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Abstract

This paper addresses the existence of Nash networks for the one-way flow model of Bala

and Goyal (2000) in a number of different settings. First, we provide conditions for

the existence of Nash networks in models where costs and values of links are heteroge-

nous and players obtain resources from others only through the directed path between

them. We find that costs of establishing links play a vital role in the existence of Nash

networks. Next we examine the existence of Nash networks when there are congestion

effects in the model. Then, we provide conditions for the existence of Nash networks in

a model where a player’s payoff depends on the number of links she has established as
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well as on the number of links that other players in the population have created. More

precisely, we show that convexity and increasing (decreasing) differences allow for the

existence of Nash networks.

JEL Classification: C72, D85

Key Words: Network Formation, Non-cooperative Games
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Introduction

The importance of networks in economic and social activities has led to the emer-

gence of a growing literature seeking to understand the formation of these networks.

This literature in economics has focused on three main questions: Given that decisions

are made by self-interested players (i) What is the set of stable networks? (ii) What

networks are efficient? and (iii) Is there a conflict between the set of stable and efficient

networks? We can discern two distinct strands in the literature differentiated by the

type of stability concept used.

The first type employs the notion of pairwise stability and its variants and is inspired

by Jackson and Wolinsky’s (1996, [9]) work. These authors assume that a link is formed

if both players involved in a link agree to form that link, though link deletion occurs

unilaterally. While benefits depend on the overall graph, the cost of setting up a rela-

tionship is shared equally between the two participating players. In a pairwise stable

network no pair of players has an incentive to form a link and no player has an incentive

to delete a link. Necessary and sufficient conditions for the existence of pairwise stable

networks can be found in Jackson and Watts (2001, [8]) .

The second literature develops a non-cooperative version of network formation. This

literature was initiated by Bala and Goyal (BG, 2000, [1]) and assumes that a player

can establish a link with another without the latter’s consent, as long as she incurs the

cost of forming the link. The authors present two versions of their model: the two-way

flow model and the one-way flow model. The two-way flow models and consent or pair-
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wise stability type models are the two extremes with the one-way flow model being in

between the two.

Observe that in the pairwise stability type of models, in order to have two way flow

of information, both players must pay a cost and agree to the link between them. In

the two-way flow model, both players have access to each others information regardless

of who initiates the link. Of course, as mentioned above, the initiating player bears the

link formation cost. Consent issues are completely absent in this model. In the one-way

flow model, only the (link) initiating player has access to the other player’s informa-

tion. Thus the importance of this model stems from the fact that it lies somewhere

between the consent and no-consent models. While it does not explicitly require the

other player’s acquiescence, player i has to incur link formation costs to access player j’s

resources. To permit two-way information flow in this model both players have to incur

the costs of a link. For both one-way and two-way flow models, the corresponding static

stable networks are called Nash networks since Nash equilibrium is used to determine

stability.

Most of the existing studies have explored the characterization of Nash networks,

either in the two-way flow model (Galeotti, Goyal and Kamphorst (2005, [5]), Haller

and Sarangi (2005,[7])) or in the one-way flow model (Galeotti (2004, [4]), Billand and

Bravard (2005, [3])). The existence of Nash networks however has not been studied in

great detail. Although BG (2000) provide a constructive proof of the existence of Nash

networks in their original paper this is done in a very restrictive setting – assuming

that all costs and benefits are homogeneous across players. In a recent paper Haller,
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Kamphorst and Sarangi (2005, [6]) study the existence of Nash networks in two-way

flow models by incorporating value, cost and link heterogeneity. The existence issue

had remained unexplored in the one-way flow setting.

In this paper, we investigate the existence of Nash networks in BG’s one-way flow

model. In the existing literature, there are two types of formulations based on the

one-way flow model.

− In the first formulation, a player obtains resources from another player if and only

if there exists a directed path between the two as in BG (2000). In the rest of

the paper we refer to this framework as the (one-way flow) model with transitive

spillovers (MTS).

− In the second set of models, a player’s payoff depends on the number of links

she has formed as well as the number of links the other players in the population

have established. This framework has been used by Billand and Bravard (2004,

[2]). In what follows, we call this framework the (one-way flow) model with global

spillovers (MGS).

The existence of Nash networks in the MTS framework has been studied by BG (2000),

when costs and values of links are homogeneous. But the existence of Nash networks has

not been examined when costs and values of links are heterogeneous. The question of

existence of equilibria under heterogeneity is important for several reasons. Firstly, the

model with heterogeneity provides a robustness check for the results obtained from the

model with homogeneous parameters. Secondly and more importantly, ex-ante asym-

metries across players arise quite naturally in reality. For instance, in the context of
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information networks, it is often the case that some individuals are better informed,

which makes them more valuable contacts. Similarly, as individuals differ, it seems nat-

ural that forming links is cheaper for some individuals as compared to others. Thirdly,

our results complement the existing literature. Galeotti, (2004, [4]) characterizes the

(strict) Nash networks when cost and values of links are heterogeneous. Yet we do not

know under what conditions such equilibria exist. Finally, the existence of Nash net-

works in the MTS framework has never been studied, when there are congestion effects.

Indeed, Billand and Bravard (2005, [3]) extend the model of BG (2000) and introduce

the possibility of congestion effects. These effects exist in several instances where get-

ting too many resources can actually prove an hindrance to agents. For instance, when

researchers are seeking to get some information about a part of their field which they

are unsure about, they often read a literature survey written by another scholar. This

activity is costly in terms of time and effort, for instance, to identify relevant information

sources. The reading effort can be expensive and tedious if they are too many sources.

In extreme cases, if a survey is too exhaustive, it might have little or no value to the

scholarly reader. Billand and Bravard (2005, [3]) characterize Nash networks when this

assumption arises. However, they do not address the issue of existence of Nash networks.

The existence of Nash networks in MGS has never been studied. However, this

framework can be useful as well, particularly in industrial organization applications.

Indeed, prior to competing on the market, firms often have the opportunity to pick up

externalities of other firms via economic intelligence activities (Prescott, Gibbons, 1993,

[10]). These activities, which can be interpreted as directed links, include among others

reading of industry trade press or patent literature, talking with technology vendors,
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sales representative or industy experts, visiting the commercial trade fairs and analyz-

ing the competitors’ product. In an oligopoly market, the competitive strength of a firm

depends both on the number of links she has formed and on the number of links the

competitors have formed.

This framework has been explored by Billand and Bravard (2004, [2]) which character-

ize the Nash networks in that kind of frameworks. Thus our paper contributes to the

literature by resolving the existence question for such networks.

We now provide a quick overview of the results for both types of models.

− MTS models: We show that there does not always exist a Nash network in MTS

models when costs and values are heterogeneous. More precisely, we show that,

as in the two-way flow model, heterogeneity of cost in forming links plays a great

role in the non existence of Nash network. We then provide conditions on costs

of setting links to allow for the existence of Nash networks. We also show that if

costs are homogeneous, then there always exist Nash networks. Finally, we show

that if costs and values are homogeneous, but congestion effects can occur, then a

Nash network does not always exist.

− MGS models: We provide economically appealing conditions for the existence of

Nash networks in MGS models. We show that in the MGS framework there always

exists a Nash network when the players’ utility functions satisfy the decreasing

difference property or when each player’s utility function is discretely convex with

respect to the total number of links this player has established. Moreover, we give

a general characterization of Nash networks when the players’ utility functions
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satisfy the decreasing difference property and discrete convexity with respect to

the total number of links that each player initiates.

The remainder of the paper is organized as follows. In Section 1 we set the basic model

and study existence in the MTS model under various heterogeneity conditions for costs

and values. We conclude this section by examining the model with congestion effects.

Section 2 is devoted to the MGS model. The first part examines existence in the presence

of increasing and decreasing differences. The second part focuses on the characterization

and existence of Nash networks under discrete convexity. Section 3 concludes.

1 One-way Flow Model with Transitivity

In this section, we describe the model of one-way flow networks. This is followed by an

examination of existence in the model without congestion effects. Next, we re-examine

the issue incorporating congestion effects.

1.1 Model Setup

Let N = {1, . . . , n} be the set of players. The network relations among these players are

formally represented by directed graphs whose nodes are identified with the players. A

network g = (N, E) is a pair of sets: the set N of players and the edges set E(g) ⊂ N×N

of directed links. A link initiated by player i to player j is denoted by i, j. Pictorially

this is depicted as link from j to i to show the direction of information flow.1 Each player

1Throughout the paper we refer to this as link from j to i. The same is true for other network

components like paths.
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i chooses a strategy gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n), gi,j ∈ {0, 1} for all j ∈ N \{i},

which describes the act of establishing links. More precisely, gi,j = 1 if and only if

i, j ∈ E(g). The interpretation of gi,j = 1 is that player i forms a link with player j 6= i,

and the interpretation of gi,j = 0 is that i does not form a link with player j. We only

use pure strategies. Note that gi,j = 1 does not necessarily imply that gj,i = 1. It can

be that i is linked to j, but j is not linked to i. Let G = ×n
i=1Gi be the set of all possible

networks where Gi is the set of all possible strategies of player i ∈ N .

We now provide some important graph theoretic definitions. For a directed graph,

g ∈ G, a path P (g) of length m in g from player j to i, i 6= j, is a finite sequence

i0, i1, . . . , im of distinct players such that i0 = i, im = j and gik,ik+1
= 1 for k =

0, . . . , m − 1. If i0 = im, then the path is a cycle. We denote the set of cycles in the

network g by C(g). The complete network g, is a network such that for all i ∈ N, j ∈ N ,

we have gi,j = 1. In the empty network, ġ, there are no links between any agents.

