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Abstract

We consider a linear city model where both Þrms and consumers have to incur trans-
port costs. Following a standard Hotelling (1929) type framework we analyze a
duopoly where Þrms choose locations and prices, with the transportation rate being
linear in distance. We model these two different transport costs by assuming one
transport cost which is then shared by the buyers and sellers according to an ex-
ogenously given rule. From a theoretical point of view such a model is interesting
since mill pricing and uniform delivery pricing arise as special cases. We Þrst obtain
the proÞt function for the two stage game. Given the complex nature of the proÞt
function for the two-stage game, we invoke simplifying assumptions and solve for
two different games. We provide a complete characterization for the equilibrium of a
location game between the duopolists by removing the price choice from the strategy
space through an exogenously given price. We also Þnd that when the two Þrms
are constrained to locate at the same spot, the resulting price competition leads to a
mixed strategy equilibrium which always yields positive expected proÞts. This allows
us to obtain some insights into the two stage game.
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1 Introduction

The spatial competition literature in the Hotelling tradition has two main strands.
One concerns itself with models of mill pricing in which Þrms choose location and
prices, while the spatially dispersed consumers pay the cost of travelling to the Þrm
to buy the product. The other strand of the literature assumes that Þrms absorb the
transport cost of shipping the item to the consumers and is called uniform delivery
pricing since all consumers pay the same price.1 In this paper we analyze a model
of a linear city that incorporates features of both mill pricing and uniform delivery
pricing. We assume that Þrms charge the same price to all consumers, but have a
cost of delivering to all those who purchase from it, just as in the models of uniform
delivery pricing. Buyers on the other hand pay the price and also incur a transport
cost which, for instance, captures the delivery time of the good. The delivery time
increases with the consumer�s distance from the Þrm and is a source of disutility.
It captures the opportunity cost of being able to consume sooner than later.2 The
transport cost for consumers can be interpreted broadly to include time, effort and
other transaction costs, apart from the costs of travel. This feature is shared by the
models of mill pricing. Thus, our model is a hybrid of the standard mill price and
uniform delivery price models.

The economic relevance of location games does not stem exclusively from their
initial geographical set-up. This idea can be extended to competition among Þrms
selling differentiated products, where each Þrm�s product is viewed as a point in the
characteristic space. This product differentiation aspect of location theory dates back
to Hotelling�s (1929) seminal work. He recognized that while location was a source
of market power in itself, it could also be a proxy for other characteristics of the
product. The following quote serves to illustrate this point quite well: �. . . distance,
as we have used it for illustration, is only a Þgurative term for a great congeries of
qualities. Instead of sellers of an identical commodity separated geographically we
might consider two competing cider merchants side by side, one selling a sweeter
liquid than the other.�

Asides from the purely theoretical aspects of the model, one encounters many
examples of this sort in the real world. Retailers bear the cost of bringing the com-
modity over to the shopping center, while the buyers must drive there to actually
inspect and purchase the items. Buying furniture usually involves a trip to the fur-
niture store and selecting the desired items, and the furniture store usually delivers
the items to the consumer location free of charge. The labor market also has similar
features. The commute time to work has to be borne by the employees. Hence, one
consideration for Þrms in choosing to locate in the suburbs is the desire to avoid
traffic congestion thereby making the job attractive to workers. The large numbers
of hi-tech Þrms located in sub-urban Washington D.C. provide ample testimony to
this fact. This phenomenon can also be observed in certain types of differentiated

1A third concept, less frequently encountered is that of spatial price discrimination (Hoover,
(1937)). For an insightful exposition of this issue see Anderson, de Palma and Thisse (1989).

2One need look no further than the wide array of shipping options provided to consumers by
FedEx, UPS and the United States Postal Service to be convinced of the value of consuming earlier.
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product markets. In particular, it is quite common in certain segments of the software
industry. Often each Þrm produces its own standard product and then customizes it
to suit the needs of individual buyers, while buyers have to learn the intricacies of the
software. The cost of learning new software or customizing it to suit the individual
client�s needs can be treated as transport cost in our framework.

For the purpose of modelling these issues one might imagine that there is a total
cost for moving a commodity from the store to the consumer�s location. We then
assume that the total pecuniary burden of shipping a commodity from the Þrm to
a consumer is shared by both buyers and sellers. So, consumers in our model pay
an exogenously given part of the transport cost while Þrms pay the remainder. As
in most of the examples, assuming an exogenously set transport cost sharing rule is
reasonable since the consumers have their own transport cost, while Þrms have incur
to transport costs which are particular to them. Notice that when the consumers�
share of costs goes to zero we have the uniform delivery price model and when they
bear the entire cost we have a mill pricing situation. In the subsequent section we
develop a model to analyze the two stage game. The proÞt function of the two
stage game is found to have an intricate and complex expression rendering it difficult
to proceed further without making simplifying assumptions. The problem is then
analyzed for a pure location game and its counter-part where Þrms locate at the
same spot (thereby removing location choice from the strategy space) and compete
in prices. The insights from these two games are then used to develop conjectures
about existence of pure strategy location-price equilibria in the two-stage game.

