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“Given systematic intersectoral differences in the elasticity of substitution and income
elasticity of demand, the possibility arises that the process of economic development
itself might shift the over-all elasticity of substitution.”

Arrow, Chenery, Minhas, and Solow (1961)

1. Introduction

More than forty years ago, Arrow, Chenery, Minhas and Solow (1961) (henceforth ACMS) put

forth the idea that the aggregate elasticity of substitution (AES) between capital and labor may

vary with the process of economic development. In this paper, we examine this conjecture in a

multi-sector model of a growing economy, in which AES varies over time. The model demonstrates

that AES tends to be positively related to the level of economic development, a result consistent

with recent empirical findings.

The notion of elasticity of substitution (ES) was invented by Hicks in his seminal book, The

Theory of Wages (1932), to analyze changes in income shares of labor and capital in a growing

economy, and has since played major roles in many branches of economics. In macroeconomics and

growth theory, however, researchers have frequently used the Cobb-Douglas (CD) production func-

tion to describe aggregate output behavior, thereby accepting the implication of the CD production

function that ES is unitary or capital and labor income shares remain constant over time. This

implication was supported by Kaldor’s (1961) stylized facts and other empirical studies, convincing

researchers that ES was indeed a “deep parameter” equal to unity in aggregate economies.

Nonetheless, some researchers have expressed skepticism about the assertion that ES is a “deep”

parameter equal to unity. For example, Solow (1957), although perhaps the first to suggest the use

of the CD function to study aggregate production, has noted that there is no evidence to support the

assertion.1 The dissatisfaction with the CD production function has led ACMS (1961) to invent

a more flexible constant-elasticity-of-substitution (CES) production function. The possibility of

non-unitary ES has initiated a new line of research on the role of ES in economic growth.2

More recently, empirical studies have questioned the relevance of the CD function as an ag-

gregate production function. Pereira (2002) has found that ES is non-unitary and changing over

1Solow (1958) pointed out that Kaldor’s stylized facts had held over a short period of time for which data were
available.

2See, e.g. Pitchford (1960), Uzawa (1962), McFadden (1963), Sato (1967), Klump and de La Grandville (2000)
and Miyagiwa and Papageorgiou (2003) for theoretical investigations, and Fisher, Solow and Kearl (1977) and Yuhn
(1991) for empirical works.
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time. Masanjala and Papageorgiou (2004) have shown that Solow cross-country regressions favor

the CES over the CD technology. Klump, McAdam and Willman (forthcoming), using a normalized

CES function with factor-augmenting technical progress, have found that the ES is significantly

below unity for the U.S. economy. Duffy and Papageorgiou (2000) have used panel data techniques

to estimate an aggregate CES production function using data from 82 countries and found that

the CD production function is rejected in favor of the CES specification. Furthermore, dividing

the sample countries into several subsamples, Duffy and Papageorgiou (2000) have discovered that

physical capital and (human capital-adjusted) labor are more substitutable in the wealthiest group

of countries relative to the poorest group. This finding is of particular interest to us because it not

only supports the ACMS conjecture quoted at the beginning of this paper but also establishes the

direction in which the process of economic development shifts AES.

All these empirical works demonstrate that AES is not a constant but a variable. However

empirical works do not explain why AES exhibits such variability across countries and time. We

thus begin our analysis with an inquiry into what determines AES between capital and labor.

Although there is an enormous literature dealing with ES, our knowledge of what affects the degree

of substitution between capital and labor is very limited. What little we know about the behavior

of AES once again traces back to Hicks (1932, 1963), who has offered the following conjectures:

In a multisector economy, AES is greater, (a) the greater the intra-sectoral ES, (b) the greater

the difference in factor intensity among sectors, (c) the greater the inter-commodity substitution

by consumers, and (d) the greater the technological innovation that enhances intra-sectoral and

inter-commodity substitution.3 These Hicksian conjectures concern the variability of AES across

economies at a given time, and are distinct from the ACMS conjecture that concerns the variability

of AES across time.

In this paper we aim to construct a model that will enable us to examine the ACMS conjecture

that AES changes with economic development. Such a model should be multi-sector to incorporate

the Hicksian determinants of AES, and dynamic so that AES changes as the economy grows. To

the best of our knowledge this is the first attempt in the literature to endogenize the behavior of

AES along growth paths.

3Only conjectures (a), (b) and (d) appear in the original 1932 edition of The Theory of Wages, while conjecture
(c) is included in the 1963 edition.
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Our model can now be outlined. The model economy is closed to international trade and

comprises three sectors — two intermediate-good sectors and one final good sector. In each period,

the existing capital and labor endowments are combined to produce the intermediate goods, which

are in turn combined to produce the final good. A given fraction of the final good output then

is invested to increase the next period’s capital stock while the remainder is consumed. In the

following period, the same process repeats itself with an increased capital stock. In a nutshell, our

model is thus a static factor-endowment model grafted to the standard neoclassical growth model.

