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A Preference-Theoretic Methodology
for Nonmarket Goods

David G. Brown

Abstract

A methodology for nonmarket goods is presented based on preference algebra and

set theory that allows us to specify exactly when preference assumptions such as weak

complementarity can be tested against revealed preference information. Revealed pref-

erence is insufficient for welfare analysis involving state preference variables such as

nonmarket goods. The preference and set-theoretic structure presented here is specif-

ically designed to characterize the minimal additional preference information neces-

sary for exact welfare analysis, and also provides a common basis for specifying the

many context-specific methods that have been proposed for closing the information

gap (whether or not they provide this minimal information). The paper closes with

examples demonstrating how this structure can be used as a methodology for working

with assumptions about preference structure, focusing on when such assumptions can

be tested against revealed preference. This includes an extended examination of weak

complementarity and related issues, followed by five shorter examples including two

types of repackaging for price indices and the new and disappearing goods problem.

Keywords: Identifying preference, Preference-theoretic, Methodology, Nonmarket goods,

Testing preference restrictions, Weak complementarity, Existence value, Weak substi-

tutability, Repackaging price index, Cross-product repackaging, New and disappearing

goods.
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Welfare analysis involving a nonmarket good, such as environmental quality, requires

knowledge of the consumer’s preference over distinctions where the consumer is not able

to choose. For example, the individual consumer is not given a choice in the marketplace

between clean and dirty air.1 This is also true for some contexts that are not traditionally

understood as nonmarket goods. I therefore use the term “state preference variable” defined

as a nontrivial argument in the consumer’s preference relation over which she has no economic

control. The consumer may care about the state preference variable itself and also the

variable may affect her commodity preferences. In addition to environmental variables such

as global warming, examples of state preference variables include the existence and quality of

public goods, the quality of some market goods such as monopoly goods, and perhaps even

aspects of Behavioral Economics where for instance a person may prefer to be not clinically

depressed (or not a drug addict), but is not able to obtain this state without the development

of a drug or a government program providing the drug to the indigent.

Any welfare analysis concerned with variance or changes in state preference variable

values requires knowledge of the consumer’s joint preference over that variable and com-

modities. While this may only require very local knowledge such as to verify the efficiency

of a solution’s first order conditions, more extensive knowledge is required for more typical

applications involving larger discrete changes in the state preference variables, such as with

measures like Equivalent Variation. With any of these applications we have a problem: pref-

erence information can be recovered from the observable demand function only to the extent

that is does not involve any distinctions in a state preference variable. We can thus only

partially identify the joint preference over these variables and commodities.

In this paper I develop a general structure based on preference logic and basic set theory

that enables us to characterize the missing preference information that is needed to fully

specify the overall joint preference relation (when combined with the available revealed pref-

erence information). The structure allows us to precisely describe the minimal amount of

missing information, but is also robust enough so that we deal with potential approaches for

filling in this preference information gap that provide more than enough information.

Many context-specific methods have been proposed to supply the missing preference in-

formation, especially for settings involving product quality and environmental issues. These

applications typically include assumptions or qualitative information that allow us to at least

partially close the information gap. Each such application is thus defined by the additional

preference information (API) it provides. What I might call an instance of “additional pref-

erence information” is typically referred to in the literature more narrowly as a “preference

(or utility) restriction” or perhaps as a “maintained hypothesis.”2 This restrictive terminol-

ogy emphasizes the assumptive nature of the additional information, while my more general

terminology is explicitly open to the possibility of using real preference information.

The immediate application of the structure developed here is that we can state exactly

when preference assumptions such as weak complementarity are sufficient and also when

1I realize that there may be plausible exceptions to this statement. However, please accept it in the spirit

that it is provided, for the purpose of illustrating the nonmarket good concept.

2Such as in Smith and Banzhaf (2004) and Ebert (2001), respectively.
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they can be tested against revealed preference. The structure can be used to determine

whether any given API only partially fills the information gap, exactly fills the gap, or in-

cludes more than enough information. When an API includes excess preference information

we can always test it against the demand function in the form of revealed preference in-

formation. In addition to one-way tests of specific individual preference restrictions such as

weak complementarity, we can also sometimes obtain two-ways tests for the validity of whole

classes of API’s. Examples of using this structure for testing and other analysis with specific

API’s and classes of API’s are provided in this paper after the structure is developed. Other

potential applications of this structure are discussed in the conclusion.

