result gives a characterization of the relationship between weak monad-
ically stability and other link stability concepts.

Theorem 3.4 Let (¢, c) be such that ¢ > 0, i.e., cj > 0 and cj; > 0 for all i,j € N.

(a) Every weakly monadically stable network g € GN in the consent model (A, ) is

link deletion proof for the network payoff function 1\ given by

Pilg) = @ilg) — Z Cij.

jEN;i(9)

6)

(b) Not every weakly monadically stable network in the consent model (A, 7t) is nec-

essarily strongly link deletion proof or link addition proof for the network payoff

function .

>Obviously this is the only candidate action tuple for the complete network gn .

16



(c) Not every strongly pairwise stable network for the network payoff function \ is
necessarily weakly monadically stable in the consent model (A, ).

A proof of Theorem 3.4|(a) is provided in Section 5 of the paper. This result is intuitive
since weak monadic stability requires that each agent is playing a best response to
their expectations about direct links with other players. Given that link formation is
costly, in a best response a player will never initiate a link that will be turned down.
Hence these networks are link deletion proof.

The proof of Theorem [3.4|(b) is developed in Example 3.5 below. We recall that a
network is not link addition proof if one of the players is better off while the other is
no worse. Under weak monadic stability player i believes that player j will accept a
link if she is not worse off. Hence it is possible to have a weakly monadically stable
network that is not link addition proof. Moreover, since the beliefs only considers
each pairs of players separately, a weakly monadically stable network need not be
robust to the simultaneous deletion of multiple links. This is in contrast to the previ-
ous example where networks go and g¢ are both weakly monadically stable as well
as SLDP.

The proof of Theorem [3.4((c) is developed with the use of Example 3.6

The next example shows the assertion stated in Theorem (b) and also shows
some other interesting features of our approach.

Example 3.5 We consider four players, i.e., N = {1, 2,3,4}. Under the hypothesis of
uniform link formation costs set at ci; = 1 for all i,j € N. The network benefits are
described by ¢: GN — R with its values for some networks given in the following
table:

Network ©1(9) | ©2(9) | ©3(9) | @alg)
go=92 0 0 0 0
g1 ={12} 0 1 1 1
g2 = {13} 0 1 1 1
g3 = {14} 1 1 1 1
ga ={12,13} 1 2 2 1
g5 = {12,14} 0 1 1 1
g6 =1{12,13,14} | 5 0 0 2

For all remaining networks g € GN: ¢(g) = (0,0,0,0). This results in the following
net payoffs \ applying (6) to the networks given in the table above. For the remaining
networks these net payoffs are negative.
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Network Pa(g) | W2(g) | P3(g) | Walg) | Stability
do—0 0 0 0 0

g1 =112} 1 0 1 1

g2 = {13) 1 1 0 1

g5 = {14) 0 1 1 0

g2 =1{12,13) 1 1 1 1 M.,
gs = {12, 14} 2 0 1 0
ge=1{12,13,14) | 2 1 1 1

Claim 1: g4 is link deletion proof, but neither strong link deletion proof nor link addition
proof for .

Indeed, deleting either 12 or 13 from the network would not improve any of the
involved player’s payoff. Also, deleting both her links to establish g is beneficial for
player 1. Similarly, adding link 14 to g4 would create gg, which is strictly beneficial
for player 1 and does not harm the net payoff for player 4.

Claim 2: g4 is weakly monadically stable.
For that we consider the supporting strategy tuple

¢=((1,1,1),(1,0,0),(1,0,0),(0,0,0))

with g({) = g4. We claim that this strategy tuple is a best response to the myopic
belief system {* associated with g4, given by

—,(1,0,0),(1,0,0),(1,0,0))
(1,1,1),—,(1,0,0),(0,0,0))
(1,1,1),(1,0,0),—,(0,0,0))
(1,1,1),(1,0,0),(1,0,0),—)

(
(
(
(

o
02
03+
1%

The best responses to these belief systems are given by

Br (") =(01,1,1)
B2 (%) =((1,0,0)
Bs (%) =(01,0,0)
B4 (¢) =1(0,0,0),(1,0,0)}

This confirms that { is indeed composed of best responses to the players’ expectations
about direct links ¢* [