The advantage of this model is that it can be solved sequentially.4 In particular, AES in each period

is determined endogenously by the existing endowments of capital and labor and their equilibrium

inter-sectoral allocation.

While relatively simple, however, our model cannot in general be solved analytically. Therefore

we resort to numerical analysis for the most part of the paper. Numerical results we obtain support

the ACMS conjecture that AES changes over time with the process of economic development. More

importantly, in all but one case we examine, AES increases as the economy grows, a result consistent

with the Duffy-Papageorgiou (2000) finding.

The remainder of the paper is organized as follows. Section 2 presents the basic factor-

endowment model and merges it with the Solow growth model. The general formula for AES

is also derived. In Section 3 we investigate the behavior of AES along the growth path using nu-

merical approximation techniques. Section 4 discusses our findings and concludes with suggestions

for future research.

2. Model

We consider an economy in an infinite discrete-time horizon. At each period t, the economy is

endowed with Kt units of capital and Lt units of labor and produces two intermediate goods (Xi,

i = 1, 2) according to the constant-returns-to-scale (CRTS) production function

Xit = Gi(Kit, Lit),

4Corden (1971), Ventura (1997) and Ferreira and Trejos (2002) have also adopted similar structures in different
contexts.
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where Kit and Lit denote, respectively, capital and labor units used in sector i. The factor markets

clear when

L1t + L2t = Lt

K1t +K2t = Kt.

Intermediate goods combine to produce a single final good (Yt) according to the CRTS technology

Yt = F (X1t,X2t). (1)

At the aggregate level, final output must equal consumption (Ct) plus capital investment (It).

Capital investment (It) adds to the next period’s capital stock (Kt+1). The economy’s feasibility

constraint combined with the neoclassical law of motion of capital is given by

It = Kt+1 − (1− δ)Kt = Yt − Ct,

where δ denotes the capital depreciation rate. In the next period, the economy solves the same

production problem as above, endowed with Kt+1 units of capital and Lt+1 units of labor.

We next describe how to obtain AES in each period. As mentioned in the Introduction, AES

depends on endowments of capital and labor and their equilibrium difference in inter-sectoral al-

location. To derive the latter, we adopt the dual approach based on Jones (1965). Thus, in

equilibrium unit production costs equal intermediate-good prices (pi). (For simplicity we drop the

time subscript in the following analysis.)

c1(w, r) = p1 (2)

c2(w, r) = p2, (3)

where w denotes the wage, r denotes the rental price and ci(w, r) is the minimum unit cost function.

We suppose that given pi these equations uniquely determine the equilibrium factor prices (w, r).

Letting (ˆ) indicate a percentage change, i.e., x̂ = dX/X, and differentiating (2) and (3) yields

θ1wŵ + θ1rr̂ = p̂1 (4)

θ2wŵ + θ2rr̂ = p̂2, (5)



Endogenous Aggregate Elasticity of Substitution 5

where θij is the distributive share of factor j in sector i; for example, θiw = (wLi) / (piXi). Equa-

tions (4) and (5) imply that

ŵ − r̂ = (p̂1 − p̂2)Θ−1, (6)

where Θ ≡ θ1wθ2r − θ2wθ1r = θ1w − θ2w = θ2r − θ1r. Note that Θ > (<) 0 iff good 1 is more labor

(capital) intensive relative to good 2.

The factor markets clear when

X1c1w(w, r) +X2c2w(w, r) = L

X1c1r(w, r) +X2c2r(w, r) = K,

where by the Shephard-Samuelson lemma

ciw(w, r) ≡ ∂ci(w, r)/∂w = Li/Xi

cir(w, r) ≡ ∂ci(w, r)/∂r = Ki/Xi,

are unit factor demands. Totally differentiating the factor market-clearing conditions yields

λ1w X̂1 + ĉ1w + λ2w X̂2 + ĉ2w = L̂ (7)

λ1r X̂1 + ĉ1r + λ2r X̂2 + ĉ1r = K̂, (8)

where λiw = Li/L, and λir = Ki/K are sectoral factor shares.

Letting σi denote ES between capital and labor in sector i, we have

ĉiw(w, r) = (ciwwdw + ciwrdr) /ciw

= − (rciwrdw/w − ciwrdr) /ciw
= −(rciwr/ciw)(ŵ − r̂)

= −σiθ1r(ŵ − r̂),

where the second equality follows because ciw(w, r) is homogeneous of degree zero. Similarly,

ĉir(w, r) = σiθ1w(ŵ − r̂).

Substituting theses expressions into (7) and (8), we obtain, after rearranging,

λ1wX̂1 + λ2wX̂2 = L̂+ bw(ŵ − r̂) (9)

λ1rX̂1 + λ2rX̂2 = K̂ − br(ŵ − r̂), (10)
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where

bw = λ1wθ1rσ1 + λ2wθ2rσ2

br = λ1rθ1wσ1 + λ2rθ2wσ2.

