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1. Introduction

This paper examines the generalized maximum entropy (GME) estimator in the general linear
model (GLM). Since GME estimation requires usto specify bounds for the parameters, we present
an economic application and discuss how to specify the GME parameter and error support matrices.
We vary the GME parameter and error support matrices and examine the sensitivity of the GME
estimatesto the prior information imposed. The GME estimates are compared to |east squares
estimates, both with and without inequality restrictions placed on the parameters. Finally, we use
the bootstrap to obtain confidence intervals and examine the precision of the GME estimator.

We use the GME estimator developed by Golan, Judge, and Miller (1996, pp. 85-89)
[hereinafter GIM]. GJM show that the GME estimator has lower risk than both the OLS and IRLS
estimatorsin several sampling experiments (GIM, pp. 133-144), particularly when the data exhibit
a high degree of collinearity. GIM specify ablock diagonal parameter support matrix for the GME

estimator, which allows us to impose single parameter restrictionssuch as £ >0. Applications of

single parameter restrictions on the GME estimator may be found in Fraser (2000) and Shen and
Perloff (2001). We impose binding single parameter restrictions through the parameter support
matrix and, in addition, we specify a more general parameter support matrix that is not block

diagonal and which allows us to impose multiple parameter restrictionssuch as 3 > S, and
B+ B, + B3 <1. Specifying anon-block diagonal support parameter matrix provides a relatively

simple way to impose several restrictions that might be encountered in practice.

We show that GME is a feasible approach to estimating linear regression models. All of our
GME estimates take the same signs and have roughly the same magnitude as OLS and IRLS
estimates. In addition, our bootstrap results show that the sampling precision is better for the GME
estimator than for the OLS and IRLS estimators.

Section 2 discusses GME estimation in the linear regression model. In Section 3, we describe
how to impose inequality restrictions through the GME parameter support matrix and present a
non-block diagonal support matrix that allows usto impose restrictions that are not possible under

the traditional support matrix. In Section 4, we estimate an economic mode using GME, both with



and without binding parameter inequality restrictions, and compare the GME estimates to least
sguares estimates. Section 5 presents GME confidence intervals obtained using a bootstrap.

Section 6 concludes the paper.

2. Generalized maximum entropy estimation in the general linear model
GIM (1996, Ch. 6) use GME tojointly estimate the unknown parameters and the unknown
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errorsin the GLM.™ We write the GLM in matrix form as

y=Xg+e, @
wherey isan N x1 vector of sample observations on the dependent variable, X isan NxK
matrix of explanatory variables, eisan N x1 vector of unknown errors, and 8 isa K x1 vector of

unknown parameters.
Jaynes (1957a, 1957b) shows that maximum entropy allows us to estimate the unknown

probabilitiesin a discrete probability distri bution.EI

GJIM generalize the maximum entropy
methodol ogy and reparameterize the linear model such that the unknown parameters and the
unknown errors are in the form of probahilities. We specify a set of support points for each
unknown parameter and error and use maximum entropy to estimate the unknown probabilities

associated with the support points. Hence we must assume that both the unknown parameters and

the unknown errors may be bounded a priori. Let z, bethe smallest possiblevalueof £, and z,

be the largest possible value of £, . Then, for each parameter, 5, , there exists p, 0[0,1] such that

B = PeZa +(L-P) 2, =[ 24 %mf;] @)

The parameter support is based on prior information or economic theory. For example, we might

specify boundaries of z,, =0 and z, =1when estimating the marginal propensity to consume.

! Our GME estimator corresponds to GIM’s GME-D estimator on p. 86.
2The ME distribution is the most uniform distribution compatible with the prior information.



However, specifying the largest and smallest possible values for each variable is not an easy task
since economic theory does not usually provide this informati on.EI
Define amatrix consisting of M = 2 support points for each parameter, which may or may not

be symmetric about zero and which bound the unknown parameters. Let z bethe M x1 support
vector for the k™ parameter and let p, bethe associated M x1 vector of probabilities or weights on

these support points. We write the unknown parameter vector, 5, as

Z 0 - 0][p
0 zZ .- 0

p=zp=| . 2 7 T |pt%|, 3
o o - Z,'< P«

where [ isa K x1 vector of unknown parameters, Z isa K xKM matrix of support points, and
p isaKM x1 vector of unknown weights such that p,, >0 and p,i,, =1 for al k. Thisisthe

traditional GME parameter support matrix, which is block diagonal so the support points for any
parameter do not directly impact the other parameter estimates.

Similarly, for the unknown errors, let v, bethe smallest possible value of € and v, bethe

largest possible value of e . For each random error, e , there exists wJ[0,1] such that

=Wy, +(@L-w)Vv, =[v, V] w 4
q — YWiVip i/Vi2 T1Via i2 l_VVI "
Placing boundaries on the unknown errorsis difficult in practice. Following Pukelsheim (1994),

GJIM suggest setting the error bounds as v, = -30 and Vv,, =30, whereo isthe standard deviation

of e. Tousethisrule we must either know or estimate the value of o .