To sum up, a link from a player j to a player i (gi,j = 1) allows player i to get

resources from player j and since we are in a one-way flow model, this link does not

allow player j to obtain resources from i. Moreover, a player i may receive information

from other players through a sequence of indirect links. To be precise, information flows

from player j to player i, if i and j are linked by a path of length m in g from j to i.

Let

Ni(g) = {j ∈ N | there exists a path in g from j to i},

be the set of players that player i can access in the network g. By definition, we assume

that i ∈ Ni(g) for all i ∈ N and for all g ∈ G. Let ni(g) be the cardinality of the set

Ni(g). Information received from player j is worth Vi,j to player i. Moreover, i incurs
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a cost ci,j when she initiates a direct link with j, i.e. when gi,j = 1. We can now define

the payoff function of player i ∈ N :

πi(g) =
∑

j∈Ni(g)

Vi,j −
∑

j∈N

gi,jci,j.

We assume that ci,j > 0 and Vi,j > 0 for all i ∈ N , j ∈ N , i 6= j. Moreover, we assume

that, for all i ∈ N , πi(g) = 0 if gi,j = 0 for all j ∈ N , j 6= i. In other words, we

assume that Vi,i = 0 for all i ∈ N . The next definition introduces the different notions

of heterogeneity in our model.

Definition 1 Values (or costs) are said heterogeneous by pairs of players if there exist

i ∈ N , j ∈ N , k ∈ N such that Vi,j 6= Vi,k (ci,j 6= ci,k) and there exist i′ ∈ N , j′ ∈ N ,

k′ ∈ N such that Vj′,i′ 6= Vk′,i′. Values (or costs) are said heterogeneous by players if for

all i ∈ N , j ∈ N , k ∈ N : Vi,j = Vi,k = Vi (ci,j = ci,k = ci) but there exists i ∈ N , i′ ∈ N

such that Vi 6= Vi′ (ci 6= ci′).

We now provide some useful definitions for studying the existence of Nash networks.

Given a network g ∈ G, let g−i denote the network obtained when all of player i’s links

are removed. Note that the network g−i can be regarded as the strategy profile where

i chooses to form no links. The network g can be written as g = g−i ⊕ gi, where the

operator ⊕ indicates that g is formed by the union of links in gi and g−i. The strategy

gi is said to be a best response of player i to g−i if:

πi(gi ⊕ g−i) ≥ πi(g
′
i ⊕ g−i), for all g

′
i ∈ Gi.

The set of player i’s best responses to g−i is denoted by BRi(g−i). Furthermore, a
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network g = (g1, . . . , gi, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each

i ∈ N .

Definition 2 We say that two networks g and g
′ are adjacent if there is a unique player

i such that gi,j 6= g′
i,j for at least one player j 6= i and if for all player k 6= i, gk,j = g′

k,j,

for all j ∈ N .

An improving path is a sequence of adjacent networks that results when players

form or sever links based on payoff improvement the new network offers over the current

network. More precisely, each network in the sequence differs from the previous one by

the links formed by one unique player. If a player changes her links, then it must be

that this player strictly benefits from such a change.

Definition 3 Formally, an improving path from a network g to a network g
′ is a finite

sequence of networks g
1, . . . , gk, with g

1 = g and g
k = g

′, such that the two following

conditions are verified :

1. for any ℓ ∈ {1, . . . , k}, there is a unique i ∈ N , such that: g
ℓ+1
−i = g

ℓ
−i, that is

there is a unique player i who has changed her strategy;

2. for this unique player i, we have g
ℓ+1
i ∈ BRi(g

ℓ
−i) and g

ℓ
i 6∈ BRi(g

ℓ
−i), that is g

ℓ+1

is a network where i plays a best response while g
ℓ is a network where i does not

play a best response.

Moreover, if g
1 = g

k, then the improving path is called an improving cycle.

It is obvious that a network g is a Nash network if and only if it has no improving path

emanating from it.

Finally, we define η : G → R, η(g) =
∑

i∈N ni(g) as a function.

11



1.2 Model with Heterogeneous Agents without Congestion Ef-

fect

Bala and Goyal (2000, [1]) outlines a constructive proof of the existence of Nash networks

in the case of costs and values of links homogeneity. Here we begin by showing that in

one-way flow models with cost and value heterogeneity by pairs of players (see Galeotti,

[4] 2004) there always exists a Nash network if the number of players is n = 3. This

result is no longer true if the number of players is n > 4. However, if values of links are

heterogeneous by pairs of players and costs of links are heterogeneous by players, there

always exists a Nash network.

Proposition 1 If the values and costs of links are heterogeneous by pairs and n = 3,

then a Nash network exists.

Proof Let N = {1, 2, 3}. We begin with the empty network ġ. Either ġ is a Nash

network and we are done, or ġ is not a Nash network and there exists an improving

path from ġ to an adjacent network g
1. That is, there exists a player, say without loss

of generality player 1, such that ġ1 6∈ BR1(ġ−1) and g
1
1 ∈ BR1(ġ−1). Since 1 ∈ N has

no link in ġ and forms links in g
1 = g

1
1⊕ ġ−1, we have η(ġ) < η(g1). Now we will repeat

the same step. Assume an improving path from a network g
1 to a network g

k where

for each player i ∈ N , we have Ni(g
k−1) ⊆ Ni(g

k). We show that if there exists an

improving path from g
k to g

k+1, then for each player i ∈ N , Ni(g
k) ⊆ Ni(g

k+1). Let i

be a player such that g
k+1
i ∈ BRi(g

k
−i) and g

k
i 6∈ BRi(g

k
−i). We show that if j ∈ Ni(g

k),

then j ∈ Ni(g
k+1). Indeed there are two possibilities for j ∈ Ni(g

k).

1. Either g
k
i,j = 1, that is i directly obtains the resources of player j. Then there are
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two possibilities.

• If Vi,j − ci,j > 0 then j ∈ Ni(g
k+1), otherwise i does not play a best response

in g
k+1.

• If Vi,j−ci,j < 0, then there is a network g
k′

, k′ < k, such that ℓ ∈ Nj(g
k′

) and

Vi,j + Vi,ℓ − ci,j > max{0, Vi,ℓ − ci,ℓ}, else g
k
i,j = 0. Since Nj(g

k′

) ⊆ Nj(g
k),

for all k′ < k and for all j ∈ N , we have ℓ ∈ Nj(g
k) and player i deletes her

link with j only if j ∈ Nℓ(g
k) and Vi,j + Vi,ℓ − ci,j < Vi,j + Vi,ℓ − ci,ℓ. In that

case, i forms a link with ℓ and j ∈ Ni(g
k+1).

2. Or g
k
i,j = 0, g

k
i,ℓ = 1 and g

k
ℓ,j = 1, that is i indirectly obtains the resources of

player j. Then, we use the same argument as above to show that player i deletes

her link with ℓ only if she has an incentive to form a link with j and j ∈ Ni(g
k+1).

We now show that there does not exist any cycle in an improving path Q = {ġ, g1, . . . ,

g
t, . . . , gt+h, . . . , gt+h′

, . . .}, with h′ > h > 0. We note that as j ∈ Ni(g
t) and Ni(g

t) ⊆

Ni(g
t+h), we have j ∈ Ni(g

t+h). Also, as g
t+h
i,j = 0, we have g

t+h
i,k = 1 and k ∈ Ni(g

t+h).

Moreover, as Ni(g
t+h) ⊆ Ni(g

t+h′

), we have Ni(g
t+h′

) = {j, k}.

Without loss of generality, we suppose that player i deletes the link i, j for the first time

between t and t + h. Likewise, we assume that player i forms the link i, j for the first

time between t + h and t + h′.

We have two cases.

1. Suppose we have g
t
i,k = 0. To obtain a contradiction, assume that k ∈ Ni(g

t).

It follows that g
t+h
j,k = 1 since player i does not form the link i, k between g

t and

g
t+h if j preserves the link j, k. Also j does not delete the link j, k between g

t
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and g
t+h if i does not form the link i, k (recall that in our process only one player

changes her strategy at each period). Since player i chooses to delete the link

i, j in g
t+h, then she must form the link i, k and we must have g

t+h
k,j = 1, since

k ∈ Ni(g
t) ⊆ Ni(g

t+h). Moreover, we note that the substitution of the link i, j

by the link i, k implies that ci,j > ci,k. Using same argument, player k has not

deleted the link k, j between g
t+h and g

t+h′

. Therefore, if player i forms the link

i, j in g
t+h′

(and so deletes the link i, k), then we have ci,j < ci,k and we obtain

the desired contradiction.

2. Next, suppose that we have g
t
i,k = 1. If player i deletes the link i, j in g

t+h, then

we obtain the situation in case 1 up to a permutation of players j and k. Hence

the proof follows.

�

We have shown that if values and costs of links are heterogeneous by pairs and n = 3,

then there always exists a Nash network. Note that this result is not true for the model

with directed links and two-way flow of resources (see Haller, Kamphorst and Sarangi

2005, [6] p. 7). We next show with an example that the above proposition is not valid

for n > 3.

Example 1 Let N = {1, 2, 3, 4} be the set of players and Vi,j = V for all i ∈ N , j ∈ N .

More precisely, we suppose that c1,3 = V −V/16 and c1,2 = c1,4 = 4V ; c2,1 = 2V − V/16

and c2,3 = c2,4 = 4V ; c3,2 = 2V − V/8, c3,4 = 2V − V/6 and c3,1 = 4V ; c4,1 = 3V − V/8

and c4,2 = c4,3 = 4V .