®For completeness we remark that in this example the network g¢ is not weakly monadically stable,
since it is not link deletion proof with respect to players 2 and 3.
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We conclude that network g4 in this example is weakly monadically stable, but that
it is neither strong link deletion proof nor link addition proof. Thus it is not strongly
pairwise stable either. This shows the assertion stated as Theorem (b). ¢

The following example shows the assertion stated as Theorem (c). It also shows
some interesting auxiliary properties. In this example, players are enticed to aim at
the formation of networks that are very different from the network under considera-
tion.

Example 3.6 Consider three players N = {1,2,3} and assume that c;; = 1 for all
players i € N and all potential links ij, i.e., we assume uniform link formation costs.
Let the network payoff function ¢ be given by the table below. This table also gives
the modified network payoff function .

Network 91(9) | ©2(9) | @3(g) || ¥v1(g) | Yalg) | P3(g)
go=92 0 0 0 0 0 0
g1 ={12} 2 2 2 1 1 2
g, ={13} 3 0 0 2 0 -1
g3 = {23} 5 3 0 5 2 1
ga={12,13}| 0 0 4 -2 -1 3
gs=1{12,231| 0 2 0 1 0 1
ge=1{13,23}| © 0 0 1 -1 2
g7 = N 5 5 5 3 3 3

First, we note that g; is strongly pairwise stable for 1». Indeed, it is link deletion proof
with regard to the link 12. Also, it is link addition proof as can easily be deduced from
the given table.

Second, we remark that go and g are the only strong link deletion proof networks
for \» in this example.

Claim 1: g is strong link deletion proof, but not weakly monadically stable.

The only plausible candidate strategy tuple to support go is given by ¢© = (£9,£9,€3) =
((0,0),(0,0),(0,0)). Now g(£°) = go and the myopic belief systems of all players for
€0 are given by

EOJ* - (_v (1)O)a (O,O))
eO,Z* = ((1v0)»_a (],0))
€0,3* ((Ov ])» (Oa1),_)

The unique best responses to these expectations about direct links are given by
B(t°*) = ((1,0),(0,1),(0,1)) with g(B(¢>*)) = g3. This shows clearly that go is
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not weakly monadically stable.

Claim 2: g; is strongly pairwise stable, but not weakly monadically stable.
Consider the strategy given by

b= (ty,£2,43) = ((1,0),(1,0),(0,0)).

Obviously, g({) = g;. Itis clear that { is the only plausible candidate for a monadically
stable strategy tuple supporting g;. However, the belief systems of all players for £
are given by

el* = (_) (])0)) (]»O)) ?é (_)£2’£3)
82* — ((1)0))7) (0,0)) = (€1’7’£3)
83* - ((])O))(O)O)\i) = (EbeZ)*)

The unique best responses to the myopic belief system above is given byﬂ

B (€7) ={((0,1),(1,0),(0,0))}

From this we conclude that g(p(£*)) = go. This indeed shows that g; cannot be
supported as weakly monadically stable. ¢

Example also shows two other properties. First, there exist situations in which
players aim for very different networks than the one under consideration. Indeed, in
network g1, Player 1 aims at forming network g, based on her myopic beliefs about
the other players goals and payoffs. This is a deviation that is “lateral” in the sense
that it is not a sub- or super-network of the network under consideration.

Second, Example shows that the reverse of Theorem [3.4/(a) does not hold.
Namely, in the example we identified two strongly link deletion proof networks that
are not weakly monadically stable under two-sided link formation costs. For network
go, the reason is that it is not link addition proof and the players involved try to build
these additional links through correct anticipation of the benefits to the other player
involved.

For network g; the reason is more complex. Here the network under consider-
ation is link addition proof as well. However, belief system allows for the type of
lateral departures indicated in the discussion above. The exclusion of such lateral
departures requires the further strengthening of the notion of weak monadic stability
and beliefs that are not so simple.