The theoretical literature concerned with welfare analysis in the context of state prefer-

ence variables such as nonmarket goods and product quality is dominated by applications of

real analysis, and hence requires continuous state preference variables and other regularity

conditions to enable various techniques from calculus. My major departure from this liter-

ature is that I instead rely on the algebraic properties of preference, such as transitivity, in

combination with basic set theory. This has two advantages. The first is the obvious one,

the results are more general as no restrictions are imposed on the state preference variables –

they do not even need to be numbers. The second is that by stepping away from the calculus

paradigm, and hence from the quasi-traditional microeconomic constructions that are the

workhorse in this literature, we can obtain results that are not available with a methodology

that is so narrowly focused on real analysis.3 Combining these two approaches (preference

algebra and real analysis) should be quite powerful but is beyond the scope of this paper.

The rest of this paper is organized into five sections. The modelling setup presented in

the first allows me to specify the nature of the missing information problem in the second

section. Then with the third, I develop the just discussed preference-theoretic structure.

Weak complementarity is examined in the fourth section along with several other examples

of how this general structure may be applied, followed by a conclusions section. All proofs

are deferred to the Appendix.4

1 Modelling Setup

Given the wide range of potential application areas, modelling assumptions are kept to a

minimum so as to keep the results as general as possible, while at the same time maintaining

tractability by remaining close to our standard understanding of preference and demand.

However, this paper only deals with the preference and demand of an individual consumer,

so that any direct application of this work in the context of market demand would require

the usual simple “representative consumer” assumption.

3For example, we are able to find that exact welfare analysis is possible in conditions where it is deemed

impossible in that literature. See Note 61.

4Editorial note: All theorems are presented with the intention of either demonstrating the nature of the

problem, developing the preference-theoretic structure, or illustrating its application. Presenting proofs in

the main text would detract from that purpose. Furthermore, for the most part the proofs consist of multiple

applications of simple preference logic and set theory which many readers would find rather tedious.
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State preference variables, which may be a scalers, vectors or non-numbers, and may

be discrete or continuous, are represented by lower case z. Upper case Z represents the

set of admissible values of the state preference variable, such as Z = {Global Warming,

Not Global Warming}. Superscripts are used to distinguish individual elements of Z, such as

in za, zb ∈ Z.5 We shall assume that Z is non-trivial in that it has at least two elements. Let

X be the commodity consumption set (typically X = ℜL
+). The consumer has a preference

relation over Y = X × Z represented by %Y , and given prices, wealth and z, she chooses

x ∈ X to achieve the highest affordable preference level,

x̂(p, z, w) = {x ∈ X | p · x ≤ w, and (x, z) %Y (x̄, z) for all x̄ such that p · x̄ ≤ w}, (1)

with prices p ∈ P = ℜL
++ and wealth w ∈ W = ℜ++ strictly positive. Demand is thus

defined as an extended function of prices, state preference variables and wealth. The basic

preference and choice assumptions are that the unobservable preference relation is rational

on Y , as well as continuous and locally nonsatiated for any distinctions in X,6 and that the

observable demand function is single valued.7 The distinction introduced here between the

choice domain X with typical element x, and the preference domain Y with typical element

(x, z), is the root source of the problem addressed in this paper.

For purposes of welfare analysis we are only concerned with elements of Y that might

actually occur with market interaction, i.e., those can be obtained with the demand function.

For each z ∈ Z, the obtainable set in X is {x ∈ X | x = x̂(p, z, w) for some (p, w) ∈ ℜL+1
++ }.8

To ease the presentation in this paper I assume that the obtainable set is the same for all

z ∈ Z, denoted by X̂.9 With X̂, the overall obtainable subset of Y is defined as Ŷ = X̂ ×Z.

The sets X̂ and Ŷ are known to the analyst if demand is fully observable. The notation %
Ŷ

indicates the restriction of %Y to the obtainable preference domain Ŷ . Thus, for purposes

of welfare analysis we are only interested in the preference information represented by %Ŷ .

For each z ∈ Z, we can use %Ŷ to define a z-fixed preference relation on X̂, %z, such that

x1 %z x2 ⇐⇒ (x1, z) %Ŷ (x2, z) for all x1, x2 ∈ X̂. It then follows that each %z is rational,

continuous and locally nonsatiated. I assume that each %z can be uniquely identified from the

demand function.10 This key assumption should be noncontroversial as it is a more careful

5Reserving subscripts for individual components in a z vector.