Defineaset of J =2 support points for each error, which are symmetric about zero and which
bound the unknown errors. Let V. bethe Jx1 support vector for the i" error and letw; bethe

associated J x1 vector of weights on these support points. We write the unknown error vector as

¥ When we do not have good prior information about a parameter we specify a wide set of parameter bounds
centered about zero. GIM (1996, p. 138) discuss this point and conclude that the consegquences of specifying a
wide parameter support are small in terms of risk measures.



where e isan N x1 vector of random errors, V isan N xNJ matrix of support points, and w is

an NJx1 vector of unknown weights such that w;, >0 and wi, =1 for all i . Wewritethe

i
reparameterized mode in matrix form as
y = XZp+Vw, (6)

where y, X ,Z , and V are known and we estimate the unknown p and w vectors using

maximum entropy. The GME parameter and error estimates are given by
Bowe = 2D @)
and
e =W, ®
where pand W arethe estimated probability vectors.
Jaynes (1957a) shows that entropy is additive for independent sources of uncertainty.
Assuming the unknown weights on the parameter and the error supports for the GLM are

independent, we jointly estimate the unknown parameters and errors by solving the constrained

optimization problem

max H (p,w) = =p'In(p) ~w In(w) ©
subject to

y = XZp+Vw (10)

(I D) i (11)

(hy D) iy, (12)

where O isthe Kronecker product. Equation (10) is a data constraint and equations (11) and (12)
are additivity constraints, which require that the probabilities sum to one for each of the K

parameters and each of the N errors.



The solutions to the GME constrained optimization problem are

B _w (13)
Z_exp(zmxu)

and

W — eXp(an/]n) , (14)

nj J N
> exp(vyA,)
j=1

where X, isthe N x1 vector of observations for the K" explanatory variableand Aisan Nx1

vector of Lagrange multipliers for the data constraint. Thus, the GME parameter estimates are a
function of the Lagrange multipliers for the data constraint, the support points placed on the
parameters a priori, and the ssmple data. The GME error estimates are a function of the Lagrange
multipliers for the data constraint and the support points placed on the errors a priori.
Pre-multiplying the GME data constraint (6) by X' yields

X'y = XXZp + X'V . (15)
Substituting the optimal probabilities, p, and error weights, W, we obtain

X'y = XXZPp+ X'V =XXB +X &.
The GME parameter estimates are given by

Bave = (XX) X'y =(XX)*X 8=(XX)*X (y -§). (16)
Thus, GME minimizes the SSE for afitted regression line that passes through the mean of y—¢é

rather than through the mean of y. As é - 0 (narrower error bounds), the GME estimator grows

closer tothe OLS estimator. As € — y (wider error bounds), the GME estimator goes to zero.IZI

In the linear regression problem, the GME estimator is a shrinkage estimator similar to the
Stein-like and empirical Bayes estimators described, for example, by Judge, Hill, and Bock (1990).

GME sdlects the most uniform probability distribution compatible with the constraints, which are

4 Assuming the parameter support is symmetric about zero. The GME estimator is actually shrunk toward its prior
mean, which may or may not be zero, as the error bounds grow large.



based on prior information. GME shrinks the parameter estimates towards the expected value of
the parameter support, which is specified a priori. The expected value of the parameter support is
equal to the sum of the support points multiplied by the associated prior distribution, and is known
asthe prior mean of the unknown parameters. For example, suppose we specify a parameter

support that is symmetric about zero. If the prior probability distribution is uniform the prior mean

of the parameter support is equal to zero (since ,[S’k =z p).

3. GME estimation of an economic model

In this section, we estimate an economic model of poverty rates and their determinants.
Applications of GME estimation in linear regression models can be found in Fraser (2000), Shen
and Perloff (2001), Preckd (2001), and Miller and Plantinga (1999). Golan, Judge, and Perloff
(1997) and Golan, Perloff, and Shen (2001) use GME to estimate a censored regression model.
While these papers apply GME estimation to various economics problems, this paper provides a
general discussion of how one might select the GME parameter and error supports. We examine
the sensitivity of GME estimates to the chosen parameter and error supports. We find that GME
estimates vary alittlein terms of magnitude, but that the signs of the parameter estimates do not
change as we vary the prior information. Thisis generally consistent with other research, although
Fraser’ s results exhibit a surprisingly high degree of variation in responseto relatively small
changesin the parameter and error supports.

Our data set is taken from Ramanthan (2002, Data 7-6, p. 653) and consists of poverty rates
and their determinants across California counties. The data set contains both 1980 Census data and
1990 Census data for 58 counties, a total of 116 observations. The dependent variable in our model

is percentage of families with income below the poverty level (POV,). The explanatory variables
are average household size (HHSZ, ), percentage unemployment rate (UNEMR ), percentage of
popul ation age 25 and over with high school degree only (HS ), percentage of population age 25

and over that completed 4 or more years of college (COLL, ), median household income



(MEDINC, ), and adummy variable ( D90, ) that equals one for the 1990 Census and zero for the

1980 Census. We estimate the following model

POV, = B, +HHZ, [, +UNEMR [, +HS (5, +COLL, B
+MEDINC, [, + D90, (53, t=1....T 17

Table 1 gives summary statistics for the poverty data. The sample coefficient of variation is defined

as CV, =s(x)/X, where s(x) isthe sample standard deviation of xand X is the sample mean of

Table 1. Summary Statisticsfor Poverty Data (N =116 Obser vations)

Standard Coefficient

Variable Mean Min. Max. Deviation of Variation
POV 9.51 3.00 20.80 3.32 0.3486
HHSZ 2.92 2.29 3.73 0.31 0.1063
UNEMP 9.62 3.50 21.30 3.63 0.3775
HS 56.78 41.30 68.50 5.96 0.1050
COLL 17.72 9.00 44.00 7.08 0.3994
MEDINC 27.29 13.52 59.15 10.23 0.3748
D90 0.50 0.00 1.00 0.50 1.0043

Using OLS, the estimated regression function (with standard errorsin parentheses) is.