1. In a best response, player 2 never forms any link with player 3 or player 4. More-

over, player 2 has an incentive to form a link with player 1 if the latter gets
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resources from player 3 or player 4.

2. In a best response, player 4 never forms links with player 3 or player 2.

3. Then the unique best response of player 1 to any network in which she does not

observe player 3 is to add a link with player 3 (since player 2 and player 4 never

form a link with player 3). Moreover, we note that player 1 never has any incentive

to form a link with player 2 or player 4.

4. In a best response, player 3 never forms any link with player 1.

Now let us take those best replies for granted and consider best responses regarding

the remaining links 2, 1; 3, 2; 3, 4 and 4, 1. If player 2 initiates link 2, 1, then player 3’s

best response is to initiate link 3, 2. In that case player 4 must initiate the link 4, 1 and

player 3 must replace the link 3, 2 by the link 3, 4. Then, player 4 must delete the link

4, 1 and the player 3 must replace the link 3, 4 by the link 3, 2. Hence there does not

exist any mutual best response. Therefore, a Nash network does not exist. Finally, by

appropriately adjusting costs it can be verified that this example holds even if we relax

the assumption that Vi,j = V for all i ∈ N , j ∈ N .

1.2.1 Existence of Nash networks and heterogeneity of values by pairs

We now prove the existence of Nash networks when values are heterogeneous by pairs

and costs are heterogeneous by players. First, when values are heterogeneous by pairs

and costs are heterogeneous by players, then we can write the profit function as follows:

πi(g) =
∑

j∈Ni(g)

Vi,j − ci

∑

j∈N

gi,j .
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Let πj
i (g) be the marginal payoff of player i from player j in the network g. If gi,j = 1,

then πj
i (g) = πi(g) − πi(g ⊖ i, j). Let K(g; i, j) = Ni(g ⊖ i, j)

⋂

Ni(g−i ⊕ i, j), where

g ⊖ i, j denotes the network g without the link i, j. We can rewrite πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi,k −
∑

k∈K(g;i,j)

Vi,k − ci. (1)

Proposition 2 If values of links are heterogeneous by pairs and costs of links are het-

erogeneous by players, then a Nash network exists.

The proof of Proposition 2 is long involving a number of lemmas. So we first pro-

vide a quick overview of the proof. It consists of constructing a sequence of networks,

Q = (g0, . . . , gt−1, gt, . . .) beginning with the empty network. In each subsequent net-

work, no player should have an incentive to decrease the amount of resources she obtains.

Note that this sequence of networks is not an improving path. Indeed, we go from g
t

to g
t+1 in several operations. First, in g

t we let a player i ∈ N , who is not playing

a best response in g
t, to play a best response (if no such player exists, g

t is a Nash

network) and obtain a network called bri(g
t). Second, we modify the network bri(g

t) as

follows: we construct a cycle using all players j ∈ N who obtain resources from a player

k who forms part of a cycle in bri(g
t), while preserving all links in bri(g

t) between a

player k ∈ N and a player j who is not part of a cycle in bri(g
t). We obtain a network

called h(bri(g
t)). Thirdly, we delete all links i, j which does not allow player i to obtain

additional resources in h(bri(g
t)). We obtain a network called m(h(bri(g

t))) = g
t
i, and

in the sequence Q, we have g
t+1 = g

t
i.

When a player i receive an opportunity to revise her strategy, we go from a network g
t−1

to a network g
t, and we will show that η(gt−1) > η(gt). Since the amount of resources

that players can obtain in a network g ∈ Q is finite, Q is finite and there exists a Nash
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network.

In the following paragraph, we define a class of networks G3 which contains all net-

works in the sequence Q. Then, we provide a condition which implies that no player has

an incentive to delete a link in a network g ∈ G3 (Lemma 2). Finally, we show that all

networks g
t ∈ Q satisfy this condition since the empty network satisfies this condition

(Lemma 6).

Let us formally define the set G3. Let M : G → P(G), g 7→ M(g) ⊂ G be a

correspondence. Let m(g) ∈ M(g) be a minimal network associated to the network g,

m(g) is a network such that, for all i ∈ N , j ∈ N , Ni(g) = Ni(m(g)) and if m(g)i,j = 1,

then j 6∈ Ni(m(g) ⊖ i, j) and gi,j = 1. We note that in a network m(g) ∈ M(g), there

is at most one path from a player i ∈ N to a player j ∈ N . In the following, we can

take, without loss of generality, any element of M(g). Let m(g) be a typical element of

M(g). Obviously, we have η(g) = η(m(g)).

We say that g is a minimal network if g = m(g). We denote by Gm the set of

minimal networks. Let G1 = {g ∈ Gm|i ∈ Nj(g), j 6∈ Ni(g), k 6∈ Nj(g) ⇒ gk,i = 0} be a

subset of minimal networks. Essentially these are networks there there can be no more

than one cycle involving any triad of players. Let G2 ⊂ G1 be the set of networks which

belong to G1 and which contain at most one cycle. If g ∈ G2 and g contains a cycle,

then we denote by C(g) the cycle in the network g. We denote by NC(g) the set of

players who belong to the cycle C(g), and EC(g) ⊂ NC(g) ×NC(g) the set of links which

belong to the cycle C(g). Let G3 = {g ∈ G2|i ∈ C(g), j 6∈ C(g) ⇒ gj,i = 0} be the set

of networks which belong to G2 and where there does not exist any link from a player
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j 6∈ C(g) to a player i ∈ C(g).

We now present some lemmas which allow us to prove Proposition 2. The first lemma

presents some properties about links that cannot arise in the set G3.

Lemma 1 Suppose values of links are heterogeneous by pairs and costs of links are

heterogeneous by players and g ∈ G3.

1. If gj,i = 1, then there does not exist a player k such that gk,i = 1.

2. If gi,j = 1, then K(g; i, j) = Ni(g ⊖ i, j)
⋂

Ni(g−i ⊕ i, j) is an empty set.

Proof We successively prove both parts of the lemma.

1. To obtain a contradiction suppose that there exist two players i and j such that

gj,i = 1 and gk,i = 1 in g ∈ G3. Then there are two possibilities:

Suppose i ∈ NC(g). Given that i ∈ NC(g) there can be at most one link to player

i. Hence j /∈ NC(g) and k 6∈ NC(g) simultaneously. Only one of them is in NC(g).

Without loss of generality let j ∈ NC(g). Then gk,i = 1 violates the fact that

g ∈ G3.

Suppose i /∈ NC(g). Then we know that gi,j = 0 = gi,k since g ∈ G3 ⊆ G1.

From the minimality of g we know that j /∈ Nk(g) and k /∈ Nj(g). Putting all

this together we have i ∈ Nj(g), j /∈ Nk(g), k /∈ Nj(g) ⇒ gk,i = 0. This is a

contradiction.

2. Suppose there exists a player k ∈ Ni(g ⊖ i, j)
⋂

Ni(g−i ⊕ i, j). Then, there exist

two different paths from player k to player i which is impossible by the minimality

of g.
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It follows that if g ∈ G3, then we can write πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi,k − ci. (2)

In the following lemma, we let g
′
i ∈ Gi be a strategy of player i, with g

′
i 6= gi. This

lemma provides the best response properties of the networks g ∈ G3.

Lemma 2 Suppose values of links are heterogeneous by pairs, costs of links are hetero-

geneous by players and g ∈ G3.

1. Suppose players i ∈ N , j ∈ N , k ∈ N are such that j 6∈ Ni(g), i ∈ Nj(g),

k 6∈ Nj(g). If g
′
k,i = 1, then g

′
k 6∈ BRk(g−k).

2. Suppose g contains a cycle C(g) and for all i ∈ NC(g), and for all i, j ∈ EC(g), we

have πj
i (g) > 0. If g

′
i,j = 0, then g

′
i 6∈ BRi(g−i).

3. Suppose i ∈ N , j ∈ N \ NC(g) and gi,j = 1 ⇒ πj
i (g) > 0. If g

′
i,j = 0, then

g
′
i 6∈ BRi(g−i).

Proof We now prove each part of the lemma.

1. Let players i, j and k be such that j 6∈ Ni(g), i ∈ Nj(g) and k 6∈ Nj(g). By lemma

1.1, we know that gk,i = 0. Either already i ∈ Nk(g) and the formation of the link

k, i is not a best response for player k, or i 6∈ Nk(g). In the latter case, we have

j 6∈ Nk(g), Ni(g) ⊂ Nj(g), so πk(g ⊕ k, j) − πk(g ⊕ k, i) ≥ Vk,j > 0. From this it

follows that player k does not play a best response if she forms a link with player

i.
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2. Without loss of generality, let C(g) be such that NC(g) = {1, 2, . . . , p} and EC(g) =

{1; 1, 2; 2, 3; . . . ; p − 1, p; p, 1}. For simplicity now consider a player i 6= p.

It is straightforward from πi−1
i (g) > 0 and the minimality of g that player i does

not play a best response if she deletes the link i, i−1 ∈ EC(g) and does not replace

that link.

We first show that player i cannot play a best response if she replaces the link

i, i− 1 by a link i, k, with k 6= i− 1. Indeed, if player i replaces the link i, i− 1 by

a link i, k, k ∈ Ni(g), then player i is not playing a best response.