6Continuity on the Z portion of Y is a vacuous property for any discrete z and therefore meaningless

without special restrictions on the nature of Z. Local nonsatiation is only useful if restricted to the choice

set X , even if meaningful on the larger preference set.

7The preference relation is not necessarily monotone or convex. While strict convexity of preference is

sufficient for the demand relationship to be single valued, even weak convexity is not necessary. If preference

is monotone, then weak convexity is necessary, and strict convexity becomes necessary when preference is

strongly monotone.

8This distinction between X and the obtainable subset is also used by Richter (1971). There is no “usual”

obtainable set. For example with X = ℜ2
+, three different obtainable consumption sets are obtained with

Cobb-Douglas, quasilinear and Stone-Geary preferences.

9However all of the results presented here except for Theorem A3 have been obtained for the more general

case without this assumption.

10More formally, suppose that the same demand function was obtained with two preference relations on Y ,

3



statement of the widely understood idea that there is a one-to-one relationship between

ordinary preference relations and ordinary demand functions (both without state preference

variables).11 Working in the other direction, we can construct the extended demand function

with only {%z | z ∈ Z}:

x̂(p, z, w) = {x ∈ X̂ | p · x ≤ w, and x %z x̄ for all x̄ ∈ X̂ such that p · x̄ ≤ w}. (2)

Thus the information content of the demand function is identical with the set {%z | z ∈ Z}.12
I shall refer to this information as revealed preference information, or more formally, as the

identifiable z-fixed preference relations {%z | z ∈ Z}.

2 Problem: Missing Preference Information

The previous paragraph sets up our missing preference information problem: since the de-

mand function can be constructed with only {%z | z ∈ Z}, any other preference distinctions

specified by %Ŷ cannot recovered from demand. Thus for any (xa, za), (xb, zb) ∈ Ŷ with

za 6= zb, we cannot determine whether or not (xa, za) %Ŷ (xb, zb). This should not be

surprising. Since the consumer never faces a choice between (xa, za) and (xb, zb), it is not

possible for this preference information to be reflected in consumer behavior and hence can-

not be incorporated into the demand function – there can be no revealed preference that

involve distinctions in z.

The missing preference information problem is illustrated by Figure 1, for some za, zb ∈ Z

with za 6= zb, X = ℜ2
+ and X̂ = ℜ2

++. With fixed z = za, from the demand function

x̂(p, z, w), we can identify the preference relation %za as represented in part (a) by the

indifference curves Ia
j . Similarly, with z = zb we can identify %zb as represented by the

indifference curves Ib
j in part (b). Then we know for example that all the points in Ia

5 are

preferred to the points in Ia
3 and all the points in Ib

4 are preferred over the elements of Ib
1.

However from revealed preference alone, we do not know whether or not the consumer prefers

the points of Ia
5 (with z = za) over those of Ib

3 (with z = zb). The problem is then recovering

the remaining preference information that will enable us to compare the indifference curves

in part (a) with those in part (b).

The information content of %Ŷ not available with {%z | z ∈ Z} is necessary for ex-

act welfare analysis involving distinctions in z. Furthermore, the whole of %Ŷ is sufficient

%A and %B (each replacing %Y in equation (1)). Then for each z ∈ Z, I am assuming (x1, z) %A (x2, z) ⇐⇒
(x1, z) %B (x2, z) for all x1, x2 ∈ X̂.

11Proofs for this typically require additional conditions such as that the demand function satisfies the

Lipschitz condition (Uzawa, 1971). Thus with this assumption I am implicitly assuming whatever regularity

conditions are required to make it true in given a situation. It is only here, in the traditional context of X ,

that I tacitly take advantage of real analysis. I dispense with it in the context of Z.

12This implies an interpretation of the demand function such that it includes only quantitative information,

with no qualitative information (such as about how the products are used and thereby provide utility, or

descriptive information about the similarity or dissimilarity of different products). Product names are

considered only nominal and by themselves provide no substantive information.
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(a) Indifference curves with z = za

x1
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3

Ib
4

Ib
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(b) Indifference curves with z = zb

Figure 1: Preference indifference curves in X = ℜ2
+ with alternative z values.

for such analysis. The most basic welfare question in this context would ask which of some

(xa, za), (xb, zb) ∈ Ŷ is “better” or preferred. As already discussed, this can be answered with

%Ŷ , but not if za 6= zb and we only know {%z | z ∈ Z}. The state preference variable theoret-

ical literature is predominantly concerned with specifying exact wealth-compensation-type

welfare measures or price index constructs. Suppose that we are concerned with a change

in price and z from (pa, za) to (pb, zb) with wealth fixed at w0. Then the equivalent com-

pensating wealth may be measured by EV where xa = x̂(pa, za, w0 +EV ), xb = x̂(pb, zb, w0)

and (xa, za) ∼
Ŷ

(xb, zb).13 From this we can also obtain a price index, ϕ = (w0 + EV )/w0.