POV = 21.659 +1.804 HHSZ +0.076 UNEMP —0.201HS +0.021COLL —0.416 MEDINC +8.504D90
(553) (L.16) (0.06) (0.04)  (0.05) (0.05) (1.04)

R® =0.746, 6% =1717, F(6,109) = 53.307
All the estimates take the expected signs except the coefficient on COLL since we expect the
percentage of college-educated individuals to have a negative effect on poverty rates. We will
impose thisrestriction in Section 4.

We now estimate the model using GME. Because we must specify support matrices for the
unknown parameters and errors, thereisno single set of GME estimates. As shown in equations
(13) and (14), the GME estimates depend on the supports. We specify different parameter and error

supports to examine the sensitivity of the GME estimates to the specification of priors. First,



consider the parameter support. For this problem, the dependent variable is a percentage so each
parameter must be between —100 and 100. Because the effect on the poverty rate of a unit changein
any one variableis certainly much smaller then 100% we impose somewhat narrower bounds. We
specify three model's, denoted GME1, GME2, and GME3 as follows:

»  GMEL - Here we specify wide bounds of [-50,50] for the intercept and relatively wide
bounds of [-20,20] for the other coefficients. The supports are symmetric about zero so
the prior mean of each parameter is zero. Here we are assuming that we have very
little prior information about each parameter so we specify a relatively wide support

with a prior mean of zero. Table 2 gives the parameter support for GME1.

Table 2. Parameter Support for GME1

Parameter Parameter Support Prior Mean
A, (constant) z={-50 25 0 25 50} 0
B - B z,={-20 -10 0 10 20}, k=2..7 0

«  GME2 - We expect that a one percent change in UNEMP, HS, or COLL will not
change the poverty rate by more than one or two percent in either direction, so we
specify a narrow support for the coefficients of these variables. We also specify
narrower supports for the coefficients of HHSZ and MEDINC. In general, we may
specify wider bounds to indicate either alack of good prior information or an
expectation that the coefficient may belarge. All parameters again have a prior mean

of zero. Table 3 givesthe parameter support for GME2.

Table 3. Parameter Support for GME2

Parameter Parameter Support Prior Mean
£, (constant) z={-50 25 0 25 50} 0
B, (hhsz) z={-10 5 0 5 10} 0
Ps (unemp) z={-2 -1 01 2 0
B, (hs) z={-2 101 2 0
Bs (call) z={2 101 2 0
B (medinc) z={-10 5 0 5 10 0



£, (d90) z,={-20 -10 0 10 20} 0

»  GME3-Wenow modify our parameter support to account for the expected signs of
the coefficients. We have no prior expectations about the signs of the coefficients for
theintercept and D90. Since we expect HHSZ and UNEMP to have a positive effect
on the poverty rate we modify the parameter support such that the prior mean of their
coefficientsis positive. Likewise, since we expect HS, COLL, and MEDINC to be
inversely related to poverty rates we specify the parameter support such that the prior

mean of their coefficientsis negative. Table 4 gives the parameter support for GME3.

Table 4. Parameter Support for GME3

Parameter Parameter Support Prior Mean
£, (constant) z={-50 25 0 25 50} 0
B, (hhsz) z,={-5 0 5 10 15 5
Ps (unemp) z={-10123 1
Ps (hs) z={3 2 101 -1
B; (coll) z={-3 2 101 -1
B (medinc) z={-15 <10 5 0 5 -5
£, (d90) z,={-20 -10 0 10 20} 0

In practice, we would choose a specification like GME3 that incorporates our prior beliefs about
the magnitude and signs of each coefficient. Note that we do not constrain any of the coefficients to
take a specific sign. The prior mean is simply the value the parameters are shrunk toward, not a
binding restriction. We choose M =5 support points for each parameter since GIM find that
estimation is not improved by choosing more than about five support points.