The next section provides a brief overview of the related literature. Section 3
derives the proÞt function of the two stage game and solves for location equilibria,
assuming Þxed prices. We then analyze a price game where both Þrms are located at
the same spot. Section 4 summarizes the results to provide further insights.

2 Review of Literature

Given the plethora of work both on models of mill pricing and uniform delivery
pricing an exhaustive survey of all aspects of the literature would be a considerable
digression. We limit the scope of our review only to those results which are pertinent
to the model under consideration. Graitson (1982) is an early survey of the literature.
A more up-to date and comprehensive survey can be found in Anderson, de Palma
and Thisse (1992). The literature on mill price is more abundant and we will start
by discussing those.

The mill price models trace their heritage from the original Hotelling (1929)
model.3 Typically in these models Þrms choose locations and then prices and con-
sumers incur the transportation cost. Hotelling ((1929), pg. 53) claimed that under
mill pricing the two Þrms in the market would �. . .crowd together as closely as pos-
sible.� , while he noted the possibility of Bertrand competition for the extreme con-

3Note however that Ferreira and Thisse (1996) provide evidence of the fact Launhardt had already
proposed such a model of a spatial duopoly in 1885.
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centration case only.4 Fifty years later d�Aspremont, Gabszewicz, and Thisse (1979)
(henceforth DGT) revisited the model and formally characterized the ßawed nature
of Hotelling�s solution.5 They found that the price equilibrium found by Hotelling
holds, but only if the two Þrms are sufficiently far apart. If the two Þrms were lo-
cated close to each other, undercutting the opponent is proÞtable. Higher proÞts
destroy the pure strategy equilibrium in prices. Consequently, Þnding the location
equilibrium for the two stage game is also jeopardized. Of course as pointed out by
Hotelling, when the two Þrms are exogenously located at the same spot, the game
reduces to pure Bertrand competition. What he missed though, and was pointed out
by DGT, was that price undercutting or Bertrand competition would arise �earlier�,
long before the Þrms �arrived� at the same location. The tendency to undercut which
allows the successful Þrm to capture the entire market would arise as soon as the
Þrms are not too far apart since it allows them to capture the entire market. DGT
suggest one way out of the nonexistence problem − by introducing quadratic trans-
port. The game now exhibits a �centrifugal� location tendency rather than central
location tendency. The Þrms would like to locate outside of the linear city, and hence
in equilibrium the two Þrms charge the same price and locate at the endpoints of the
line segment.

There are also some other approaches to deal with the non-existence problem.
One of the more ingenious ones by de Palma et al. (1985) shows the existence of
Nash equilibrium in pure strategies by introducing sufficiently heterogenous prod-
ucts. A different solution has been provided by Kats (1995) where the linear city
was replaced by a one dimensional bounded space without boundary, i.e., a circle.
Another approach is to characterize the mixed strategy equilibrium. This line of
research stems from the two Dasgupta and Maskin (1986) papers on games with
discontinuous payoffs guaranteeing the existence of an equilibrium in Hotelling type
models. Osborne and Pitchik (1987) undertake the task of actually identifying the
equilibrium mixed strategy price distribution functions of Hotelling�s original model.
They identify a support for mixed strategies in prices when the Þrms locate close to
each other. They Þnd a unique pure strategy equilibrium in locations, in which the
Þrms are located at about 0.27 from the respective endpoints. For those locations,
the equilibrium support for prices consists of two distinct line segments. As an ex-
planation Osborne and Pitchik invoke the intuitive parallel with the phenomenon of
�sales�. It is worth emphasizing that during this analysis they encounter highly non-
linear equations and resort to computational methods to come up with approximate
numbers.

For the uniform delivery pricing models, where each Þrm quotes a single deliv-
ered price to all its customers, the non-existence problem is even more severe. It
arises because the rationing of some consumers by one Þrm allows its rival to service

4In the industrial organization literature this result is also referred to as the principle of minimum
differentiation. The term was coined by Boulding (1955) who used it among other things to explain
the existence of similarities between Methodists, Quakers and Baptists.

5As noted in Osborne and Pitchik (1987), Vickrey (1964) had already identiÞed the problem with
Hotelling�s analysis.
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this segment of the market at a high price. This gives the Þrst Þrm an incentive
to undercut, thereby destroying the equilibrium (see Beckmann and Thisse (1986)).6

A holistic analysis for the circular space scenario can be found in Kats and Thisse
(1993). After showing the nonexistence of a pure strategy equilibrium in prices, they
invoke Dasgupta and Maskin (1986) and characterize the mixed strategy equilibrium
in prices. The location equilibrium in the Þrst stage of the game is in pure strategies.
The second part of their paper is devoted to the endogenous choice of the pricing
policy by the Þrms. For the monopoly case, uniform delivery pricing is the optimal
policy, partly because it allows the monopolist to extract all the surplus from the
consumers. In the duopoly case, the consumer�s reservation price r is the crucial
parameter. For low r < 5

8 , both Þrms choosing uniform delivery pricing is the unique
equilibrium of the pricing policy game. For higher r, the competitive region (the over-
lapping market area) for the two Þrms becomes larger, intensifying price competition
between the Þrms, making mill pricing quite attractive. Hence both price policies can
be sustained as equilibria for the duopoly, with mill pricing resulting in higher proÞts.
Another solution to the nonexistence problem also using heterogenous products can
be found in de Palma, Labbé and Thisse (1986). The interested reader may also refer
to Anderson, de Palma and Thisse (1989) for an excellent comparison the above two
pricing policies, as well spatial price discrimination using a heterogeneous product
formulation.