We now show that if player i replaces the link i, i − 1 by a link i, k, k 6∈ Ni(g),

then player i does not play a best response. Indeed, since g ∈ G3, there does

not exist a player k 6∈ Ni(g), with k ∈ N \ NC(g), such that ℓ ∈ Nk(g) and

ℓ ∈ NC(g). Otherwise, there exist a player k′ ∈ N \ NC(g), with k ∈ Nk′(g), and

a player ℓ′ ∈ NC(g) such that gk′,ℓ′ = 1. In that case, g 6∈ G3 and we obtain

a contradiction. Likewise, there does not exist a player k 6∈ Ni(g) such that

ℓ ∈ Nk(g) and ℓ ∈ Ni(g) \NC(g). Indeed, if ℓ ∈ Nk(g) and ℓ ∈ Ni(g) \NC(g), then

there exists a player ℓ′ such that gℓ′,ℓ = 1, with ℓ′ ∈ Ni(g) and a player k′ such

that gk′,ℓ = 1, with k′ ∈ Nk(g) which is impossible by lemma 1.1. It follows that a

player i ∈ NC(g) cannot obtain the resources of a player ℓ ∈ Ni(g)\Ni(g⊖ i, i−1)

from a player k 6∈ Ni(g). Hence, if player i replaces the link i, i − 1 ∈ EC(g) by a

link i, k with k 6∈ Ni(g), then player i does not play a best response.

3. It is straightforward from πj
i (g) > 0 and the minimality of g that player i has no

incentive to delete the link i, j if she does not replace that link.

We now show that player i has no incentive to replace the link i, j. In other words,
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we show that there does not exist a player k who obtains a part of the resources

of j and allows i to obtain more resources than j.

Let k be such that Nk(g)∩Nj(g) = ∅. Then player i has no incentive to substitute

the link i, k to the link i, j. Hence Nk(g) ∩ Nj(g) 6= ∅.

First, we must show that if Nk(g) ∩ Nj(g) 6= ∅, then either Nk(g) ⊂ Nj(g) or

Nj(g) ⊂ Nk(g). If the former is true the proof is obvious and we will only focus

on the latter. Note that in g, Nk(g) 6= Nj(g) since j 6∈ NC(g). To obtain a

contradiction, suppose that Nk(g) ∩ Nj(g) 6= ∅, Nk(g) * Nj(g) and Nj(g) *

Nk(g). Then there exist players ℓ ∈ Nj(g) ∩ Nk(g), ℓj ∈ Nj(g) and ℓk ∈ Nk(g),

such that gℓj ,ℓ = gℓk,ℓ = 1, which is impossible by Lemma 1.1.

Second, we must show that there does not exist a player k ∈ N , such that Nj(g) ⊂

Nk(g) and Ni(g) * Nk(g), who obtains the resources of j and allows i additional

resources. If Ni(g) = Nk(g), then i ∈ NC(g), k ∈ NC(g) and in that case player i

cannot obtain a part of the resources of player j due to a link with player k, since

g is a minimal network. Therefore, we just need to show that the above statement

is true for strict set inclusion. To obtain a contradiction, suppose there exists a

player k ∈ N such that Nj(g) ⊂ Nk(g) and Ni(g) 6⊂ Nk(g). Then there exists a

player ℓk ∈ Nk(g) such that gℓk,j = 1. Therefore, we have gℓk,j = 1 and gi,j = 1

which is impossible by Lemma 1.1. Since Nj(g) ⊂ Nk(g), Ni(g) ⊂ Nk(g), and

gi,j = 1, by Lemma 1.2, player i cannot obtain a part of the resources of j due to

her link with player k. Consequently, if player i deletes the link i, j and replaces

it by the link i, k, then she does not play a best response.

�
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We now introduce some additional definitions that are required to complete the

proof. Let MBRi(g−i) be a modified version of the best response function of player

i ∈ N . More precisely, g
′
i ∈ MBRi(g−i) if g

′
i is a best response of player i against

g−i and if player i does not form any links that yield zero marginal payoffs. Let bri :

G → G, g 7→ bri(g) be a function. The network bri(g) = (g′
i ⊕ g−i) is a network

where g
′
i ∈ MBRi(g−i), and all other players j 6= i having the same links as in the

network g. In other words, in bri(g), we have bri(g)i,j = 1 ⇒ πj
i (bri(g)) > 0 and

bri(g)i,j = 0 ⇒ πj
i (bri(g)) ≤ 0.

Let NC(g) be the set of players who belong to a cycle in g. Let H : G → P(G) be

a correspondence. A network h(g) ∈ H(g) is a network associated with g such that

h(g) contains at most one cycle, C(h(g)). Moreover, if k is such that ℓ ∈ Nk(g) and

ℓ ∈ NC(g), then k ∈ NC(h(g)). If k 6∈ NC(h(g)), then for all ℓ ∈ N , we have gℓ,k = h(g)ℓ,k.

This is different from the networks in G2 since there is no minimality restriction here.

This operation creates one cycle leaving unchanged the strategies of those players that

do not form a part of the cycle.

Observe that for all g ∈ G and for all k ∈ N , we have, by construction, for all

g
′ ∈ M◦H(g), Nk(g) ⊆ Nk(g

′).

Finally, we define

g
i ∈ M◦H ◦ bri(g), (3)

to be a network obtained from g after performing the three operations defined above.

Note that the superscript in g
i refers to the fact that in this network only player i is

playing her best response.

Lemma 3 If g ∈ G3, then g
i ∈ G3.
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Proof We must show that g
i has the following four properties: it is a minimal network,

it contains at most one cycle, there does not exist a link from j 6∈ NC(gi) to k ∈ NC(gi)

and if ℓ ∈ Nj(g
i), j 6∈ Nℓ(g

i), k 6∈ Nj(g
i) then g

i
k,ℓ = 0. The first property follows from

the correspondence M and the next two from the correspondence H. We just need to

verify that the last property is enjoyed.

First, we show that in bri(g), we have ℓ ∈ Nj(bri(g)), j 6∈ Nℓ(bri(g)), i 6∈ Nj(bri(g))

⇒ bri (g)i,ℓ = 0. We know that in g we have ℓ ∈ Nj(g), j 6∈ Nℓ(g), i 6∈ Nj(g) ⇒ gi,ℓ = 0

since g ∈ G3. By definition, we have bri(g)k = gk, for all k ∈ N \ {i}. Hence, if we

show that player i 6∈ Nj(bri(g)) has not formed a link i, ℓ with a player ℓ such that

ℓ ∈ Nj(bri(g)) and j 6∈ Nℓ(bri(g)) in bri(g), then we will have shown the conclusion for

bri(g). But, by Lemma 2.1, we know that if i has formed a link with player ℓ, then i is

not playing a best response which is a contradiction.

Second, by construction, if g is such that ℓ ∈ Nj(g), j 6∈ Nℓ(g), k 6∈ Nj(g) ⇒ g
k,ℓ

= 0,

then g
′ ∈ M ◦ H(g) is such that ℓ ∈ Nj(g

′), j 6∈ Nℓ(g
′), k 6∈ Nj(g

′) ⇒ g
′
k,ℓ = 0. The

conclusion follows. �

The next lemma covers properties of networks in g
i and bri(g).

Lemma 4 Suppose g ∈ G3 and for all k ∈ N , j ∈ N , gk,j = 1 ⇒ πj
k(g) > 0.

1. If k ∈ Nj(g), then k ∈ Nj(bri(g)).

2. If k ∈ Nj(g), then k ∈ Nj(g
i).

3. If gi 6∈ BRi(g−i), then η(g) < η(gi).

Proof We successively prove each part of the Lemma.
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1. Observe that for all k 6= i, and for all j ∈ N , we have gk,j = bri(g)k,j. Hence,

if Nj(g) * Nj(bri(g)), then there exists a player k such that k ∈ Ni(g) and

k 6∈ Ni(bri(g)). Since g ∈ G3, we know from Lemma 2.2 and 2.3, that player i will

not be playing a best response if she deletes one of her links. Hence, if k ∈ Ni(g),

then k ∈ Ni(bri(g)), and we obtain the desired conclusion.

2. We know from the first part of the lemma that Nj(g) ⊆ Nj(bri(g)), and we know

that Nj(bri(g)) ⊆ Nj(g
′), for all g

′ ∈ M ◦H(bri(g)). The result follows.

3. From the second part of the lemma, we know that Nj(g) ⊆ Nj(g
i) for all j 6= i.

We now show that if gi 6∈ BRi(g−i), then Ni(g) ⊂ Ni(g
i). By Lemma 2.2 and

2.3, we know that player i cannot be playing a best response if she deletes links.

Hence, if she is playing a best response, it must be that Ni(g) ⊂ Ni(bri(g)). Since,

we know that, for all g
′ ∈ M ◦ H(bri(g)), Ni(bri(g)) ⊆ Ni(g

′), we conclude that

Ni(g) ⊂ Ni(g
i). Therefore, η(g) < η(gi).

�

Let us denote by g \MBRi(g−i) = gm. Then gm ⊕ i, j is the network obtained from

bri(g) when player i forms no link except the link i, j.

Lemma 5 Suppose g ∈ G3.

1. If g
i
i,j = bri(g)i,j = 1, then, for all j ∈ N \ {i}, Nj(gm ⊕ i, j) ⊆ Nj(g

i
−i ⊕ i, j).

2. Suppose for all i ∈ N , j ∈ N , gi,j = 1 ⇒ πj
i (g) > 0. If g

i
k,ℓ = gk,ℓ = 1, then

Nℓ(g−k ⊕ k, ℓ) ⊆ Nℓ(g
i
−k ⊕ k, ℓ).