We also vary the error support for our GME estimates. Following GIM, weinitially construct
the GME estimator with error bounds of +30 . However, since ¢ is unknown we must replace it
with an estimate. We considered two possible estimatesfor o : 1) & from the OLS regression,

which equals 1.72, and 2) the sample standard deviation of y, which equals 3.32. We obtained

much better results using the more conservative value of the sample standard deviation of y. In
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fact, some of our programs did not converge when we used the smaller estimate for ¢ in specifying

our error bounds.
Using the sample standard deviation of y, the 3¢ - ruleresultsin an error support of
{—10 5 05 10} . Aswith the parameter support, we choose J =5 support points for each

error. We also specify awider set of error bounds, which yields parameter estimates that are shrunk
more towards their prior mean. Wefollow a 40 - rule for the second set of estimates and our error
supportis {-13 -65 0 6.5 13}. Weobtain GMEL, GME2, and GME3 estimates using each
error support and we refer to the estimates as GMEL1S3, GME2S3, GME3S3, GME1$4, GME24,
and GME3$4, with S3 and $4 indicating theuse of a 30 or 40 rule, respectively. Table 5 gives

point estimates for the poverty data using OLS and our six different GME estimators.

Table5. OLSand GME Edtimatesfor Poverty Data (N =116 Obser vations)

S3 HA
Variable OLS GME1 GME2 GME3 GME1 GME2 GME3
POV B 21.659 16.678 18.363 14.796 15.700 17.908 13.444
HHSZ B, 1.804 2411 2.001 2.895 2.521 1.962 3.134
UNEMP B; 0.076 0.136 0.138 0.144 0.128 0.131 0.144
HS B, -0.201 -0.168 -0.175 -0.164 -0.157 -0.166 -0.155
COLL B 0.021 0.055 0.046 0.055 0.038 0.027 0.034
MEDINC g, -0.416 -0.399 -0.393 -0.397 -0.385 -0.375 -0.378
D90 B, 8.504 8.097 7.834 8.269 8.021 7.666 8.178

The results show that the GME estimates do not differ much from OLS in terms of the signs
and magnitudes of the estimates. The signs of the coefficients are the same for all the alternative

estimators. The GME estimatesfor 5,, B,, G, and B, are smaller in magnitude than the OLS
estimates while the GME estimatesfor 8,, £,, and S, arelarger than the OLS estimates. These

results are consistent across all of our GME estimators, although it is not clear why GME estimates
are larger than OLS for some variables and smaller than OLS for other variables.
The GME estimates do not vary a great deal as we change the parameter supports. Thus, the

cost of using an uninformative prior (asin GMEL) issmall, which is consistent with the results

11



obtained by GIM. As expected, when we specify wider error bounds (GME1$4, GME2$4, and
GME3%4), the coefficients are generally shrunk more towards their prior means. In this case, we
are placing more weight on the errors and allowing the probabilities associated with the parameter
support to be more uniform.

The results indicate that for a single sample of data, GME estimates are reasonably close to
OLS egtimates. In addition, the GME estimates do not change much as we change the parameter
support. An uninformative parameter support produces results that are generally consistent with
both OLS estimates and with GME estimates obtained from a more informative parameter support.
Thisisimportant because the GME estimator has been criticized on the grounds that it is not
always easy to place bounds on the parameters. Section 5 examines the precision of the GME

estimator through the use of a bootstrap.

4. Linear inequality restrictions

An economic researcher may have sign or other information about the parameters that can be
expressed as a linear inequality restriction. Imposing this nonsample information on the least
squares estimator yields the inequality restricted least squares (IRLS) estimator, which is biased, but
dominates the OL S estimator, under a squared error 10ss measure, as long as the restrictions are true
(Judge et al., 1988, pp. 822-825). Using the parameter support matrix we impose binding linear
inequality restrictions on the GME estimator.
4.1 Imposing binding linear inequality restrictions on the GME estimator

Because each parameter must be bounded, the GME estimator always has inequality restrictions
placed on the parameters. However, the bounds do not generally reflect specific prior information
such assign or other restrictions. We discuss how to impose sign and other restrictions through the
parameter support matrix and we modify the parameter support matrix in away that allows usto
impose additional restrictions that might be encountered in practice. Below we discuss how
different types of linear inequality restrictions are imposed through the GME parameter support

matrix.
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) B>0
If we have nonsample information that 3, >0 we specify the support vector for 8, to take
only positive values such as z :[O 5 10 15] , Where z isthe M x1parameter support

vector for ;. Inthiscasethe GME estimateis given by

B =0p, +5p, +10p;, +15p,, >0, (18)

since p,, =0 for al M support points.

) B>5
To impose cross-parameter inequality restrictionsin GME we specify a more general

parameter support matrix that is not block diagonal. For therestriction 5, > G,, we

specify the GME parameter support matrix as

&%rmHﬁ Zﬁﬂ (19

where Z isthe 2x2M sub-matrix of support pointsfor B, and f,, and p, and p,
represent the unknown probabilities associated with the support points for these

parameters. Specify z =[0 5 10 15| (or any Z suchthat z, >0 for al m) and the

GME edtimatefor S, ig

,31:Oﬁ11+5ﬁ12 +10p,, +15p,, +ﬁ2 >,@2. (20)
We obtain the GME solution the same way as with the block diagonal matrix. However,
the equation for the optimal probahilitiesis dightly more complicated when the parameter
support matrix is not block diagonal. The solution for the optimal GME probabilitiesis

now given by

® Note that the support for 3, can include any set of values. Also, we can obtain the same restriction by specifying
the support for ,82 to be strictly negative and letting the support for ,Blincl ude any set of values.
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3)

4)

N1 CRZLS WO RSRT ) -

M ~ ~ ~
D &XP(Zg XA + Z XA +... 20X A)

m=1

where x isthe N x1 vector of observations for the i explanatory variable (i =1,...,K ).