’In particular, the best response of player 1 to {} is unique and given by B1({) = (0,1) in which
player 1 aims for the formation of network g, instead of g;.
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3.2 Monadic stability and strict* pairwise stability

Next we turn to the analysis of regular monadic stability. The self-conformation
requirement in this equilibrium concept strengthens the properties of the resulting
equilibrium networks considerably. We first explore the relationship between the
monadic stability condition and the weak monadic stability requirement.

Proposition 3.7 Let (@, c) be given.

(a) Every monadically stable network g € GN is weakly monadically stable for (@, c)
such that the supporting belief system { satisfies the property that @ﬁ = /E\]'i for all
pairs of players i,j € N.

(b) Not every weakly monadically stable network g for (¢, c) such that the support-
ing belief system 1 satisfies the property that @i,- = @ﬁ for all pairs of players
1,5 € N is monadically stable.

For a proof of Proposition (a) we refer to Section 5 of this paper. Assertion (b)
is shown by Example 3.8 below.

Proposition states that the self confirming condition in the monadic stability
concept implies the bi-directionality of the steady state that results from updating
the myopic belief systems. This updating process is described by the weak monadic
stability condition.

Next we show that this conclusion cannot be reversed. Hence, there exist net-
works that are weakly monadically stable and satisfy the bi-directionality condition
formulated in Proposition [3.7|but underlying the beliefs are not self confirming.

Example 3.8 Consider three players N = {1,2,3} and as before assume that ci; =1
for all players i € N and all potential links ij € L;. We assume that the network pay-
off function ¢ is additive over the links. The basic payoff information is link-based
and, thus, represented in the following table:

Link | @1 | 2 | 93
12 o211
13 (4]0 4
23 | 0| 0| 2

The table below provides the modified network payoff function {» based on the as-
sumption that benefits accrue in an additive fashion.
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Network Pi(g) | Yalg) | Yslg) || Stability
Go=0 0 0 0

g1 =112} 1 1 1

g2 =113 3 0 3 M.,
g3 = (23) 0 1 1

g2 ={12,13} | 2 1 4

g5 =112,23 | 1 0 2

g6=113231| 3 1 4

g7 = 9N 2 0 S5

First, we claim that network g, is weakly monadically stable. Consider the strategy
tuple given by

U= (t,82,83) = ((0,1),(0,0),(1,0)).

Obviously, g(£) = g2. The myopic belief systems of all players for { are given by

e]* (_)(])O))(])O))
ez* - ((O)]))_a (])]))
> =((0,1),(0,0),-)

The unique best responses to the myopic belief system above is given by

B () ={((0,1),(0,0),(1,0))}

From this we conclude that g, is indeed weakly monadically stable and that it satisfies
the bi-directionality condition formulated in Proposition However, g, is not
monadically stable, since €% # {57 as well as €25 # (3. ¢

Next we turn to the characterization of monadic stability in terms of link stability.
The following result can be indicated as the main result of this paper. It states that
monadic stability is equivalent to strict* pairwise stability. This allows us to conclude
that monadic stability supports a non-trivial collection of equilibrium networks.

Theorem 3.9 Let (@, c) be such that ¢ > 0. A network g € GN is monadically stable
for (@, c), if and only if g is strictly* pairwise stable for the network payoff function 1
given in Theorem

For a proof of Theorem we refer to Section 5 of this paper in which we have
collected the proofs of the main theorems. The proof first demonstrates that every
strictly* pairwise stable network is weakly monadically stable. It then shows that the
beliefs are also self confirming making it monadically stable.
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4 Conclusion

We base our approach to link building—and through that to network formation—
on the principle that links are formed between boundedly rational acquaintances.
We formulate myopic belief systems through which these players perceive the social
setting in which they operate. The stable states of the resulting learning processes
are identified as the class of weakly monadically stable networks. These networks are
only truly stable if all players have their formed beliefs confirmed in the equilibrium
state. This results into the subclass of monadically stable networks.

In this paper we show that—although the belief systems on which the players’
learning processes are founded, are myopic and very simple—the resulting monad-
ically stable networks have extremely strong and appealing properties; they exactly
form the class of strictly* pairwise stable networks. In these networks no players has
incentives to discard links and all pairs of non-linked players agree that building such
a link only results into lower payoffs. Our main result, thus, unequivocally shows that
boundedly rational behavior can lead to very appealing and sensible social structures.