Equations (9) and (10) yield

X̂1 − X̂2 = (L̂− K̂)Λ−1 + (ŵ − r̂)(bw + br)Λ−1, (11)

where Λ = λ1wλ2r − λ1rλ2w = λ1w − λ1r = λ2r − λ2w > (<) 0 iff good 1 is relatively more labor

(capital) intensive.

For the final good sector, the CRTS technology implies that relative demand for the intermediate

goods depends only on the relative price so

X̂1 − X̂2 = −φ(p̂1 − p̂2), (12)

where φ is ES between the intermediate goods.

AES, denoted by σ, is defined by

σ = −(L̂− K̂)/(ŵ − r̂).

To find σ, combine (6), (11) and (12) to obtain

−φΘ(ŵ − r̂) = (L̂− K̂)Λ−1 + (ŵ − r̂)(bw + br)Λ−1.

Collecting terms leads to

σ = (bw + br) + φΘΛ

= (λ1wθ1r + λ1rθ1w)σ1 + (λ2wθ2r + λ2rθ2w)σ2 + (θ1w − θ2w)(λ1w − λ1r)φ. (13)

A number of points are worth noting here. First, σ is a function of the three primary elasticities

of substitution, σ1,σ2,φ, which are exogenous, and the sectoral factor shares, λiw,λir, and the

sectoral factor income shares θiw, θir, which are endogenous. Second, the coefficients of σ1,σ, and

φ in equation (13) sum to unity, implying that σ is the weighted average of those parameters.5

5This was first noted by Hicks (1963, p.341).
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Third, as will be shown below, these weights in general vary as factor allocations change over time.

Only under the following two circumstances will σ remain constant. The first is when the sectoral

and final-good elasticities of substitution are all equal (σ1 = σ2 = φ). Ferreira and Trejos (2002)

have examined a particular model of this case, where all the three goods are produced under CD

technologies, so AES is unity. The second is when one intermediate good uses only capital and the

other only labor. Ventura (1997) has explored such a case, where he assumed the CES technology

for the final good so that AES equals the ES of the final good sector, φ.

In summary, the static factor-endowment model yields the equilibrium factor allocations (Ki/K,

Li/L), the equilibrium final output (Y ), and AES (σ) for each period t. To recast the model in

the growth context, we use the Solow (1956) model as a baseline.6 To simplify the analysis we

assume zero population growth and zero technical progress for the remainder of the paper. The

discrete-time Solow model then implies the per capita growth rate given by

kt+1/kt − 1 = sf(kt)/kt − δ, (14)

where kt = Kt/L, s is the exogenous saving rate, and f(kt) is per capita output. The main

departure from the standard Solow model is that f(kt) depends on resource allocations at each

period t.7 More specifically, from the fact that all production functions (sectoral and aggregate)

have CRTS, it is shown that

yt = F [G1(λ1rkt,λ1w), G2(λ2rkt,λ2w)] .

where λij = λij(kt).

3. A Numerical Analysis

In this section we use the above model to examine the behavior of AES along the transitional

path of a growing economy. Since the model is analytically intractable, we resort to a numerical

analysis. To that end we suppose that both intermediate goods are produced under the CD and

the final good under the CES technologies. This particular specification maintains the qualitative

implications of the general model with the minimal computational complexity.

6Though the Solow model is chosen for its simplicity, future work may consider more complicated growth models
such as the optimal growth model, i.e. Cass-Koopmans (1965), and the R&D-based growth model, i.e. Romer (1990).

7We thank a referee for pointing out this dependence of per capita output on the sectoral distribution of inputs.



Endogenous Aggregate Elasticity of Substitution 8

We now describe the specific production functions we use. The final good is produced under

the following CES technology

Y = A(ρ) [γ(ρ)Xρ
1 + (1− γ(ρ))Xρ

2 ]
1/ρ
, (15)

where φ = 1/(1 − ρ), (ρ ≤ 1), A(ρ) is the “normalized” technology index, and γ(ρ) is the “nor-

malized” distribution parameter. The normalization of these parameters follows the procedure due

to de La Grandville (1989). Without such normalization a change in ρ in the CES function not

only alters the curvature of the isoquant but shifts the whole isoquant map so that comparisons of

growth paths at different values of φ are improper.8

More specifically, de La Grandville (1989) suggested the following normalization procedure:

Given the standard intensive-form CES production function f(kt) = A[γkqt + (1 − γ)]1/q, where

the elasticity of substitution between capital and labor is ζ = 1/(1 − q), (q ≤ 1), choose arbi-

trary baseline values for capital per worker (k̄), output per worker (ȳ) and the marginal rate of

substitution between capital and labor defined by m̄ = [f(k̄)− k̄f �(k̄)]/f �(k̄) (primes denote deriv-
atives). Then, use those baseline values to solve for the normalized efficiency parameter A(q) =

ȳ (k̄1−q + m̄)/(k̄ + m̄) 1/q, and the normalized distribution parameter γ(q) = k̄1−q/ k̄1−q + m̄ as

a function of the elasticity parameter, q.