Under the block diagonal parameter support matrix, all the cross-product terms drop out

(thosewhere i £ k).

B, + B, >c, wherecisany constant

In this case, we obtain the GME parameter estimates using

i
J3 ] [0 2z ][p)
where Z isthe 2x2M sub-matrix of support pointsfor B, and f,, and p, and p,
represent the unknown probabilities associated with the support points for these
parameters. Specify z =[c c+5 c+10 c+15] (orany z suchthat z, >c for all
m) and the GME estimate for g, is

B.=2p-2p, =4p -5,
which implies that

B+B =27p >c. 2

B+B>h
Finally, we impose a restriction involving three parameters, such as B, + 3, > 5,. We

specify the parameter support matrix as

B Bl |2 -2 Z||p
B, | = z p, |=|0 Z; 0 P, |,
Bs Ps 0 0 zZ||p
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where Z"isthe 3x3M sub-matrix of support pointsfor 3, 3,,and B,; p,, p,, and p,

represent the unknown probabilities associated with the support points for these

parameters. We specify z such that all its elements are positive and obtain

Iél = zipl_izpz +ép3 :21p1 _léz +Ié3'
which implies that

B+B =2p+B >4, (23)

4.2 Imposing non-binding inequality infor mation

GJIM (1996, pp. 140-142) consider the cost of imposing incorrect sign information about a
parameter, but do not impose binding restrictions. They estimate a linear regression model using
the generalized cross-entropy (GCE) estimator, which is used to specify discrete prior distributions
that are not uniform. GJM specify parameter sign information by placing more prior weight on
either the positive or negative parameter support points. They specify a parameter support given by

Z, =[~10,10] with prior weights of [.375 .625] and [.625 .375| and prior means equal to 2.5

and —2.5, respectively. These sign restrictions are not binding however since the parameter
estimate is free to take any value between —10 and 10. We imposed this type of non-binding prior
information on our GME3 estimator in section 3. For example, we specified a prior mean of —1 for
coefficient on COLL, but the parameter estimate still came out positive.

In several sampling experiments, GIM find that risk is only dightly lower when the prior
means are specified to take the correct signs compared to when they are specified to take incorrect
signs. Thisis consistent with our results, which showed the parameter estimates did not change

much in response to non-binding parameter restrictions.
4.3 GME estimation of an economic model with binding inequality restrictions
We now estimate the poverty rate modd with binding inequality restrictions. This type of

binding restriction has been applied by Fraser (2000) who imposes the restriction that own-price
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elagticities must be negative in ameat demand model and by Shen and Perloff (2001) who impose
the restriction that the speed of adjustment parameter in a cobweb model be positive and less than
one. In our model, the only coefficient that took an unexpected sign was the positive coefficient on
COLL since we expect the percentage of college-educated adults to have a negative impact on
poverty rates. For our first set of restricted estimates, we constrain the coefficient on COLL to be
negative.

Suppose we wanted to impose the stronger restriction that the percentage of college-educated
adultsto has a larger negative impact on the poverty rate than percentage of high school educated
adults. Toillustrate the use of our non-block diagonal parameter support matrix we obtain a second

set of restricted estimates in which we constrain 5, < 5, <0.

For both sets of restricted estimates, we compare the IRLS estimates to the restricted GME
(RGME) estimates. We consider the relatively wide bounds (representing little prior information)
of GME1 and the narrower bounds of GME2. We do not re-estimate the GME3 model sinceit is
just GME2 with non-binding restrictions. In each model, we constrain the coefficients for HHZ
and UNEMP to be positive and the coefficients for HS, COLL, and MEDINC to be negative. We
specify the parameter supports for RGMEL and RGME2 as follows:

*  RGMEL - The support for RGME1 maintains the wide bounds, representing little
information about the magnitude of the parameters, asin GMEL. Note that imposing sign
restrictions changes the prior mean of the variables. For example, the support for
MEDINC has the same lower bound asin GME1, but by removing the positive values we
have changed the prior mean from 0to -10. This can have a potentially large impact on
our parameter estimates since they are shrunk towards the prior mean. Table 6 givesthe

parameter support for RGMEL.
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Table 6. Parameter Support for RGMEL (sign restrictions only)

Parameter Parameter Support Prior Mean
£, (constant) z={-50 25 0 25 50} 0
B, (hhsz) z,={0 5 10 15 20} 10
Ps (unemp) z={0 5 10 15 20} 10
B (hs) z,={-20 -15 10 5 ¢ -10
B, (coll) z={-20 -15 -10 5 0} -10
B, (medinc) z={-20 -15 -10 5 0} -10
£, (d90) z,={-20 -10 0 10 20} 0

*  RGME2 — Here we specify narrower bounds representing better nonsample information.
The prior means of the parameters are smaller for RMGE2 than for RGMEL. Table 7

gives the parameter support for RGME2.