Proof We prove the two parts of the lemma successively.
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1. If j 6∈ NC(gi), then Nj(g
i
−i) = Nj(g

i). Indeed, since g
i ∈ G3, j 6∈ NC(gi), and

g
i
i,j = 1, player j does not obtain any resources from player i. Moreover, we have

by construction, Nj(bri(g)) ⊆ Nj(g
i). It follows that Nj(gm⊕i, j) ⊆ Nj(bri(g)) ⊆

Nj(g
i) = Nj(g

i
−i) ⊆ Nj(g

i
−i ⊕ i, j).

Assume that j ∈ NC(gi), g
i
i,j = bri(g)i,j = 1 and there exists a player ℓ such that

ℓ ∈ Nj(gm ⊕ i, j) and ℓ 6∈ Nj(g
i
−i ⊕ i, j). So in bri(g), player i obtains resources

from player ℓ through a path containing j, and in g
i player i obtains resources

from player ℓ through a path which does not contain j, since for all k ∈ N ,

Nk(bri(g)) ⊆ Nk(g
i). Hence, there is a player j′ where j′ ∈ Ni(g

i), j′ 6∈ NC(gi)

and j′ ∈ Nj(g
i) who has formed a link with player ℓ between bri(g) and g

i. This

is not possible by construction.

2. If ℓ 6∈ NC(gi), then Nℓ(g
i
−k ⊕ k, ℓ) = Nℓ(g

i) since player ℓ does not obtain any

resources from player k. Moreover, we know by Lemma 4.1 and 4.2 that Nℓ(g) ⊆

Nℓ(g
i). It follows that Nℓ(g−k ⊕ k, ℓ) ⊆ Nℓ(g) ⊆ Nℓ(g

i) = Nℓ(g
i
−k ⊕ k, ℓ).

Suppose now that ℓ ∈ NC(gi). Note that k ∈ NC(gi) since k has formed a link with

ℓ. For a contradiction assume that ℓ ∈ NC(gi) and Nℓ(g−k ⊕k, ℓ) * Nℓ(g
i
−k ⊕k, ℓ).

Then there is a player j such that j ∈ Nℓ(g−k ⊕ k, ℓ) and j 6∈ Nℓ(g
i
−k ⊕ k, ℓ). Also

note that j 6∈ NC(gi), otherwise j ∈ Nℓ(g
i
−k ⊕k, ℓ). Moreover, if j ∈ Nℓ(g−k ⊕k, ℓ)

and j 6∈ Nℓ(g
i
−k ⊕ k, ℓ), then j 6∈ Nk(g ⊖ k, ℓ) and j ∈ Nk(g

i ⊖ k, ℓ) since g ∈ G3,

and Nℓ(g) ⊆ Nℓ(g
i) by Lemma 4.1 and 4.2. In other words, player k obtains

resources from player j in g through a path which contains ℓ, and in g
i player k

obtains resources from player j through a path which does not contain ℓ. Hence,

there exists a player who has formed a link with a player ℓ′ where ℓ′ ∈ Nk(g
i),
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j ∈ Nℓ′(g
i), and k 6∈ Nℓ′(g

i) between g and g
i. This is not possible by construction

of g
i.

�

Lemma 6 Let g
i be defined as in equation (3).

1. If g ∈ G3, then g
i
i,j = 1 ⇒ πj

i (g
i) > 0.

2. If for all i ∈ N , j ∈ N , gi,j = 1 ⇒ πj
i (g) > 0, then for all i ∈ N \ {k}, j ∈ N ,

g
k
i,j = 1 ⇒ πj

i (g
k) > 0.

Proof We now prove successively the two parts of the lemma.

1. (a) First, we show that this property is true if g
i
i,j = 1 and j 6∈ NC(gi). If

j 6∈ NC(gi), then by construction bri(g)i,j = 1 and so πj
i (bri(g)) > 0. Using

Lemma 5.1, Lemma 3, and the marginal profit function defined in equation

(2) we have:

πj
i (g

i) =
∑

k∈Nj(g
i
−i⊕i,j) Vi,k − ci

≥
∑

k∈Nj(g\MBRi(g−i)⊕i,j) Vi,k −
∑

k∈K(bri(g);i,j) Vi,k − ci

= πj
i (bri(g)) > 0

(b) Second, we show that this property is true if g
i
i,j = 1 and j ∈ NC(gi). By

construction if g
i
i,j = 1 and j ∈ NC(gi), then i ∈ NC(gi). If i ∈ NC(gi),

then by construction of g
i, there is at least one player ℓ ∈ NC(gi), such
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that πℓ
i (bri(g)) > 0. So for all players ℓ′ ∈ NC(gi), there exists a network

(gi)′ ∈ M ◦ H ◦ bri(g) where player i forms a link with player ℓ′, and by

construction πj
i (g

i) = πℓ′

i ((gi)′). We know by Lemma 5.1, that Nj(gm ⊕

i, j) ⊆ Nj(g
i
−i ⊕ i, j). Finally, by Lemma 3, we know that g

i ∈ G3. Hence

using the marginal profit function defined in equation (2) we have:

πj
i (g

i) =
∑

k∈Nj(gi
−i⊕i,j) Vi,k − ci =

∑

k∈Nℓ((g
i
−i)

′⊕i,ℓ) Vi,k − ci

≥
∑

k∈Nℓ(gm⊕i,ℓ) Vi,k −
∑

k∈K(gm⊕i,ℓ;i,ℓ) Vi,k − ci

= πℓ
i (bri(g)) > 0.

2. First, we show that for all i ∈ N \ {k}, and for all j 6∈ NC(gk), if gi,j = 1 ⇒

πj
i (g) > 0, then g

k
i,j = 1 ⇒ πj

i (g
k) > 0. Indeed, if player i ∈ N \ {k} has a link

with player j 6∈ NC(gk) in g
k, then, by construction of g

k, player i has a link with

player j in g, so πj
i (g) > 0. We know, from Lemma 5.2, that for all j ∈ N , we

have Nj(g−i ⊕ i, j) ⊆ Nj(g
k
−i ⊕ i, j). Moreover, by Lemma 3, g

k ∈ G3. So using

the marginal profit function defined in equation (2) we have:

πj
i (g

k) =
∑

ℓ∈Nj(g
k
−i⊕i,j) Vi,ℓ − ci

≥
∑

ℓ∈Nj(g−i⊕i,j) Vi,ℓ − ci

= πj
i (g) > 0.

Next, we show that for all i ∈ N \ {k}, and for all j ∈ NC(gk), if gi,j = 1 ⇒

πj
i (g) > 0, then g

k
i,j = 1 ⇒ πj

i (g
k) > 0. Since g

k ∈ G3 and there exists a link
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from player j to player i, we have i ∈ NC(gk). If i ∈ NC(gk), then there are

two possibilities: either k ∈ Ni(brk(g)) or i ∈ NC(g). We deal with these two

possibilities successively.

(a) If k ∈ Ni(brk(g)), then there exists in brk(g) a link from player i to a player

ℓ such that brk(g)i,ℓ = gi,ℓ = 1 and k ∈ Nℓ(brk(g)). Since, gi,ℓ = 1, we

have πℓ
i (g) > 0. Furthermore, by construction, player ℓ ∈ NC(gk), since

k ∈ Nℓ(brk(g)). We note that for all players h′ ∈ NC(gk), there exists a

network (gk)′ ∈ M ◦ H ◦ brk(g) where player i forms a link with player h′,

and by construction πj
i (g

k) = πh′

i ((gk)′). We know from Lemma 5.2 that

for all j ∈ N , we have Nj(g−i ⊕ i, j) ⊆ Nj(g
k
−i ⊕ i, j). Finally, we know by

Lemma 3 that g
i ∈ G3. Hence, using the marginal profit function defined by

equation (2), we obtain:

πj
i (g

k) =
∑

ℓ′∈Nj(g
k
−i⊕i,j) Vi,ℓ′ − ci =

∑

ℓ′∈Nℓ((g
k
−i)

′⊕i,ℓ) Vi,ℓ′ − ci

≥
∑

ℓ′∈Nℓ(g−i⊕i,ℓ) Vi,ℓ′ − ci

= πℓ
i (g) > 0.

(b) If i ∈ N
C(g)

, then we have πℓ
i (g) > 0 for i, ℓ ∈ EC(g). We assume, without

loss of generality, that player i forms in C(gi) a link with a player j such

that πj
i (bri(g)) > 0. By construction of g

k we have NC(g) ⊆ NC(gk) and by

Lemma 5.2, we have Nj(g−i ⊕ i, j) ⊆ Nj(g
k
−i ⊕ i, j) for all j ∈ N . Note that

for all players h′ ∈ NC(gk), there exists a network (gk)′ ∈ M◦H◦brk(g) where

player i forms a link with player h′. Also by construction πj
i (g

k) = πh′

i ((gk)′).
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We know by Lemma 3 that g
i ∈ G3. Again, using the marginal profit function

defined by equation (2), we obtain:

πj
i (g

k) =
∑

ℓ′∈Nj(g
k
−i⊕i,j) Vi,ℓ′ − ci =

∑

ℓ′∈Nℓ((g
k
−i)

′⊕i,ℓ) Vi,ℓ′ − ci

≥
∑

ℓ′∈Nℓ(g−i⊕i,ℓ) Vi,ℓ′ − ci

= πℓ
i (g) > 0.