To apply the de La Grandville (1989) normalization procedure in our model,9 notice that

(15) can be expressed as f(x) = A(ρ) [γ(ρ) (X1/X2)
ρ + (1− γ(ρ))]1/ρ, where y = f(x) = Y/X2

and x = X1/X2. Therefore, the de La Grandville (1989) normalization follows directly from

choosing arbitrary baseline values for x̄, ȳ and the marginal rate of substitution between X1and

X2, m̄ = [f(x̄) − x̄f �(x̄)]/f �(x̄). The normalized efficiency parameter is then given by A(ρ) =
ȳ (x̄1−ρ + m̄)/(x̄+ m̄) 1/ρ, and the normalized distribution parameter by γ(ρ) = x̄1−ρ/ x̄1−ρ + m̄ .

The intermediate goods are produced under CD technologies

X1 = Ka1
1 L

1−a1
1

X2 = Ka2
2 L

1−a2
2 ,

8For additional discussion on the normalized CES function and the “inter-family” problem associated with CES
functions see Klump and de La Grandville (2000), Klump and Preissler (2000), and Saam (2005).

9We thank Marianne Saam for her suggestions on the issue of normalization.
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so, σ1 = σ2 = 1, and ai = θir(0 < ai < 1) is now the capital income share in sector i. Without loss

of generality we assume that sector 2 is more capital-intensive than sector 1, or a2 > a1.

To evaluate σ in (13), we use the relationship that λ1w + λ2w = λ1r + λ2r = 1 to reduce bw and

br to

bw = a2 + λ1w(a1 − a2)

br = (1− a2)− λ1r(a1 − a2).

Adding yields

bw + br = 1 + (a1 − a2)(λ1w − λ1r) = 1−ΘΛ.

Substituting this into (13), we obtain:

σ = (bw + br) + φΘΛ

= 1 + (a2 − a1) (L1/L−K1/K) (φ− 1). (16)

Since ΘΛ = (a2 − a1)(L1/L−K1/K) > 0,10 we have that σ 1 iff φ 1.

Equation (16) shows that AES depends on the factor-intensity difference, (a2 − a1), and the
final-good sector ES, φ, and the equilibrium inter-sectoral factor allocation, (L1/L −K1/K). As
the latter changes with capital accumulation, so does σ along the growth path. Interestingly, (16)

also shows that AES is positively related to the factor-intensity difference if and only if φ exceeds

unity.

We can now solve the model in two steps. At period t, we compute equilibrium factor allocations

(K1t/Kt, L1t/L), AES (σt), and final output per capita (f(kt)). f(kt) is then used in equation (14)

to obtain the next period’s per capita and total capital endowment (kt+1 andKt+1). At period t+1,

given the new supply of capital (Kt+1) we compute (K1,t+1/Kt+1, L1,t+1/L) and therefore σt+1 and

f(kt+1). We repeat this process until we reach the steady state {k∗,σ∗, (K1/K)∗ , (L1/L)∗}.
Table 1 summarizes the parameter values used to carry out the numerical exercises.11 It is

important to state up front that those parameter values are not meant for calibration (there is lack

10Given equilibrium w and r, a2 − a1 > 0 implies (1 − a1)/a1 = θ1w/θ1r > θ2w/θ2r = (1 − a2)/a2. But since
θiw/θir = (wLi)/(rKi), the last inequality implies L1/K1 > L2/K2, which implies λ1wλ2r − λ1rλ2w ≡ Λ > 0. But
Λ = λ1w − λ1r = L1/L−K1/K. Thus, a2 − a1 > 0 implies L1/L−K1/K > 0.
11The procedure used in obtaining our numerical results is described in Appendix A.
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Table 1: Parameter values used in the simulations for the CD-CD-CES case

φ ∈ {0.1, 0.5, 1, 2, 10} ȳ = 2 s = 0.3
(a1, a2) = (0.2, 0.7) x̄ = 2 δ = 0.1
(a1, a2) = (0.1, 0.9) m̄ = 0.5 n, µ = 0

of information for such exercise) but for numerical evaluation of the model only. Since theory gives

us no guidance on how to choose values for φ, a1 and a2 we consider a wide range of values. In

particular, we let φ range from 0.1 to 10 while letting (a2 − a1) take either 0.5 or 0.8. In addition,
we set the Solow growth model parameter values to be s = 0.3 and δ = 0.1, and for simplicity

assume no population and technology growth (i.e., n, µ = 0). Our choice of the savings rate and

depreciation rate is common in the growth literature.12 Finally, we choose parameter values for

ȳ = x̄ = 2, and m̄ = 0.5 to incorporate de La Grandville’s normalization discussed above. The

choice of these values, although arbitrary, helps us manage units in the quantitative exercise and

provides sensible examples.