Table 7. Parameter Support for RGME2 (sign restrictions only)

Parameter Parameter Support Prior Mean
B, (constant) z={-50 -25 0 25 50} 0
B, (hhsz) z,={0 25 5 75 10} 5
£ (unemp) z={0 05 1 15 2} 1
B (hs) z,={-2 -15 1 05 0 -1
B, (coll) z={-2 -15 -1 -05 0} -1
B, (medinc) z={-10 -75 5 25 0} -5
£, (d0) z,={-20 -10 0 10 20} 0

We again specify error supports using bounds of +30 and +40 . Therestricted GME
estimators are labeled RGME1S3, RGME2S3, RGME1$4, and RGME2$4, where S3 and 4 refer
totheuse of a 30 and 40 rule, respectively. Table 8 gives point estimates for the poverty data

using IRLS and our four different RGME estimators.
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Table 8. IRLSand RGME Estimatesfor Poverty Data with Sign Restrictions

S3 HA
Variable OLS IRLS RGME1 RGME2 | RGME1 RGME2
POV B 21.659 23.139 12.765 16.223 9.289 15.103
HHSZ B, 1.804 1518 3.672 2.862 4.471 3.190
UNEMP B 0.076 0.072 0.113 0.184 0.110 0.214
HS B, -0.201 -0.210 -0.160 -0.193 -0.144 -0.199
COLL B 0.021 0 0 -0.032 0 -0.066
MEDINC 5 -0.416 -0.400 -0.363 -0.324 -0.366 -0.293
D90 B, 8.504 8.189 8.171 7.295 8.647 7.105

The results show that signs of the parameter estimates are the same for IRLS and RGME. The
RGME estimates are larger in magnitude than the GME estimates reported in Table 5. Recall that
in our unrestricted GME1 and GME2 specification all of the parameter estimates had a prior mean
of zero. Imposing binding sign restrictionsin GME not only restricts the val ues the parameter
estimates can take, but also effects the prior mean and therefore the magnitude of the parameter
estimates. The changein the prior means can have afairly large impact on the GME parameter
estimates.

In the original model, the only coefficient that took a sign opposite our expectations was the
coefficient on COLL. With IRLS, restricted coefficients that take the wrong sign in OLS will be
equal to zero. Our results show that our RGMEL estimates, based on wide parameter bounds
representing little prior information, are also equal to zero. However, the RGME2 estimates for the
coefficient on COLL are negative. Thisis appealing since a coefficient estimate of zero is not
consistent with the restriction that it be negative. The IRLS estimator and our RGMEL1 estimator
simply eiminate from the model any variables whose coefficient estimatestake incorrect signs. The
RGME2 estimates are consistent with our belief that the percent of college-educated individuals has
a negative effect on poverty rates.

We now estimate the poverty rate model with the sign restrictions plus the additional restriction

that B, < B,. Weinclude thisrestriction to illustrate the use of a non-block diagonal parameter

support matrix. We specify the GME support matrix using
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where Z"isthe 2x2M sub-matrix of support pointsfor 3, and 3,,and p, and p, represent the

unknown probabilities associated with the support points for HSand COLL, respectively. We
specify the parameter supports for RGMEL and RGME2 as follows:

* RGMELL - Both HSand COLL are constrained to be negative due to the support for HS

(Z,). Notethat the coefficient for COLL, 3, = 3, +Z.p, < ,. Theprior mean of the

coefficient for COLL is ,34 -0.1.

Table 9. Parameter Support for RGMEL (sign and other restrictions)

Parameter Parameter Support Prior Mean
£, (constant) z={-50 25 0 25 50} 0
B, (hhsz) z,={0 5 10 15 20} 10
Ps (unemp) z={0 5 10 15 20} 10
B, (hs) z,={-20 -15 -10 5 0} -10
fs (coll) z={-020 -015 -010 -0.05 0O} £,-0.1
B, (medinc) z={-20 -15 -10 5 0} -10
£, (d90) z,={-20 -10 0 10 20} 0

* RGME2 — Here the parameter supports are exactly as described in Table 7 for RGME2
with sign redtrictions only. The only change comesin the specification of the support

matrix, which now includes the cross-product term between 8, and S;. The prior mean

of COLL is f3, 1.

Table 10. Parameter Support for RGME2 (sign and other restrictions)

Parameter Parameter Support Prior Mean
B, (constant) z={-50 -25 0 25 50} 0
B, (hhsz) z,={0 25 5 75 10} 5
Ps (unemp) z={0 05 1 15 2} 1
B (hs) z,={-2 -15 1 05 0 -1
P (coll) z={-2 -15 -1 05 ¢ B, -1
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B, (medinc) z={-10 -75 5 25 0} -5
A, (d90) z={-20 -10 0 10 20} 0

We again specify error supports using bounds of +30 and +40 . Therestricted GME
estimators are labeled RGME1S3, RGME2S3, RGME1$4, and RGME234, where S3 and 4 refer
totheuse of a 30 and 4o rule, respectively. Table 11 summarizes the different GME estimators
we use in the paper with references to the tables they are used for. Table 12 gives point estimates

for the poverty data using IRLS and our four different RGME estimators.