3 The Model

Consider a linear city of length l with a continuum of consumers distributed uni-
formly on this line. Each consumer derives a surplus from consumption (gross of
price and transportation costs) denoted by V . In keeping with the terminology used
in the spatial competition literature we will refer to this as the consumer�s reservation
price. Consumers are assumed to have unit demands when their reservation value
exceeds the price plus the transport cost they incur. Otherwise, they do not pur-
chase the commodity. The transportation rate t is assumed to be linear in distance.
Consumers pay a proportion α and Þrms pay a proportion (1 − α) of the transport
cost.7 Consequently, a consumer who travels a distance of d pays αtd as transport
cost and the Þrm pays the remaining (1−α)td of the cost. For notational convenience
we set (1 − α)t = s and αt = t − s. Due to the sharing of transport costs by Þrms
and consumers, consumers face horizontal product differentiation and Þrms engage
in some price discrimination in our model. There are two Þrms in the market called
A and B. The Þrms are located at respective distances a and b from the ends of
the line (a + b ≤ l, a ≥ 0, b ≥ 0), and charge prices of p1 and p2 respectively. In
order to focus on the transport cost issue, we assume that there are zero marginal
costs. Consumers buy from the Þrm that quotes the smallest effective price, i.e., the

6For more on uniform delivery pricing models also see Greenhut and Greenhut (1975) and de
Palma, Portes and Thisse (1987).

7While assuming an exogenous α is problematic for the second interpretation of our model, it
goes quite naturally with the Þrst story.
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mill price plus their share of the transport cost, in order to maximize utility. The
location of the indifferent customer is denoted by z = p2−p1

2(t−s) +
1
2(l− b+ a). Firms in

the model Þrst choose a location and then quote a price. Based on the price and the
transport cost consumers make their purchase decision. Figure 1 (all Þgures have
been attached at the end) represents the most general situation, i.e., the two stage
location-price game and provides a graphical depiction of the notation developed here.

We are now in a position to obtain the proÞt function of the two stage game.
Note that the expression below is derived for Þrm A, and we require that a ≤ l − b,
or that Þrm A is located to the left of Þrm B. For the Þrm on the right, a symmetric
expression applies with only relevant change in notation. Set

∆ = max{0,min{a,max{0, l − b− p2
s
}}−max{0, a− V − p1

t− s , a−
p1
s
}},

Φ = min{max{a, l − b− p2
s
}, a+ V − p1

t− s }− a,

Γ = max{0,min{l, a+ p1
s
, a+

V − p1
t− s }−max{a, (b+

p2
s
)}},

H = min

·½
p2 − p1
2(t− s) +

1

2
(l − b+ a)− a

¾
,
p1
s
,
V − p1
t− s

¸
,

K = a−max{0, a− V − p1
t− s , a−

p1
s
},

M = min{p1
s
,
V − p1
t− s , l − a},

P = (t− s)(l − b− a).

Then the general expression for the proÞt function is as follows:

Π1(p1, p2, a, b) =



(i) ∆ · {p1 − s ·max[0, a− (b− p2
s )]}

− s
2∆

2 +Φ · p1 − s
2Φ

2 + Γ · p2 − s
2Γ

2 if p1 > p2 + P ;

(ii) H · p1 − s
2H

2 +K · p1 − s
2K

2 if |p1 − p2| ≤ P ;

(iii) M · p1 − s
2M

2 +K · p1 − s
2K

2 if p1 < p2 − P.

Notice that the expression depends on the relationship between the price differ-
ence p1 − p2 and P = (t− s)(l − b− a), the cost to a consumer to go the extra way
from a to b. Further, observe that if the Þrm serves an adjacent market area (an
interval immediately to its left or to its right) of length N , then the revenue from
these customers is N ·p1 and the cost of serving then is s2 ·N2. It remains to determine
that ∆,Φ, . . . are the correct market sizes. We now brießy discuss each of the three
possible cases separately.

(i) p1 > p2 + (t− s)(l − b − a). This case occurs when Þrm A is being undercut
by Þrm B. Here ∆ is the size of the market area to the left of its location and Φ is
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the size of the market area to the right of its location. The last two terms represent
the possible case of �leapfrogging� a far away market: Γ is a possible market area to
the right of the opponent�s territory. It occurs since the opponent is charging a lower
price and may not be willing to serve all the customers on its right, thus making it
feasible for the left-hand side Þrm to serve that chunk of the market by sufficiently
raising its price.