�

Proof of Proposition 2 We start with the empty network ġ = g
0. It is straightforward

to check that g
0 ∈ G3. Either g

0 is a Nash network, and we are done, or there exists a

player, say i, who does not play a best response in g
0. In that case, we construct the

network g
1 ∈ M ◦ H ◦ bri(g

0). We know from Lemma 4.3 that η(g0) < η(g1). From

Lemma 3, g
1 ∈ G3 and from Lemma 6.1 and 6.2, we know that for all players j ∈ N and

ℓ ∈ N , g
1
j,ℓ = 1 ⇒ πℓ

j(g
1) > 0. Either g

1 is a Nash network, and we are done, or there

exists a player, say j, who does not play a best response in g
1. In that case, we construct

the network g
2 ∈ M◦H◦brj(g

1). We know from Lemma 4.3 that η(g1) < η(g2). Again

from Lemma 3, g
2 ∈ G3 and from Lemma 6.1 and 6.2, we know that for all players

j ∈ N and ℓ ∈ N , g
2
j,ℓ = 1 ⇒ πℓ

j(g
2) > 0. It follows that we can construct a sequence

of networks {g0, g1 . . . , gt, . . .} such that in g
t−1, there exists a player, say k, who does

not play a best response, and g
t ∈ M ◦H ◦ brk(g

t−1), η(gt−1) < η(gt), g
t ∈ G3 and for

all j ∈ N , g
t
j,ℓ = 1 ⇒ πℓ

j(g
t) > 0. This sequence is finite since η(g) ≤ n2, for all g ∈ G .

�
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Proposition 2 establishes that if values of links are heterogeneous by pairs of players

and costs of links are heterogeneous by players, then a Nash network always exists. This

result is similar to the result of Haller et al. [6] in two-way flow models. We now study

one-way flow models when values of links are heterogeneous by players and costs of links

are heterogeneous by pairs of players.

1.2.2 Existence of Nash networks and heterogeneity of costs by pairs

In example 1 we have shown that a Nash network does not always exist when values

of links are heterogeneous by players and costs of links are heterogeneous by pairs of

players. We now state a condition which allows for the existence of Nash networks when

costs of links are heterogeneous by pairs. In that case, we can write the payoff function

as follows:

πi(g) =
∑

j∈Ni(g)

Vi −
∑

j∈N

gi,jci,j.

Let πj
i (g) denote the marginal payoff of player i from player j in the network g. If

gi,j = 1, then πj
i (g) = πi(g) − πi(g ⊖ i, j). Let K(g; i, j) = Ni(g ⊖ i, j)

⋂

Ni(g−i ⊕ i, j).

We can rewrite πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi −
∑

k∈K(g;i,j)

Vi − ci,j. (4)

To prove the following proposition, we need an additional new definition. Let Hi : G → G

be a correspondence where hi(g) ∈ Hi(g) satisfies the following conditions.

• If g contains at most one cycle and there does not exist any link from a player

j 6∈ C(g) to a player k ∈ C(g), then g = hi(g).
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• If player i has formed a link with no player j ∈ NC(g) or with at least two players

j ∈ NC(g) in g, then

1. if k is such that ℓ ∈ Nk(g) and ℓ ∈ NC(g), then k ∈ NC(hi(g));

2. if k 6∈ NC(hi(g)), then for all ℓ ∈ N , we have gℓ,k = hi(g)ℓ,k.

• If player i has formed a link with one and only one player j ∈ NC(g) in g, then:

1. if k is such that ℓ ∈ Nk(g) and ℓ ∈ NC(g), then k ∈ NC(hi(g));

2. if k 6∈ NC(hi(g)), then for all ℓ ∈ N , we have gℓ,k = hi(g)ℓ,k;

3. player i and player j belong to NC(hi(g)) and the link i, j ∈ E(hi(g)).

We now define ĝ
i as follows: ĝ

i ∈ M ◦Hi ◦ bri(g).

Proposition 3 Consider a game where values of links are heterogeneous by players and

costs of links are heterogeneous by pairs. There always exists a Nash network if for all

i ∈ N , j ∈ N , j′ ∈ N : |ci,j − ci,j′| < Vi.

Proof The proof of this proposition is similar to the proof of the proposition 2 with ĝ
i

playing the same role as g
i). �

Corollary 1 Suppose a game where values and costs of links are heterogeneous by pairs.

If for all i ∈ N , j ∈ N , j′ ∈ N : |ci,j−ci,j′| < mink∈N{Vi,k}, then there is a Nash network.

The importance of these results stems from the fact that they identify conditions under

which Nash networks always exist under heterogeneity.
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1.3 Model with Congestion Effect

In one-way flow models with homogeneous players BG [1] establish that Nash networks

always exist. We show that this result is no longer true when the payoff function

incorporates congestion effects – a phenomenon that frequently arises in many network

settings. Billand and Bravard (2005, [3]) characterize Nash networks under congestion

effects. In this section, we use their framework to show the non-existence of Nash

networks.

Let us define φ : N × {0, . . . , n − 1} → IR, (x, y) 7→ φi(x, y) be such that:

φi(x, y) > φi(x, y + 1).

Let ci(g) =
∑

j 6=i gi,j be the costs incurred by i in the network g. We now define the

payoff function of player i ∈ N as

π̄i(g) = φi(ni(g), ci(g)).

As before we assume that player i obtains her own resources. We now provide an

example where a Nash network does not exist.

Example 2 Let N = {1, 2, 3}, and φ1(2, 1) > φ1(1, 0) > φ1(3, 1), max {φk (2, 1) , φk(3,

2)} < φk(1, 0) < φk(3, 1), for k ∈ {2, 3}.

First, networks in which a player forms two links are not Nash.

Second, the unique best response of player 2 (respectively 3) to any network g
′ in

which player 1 and player 3 (respectively 2) have formed no link is to form no link.

Moreover, the unique best response of player 1 to a network g in which player 2 and

player 3 have formed no link is to form a link with player 2 or player 3. Therefore, the

empty network is not a Nash network.
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Third, a network g where n1(g) 6= 2 cannot be a Nash network. Indeed, it is obvious

that n1(g) = 3 cannot be a Nash network since φ1(1, 0) > φ1(3, 1) > φ1(3, 2). Moreover,

a network g where n1(g) = 1 cannot be a Nash network. Indeed, in a Nash network

where player 1 has formed no links, players 2 and 3 cannot have established any links,

since at least one of these players gets the ressources of one player only and we have

φk(2, 1) < φk(1, 0), for k ∈ {2, 3}. In that case, when players 2 and 3 create no links,

player 1 has an incentive to establish a link with player 2 or player 3. To sum up if there

exists a Nash network g, then n1(g) = 2.

Without loss of generality, we consider networks g in which player 1 has formed a

link with player 2. In these networks,

1. player 2 has not formed a link with player 3 because in that case 2, 3 ∈ N1(g) and

player 1 would have an incentive to delete the link 1, 2.

2. Player 3 has an incentive to establish a link with player 1, since φ3(1, 0) < φ3(3, 1).

3. The networks in which a player has formed two links are not Nash networks.

Hence a Nash network does not exist.

2 One-Way Flow Model with Global Spillovers

In this section, we modify the framework in order to describe new situations. More

precisely, in the models of section 1, the payoff of a player i from a link with player j

depends on the identities of both players. In this section, what matters is the number of
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links that player i has formed as well as the total number of links that the other players

have formed.

Recall that the number of links formed by i ∈ N is ci(g) =
∑

j 6=i gi,j . Let c−i(g) =
∑

j 6=i

∑

k 6=j gj,k denote the number of links formed by all players except i ∈ N , in the

network g. Define A = {0, . . . , n − 1} and B = {0, . . . , (n − 1)2}. The payoff function

of each player i ∈ N is given by ui : A × B → IR, (ci(g), c−i(g)) 7→ ui(ci(g), c−i(g)).

The following example illustrates that a Nash network does not always exist under

this general payoff function.

Example 3 Let N = {1, 2, 3}. We define the following payoff function for all i ∈ N :

ui(2, 1) > ui(1, 0) > ui(0, 0),

ui(x, y) < ui(0, 0) for all (x, y) 6∈ {(2, 1), (1, 0)}.

It is obvious that in this example there does not exist any Nash network.

Since Nash networks do not always exist in one-way flow models with global spillovers,

we now provide two conditions which allow the existence of Nash networks under situ-

ations of interest in economics.

The first condition is the increasing and decreasing differences property. The second

condition is the discrete convexity property.

2.1 Increasing and Decreasing Differences

Definition 4 The payoff function ui has strictly increasing (decreasing) differences in

its two arguments (ci(g), c−i(g)) if ui(ci(g), c−i(g))−ui(ci(g), c−i(g
′)) is strictly increas-

ing (decreasing) in ci(g) for all c−i(g) > c−i(g
′). (See Vives, 1999, [12]).
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Let δ(g) =
∑

i∈N ci(g), as the total number of links formed in the network g.

Proposition 4 In a one-way flow model with global spillovers and increasing (or de-

creasing) differences a Nash network always exists.

Proof Consider a one-way flow model with global spillovers and increasing differences.

To prove the proposition, we begin with the empty network ġ. Either ġ is Nash and

we are done, or ġ is not a Nash network and there exists an improving path from ġ to

an adjacent network g
1. That is, there exists a player i1 such that ġi1

6∈ BRi1(ġ−i1
)

and g
1
i1
∈ BRi1(g

1
−i1

). Since i1 had formed no link in ġ and forms links in g
1, we have

δ(ġ) < δ(g1). Now, either g
1 is Nash and we are done, or there is a player i2 such that

g
1
i2
6∈ BRi2(g

1
−i2

). In that case, there exists an improving path from g
1 to an adjacent

network g
2 such that g

2
i2

∈ BRi2(g
2
−i2

). Hence we have δ(g1) < δ(g2) since player i2

had formed no links in g
1. More generally, g

k is defined as follows: g
k is adjacent to

g
k−1, g

k−1
ik

6∈ BRik(g
k−1
−ik

), g
k
ik

∈ BRik(g
k−1
−ik

) and ik 6∈ {i1, . . . , ik−1}, that is we have

g
k = g

k
ik
⊕ g

k−1
ik−1. By construction, we have: δ(gk−1) < δ(gk). Let g

m denote the

network after agents i1, . . . , . . . , ik, . . . , im have sequentially chosen a best response and

there is no other player i 6∈ {i1, . . . , im} who has an incentive to form links in g
m. Let

C = g
1, g2, . . . , gm be the improving path from g

1 to g
m. This path is finite and m ≤ n.