Figures 1-5 present five numerical examples in which φ ∈ {0.1, 0.5, 1, 2, 10}, respectively. In
each figure the left panel with charts (A, B, C) assumes the narrower factor-intensity difference

i.e., (a1, a2) = (0.2, 0.7), whereas the right panel adopts the wider difference of (a1, a2) = (0.1, 0.9).

Chart A (in Figures 1-5) illustrates per capita capital, k, along the transition path and at steady

state. Regardless of parameter values the model maintains the transitional and steady-state prop-

erties of the standard Solow growth model; growth is faster at low levels of capital per worker and

there is convergence to a single steady state.

Chart B depicts the relationship between k and sector 1’s capital and labor shares (K1/K,

L1/L). In Figure 1, as k increases towards the steady state, the difference, (L1/L −K1/K), first
widens and then narrows. In Figure 2, the difference steadily widens in the relevant range. Figure

3 depicts the benchmark case, in which φ is set equal to unity, and the relative factor shares remain

constant throughout. Finally, in Figures 4 and 5 we see the difference in factor shares narrowing

continuously.

Chart C presents our key finding; that is, AES varies with the process of economic development

12This assumption is for computational ease and has no qualitative implications on our results.
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as conjectured by ACMS. In Figures 1-2 and 4-5, all our numerical examples except one demonstrate

that σ increases as k increases along the transitional path towards steady state, corroborating the

Duffy-Papageorgiou (2000) finding that AES is greater in richer countries than in poorer countries.

The only exception to the positive relationship between σ and k appears in the right panel of Figure

1, where φ is set very high (φ = 10) and the relative factor intensity is great (a2 − a1 = 0.8).
We now explain intuitively the relationship between k and σ exhibited in Chart C of Figures

1-5. Observe that σ is linearly related to (L1/L−K1/K) by equation (16) because (a2−a1) and φ
are exogenous. Therefore, to understand the relationship between σ and k we need only to explain

the relationship between (L1/L−K1/K) and k , which is depicted in Chart B of Figures 1-5.
To understand the depictions in Chart B, rewrite the difference as13

L1/L−K1/K = (L2/K)(K2/L2 −K/L), (17)

and equation (16) as

σ = 1 + (φ− 1)(a2 − a1)(L2/K)(K2/L2 −K/L).

Suppose now that there is a one percent increase in K due to investment. Assume for the

moment that the relative intermediate goods price does not change and that intermediate-good

production occurs within the diversification cone.14 Then, by the Rybczynski theorem the second

intermediate good sector expands by λ1w/Λ percent and hence its labor demand rises by the

same percentage under constant returns.15 Thus, the ratio L2/K in equation (17) increases by

λ1w/Λ− 1 = λ1r/Λ > 0, raising σ.

Turning to the second term on the right-hand side of equation (17), note that K2/L2 is constant

in the assumed absence of relative price change. Since K/L increases, the second term must

decline, thereby lowering σ. It follows that, as capital accumulates at the constant relative price,

the difference (L1/L − K1/K) increases so long as the first term on the right-hand side of (17)

dominates but eventually decreases when the second terms becomes dominant.

In a complete analysis, the timing of the above turnaround is modulated by the relative price

changes between the intermediate goods which have so far being ignored. If φ is much greater than

13L1/L−K1/K = λ1w − λ1r = λ2r − λ2w = K2/K − L2/L = (L2/K)(K2/L2 −K/L).
14For a discussion of the diversification cone, see, e.g. Dixit and Norman (1980).
15This follows from equations (9) and (10).
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unity as in Figure 1, the two intermediate goods are strong substitutes in the final good sector, so an

increase in the capital stock is absorbed mostly by changes in quantities supplied of the intermediate

goods rather than by their relative price changes. With little change in the relative price, the

turnaround occurs relatively soon, as in Figure 1. Thus, σ first rises but eventually falls before

reaching the steady state, as shown in the right panel of Figure 1. A similar relationship exists in the

left panel but there the steady state capital per worker is lower (compare k∗ = 3.488 to k∗ = 6.987)

so that the economy reaches the steady-state capital per worker before capital per worker reaches

the turnaround level. Therefore, AES monotonically increases as the economy converges to steady

state. When φ is smaller but still exceeds unity as in Figure 2, where φ = 2, a relative price change

induced by capital accumulation is more pronounced. As the price of good 1 rises relative to that

of good 2, the wage rises relative to the rental by the Stolper-Samuelson theorem, inducing firms

to economize on labor use. The resultant rise in the ratio K2/L2 mitigates the negative impact

of the second term on the right of equation (17), thereby raising the turnaround level of capital

per worker above the steady-state level. Thus, the difference (L1/L−K1/K) continues to increase
until k reaches the steady state value.