(ii) |p1 − p2| ≤ (t − s)(l − b − a). In this case no Þrm is able to undercut its
rival. The Þrst two terms here signify proÞts from the right hand side and the
last two terms signify proÞts from the left hand side. H is the minimum of the
three following possibilities: either the line segment between a and location of the
indifferent consumer, or p1s which is all the market the Þrm A would like to serve (in
this case, on its right hand side), or only the line segment representing the locations
of those consumers (located to the right of a) who would like to buy from Þrm A.
Since this is the no undercutting case, the (left-hand side) extent of the market area
to which Þrm B is willing to sell play no role here. The expression K just depicts
the Þrm A�s captive market on the left hand side.

(iii) p1 < p2− (t− s)(l− b− a). This case occurs when Þrm A undercuts Þrm B.
The Þrst two terms are proÞts from the market area, of size M , on the right and the
last two are proÞts from the market area, of size K, on the left. Consider M . Firm
A can sell to the market segment it wishes to, given by p1

s , unless of course some

of those customers themselves do not want to purchase from it (V−p1t−s ). Finally, it
allows for the fact that Þrm A sells to the entire line segment, from its own location
a up to the right hand side boundary of the linear space, l. The last two terms of
this part of the proÞt function represent the market area of the Þrm to the left of its
location.

The general expression for the proÞt function given below indicates a host of
possibilities from which one may surmise that multiple equilibria can exist in our
setting. Clearly, it will not be possible to analyze the model without making some
simplifying assumptions. Any equilibrium outcome of the model will be determined
by the interplay of the consumer�s reservation value and the Þrm�s choice of location
and prices. Since our model combines elements from both the mill pricing and the
uniform delivery pricing models, absence of sales can occur for two reasons. Under
certain parameter conditions, because of their reservation utility, the consumers will
not want to purchase the product at the price offered by the Þrm. On the other
hand, for certain location-price pairs, it is also possible that a Þrm may not want to
sell to some consumers who are willing to buy from it. Keeping these in mind we
analyze two different games to gain some insight into the problem. We Þrst study a
pure location game. Here V does not play any role and we are able to focus on the
interaction between price and location choice. We then look at the situation where
the Þrms are located at the same spot. Here location does not play a role and allows
us to concentrate on the interaction between V and the prices set by the Þrm.
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3.1 A Location Game

In this section we assume that the price p of the commodity is exogenously given,
for example as in the regulator�s world. This can also happen if the Þrms have
previously agreed to Þx prices. Another possibility is that prices have been chosen
earlier in the distribution channel by manufacturers or wholesalers and retailers are
subject to resale-price maintenance. For the sake of simplicity, in this section we
assume that p + (t − s)l < V .8 In this model the location of the consumer who
is indifferent between buying from A and buying from B simpliÞes to z = l−b+a

2 .
Suppose the regulator sets prices high enough to ensure that both Þrms can sell to
all the consumers. Then from the previous section we can write each Þrm�s proÞt
function as

Π1(a, b) = pz − (1− α)t
2

{a2 + (z − a)2}
and

Π2(a, b) = p(l − z)− (1− α)t
2

{b2 + (l − b− z)2}
As before, in each of these proÞt functions the Þrst term denotes revenues and the
second term is the share of the transport cost that each Þrm has to incur to sell to
all of the customers who wish to purchase from it.

In order to look for equilibria we deÞne three ranges for the exogenously given price
since this is critical in deciding whether the Þrms can cover the cost of transporting
to all the consumers who wish to purchase. Case (i) p < 1

4sl : Prices are so low in
this range that the Þrms are not able to serve the entire market area. See Figure
2 for this case. At best each can only sell to a market size of l

2 . Case (ii)
1
4sl ≤

p ≤ sl : In this price range together the two Þrms can cover the entire market area.
The above proÞt functions are appropriate for this range. Notice that the total costs
are triangles whose areas the Þrms try to minimize in this instance. Case (iii) p > sl :
This is the range of very high prices and each Þrm can cover the entire market by
itself.

Proposition 1. If 1
4sl ≤ p ≤ sl, there exists a unique equilibrium in locations.

The equilibrium locations are symmetric and are given by

a∗ = b∗ =
2p+ sl

6s

Equilibrium proÞts for each seller are identical and given by

Πi(a
∗, b∗) =

1

72s
[40pls− 8p2 − 5(sl)2]

8We analyze the consequences of reservation prices in the next section where Þrms play a pure
price game with Þxed locations.
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Proof. The proof consists of taking the derivative of each Þrm�s proÞt function
with respect to its location and solving the following system of two equations obtained
from the Þrst order conditions.

a =
4

5

1
2p+

1
4 ls− 1

4sb

s

b =
4

5

1
2p+

1
4 ls− 1

4sa

s

We also verify that the second order conditions are satisÞed. Substituting the optimal
locations in the proÞt functions yields the equilibrium proÞts. Furthermore, we can
check that Þrm A does not wish to locate to the right of Þrm B. Given b∗, we know
that l − b∗ is less than l

2 which denotes the location of the indifferent consumer in
the above equilibrium. Consequently, in the above equilibrium Þrm A has half the
market. If Þrm A locates to the right of Þrm B then the new indifferent consumer
will lie in the interval l − b∗ and Þrm A�s market area will be strictly less than half
the market area l

2 .
9 Hence, Þrm A will not gain by selecting a location to the right

of Þrm B. By symmetry Þrm B will never locate to the left of Þrm A. So, (a∗, b∗)
constitutes an equilibrium.