There are now two possible cases.

1. No player ik, k ∈ {1, . . . , m}, has an incentive to change her strategy. Then the

proof is complete.

2. There exists a player ik, k ∈ {1, . . . , m}, who has an incentive to modify her strat-

egy. Without loss of generality let this be player i1. Let g
(1) = g

(1)
i1

⊕ g
m
−i1

, where
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g
(1)
i1

∈ BRi1(g
m
−i1

). Clearly player i1 has no incentive to reduce the total number of

her links in g
m. Indeed, we have c−i1(g

m) > c−i1(g
1). Hence for all ci1(g) < ci1(g

1),

by the property of increasing difference we get that 0 < ui1(ci1(g
1), c−i1(g

1)) −

ui1(ci1(g), c−i1(g
1)) < ui1(ci1(g

1), c−i1(g
m)) − ui1(ci1(g), c−i1(g

m)). Since player

i1 changes her strategy we have ci1(g
m) 6= ci1(g

(1)). Consequently, we have

ci1(g
m) < ci1(g

(1)) and c−i1(g
m) = c−i1(g

(1)) which implies that δ(gm) < δ(g(1)).

If g
(1) is not a Nash equilibrium there are two possibilities.

1. There exists a player ℓ 6∈ {i1, . . . , im} such that g
(1)
ℓ 6∈ BRℓ(g

(1)
−ℓ) and g

(2)
ℓ ∈

BRℓ(g
(1)
−ℓ). Then let NBR(g(2)) = {i1, . . . , im} ∪ {ℓ} to be the set of players who

have played a best response (and who have formed links). Also, we have g
(2) =

g
(2)
ℓ ⊕ g

(1)
−ℓ , and δ(g(1)) < δ(g(2)), since by construction player ℓ has not formed

any links in g
(1).

2. There does not exist a player ℓ 6∈ {i1, . . . , im} such that g
(1)
ℓ 6∈ BRℓ(g

(1)
−ℓ). In that

case, we have NBR(g(2)) = {i1, . . . , im} and there exists a player j ∈ {i2, . . . , im}

such that g
(1)
j 6∈ BRj(g

(1)
−j) and g

(2)
j ∈ BRj(g

(1)
−j ). We have g

(2) = g
(2)
j ⊕g

(1)
−j . Again

using the property of increasing differences we obtain δ(g(1)) < δ(g(2)).

More generally, we define g
(k) as follows: g

(k) is adjacent to g
(k−1), g

(k−1) is not a Nash

network, and:

1. if there exists a player, say ℓ′ 6∈ NBR(g(k−1)), such that g
(k−1)
ℓ′ 6∈ BRℓ′(g

(k−1)
−ℓ′ ), then

g
(k) = g

(k)
ℓ′ ⊕ g

(k−1)
−ℓ′ . In that case, we have NBR(g(k)) = NBR(g(k−1)) ∪ {ℓ′};

2. otherwise, there exists a player, say j′ ∈ NBR(g(k−1)), such that g
(k−1)
j′ 6∈ BRj′

(g
(k−1)
−j′ ) and g

(k)
j′ ∈ BRj′(g

(k−1)
−j′ ). In that case, g

(k) = g
(k)
j′ ⊕g

(k−1)
−j′ and NBR(g(k)) =
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NBR(g(k−1)).

For case 1, δ(g(k)) > δ(g(k−1)) since player ℓ′ has formed no links in g
(k−1) but has formed

links in g
(k). For case 2, δ(g(k)) > δ(g(k−1)) by the property of increasing differences.

To summarize, if the empty network is not a Nash network, then there is an improving

path, C = g
0, . . . , gℓ, gℓ+1, . . . , gt, from the network ġ = g

0 to a network g
′ = g

t.

Moreover, for all g
ℓ ∈ C, g

ℓ 6= g
t, δ(gℓ+1) > δ(gℓ). Hence, there does not exist any

improving cycle between ġ and g
′.

Since the set G is finite and there does not exist any improving cycle, the improving

path beginning from the empty network ġ is finite. Hence a Nash network always exists.

The proof of the existence of Nash networks in one-way flow models with global

spillovers and decreasing differences is similar, except that we need to start with the

complete network. �

The next example illustrates the importance of this result in a Cournot model.

Example 4 Cost reducing collaborative activities in oligopoly.2 Consider an homoge-

neous product Cournot Oligopoly consisting of n ex ante symmetric firms who face the

linear inverse demand function p = α −
∑

i∈N qi, α > 0. The firms initially have zero

fixed costs and identical constant returns-to-scale cost functions. Establishing a link

lowers marginal costs in a linear way: Ci(g) = γ0 − γci(g), where γ0 is a positive pa-

rameter representing a firm i’s marginal cost if it has no link. Given any network g, the

Cournot equilibrium output can be written as:

qi(g) =
(α − γ0) + nγci(g) − γc−i(g)

(n + 1)
, i ∈ N.

2This model is taken from Billand and Bravard (2004, [2]).
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The Cournot prodits for firm i ∈ N are given by ui(ci(g), c−i(g)) = (qi(g))2 − fci(g),

where f is the cost of establishing a link. Let us define g
′ in which there exists a player

j such that g
′
−j = g−j and

∑

k 6=j gj,k =
∑

k 6=j g′
j,k + 1. We get:

∆ui = ui(ci(g), c−i(g)) − ui(ci(g
′), c−i(g

′)

= −γ(2γnci(g)−2γc−i(g)−γ+2(α−γ0))

(n+1)2

and ∆ui decreases with ci(g). The profit function satisfies decreasing differences. Hence,

by proposition 4, there always exists a Nash network.

2.2 One-Way Flow Model with Global Spillovers and Discrete

Convexity

We now give a new condition allowing for the existence of Nash networks: the discrete

convexity property. We begin by characterizing this property. Then, we examine the

existence of Nash networks in this setting and characterize the architectures of these

networks.

2.2.1 Discrete convexity

A function f : R→ R satisfies strict midpoint convexity if for any x, y ∈ R,

f

(

x + y

2

)

<
f(x) + f(y)

2
.

We consider a similar property for a function defined on the discrete space X ⊂ Z,

inspired by Ui (2005, [11]).3 Let |x| = max{−x, x}. We say that a function f : X → R
3Ui (2005, [11]) deals with discrete concavity and provides a more general definition of larger mid-

point property.
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satisfies the strict smaller midpoint property if, for any x, y, z ∈ X, with |x − y| = 2,

and |z − x| = |z − y| = 1, there exists t ∈ (0, 1), such that,

f(z) < tf(x) + (1 − t)f(y).

Note that, in defining the strict smaller midpoint property, we postulate that the mid-

point of x, y ∈ X is z ∈ X.

We assume that for all i ∈ N , the payoff function ui satisfies the strict smaller

midpoint property in the first argument. That is, for any x ∈ A, y ∈ A, z ∈ {1, . . . , n−

2}, with |x− y| = 2, and |z − x| = |z − y| = 1, and for all w ∈ B, there exists t ∈ (0, 1)

such that:

ui(z, w) < tui(x, w) + (1 − t)ui(y, w), ∀i ∈ N.

For simplicity, we assume that ui(·, ·) = u(·, ·), for all i ∈ N . Dropping the subscript we

can write this as:

u(z, w) < tu(x, w) + (1 − t)u(y, w). (5)

We now give some results about functions which satisfy the strict smaller midpoint

property.

Lemma 7 A function u : A × B → R satisfies the strict smaller midpoint property in

the first argument if and only if, for any z ∈ {1, . . . , n − 2} and for any w ∈ B, with

|x − z| = |z − y| = 1, x 6= y,

u(z, w) < max{u(x, w), u(y, w)} (6)

Proof Without loss of generality, suppose that u(x, w) ≥ u(y, w), and (5) is true. Then

we have:

u(z, w) < tu(x, w) + (1 − t)u(y, w) ≤ u(x, w),
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and (6) holds.

Without loss of generality, let u(x, w) ≥ u(y, w), and (6) be true. Then we can

choose t sufficiently large (t < 1), such that tu(x, w) + (1− t)u(y, w) is sufficiently close

to u(x, w) and thus (5) is true. Therefore (5) and (6) are equivalent. �

Lemma 8 Suppose that the payoff function u : A × B → R satisfies the strict smaller

midpoint property in the first argument. If u(n−1, w) ≤ u(n−2, w) for all w ∈ B, then

u(z, w) > u(z + 1, w) for all z ∈ {0, . . . , n − 3}.

Proof Assume that u(n − 1, w) ≤ u(n − 2, w) for all w ∈ B. By Lemma 7, we

know that u(n − 2, w) < max{u(n − 3, w), u(n − 1, w)}. Given that u(n − 2, w) <

max{u(n − 3, w), u(n − 1, w)} and u(n − 1, w) ≤ u(n − 2, w) for all w ∈ B, we have

u(n − 2, w) < u(n − 3, w). Suppose now that there exists k ∈ {1, . . . , n − 3} such that

u(k, w) > u(k + 1, w) for all w ∈ B. Then, by Lemma 7, we have u(k, w) < u(k − 1, w).