Finally, if φ is less than one, the intermediate goods are complementary in the final good

production, so capital accumulation tends to expand both intermediate-good output levels. As this

happens, the second intermediate good sector, which is relatively capital intensive, gets little labor

from the first since the labor supply is fixed and hence the ratio L2/K falls. With both terms in

equation (17) falling, the difference (L1/L−K1/K) narrows as shown in Chart B of Figures 4 and
5. However, with φ < 1 that means σ increases as shown in Chart C of the same figures.

Our numerical analysis thus yields the following conclusion. As the economy grows from a

low state of economic development, AES increases, but for φ exceeding unity, the rate of increase

eventually turns negative when capital per worker reaches a certain critical level (for φ less than

unity this turnaround never occurs for the reason stated above). However, in all but one case we

examined this critical level of capital per worker exceeds the steady-state level so AES steadily rises

as the economy converges to steady state. When is that condition violated? The answer can be

inferred from the recent works of Klump and de La Granville (2000) and Klump and Preissler (2000),

which have analytically demonstrated that an economy with a higher (exogenous) ES experiences
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a higher capital per worker in steady state. In our model equation (16) implies that AES is higher

when φ is higher and the factor intensity difference (a2 − a1) is greater. An economy described
in the right panel of Figure 1 has the highest φ and takes the larger of the two factor intensity

differences we consider. Therefore, in this case the steady-state capital per worker is most likely to

exceed the turnaround level. It turns out that that is the only case in our examples in which AES

turns around.

4. Discussion and Conclusion

The idea that the aggregate elasticity of substitution (AES) between capital and labor evolves with

the process of economic development goes back to Arrow et al. (1961). To evaluate this conjecture,

we have constructed a multi-sector model of economic growth, in which AES is endogenously

determined and varies as the economy grows. We have then applied new modeling and numerical

approximation techniques to solve this highly non-linear model. Our results support the ACMS

conjecture generally. More importantly, we have shown that AES is positively related to the level

of economic development.

To ensure that our results are not driven by our model specifications, parameter values and

the normalization procedure, we have performed two additional experiments. Firstly, we have

repeated the entire exercise using CES functions in the intermediate goods sectors, but obtained

the qualitatively identical results in this CES-CES-CES setting. Secondly, we have performed

another round of numerical analysis using a special case of de La Grandville normalization that

was first pointed out by Kamien and Schwartz (1968) in which x̄ = 1. In this case it is easily

shown that A(ρ) = ȳ, γ(ρ) = γ and m̄ = (1− γ)/γ. The results of these exercises, summarized in

Appendix B without charts, are again qualitatively identical to our results in Figures 1-5.16

Our findings have quite important implications for the empirical and theoretical literature.

First, our key finding that AES varies positively with the level of development not only verifies the

ACMS conjecture but also gives theoretical underpinning to the empirical findings of Duffy and

Papageorgiou (2000). Our finding is also related to the notion of Variable Elasticity of Substitu-

tion (VES) pioneered by Revankar (1971) (i.e. σV ES = 1 + ak). However, the two models take

diametrically opposite approaches. Revankar assumes the positive relationship between capital per

16The detailed results and charts from these two experiments are available upon request from the authors.
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worker and AES at the outset, and devises an ad hoc aggregate production function that yields

that relationship. We, on the other hand, obtain such a relationship endogenously from the market

equilibrium condition of a growing multi-sector economy.

Second, as mentioned earlier, Klump and de La Grandville (2000) and Klump and Preissler

(2000) have recently utilized the normalized CES production function in the Solow (1956) growth

model to show that a country endowed with a higher ES experiences higher capital and output per

worker in transition and in steady state. Our analysis demonstrates that their result holds in a

multi-sector economy. For example, recall that φ increases from 0.1 to 10 as we move back from

Figure 5 through Figure 1. The corresponding right panels indicate that the steady-state capital

stock, k∗, increases successively from 3.482 in Figure 5 to 3.958 in Figure 4, to 3.984 in Figure 3,

to 4.491 in Figure 2, and finally 6.987 in Figure 1. Similar results obtain from a comparison of the

left panels. In sum, our examples show that increases in σ1,σ2 and φ raise capital and output per

worker in transition and in steady state.

The above theoretical works in turn give an intuition to our numerical findings. In our model

AES can fall as an economy approaches its steady state, if the intermediate goods are substitutes

and the steady-state level of capital per worker is less than some critical level. But the above-

mentioned theoretical studies imply that the steady-state level of capital per worker is lower, the

smaller the (exogenous) ES. Thus, if the initial AES is not too great, AES increases as the economy

grows.