In contrast to the original Hotelling model, here transport cost considerations
in maximizing proÞts prevent the Þrms from locating at the center in all instances.
Notice that the optimal location can be rewritten as a∗ = l

6 +
p
3s . In fact a

∗ ∈ [ l4 , l2 ]
with the Þrm never locating to the left of l4 to ensure that costs are minimized. The
corresponding proÞts lie in the range [28pl,

3
8pl] with proÞts increasing as the Þrm A

moves to the right. Observe that in equilibrium the indifferent consumer is always
located at l

2 irrespective of the location of the two Þrms.
When p ∈ [14sl, sl] as assumed in the proposition, the optimal location varies in-

versely with s and directly with p. Comparative statics results suggest that Þrms
in our model also have a central location tendency. Clearly, da∗

dp > 0, suggesting
that both Þrms want to locate closer to the center as the exogenously given price
grows. As the regulator raises the price, each Þrm can sell to a larger segment of
the market and in order to minimize costs moves towards the centre. Since this is
true for both Þrms, equilibrium behavior ensures that the position of z remains un-
changed. Finally, using the fact that s = (1 − α)t, it is also possible to show that
da∗
dα > 0. Thus as the consumers bear a greater proportion of the transport cost, we
get an outcome closer to Hotelling�s mill pricing model. This is intuitive since the
closer the situation is to Hotelling�s case, the stronger is the central location tendency.

Equilibrium location for the other two cases cannot be obtained using standard
Þrst order conditions and is discussed next.

Fact 1. Case (i) p < 1
4sl : In this case the combined market area for both Þrms

together is no longer l (see Figure 2 ). The regulator�s price is so low that Þrms do

9Note that Þrm A could have chosen the symmetric (about Firm B�s location) location on the left
hand side and earned at least as much proÞt. However, we Þnd that optimal proÞts from choosing
a location to the left of Firm B are obtained at a∗.
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not serve all the consumers in the city. To see this we equate a∗+ p
s = (l−b∗)− p

s and
solve for p. This equation enables us to Þnd the price at which the market areas of the
two Þrms just touch each other without overlapping. Since this occurs at p = 1

4sl, for
prices below this the Þrms can have isolated markets, provided locations are chosen
optimally. Firms will locate such that their market segments do not overlap while
maximizing the market area served. They choose locations so as (a) not to have
overlapping market areas (ps <

l−b−a
2 ), and (b) to ensure that (p− as) is nonpositive.

Thus, it is possible to have a whole range of locations as equilibria in this instance.

Fact 2. Case (iii) p > sl : Both Þrms locate at l2 . From the previous proposition we
have already seen that no seller wants to choose a location to the left of their origi-
nal location with increases in price. By symmetry of the proÞt functions rightward
movements are ruled out, as this amounts to relabelling the Þrms and therefore both
Þrms choose l

2 .

Thus, with a slight modiÞcation of the location game we Þnd that Boulding�s
ubiquitous principle of minimum differentiation is no longer so pervasive. The im-
plications of this for the regulator are also fairly obvious. If the regulator decides to
lower prices after the Þrms have chosen locations, the Þrms� locations will be sub-
optimal and in order to maximize proÞts the Þrms will not serve all the customers
they were selling to before the price reduction. Of course when prices are raised
locations will still be sub-optimal but the earlier customers will not be left out. We
next solve for a price game where both Þrms are at the same location by decree.
The insights from these two games and their implications for the two-stage game are
discussed in the concluding section.

3.2 A Special Price Game

In this section we analyze a price game when both players are constrained to being
at the same location. Admittedly, this is an extreme assumption, but it is also the
analogue of the problem in the previous section where the Þrms faced exogenously
given prices and were allowed to compete only in locations.10 All other assumptions
of the previous section are assumed to hold. As argued earlier, for low V some con-
sumers will not want to purchase the product at the price offered by the Þrm. These
consumers may then be left out of the market. Another possibility is the fact that a
Þrm may not want to sell to some willing consumers. This opens up an interesting
possibility. Suppose Þrm A does not wish to sell to a particular segment of the mar-
ket. Then given a sufficiently high reservation price for consumers, Þrm B can alter
its price and sell to the excluded section of the market. Thus, transactions between
the agents depends on mutual consent between buyers and sellers regarding the trade.
Clearly, rationing of certain consumers is a distinct possibility in this model. Further-
more, this rationing will be of a discriminatory nature, as each additional consumer
will pay a higher effective price based on the distance from the seller�s location.

Since both Þrms are located at the same place, there is no horizontal product
differentiation and we have a case of pure price competition. As shown by DGT, in

10One might think of city planners who will only let Þrms set up shop at a particular location!
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the Hotelling model there exists a pure strategy equilibrium for this price subgame
where prices are equal to the marginal cost, i.e., zero. Given positive transport costs
for Þrms, our results differ from the Hotelling model since there is no pure strategy
equilibrium in the price subgame. Instead, we show that a mixed strategy equilib-
rium exists. In this equilibrium prices always exceed the marginal cost of production.
This is similar to the results in models of Bertrand-Edgeworth competition (see for
example Allen and Hellwig (1986), Dasgupta and Maskin (1986) and Kats and Thisse
(1993) in the context of spatial models.