�

Lemma 9 Suppose that the payoff function u : A × B → R satisfies the strict smaller

midpoint property in the first argument. Then, for any w ∈ B, we have

max{u(0, w), u(n− 1, w)} > u(z, w), ∀z ∈ {1, . . . , n − 2}.

Proof By Lemma 8 we know that if u(n−1, w) ≤ u(n−2, w), then u(z, w) < u(z−1, w),

for all z ∈ {1, . . . , n − 1}. Hence, u(0, w) > u(z, w) for all z ∈ {1, . . . , n − 1}. Also,

assume that u(n − 1, w) > u(n − 2, w). There are now two cases.

1. Suppose u(0, w) < u(1, w),. Then by Lemma 7, u(1, w) < u(2, w), for all w ∈ B.

Moreover, if there exists k ∈ {3, . . . , n − 2} such that u(k − 1, w) < u(k, w),
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then by Lemma 7, u(k, w) < u(k + 1, w). Hence, u(n − 1, w) > u(z, w) for all

z ∈ {1, . . . , n − 2}.

2. Suppose u(0, w) ≥ u(1, w) for all w ∈ B. Then, we show that there exists a unique

d ∈ {2, . . . , n − 2} such that u(d − 1, w) > u(d, w) < u(d + 1, u).

• If d does not exist, then we know that u(·, w) is decreasing in its first argument

and we have a contradiction since u(n − 1, w) > u(n − 2, w).

• Suppose that there exist d and d′, d 6= d′, such that u(d − 1, w) > u(d, w) <

u(d+1, w) and u(d′−1, w) > u(d′, w) < u(d′+1, w). Without loss of generality

let d′ > d. Since u(d, w) < u(d + 1, w), we have u(d + 1, w) < u(d + 2, w)

and by induction u(d + k, w) < u(d + k + 1, w) for all k ∈ {1, . . . , n − d − 2}

and w ∈ B. Hence, there does not exist d′ ∈ {d + 2, . . . , n − 2} such that

u(d′ − 1, w) > u(d′, w) < u(d′ + 1, w) which yields a contradiction.

Therefore, we have for all z ∈ {1, . . . , d}, u(0, w) > u(z, w), for all w ∈ B and we

have for all z ∈ {d, . . . , n− 2}, u(n− 1, w) > u(z, w), for all w ∈ B. This gives us

the desired conclusion.

�

2.2.2 Existence of Nash Networks and Discrete Convexity

Let us define two strategies for player i ∈ N : gi = 0 with ci(g) = 0 (player i forms no

links) and gi = n − 1 with ci(g) = n − 1 (player i forms a link with each of the other

players).
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Lemma 10 Suppose that the payoff function u(·, ·) satisfies strict smaller midpoint

property. Then, the best response of each player i ∈ N is either 0 or n − 1.

Proof To obtain a contradiction, assume that there exist a player i ∈ N and a network

g ∈ G such that BRi(g) 6∈ {0, n − 1}. Then, there exists g ∈ G such that ci(g) ∈

{2, . . . , n − 2}, c−i(g) ∈ B, u(ci(g), c−i(g)) ≥ u(0, c−i(g)) and u(ci(g), c−i(g)) ≥ u(n −

1, n−i(g)). By Lemma 9, we have for any ci(g) ∈ {2, . . . , n − 2},

max{u(0, c−i(g)), u(n − 1, c−i(g))} > u(ci(g), c−i(g)), ∀n−i(g) ∈ B,

which is a contradiction. �

Proposition 5 Suppose that the payoff function u(·, ·) satisfies the strict smaller mid-

point property. Then the one-way flow model with global spillovers contains a Nash

network.

Proof We start from the empty network ġ, and show that we can reach a Nash network.

In other words, there is no improving cycle originating from the empty network. If there

is no improving path from ġ, we are done. Otherwise, there exists a player, say i1, such

that 0 6∈ BRi1(ġ−i1
). Hence, by Lemma 10, we have, BRi1(ġ−i1

) = n − 1. Let g
1 be

the network in which no player has formed links except player i1 who has formed n− 1

links. Either g
1 is a Nash network and we are done, or there is a player say i2 such

that 0 6∈ BRi2(g
1
−i2

). In the latter case, by lemma 10, we have BRi2(g
1
−i2

) = n − 1.

Let g
2 be the network in which no player has formed links except players i1 and i2

who have formed n − 1 links. We observe that player i1 has no incentive to modify her

strategy in g
2. Indeed, we have BRi = BRj for all i ∈ N , j ∈ N , and by construction
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g
2
−i1

= g
2
−i2

. Therefore, if BRi2(g
1
−i2

) = n−1, then BRi1(g
2
−i1

) = n−1. More generally,

we define g
k the network in which no player has formed links except players i1,i2, . . . , ik

who have formed n − 1 links and BRi(g
k
−i) = n − 1 for all i ∈ {i1, . . . , ik}. Either

g
k is a Nash network and we are done, or there exists a player, say ik+1, such that

0 6∈ BRik+1
(gk

−ik+1
). By Lemma 10, BRik+1

(gk
−ik+1

) = n − 1. Let g
k+1 be the network

in which no player has formed links except players iℓ, with ℓ ∈ {1, . . . , k + 1} who has

formed n−1 links. We observe that players iℓ have no incentive to modify their strategy

in g
k+1 since BRi(·) = BRj(·) for all j, i ∈ N and g

k+1
−i = g

k+1
−ik

for all i ∈ {i1, . . . , ik}.

Hence, there does not exist any improving cycle starting from ġ and, since the set

of players N is finite, a Nash network exists. �

2.2.3 Characterization of Nash Networks and Discrete Convexity

We define a class of networks that are important in what follows. A network g is a

k-all-or-nothing network if k firms have established links with all other firms while n−k

firms have formed no link.

Proposition 6 Suppose that the payoff function u(·, ·) satisfies strict smaller midpoint

property. The Nash networks are k-all-or-nothing networks.

Proof We know by Lemma 10 that in a Nash network each player forms either 0 or

n − 1 links. �

Now, we state sufficient conditions for the empty and complete networks to be Nash

networks.
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Proposition 7 Suppose u(·, ·) has strictly decreasing differences in its two arguments

and satisfies the strict smaller midpoint property.

1. The complete network is the unique Nash network if and only if u (n − 1, (n − 1)2)

> u (0, (n − 1)2).

2. The empty network is a Nash network if u (0, 0) > u (n − 1, 0).

Proof Since the second part of the proposition is straightforward, we only prove the

first part. First, it is obvious that if the complete network is the unique Nash network,

then u (n − 1, (n − 1)2) > u (0, (n − 1)2). Second, we show that if u (n − 1, (n − 1)2)

> u (0, (n − 1)2) then the complete network is the unique Nash network. Indeed, as-

sume that there is a non complete network g
∗ which is a Nash network. We have

u (ci(g
∗), c−i(g

∗)) ≥ u (ci(g), c−i(g
∗)), for all g ∈ G and for all i ∈ N . By decreasing

difference property, we have:

u(n − 1, (n − 1)2
)

> u(0, (n − 1)2
)

⇒ u(n − 1, c−i(g)
)

> u(0, c−i(g)
)

,

for all c−i(g) ∈ {0, . . . , (n − 1)2 − 1}. By Lemma 10, and the strict smaller midpoint

property, we have:

u(n − 1, c−i(g)) > u(0, c−i(g)) ⇒ u(n − 1, c−i(g)) > u(ci(g), c−i(g)) ,

for all ci(g) ∈ {0, . . . , n− 2}. This tells us that each player i always has an incentive to

form n−1 links in g
∗. Hence, g

∗ cannot be a Nash network which gives us the necessary

contradiction. �

Example 5 Consider again the framework described in example 4. Let g
′ be the net-

work such that g
′
−i = g−i and

∑

j 6=i gi,j =
∑

j 6=i g
′
i,j +1 (g is supposed to be a non empty
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network) and let g
′′ be the network such that g

′′
−i = g−i and

∑

j 6=i gi,j =
∑

j 6=i g
′′
i,j − 1.

We show that the profit function satisfies the strict smaller midpoint property, that is

u(ci(g), c−i(g)) < max{u(ci(g
′), c−i(g

′)), u(ci(g
′′), c−i(g

′′))}. To obtain a contradiction,

assume that u(ci(g), c−i(g)) ≥ max{u(ci(g
′), c−i(g

′)), u(ci(g
′′), c−i(g

′′))}. Then,

u(ci(g), c−i(g)) − u(ci(g
′), c−i(g

′)) ≥ 0

u(ci(g
′′), c−i(g

′′)) − u(ci(g), c−i(g)) ≤ 0

But, straightforward calculations give us:

∆u = 2u(ci(g), c−i(g)) − u(ci(g
′), c−i(g

′)) − u(ci(g
′′), c−i(g

′′)) < 0,

which is a contradiction.

Since u has strictly decreasing differences in its two arguments and satisfies the

strict smaller midpoint property, we can conclude, by proposition 6, that Nash networks

are k-all-or-nothing networks. Moreover, by proposition 7, we know that the complete

network is the unique Nash network if and only if u(n − 1, (n − 1)2) > u(0, (n − 1)2)

and the empty network is a Nash network if u (0, 0) > u (n − 1, 0).

Concluding remarks

Much of the existing literature on one-way flow models contains the assertion that for

some parameters ranges, the models admit Nash networks with specific properties. This

amounts to providing sufficient conditions for the existence of Nash networks. However,

these conditions often do not cover the entire parameters space and are unable to answer

if Nash networks always exist. Our paper fills this void in the literature.
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