Furthermore, through auxiliary results we conclude that there is no relationship
between weak monadic stability and strong link deletion proofness, i.e., one does not
imply the other. Hence, there is also no relationship between weak monadic stability
and strictly pairwise stable networks. We also conclude that weakly monadically
stable networks satisfy link deletion proofness. However, they are not link addition
proof. Hence, weakly monadically stable networks are not pairwise stable. Finally,
we verify that the reverse implication does not hold.

With respect to monadic stability, we find that the set of monadically stable net-
works is a strict subset of the weakly monadically stable networks. Furthermore, not
every weakly monadically stable network is strong link deletion proof indicating that
they cannot be strictly* pairwise stable either.

In a recent paper Belleflamme and Bloch (2004) investigate a related stability
concept. They look at reciprocal market sharing agreements by firms in oligopolistic
markets and procurement auctions. They consider a finite number of firms, all of
which are associated with a separate captive market. In the oligopolistic context
this market is called the “home market”. In the the procurement auction scenario
this is the market in which the firm has bidding privileges. Firms may enter each
others’ markets unless they enter into reciprocal market sharing arrangements by
forming links with each other. The stable networks identified in this context also
satisfy monadic stability.

Finally, we turn to the relationship between monadic stability and the popular
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pairwise stable networks. Proposition states that if the payoff function satisfies
network convexity, link uniformity, and is discerning, then all strictly* pairwise stable
networks are also pairwise stable. These two condition are satisfied for instance by
the connections model of Jackson and Wolinsky (1996). Hence we can conclude that
under these conditions, strictly* pairwise equilibria are pairwise stable. Hence the
class of pairwise stable networks also satisfies monadic stability.

5 Proofs of the main theorems

In this section we address the proofs of Theorem [3.4|(a), Proposition and Theo-
rem We recall that the assertions stated as Theorem [3.4|(b) and (c) are shown
through the examples developed in Section 4 of this paper.

As a preliminary to the actual proofs, we develop some simple auxiliary insights
for weakly monadically stable networks. Suppose that g € GN is weakly monadically
stable relative to (¢, c).

Then there exists some action tuple ¥ € A such that g = g() and for every player
i e N: U; € Ay is a best response to ?iji € A_; for the payoff function 7.

For this setting we state three auxiliary results. In these results we do not as-
sume that link formation costs are strictly positive; in each assertion the assumptions
regarding these costs are stated explicitly.

Lemma 5.1 If /E\}f = 0 then {j; = 0 is a best response to o,

Proof. Clearly, if {;; = 1 is selected, i incurs only costs ci; > 0 and no benefits. This
implies that player i does not benefit from trying to establish link ij. Hence, {;; = 0
is a best response to (g ]
Lemma 5.2 If ?}f = 0 and cy; > 0, then {;; = 0 is the unique best response to [l

Proof. Clearly, if {;; = 1 is selected, i only incurs strictly positive costs ci; > 0 and
no benefits. This implies that player i makes a loss from trying to establish link ij.
Hence, {;; = 0 is the unique best response to (i ]

Lemma 5.3 Ifij € g() with ci; > 0 and cj; > 0, then @}f = @’U* =1.

Proof. First remark that ij € g({) if and only if (= @ji = 1. The negation of the
assertion stated in Lemma applied to @i]- = 1 and @51 = 1 independently now
implies that ?}f = ?’J =1. n
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Proof of Theorem [3.4|(a)

We now proceed with the proof of Theorem [3.4/(a) under the assumption that the
cost structure c is strictly positive.

Suppose that g € GN is weakly monadically stable relative to (@, c). Then there
exists some action tuple € A such that g = g(?) and for every player i € N: {; € A;
is a best response to ?iji € A_; for the payoff function 7. Of course 9, € A is a best
response to player i’s myopic belief system 7t*.