We will Þrst establish a result about the upper (pu) and lower (pl) bounds on
prices. Without loss of generality, consider a realization of the mixed strategy where
Þrm A is charging a low price and Þrm B sets a high price. In the rest of this section
while we often refer to Þrm A as the low price Þrm and Þrm B as the high price Þrm,
we have in mind only a particular realization of the mixed strategy. We obtain pu by
computing the monopoly price while taking V into account. When the reservation
price is below a certain threshold (say bV ), at the price upper bound denoted by pur
some consumers in the market will not wish to purchase from Þrm B.11 When V ≥ bV ,
the upper bound is given by the highest price at which Þrm B can sell to consumers
located furthest from it, and is denoted by pua (> p

u
r )since the Þrm sells to all residual

consumers, i.e., consumers who could not purchase from the low price Þrm A. At
that point the gains from increased price to Þrm B clearly outweigh the losses from
forgoing any market share. Denote the markets segments of Þrm for these two cases
by xr and xa respectively. This will then be used to prove a proposition about mixed
strategy equilibria in the price game.

Lemma. The support of any equilibrium in the price game is a strict subset of
[0, V ].

Proof. We will demonstrate that the interval [pl, pu] ⊂ [0, V ] for each of the two
possible cases. We show that when Þrm A now raises its price starting from zero,
Þrm B will not raise its price beyond pu. Similarly, Þrm A will not reduce its price
below a lower bound denoted by pl.

(I) For V < bV , pur is the candidate upper bound. By deÞnition we know that
pur dominates all prices in the interval (p

h, V ]. When Þrm A raises its price beyond
zero, Þrm B loses customers from the center of its market. The optimal response for
Þrm B is to either lower its price and sell to the consumers previously left out or to
undercut Þrm A. Thus prices do not exceed pur .

(II ) For V ≥ bV , the candidate upper bound is pua. When Þrm A now raises its
prices, Þrm B can continue to sell to the residual market at pua or undercut Þrm A.
Thus in either case there is an upper bound on prices.

Now consider the existence of the lower bound for the two possible cases.

11The precise value of the threshold reservation price is not relevant to the argument here. Exact
computations are shown in the next result.
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(III ) Again, consider V < bV . Since Þrm A�s proÞts are increasing in its price, it
will prefer to raise its price up to a point. The lower bound on prices can be obtained
from equating Π2(p1, p

0
2(p1)) (where p

0
2(p1) is the best response price of Þrm B) with

the proÞt Þrm A from raising its price. Prices in the range [0, plr) are dominated by
plr and when the Þrm raises its price above plr the rival Þrm will have an incentive to
undercut.

(IV ) For V ≥ bV , the candidate lower bound is pla. A similar argument establishes
the lower bound on prices for this case. Thus prices will not fall below pl.

This allows us to conclude that prices above ph are dominated by it. Also, choosing
pl gives higher proÞts compared to prices less than pl. So there cannot be a pure
strategy equilibrium outside this interval, and hence there cannot be one in mixed
strategies either as it would involve the play of dominated strategies.

Having isolated the bounds within which an equilibrium exists we will now argue
that the price game does not have a pure strategy equilibrium in this range. However,
a mixed strategy equilibrium exists. The next proposition shows the support of this
equilibrium when the Þrms locate at the center. We then argue that this can be
generalized to asymmetric location choices of the Þrms.

Proposition 2 For a = b = l
2 , the price game has no pure strategy equilibrium.

A mixed strategy equilibrium does exist for this price game. For V < bV , the support
is given by [sV

³
t−√2ts−s2
(t−s)2

´
, sV√

2ts−s2 ] and for V ≥ bV , the support is given by [s(l −
a)
³
1 + s(l−a)

2(V−(l−a)(t−s))
´
, V − (l − a)(t− s)].

Proof. From the previous lemma we know that any equilibrium must lie in the
interval [pl, pu]. Assuming a = l

2 we will now compute the critical V and the two
associated intervals. The threshold V is found by taking the derivative of Þrm B�s
proÞt function at the price when the furthest consumer is indifferent between buying
and not buying the commodity from Þrm B, and occurs at p = V − (t − s) l2 .12
For a low reservation price i.e., V < l

2(2t − s) = bV , the upper bound is obtained
by solving the monopolist�s proÞt maximization problem. Assuming that Þrm B
behaves as a monopolist on the residual demand area left by Þrm A, its proÞts can
be written as Π2 =

1
2(
V−p2
t−s − p1

s )(2p2 − s(V−p2t−s +
p1
s )). The best response price then

is p
0
2(p1) =

stV−p1(t−s)2
(2t−s)s . Using this we compute proÞts of Þrm B in terms of p1

Π2(p1, p
0
2(p1)) =

1

2

(sV − p1t)2
(2t− s) s2

Clearly
∂Π2(p1,p

0
2(p1))