Table 11. Summary of GME estimator s used

Estimator Parameter Support Error Bounds Location

GME1S3 Wide parameter bounds [-30,30] Tables2, 5

GME2S3 Narrow parameter bounds [-30,30] Tables 3,5

GME3S3 Narrow parameter bounds with non- [-30,30] Tables4, 5
binding restrictions

GME14 Wide parameter bounds [-40,40] Tables2, 5

GME234 Narrow parameter bounds [-40,40] Tables3, 5

GME34 Narrow parameter bounds with non- [-40,40] Tables4, 5
binding restrictions

RGMEL1S3 Wide parameter bounds with [-30,30] Tables®6, 8, 9, 12
binding restrictions

RGME2S3 Narrow parameter bounds with [-30,30] Tables 7, 8, 10, 12
binding restrictions

RGME14 Wide parameter bounds with [-40,40] Tables®b, 8, 9, 12
binding restrictions

RGME234 Narrow parameter bounds with [-40,40] Tables7, 8, 10, 12

binding restrictions

Table 12. IRLS and RGME Egtimates for Poverty Data with Sign and Other Restrictions

S3 A
Variable OLS IRLS RIGME1 RIGME2 | RIGME1 RI1GME2
POV B 21.659 16.509 2.712 8.004 1.247 7.543
HHSZ B, 1.804 2.096 4.489 3.419 5.006 3.603
UNEMP B, 0.076 0.045 0.115 0.189 0.092 0.215
HS B, -0.201 -0.123 -0.034 -0.085 -0.031 -0.093
COLL B; 0.021 -0.123 -0.087 -0.088 -0.102 -0.115
MEDINC g, -0.416 -0.285 -0.262 -0.253 -0.266 -0.234
D90 B, 8.504 6.742 6.802 6.303 7.340 6.287
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With the additional restrictions, RGME and IRLS parameter estimates again take the same
signs. IRLS has a corner solution to the restriction with ﬁ’s = [}4 while the alternative RGME
estimators all have ﬁs < ,[34 as specified by therestriction. All of our GME programs were written

using the GAUSS constrained optimization module. The programs are available on our websites at

http://mww.bus.| su.edu/academi cs/economi cs/facul ty/chill/main.html| or

http://mww.bus.| su.edu/academi cs/economi cs/facul ty/rcampbel | /main.html}

5. GME Interval Estimates

In this section, we use a bootstrap to obtain interval estimates for the GME estimator. In
several sampling experiments, GIM find that the GME estimator has a smaller variance than the
OLS egtimator. Thus, although the GME estimator is biased, GME has lower empirical risk than
OL S dueto the small variability of the GME estimator.

The bootstrap is a method for estimating standard errors by resampling the original data.
Freedman and Peters (1984a) and Freedman and Peters (1984b) describe the use of the bootstrap in
regression models. Horowitz (1997) presents a bootstrap method for computing confidence
intervals where t-statistics are obtained from the resampled data and interval estimates are
computed as B+t.se(/3) , where t. isthe bootstrap t-statistic and se(f3) is the asymptotic standard
error of the estimator. Since we do not know the asymptotic distribution of the GME estimator, we
use the percentile method described by Mooney and Duval (1993) to obtain confidence intervals and
examine the precision of the GME estimator.

We construct our confidence intervals for GME and IRLS by resampling from our original data
and estimating the model T =400 times. We then order the resulting estimates and find the values
corresponding to the 2.5% or 10" value and the 97.5% or 390" value. For OLS we computed
confidenceintervalsas b, £t se(b, ) . Table 13 givesinterval estimates for the poverty data with no
restrictions on the parameter estimates. The interval estimates show a few interesting things about

the GME estimator. First, GME interval estimates are generally narrower than the OLS interval
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estimates, indicating a higher degree of precision. The distribution of the GME estimator is roughly

symmetric about the mean as shown in Charts 1 and 2, which give the empirical distributions of 5’2

and & for the GME1$4 estimator. GME estimates for the other parameters follow similar

distributions.

Table 13. OLSand GME Interval Estimatesfor Poverty Data (N =116 Obser vations)

3
Variable OLS GME1 GME2 GME3
POV [, [10.698, 32.619] | [9.054,22.147] [12.357,23.057) [8.157, 19.711]
HHSZ B, [-0.498,4107) | [1248,3.929]  [1051,3.123]  [1.955, 4.189]
UNEMP B,  [-0.041,0.193] [0, 0.275] [0.006,0.274]  [0.012, 0.272]
HS B, [-0.279,-0.124] | [-0.218,-0.113]  [-0.221,-0.124]  [-0.211, -0.113]
COLL B, [0069,0112] | [-0.047,0182] [-0.055 0.165  [-0.044, 0.178]
MEDINC g, [-0508,-0.323] | [-0.515,-0.301] [-0.503,-0.298] [-0.509, -0.299]
D90 pB,  [6.437,10572] | [5.666,10.412]  [5.573,9.965]  [6.004, 10.447]
s
Variable GME1 GME2 GME3
POV B, [0.501, 19.636] [13.367, 21.147] [8.385, 17.051]
HHSZ B, [1567,3.684]  [1.242,2759]  [2.385, 4.061]
UNEMP g, [0.014,0.269]  [0.027,0.262]  [0.037, 0.272]
HS B, [-0.200,-0.107]  [-0.204,-0.122]  [-0.196, -0.109]
COLL B, [-0.050,0.158]  [-0.059,0.139]  [-0.053, 0.144]
MEDINC 3, [-0.495,-0.290] [-0.481,-0.286] [-0.485, -0.285]
D90 B, [5.918,10.067]  [5.632,9.539  [6.100, 10.054]
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Chart 1. Empirical Distribution of GME1$4 Estimator for 5, (T = 400 Observations)
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Chart 2. Empirical Distribution of GME1$4 Estimator for 5, (T = 400 Observations)