Third, we have presented a minimalist model capable of endogenizing AES. As such, it is pos-

sible to extend our model in several different directions. A good place to start is to augment the

present model with substitution-enhancing technical change (possibly along the lines of Kamien

and Schwartz (1969) and Acemoglu (2002)) and investigate its effects on AES and economic devel-

opment. Another promising extension is to open the economy to trade and examine the relationship

between the degree of openness and growth as mediated by the endogenous ES.

Fourth, important implications of AES on growth such as its effect on country convergence,

its effect on per capita GDP vs. per capita capital, its contribution to the gap between poor and

rich countries, are interesting directions for future research. We suggest that these issues deserve

serious attention and thorough analysis perhaps in a richer growth model that can potentially be
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taken to the data by means of a calibration exercise.

Fifth, with the emergence of reliable empirical estimates of sectoral production parameters,

we could more systematically investigate how changes in different parameters underlying AES can

affect the economic development path.

Finally, we offer the following conjecture: our results are independent of the Solow growth

model and robust with other growth models, in which capital accumulation is the engine of growth.

The basis for our belief is that how AES changes as an economy’s capital-labor ratio grows is not

a property of the Solow growth model but a property of the underlying general equilibrium model.

However, the steady-state level of capital per worker is a property of a growth model. Thus, use of

alternative growth models may result in having the higher steady-state level of capital per worker,

thereby making the monotonic rise in AES more unlikely within wider ranges of parameters. We

thus expect that future work will evaluate our conjecture in richer growth models.
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Appendix A

Numerical solution procedure

Numerical results are produced using MATHCAD. The programs are available upon request

from the authors.

Before proceeding, note that the factor allocations of the static factor-endowment model can be

replicated by the optimization problem: Maximize equation (15) subject to the technological and

endowment constraints. The first-order conditions (FOCs) are:

γ(ρ)a1K
a1ρ−1
1 L

(1−a1)ρ
1 = (1− γ(ρ)) a2 (K −K1)a2ρ−1 (L− L1)(1−a2)ρ (A1)

γ(ρ) (1− a1)Ka1ρ
1 L

(1−a1)ρ−1
1 = (1− γ(ρ)) (1− a2) (K −K1)a2ρ (L− L1)(1−a2)ρ−1 . (A2)

Step 1. Assign values to parameters: A (x̄, ȳ, m̄) , γ (x̄, ȳ, m̄) , a1, a2,φ, s, δ.

Step 2. Assign initial values toK and L. For simplicity we assume that the population is constant

and equal to unity.

Step 3. Use numerical approximation methods to solve the nonlinear system of two equations

(A1-A2) with two unknowns (K1, L1).

Step 4. Use the equilibrium allocations (K1t, L1t) from Step 3 in the final-good production

function, equation (15), to obtain the final per capita output (f(kt)), which can be expressed

as

yt = A(ρ) γ(ρ) (λ1,rkt)
a1 ,λ1−a11,w

ρ
+ (1− γ(ρ)) (λ2,rkt)

a2 ,λ1−a22,w

ρ 1/ρ
.

Step 5. Use the final output in the dynamic growth equation (14) to obtain the next period’s

stock of capital (kt+1).

Step 6. The new kt+1 (and therefore Kt+1) is then used in Step 3 to close the loop. The

recursive system characterized by steps 3—4—5—6—3 continues until it yields the steady-state

{k∗,σ∗, (K1/K)∗ , (L1/L)∗}.
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Appendix B

Sensitivity analysis

In this appendix the robustness of our baseline parameter values is checked using the alternative

normalization procedure proposed by Kamien and Schwartz (1968), in which we set x̄ = ȳ = 1 and

allow m̄ to take alternative values m̄ = {0.3, 0.5, 0.8}. To save space we report only results in the
case where (a1, a2) = (0.1, 0.9). The plots similar to Figures 1-5 are available from the authors.

Table B1: x̄ = ȳ = 1, m̄ = 0.3

φ k∗ σ∗ (K1/K)
∗ (L1/L)

∗

10 3.492 6.656 0.148 0.934
2 3.483 1.597 0.209 0.955
1 3.478 1 0.270 0.968
0.5 3.473 0.748 0.348 0.977
0.1 3.466 0.627 0.467 0.986

Table B2: x̄ = ȳ = 1, m̄ = 0.5

φ k∗ σ∗ (K1/K)
∗ (L1/L)

∗

10 4.49 6.585 0.058 0.834
2 3.988 1.638 0.116 0.914
1 3.968 1 0.182 0.947
0.5 3.486 0.722 0.274 0.968
0.1 3.469 0.613 0.447 0.985

Table B3: x̄ = ȳ = 1, m̄ = 0.8

φ k∗ σ∗ (K1/K)
∗ (L1/L)