∂p1
< 0. To Þnd the lower bound on price we next equate the proÞts

of the two Þrms using the fact that Π1(p1, p2) =
p21
2s . Note that since Þrm A is the low

12Evaluating the derivative of the proÞt function with respect to the price at p = V − (l−a)(t− s)
we obtain ∂π

∂p
= tV−[V−(l−a)(t−s)](2t−s)

(t−s)2 . A monopoly solution is possible only when the numerator

is positive, i.e., when V < (l − a)(2t− s).
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price Þrm its proÞt expression does not contain a p2 term. Equating the two proÞt

expressions gives us p1 = sV
³
t±√2ts−s2
(t−s)2

´
. The root with the positive discriminant

yields a negative p2 and hence is eliminated. The optimal value of p1 which is the
lower bound is then given by

plr = sV

Ã
t−√2ts− s2
(t− s)2

!

This also makes intuitive sense as a high p1 implies that the low-price Þrm is selling
to a large section of consumers leaving very little behind for the other Þrm. Using
the root with the negative discriminant we Þnd that

pur =
sV√
2ts− s2

It can be checked that pur > p
l
r which is when such a situation will occur. Also, using

these prices we Þnd that proÞts are

Π1 = Π2 = s

µ
V

(t− s)2
¶2 ³

t−
p
2ts− s2

´2
Suppose V ≥ l

2(2t− s) = bV . A similar argument establishes the lower bound on
prices for this case. The only difference is that the monopoly proÞt of Þrm B is now

different. So, pua = V − (l − a)(t − s) and pla = s(l − a)
³
1 + s(l−a)

2(V−(l−a)(t−s))
´
. Now

let us consider what happens when prices are in the range [pl, pu]. Suppose a Þrm is
charging the price pu. Then by charging a price pu − ε (where ε > 0, and is small)
its rival can undercut the Þrm completely, leaving the Þrm with zero proÞts. This
phenomenon of successive undercutting will occur for any price above pl. Once prices
reach pl, one of the Þrms is better off selling to the remaining consumers at a price of
ph instead of undercutting its rival further. However, the Þrm charging pl would now
prefer to undercut the high price Þrm. Hence there are no pure strategy equilibria.

It can be shown that the two stage location-price game satisÞes Theorem 5 of
Dasgupta and Maskin (1986, pg. 14). Hence it is satisÞed for this price subgame.
This theorem proves that games with discontinuous payoff of the type seen here
have mixed strategy equilibria. Hence we assert that a mixed strategy equilibrium
identiÞed here exists.

We now argue that the same result is also true for any other location of the two
Þrms. The problem becomes asymmetric in this case and the critical value of V on
the right hand side segment of the Þrm�s location can differ from the critical value on
the left hand side. This alters the proÞts of the high price Þrm and consequently the
value of the bounds. Given that the problem is computationally intensive, we just
provide the rationale for the argument without explicitly computing the bounds.

Fact 3. For a+ b = l, the price game has no pure strategy equilibrium. A mixed
strategy equilibrium however, does exist in this price game. To deal with the case
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of any location, we will consider situations where a < l
2 and a+b = l, using the ratio-

nale suggested above. While the method for computing the upper and lower bound
remains the same, three distinct possibilities can arise in this situation. When the
reservation value is high as described above Þrm B will charge a price such that after
paying the transport cost the entire surplus from the consumer at l is exhausted. This
alters the value of pua and consequently of p

l
a. When reservation price is low in the

sense described above, Þrm B charges the monopoly price at which some customers
to the left and right of a are not served. It is possible to observe from the geometry
of the situation (see Figure 3 ) that this alters the value of the monopoly price and
hence of plr as well. Finally, there is also an intermediate value of the reservation
price at which some consumers to the right of a will not be able to purchase at the
monopoly price. This case will also yield different values of ph and pl. Thus we will
have three different inequalities which have to be solved using a technique similar to
the one used for a = l

2 . The main difference with the previous case therefore stems
from the fact that the computation of monopoly proÞts changes. This affects the
high price Þrm�s best response and consequently the lower bound without altering
the logic of the calculation. Since Theorem 5 of Dasgupta and Maskin (1986) holds
in this case as well, the mixed strategy equilibrium exists.

It is worth pointing out that while the upper bound can be the monopoly price,
the lower bound differs from zero and from s as well. Since smay be thought of as the
marginal cost to the Þrm of (delivering) an additional unit, this is different from the
usual lower bound of the support of the mixed strategy in rationing models. These
differences arise because the rationing mechanism in our model can be described as
discriminatory rationing. Consumers not served by the low price Þrm are served by
the high price Þrm, but each additional consumer pays a higher effective price which
is proportional to the distance from the Þrm�s location. It is precisely this reason
which also prevents the price from going down to zero due to price undercutting, as it
becomes worthwhile for one Þrm to sell to the market segment that is left out instead
of lowering prices further.