Comparing GME1, GME2, and GME3 for a given set of error bounds we observe little
difference in the width of the confidenceinterval. Theintervals shift due to differencesin the prior
mean and the width of the parameter support, but the width of theinterval remains fairly constant.
However, the intervals become narrower as we increase the error boundsfrom +3g to 4o .
Increasing the error bounds shrinks the estimates towards their prior mean and reduces the
variability of the parameter estimates. For our problem, it appears that using bounds of +4¢ leads
to better estimates than bounds of +30. However, this may vary from problem to problem. Also,
this does not imply that using even wider bounds such as 50 would provide even better estimates.
Aswe make the error bounds infinitely wide the variability goes to zero and the parameter estimates
are equal to the prior mean. Table 14 givesinterval estimates for the poverty data with sign

restrictions placed on the parameters.
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Table 14. OLSand GME Interval Estimatesfor Poverty Data with Sign Restrictions

S3
Variable IRLS RGME1 RGME2
POV B, [16.277,30.641] | [6.953,16.890] [12.415, 19.131]
HHSZ B, [0, 3.281] [2.855,4.905]  [2.369, 3.500]
UNEMP g, [0, 0.180] [0.005,0.229]  [0.101, 0.279]
HS B, [-0.264,-0.163] | [-0.201,-0.112]  [-0.235, -0.155]
COLL B [-0.063, 0] [-0.022, 0] [-0.096, -0.005]
MEDINC B, [-0472,-0.317] | [-0.448,-0.285]  [-0.403, -0.247]
D90 g, [6.119,0.724] | [6.247,10.259]  [5.479, 9.110]

s
Variable RGME1 RGME2
POV B, [3.985, 13.111] [11.952, 17.696]
HHSZ B, [3.755,5.461]  [2.807, 3.674]
UNEMP B, [0.022,0.222]  [0.143, 0.304]
HS B, [-0.184, -0.095]  [-0.242, -0.161]
COLL s [-0.028, 0] [-0.126, -0.030]
MEDINC g [-0.437,-0.295]  [-0.374, -0.215]
D90 2, [6.819, 10.203]  [5.428, 8.697]

The results are consistent with the results for the unrestricted estimates. The restrictions cause
al of the confidence intervals to become narrower and the distributions for some of the parameter
estimates to be truncated. We again observe smaller intervals as we increase the error bounds. In
the restricted case we also observe a large shift in the interval when we increase the error bounds
since the parameter estimates are moving towards their prior mean, which is not equal to zero for

most of the parameters.

6. Conclusions

This paper applies maximum entropy estimation in an economic model of poverty rates. We
discuss how to specify the parameter and error support matrices for the GME estimator. In our
model, the GME estimates take the same signs and are roughly the same magnitude as OLS
estimates. We find that varying the width of the parameter support does not affect the GME
estimates very much. Therefore, a researcher with little prior information could specify awide

parameter support that is symmetric about zero and obtain estimates that are reasonably close to
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OLS egtimates. Varying the width of the error bounds has a larger impact on the estimates. For the
poverty rate example, we conclude that error bounds of +45 are preferred over error bounds of

+36 , where & isthe sample standard deviation of y .

We use a bootstrap to devel op confidence intervals for GME. We find that the GME estimator
has a narrower confidence interval than the OLS estimator does, which is consistent with GIM.
The confidence intervals for the GME estimator become smaller, indicating greater precision in the
estimates, as we increase the error bounds. However, the wider the error bounds are set the more
important it is that we obtain good nonsample information for specifying the parameter support.
The GME estimator is a shrinkage estimator where the parameter estimates are shrunk towards the
prior mean, which is based on nonsample information. Aswe increase the degree of shrinkage
towards the prior mean we need to make sure that the prior mean is based on good nonsample
information.

Finally, we develop a more general parameter support matrix that allows us to impose a broader
set of parameter restrictions than are possible under the traditional support matrix for GME
estimation. We demonstrate how to impose restrictions on the GME estimator using asimple
example of sign restrictions and another more complicated example using our new parameter
support matrix. In both cases, the restrictions are relatively simple to impose and the restricted
GME estimator works very well in our model. One important feature of RGME estimation is that it
does not restrict usto corner solutions asthe IRLS estimator does. For example, when we impose

that restriction that 3, <0 thelRLS estimate will be equal to OLSif the OLS estimate is negative

and to zero otherwise. We find that the RGME estimate is often negative even when OLS and
GME estimates are positive. Because GME estimation relies on prior information, our new support
matrix is an important contribution sinceit allows us a simple way to impose prior information that

is often encountered in empirical research.
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