∗

10 9.992 4.0175 0.009 0.428
2 5.485 1.6219 0.060 0.837
1 4.481 1 0.122 0.918
0.5 3.973 0.7067 0.226 0.959
0.1 3.474 0.5998 0.428 0.984

Tables B1-B3 show that the results are similar to those of our model, thereby attesting the

robustness of our model despite the alternative normalization procedure.
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Figure 1: Transitional dynamics and steady state in model with CD-CD-CES technologies (φ = 10)

Left panel: (a1, a2) = (0.2, 0.7) Right panel: (a1, a2) = (0.1, 0.9)
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Notes: The illustrations above are constructed using a MATHCAD numerical solver. We assume the fol-
lowing parameter values: s = 0.3, δ = 0.1, m̄ = 0.5, k̄ = 2, ȳ = 2. The following steady-state values
are obtained. Left panel: k∗ = 3.488,σ∗ = 3.176, (K1/K)

∗ = 0.351, (L1/L)
∗ = 0.835. Right panel:

k∗ = 6.987,σ∗ = 6.279, (K1/K)
∗ = 0.041, (L1/L)

∗ = 0.774.



Endogenous Aggregate Elasticity of Substitution 21

Figure 2: Transitional dynamics and steady state in model with CD-CD-CES technologies (φ = 2)

Left panel: (a1, a2) = (0.2, 0.7) Right panel: (a1, a2) = (0.1, 0.9)
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Notes: The illustrations above are constructed using a MATHCAD numerical solver. We assume the fol-
lowing parameter values: s = 0.3, δ = 0.1, m̄ = 0.5, k̄ = 2, ȳ = 2. The following steady-state values
are obtained. Left panel: k∗ = 3.484,σ∗ = 1.207, (K1/K)

∗ = 0.482, (L1/L)
∗ = 0.897. Right panel:

k∗ = 4.491,σ∗ = 1.624, (K1/K)
∗ = 0.160, (L1/L)

∗ = 0.939.
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Figure 3: Transitional dynamics and steady state in model with CD-CD-CES technologiesl (φ = 1)

Left panel: (a1, a2) = (0.2, 0.7) Right panel: (a1, a2) = (0.1, 0.9)
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Notes: The illustrations above are constructed using a MATHCAD numerical solver. We assume the
following parameter values: s = 0.3, δ = 0.1, m̄ = 0.5, k̄ = 2, ȳ = 2. The following steady-state val-
ues are obtained. Left panel: k∗ = 3.482,σ∗ = 1, (K1/K)

∗ = 0.533, (L1/L)
∗ = 0.914. Right panel:

k∗ = 3.984,σ∗ = 1, (K1/K)
∗ = 0.308, (L1/L)

∗ = 0.973.
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Figure 4: Transitional dynamics and steady state in model with CD-CD-CES technologiesl (φ = 0.5)

Left panel: (a1, a2) = (0.2, 0.7) Right panel: (a1, a2) = (0.1, 0.9)

0 5 10 15 20

0.1

0.2

0.3
(A)  sf(k)/k ( __ ), delta ( --- ) vs. k

0 5 10 15 20

0.1

0.2

0.3
(A)  sf(k)/k ( __ ), delta ( --- ) vs. k

0 5 10 15 20
0.4

0.6

0.8

(B)  L1/L ( __ ), K1/K (---) vs. k 

0 5 10 15 20

0.5

1
(B)  L1/L ( __ ), K1/K (---) vs. k

0 5 10 15 20
0.88

0.9

0.92

0.94
(C)  sigma vs. k

0 5 10 15 20
0.7

0.75

0.8

0.85

(C)  sigma vs. k

Notes: The illustrations above are constructed using a MATHCAD numerical solver. We assume the fol-
lowing parameter values: s = 0.3, δ = 0.1, m̄ = 0.5, k̄ = 2, ȳ = 2. The following steady-state values
are obtained. Left panel: k∗ = 3.482,σ∗ = 0.911, (K1/K)

∗ = 0.567, (L1/L)
∗ = 0.924. Right panel:

k∗ = 3.958,σ∗ = 0.805, (K1/K)
∗ = 0.501, (L1/L)

∗ = 0.988.
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Figure 5: Transitional dynamics and steady state in model with CD-CD-CES technologies (φ = 0.1)

Left panel: (a1, a2) = (0.2, 0.7) Right panel: (a1, a2) = (0.1, 0.9)
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Notes: The illustrations above are constructed using a MATHCAD numerical solver. We assume the fol-
lowing parameter values: s = 0.3, δ = 0.1, m̄ = 0.5, k̄ = 2, ȳ = 2. The following steady-state values
are obtained. Left panel: k∗ = 3.480,σ∗ = 0.849, (K1/K)

∗ = 0.598, (L1/L)
∗ = 0.933. Right panel:

k∗ = 3.482,σ∗ = 0.778, (K1/K)
∗ = 0.686, (L1/L)

∗ = 0.994.