The mixed strategy equilibrium in our formulation has another attractive feature.
Equilibrium proÞts in the DGT model are always zero when a + b = l and involves
the play of a pure strategy with both Þrms choosing zero prices. In general, a mixed
strategy equilibrium is often considered unattractive as players are indifferent between
all the pure strategies involved and it does not give any reason to select between
these strategies (see Osborne and Rubinstein, (1994) for more on interpretations and
criticisms of mixed strategies, including points on which even the authors of the book
disagree). The redeeming feature of the equilibrium mixed strategy in our model is
that fact that expected proÞts are always positive, whereas in the DGT framework
they are always zero. In fact, proÞts are positive for any realization of the mixed
strategies since pl is always positive in our model.
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4 Discussion

This paper analyzes a model where both Þrms and consumers have transportation
costs. In the standard mill pricing model the pure strategy equilibrium breaks down
since Þrms have and incentive to move to the center and this makes it easier for the
rival to undercut. The Þrm that undercuts successfully gains the entire market. In
our model while choosing locations the Þrms also have to ensure that they minimize
their of transport cost bill. So, while there is a central location tendency, in our
model as well there is also a countervailing force. The Þrm that undercuts its rival
may not be able to sell to the entire market. Similarly, note that in the uniform
delivery price models one Þrm may charge a high price and sell to customers who its
rival may be unwilling to service. In our model the �rationed� consumers may be not
be willing to buy from a high price Þrm since the price inclusive of transport costs
may exceed their reservation price.

Based on these facts we conjecture that a pure strategy equilibrium can exist in
the two stage game. However, given the complex nature of the proÞt function, it
becomes difficult to solve for this game. One way out might be to resort to numerical
methods and try to simulate the equilibrium. This is also not necessarily an easy
task as can be seen from the Osborne and Pitchik (1994) analysis.

Here we follow a different approach. We solve two different games to develop
some insights for the two stage game. In the Þrst of these we consider parametric
prices, thereby restricting Þrms to chose a location strategy only. We Þnd that when
the share of transport costs borne by the consumers increase Þrms move closer to the
center. Yet, the comforting feature of the model is that for any given price there is
a symmetric location equilibrium where the Þrms chose their location keeping their
transport cost in mind. It turns out that the Þrms never locate at the end points. In
fact there is a threshold location ( l4) which the Þrms will never cross. In the second
game Þrms are assumed to locate at the same spot. Thus location choice is no longer
an element of the strategy space. Here we Þnd the existence of a mixed strategy
equilibrium. This is useful since the existence problem is resolved. The two stage
game will have an equilibrium if not in pure strategies, at least in mixed strategies.
This game also tells us that when the Þrms locate too close to each other there cannot
be an equilibrium in pure strategies, i.e., the incentive to undercut is too strong. The
importance of the reservation price is also shown by the this game. We next show
how all of this intuition can play a role in simplifying the analysis.

Now consider the following situation. Assume that no Þrm is able to undercut its
rival, i.e., the Þrms are located far enough. Then, it is possible to argue that a pure
strategy equilibrium of the price-location game does not exist when a Þrm is losing
market share, i.e., when it is charging a price so high that consumers cannot afford to
buy from it. This can be shown by considering the following three cases separately:
Case (i) p1 − as < 0. We see that the Þrm A has market loss on its left hand
side. Also assume that α > 1 − α. Then it is easy to check that by charging a
price p1 + ε (ε > 0), Þrm A can increase its proÞts. Suppose now α ≤ 1 − α. This
is shown in Figure 4. In this case there will exist a price pair (p1, p2) which will
constitute an equilibrium in pure strategies. However, this is not robust to the choice
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of Þrm location. It is easy to check that Þrm A can always do better by moving to
its left. Since we identify conditions for the existence of an equilibrium in the two
stage game, unlike DGT we require that the candidate equilibrium must also survive
the next stage of subgame perfection - the choice of optimal locations. Note that
the tendency to move to the left for Þrm A is present irrespective of the relationship
between α and 1−α. Hence it is not possible for a pure strategy equilibrium to exist
in this case.

Case (ii) p1 − (z − a)s < 0. In this instance Þrm A has market loss from the right
hand side. One can check that by charging a price p1 + ε, Þrm A is better off. It
gains market share and sells to all consumers at a higher price.

Case (iii) p1 − as < 0, and p1 − (z − a)s < 0. Under this scenario Þrm A is losing
market areas on both sides. Clearly, by raising its price Þrm A will increase market
areas on both sides and sell to all customers at the higher price eventually leading to
one of the two situations described above.
Symmetric conditions for Þrm B can be explained using the above arguments.

Arguments like these based on the intuition gained from the two games solved
here can be used to develop a new strategy for solving the two stage game. We suggest
a constructive approach to Þnding the pure strategy equilibrium. The signiÞcance
of the above line of reasoning showing the interaction between prices and locations
lies in the fact that it allows us to eliminate some of the components of the proÞt
function for the two stage game. We believe that by reducing the proÞt function into
one that is less complicated through a series of simple results like the one above and
focusing only on the relevant range, an easy solution to the two stage game can be
found.

Finally, the paper also raises another interesting question − the issue of endo-
genizing the transport cost sharing decision. We believe that this will provide an
alternative approach to modeling the choice between uniform delivery pricing or mill
pricing for Þrms.
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