Suppose that g is not link deletion proof. Then there exists a player i € N with ij € g
for some j # i and Pi(g —ij) > Pi(g), or @i(g —1ij) + ci3 > @i(g). By definition,
@’J = 0, and hence from Lemma {51 = 0 is the unique best response to P*. Since
ij € g by assumption it has to hold that @]—i = 1. This contradicts the hypothesis that
T; is a best response to {'*.

This contradiction indeed shows that g has to be link deletion proof relative to 1.

Proof of Proposition [3.7/(a)

Let g € GN be monadically stable and let action tuple { € A support g as such.
Suppose that ij ¢ g with /fij =1 and ?ﬁ = 0. Then by Lemma @ij = 1 implies
that €} = 1. But this would then imply that Ui # @}i*, violating the monadic stability

condition.

Proof of Theorem

First we show that strict* pairwise stability for { implies monadic stability for (¢, c)
under the hypothesis that ¢ > 0.

Let g C gn be a network that is strictly* pairwise stable with regard to the net payoff
function 1. Then g is strong link deletion proof and satisfies the property that

jZ9g = Vbilg+1j) <ilg) as well as (g + 1j) < j(g).
Hence, this implies that
€9 = @ilg+1j)—cy < @ilg) as well as @;(g +1j) — cji < @;(g)- 7
With g we now define for all i € N:
o Iy =1ifij € g,and

o ly=0ifij¢g.
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We investigate whether the given strategy profile ? is indeed a best response to £* as
required by the definition of weak monadic stability.

Case A:ij € g.

From H it now follows immediately that /@]‘f = @’J = 0. From the fact that ci; > 0 and
cji > 0 and the beliefs it follows from Lemma that Case A implies that /@ﬁ =0is
the unique best response to {* as well as that /e\ji = 0 is the unique best response to
[

Hence, for Case A the strategy satisfies the condition imposed by weak monadic sta-
bility.

Case B:ij € g.

In this case {j; = 0j; = 1.

Link deletion proofness of g now implies that E]f = 1 or else (7) is contradicted.

Cases A and B imply now that
ij € g if and only if 0 =00 =1 (8)

Applying strong link deletion proofness and the conclusion from Case A leads us to
the conclusion that 7; is the unique best response to ¢*. This in turn implies that {
indeed supports g as a weakly monadically stable network.

Finally, it is immediately clear from and the definition of { that for all i,j €
N: @]‘f = @i]-. Thus, we conclude that £ supports g as a monadically stable network.
This completes the proof of the assertion.

Second, we show that monadic stability for (¢, c) implies strict* pairwise stability for
1 under the hypothesis that ¢ > 0.

Let g be monadically stable for (¢, ¢). Then there exists some action tuple { € A such
that g = g(?) and for every player i € N: §; € A; is a best response to @l*i € A_; for
the payoff function 7. Furthermore, 0* =7_;.

From Theorem [3.4|(a) we already know that g has to be link deletion proof for 1 since
g is weakly monadically stable. Hence, for every ij € g we have that ¢i(g — ij) +
cij = @i(g). Now through the definition of the belief systems and the self-confirming
condition of monadic stability we conclude that for every ij € g:

/N /\'* N /\i
b= =0 =0 =1,
Let h C Li(g). Define (" € A; by

o Ty ifij¢gn
ifijeh
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Then g(¢",% ;) = g \ h. Since {; is a best response to ?* = 7_{fit has to hold that
("2 4) < (D). Hence,

ei(g\h)+ ) cij < @ilg).
ijeh
This in turn implies that {;(g\h) < VPi(g). Thus, since 1 and h were chosen arbitrarily,
network g is indeed strong link deletion proof.
Next, let ij ¢ g. Then @ﬁ = 0 and/or ?ﬁ = 0. Suppose that ?ﬁ = 0. Then by the

self-confirming condition of monadic stability it has to hold that /@}f = {51 = 0. Hence
by Lemma @ij = 0. Thus we conclude that for every ij ¢ g:

This in turn implies through the definition of the belief system that ¢i(g + ij) —
cij < @i(g) as well as @;(g +1j) — 51 < @j(g). Or Pi(g + ij) < Pi(g) as well as
Vi(g +1j) < Wi(g). This is desired requirement for strict* pairwise stability.
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