Thus %Ŷ is sufficient for exact welfare analysis while {%z | z ∈ Z} by itself is insufficient.

Moreover, all of the preference information present in %Ŷ is necessary if we need to be in

a position to consider any pair (pa, za), (pb, zb) ∈ P × Z. Since %
Ŷ

is sufficient without

additional assumptions, it follows that continuity and other regularity conditions typically

imposed on z are not necessary for exact welfare analysis, however useful they may be.

Given our inability to identify the “true” preference relation %Ŷ , we will often want to

deal with the set of feasible candidate preference relations that could be the “true” relation.

This set can be characterized with a key demand-consistency concept,

Definition. Given an extended demand function x̂(p, z, w), with all of the z-fixed relations

identifiable from x̂, {%z | z ∈ Z}, a preference relation % defined on some Ỹ ⊆ Y is said to

be x̂-consistent if it is consistent with each %z, z ∈ Z.

13EV is an equivalent variation welfare measure; a compensating variation measure is also easily con-

structed. The property “unified preference” to be introduced later is a sufficient but not a necessary condition

for the existence of xa and hence also for EV .
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Thus % is x̂-consistent if and only if (xa, z) % (xb, z) ⇔ xa %z xb for all (xa, z), (xb, z) ∈
Ỹ

⋂
Ŷ . With Ỹ = Ŷ , any x̂-consistent relation could be the true relation. Hence the set

of feasible candidate preference relations is Φ(x̂) = {% defined on Ŷ | % is x̂-consistent}.
Since the unknown “true” preference relation %Ŷ is an element, we know that Φ(x̂) is not

empty. With only revealed preference information we are able exclude any preference relation

on Ŷ that is not an member of Φ(x̂), but are not able exclude any element of Φ(x̂).

To help motivate the rest of this paper, the remainder of this section focuses on the

breadth of Φ(x̂) membership. Most of the concepts in this article are more easily devel-

oped and presented purely in terms of preference relations. However representative utility

functions can be used to provide a characterization of Φ(x̂) that the reader may find more

meaningful. I assume that all utility functions have the same range ℜu ⊆ ℜ,14 and that

%Y can be represented by a utility function, uY : Y → ℜu with notation uY (x, z). The

constrained utility maximization program is then,

Program UY: max
x

uY (x, z)

s.t. p · x ≤ w,

x ∈ X.

We thus obtain the same extended demand function as with Equation (1), x̂(p, z, w).

We can precisely characterize the membership of Φ(x̂) in terms of utility functions that

are related by a special class of transformations:

Theorem 1. Let u1 and u2 be two utility functions representing preferences on Y .

a. The utility functions u1 and u2 will yield the same demand function with Program UY

if and only if there is some transformation g : ℜu × Z → ℜ, g(u, z), such that u2(x, z) =

g (u1(x, z), z) for all (x, z) ∈ Ŷ , with g strictly increasing in u. Such a transformation is

called a “g-transform.”15

b. u1 and u2 represent the same preference relation on Ŷ if and only if the g-transform of part

(a) is actually a traditional monotonic transformation f : ℜu → ℜ such that g(u, z) = f(u)

for all (u, z) ∈ ℜ̂1 × Z, where ℜ̂1 is the range of u1 when restricted to the domain Ŷ ,

ℜ̂1 = {u ∈ ℜu | u = u1(x, z) for some (x, z) ∈ Ŷ }.

If both u1 and u2 are also differentiable in x and related by a g-transform as described in

part (a), then their respective Kuhn-Tucker Conditions associated with Program UY will

be equivalent. If u1 and u2 represent the same preference order and if the g-transform is

differentiable with respect to z, then part (b) implies that ∂g/∂z ≡ 0.

From Theorem 1 we know that %i∈ Φ(x̂) if and only if there is a g-transform such that

ui(x, z) = g (uY (x, z), z), where ui represents an extension of %i to Y .16 With the wide

14This simplifying assumption only reduces the available utility representations for any given preference

relation, and thereby enables the “if and only if” statements in Theorem 1. Typically, ℜu = [0,∞).

15The (⇐) aspect of part a of this theorem has also been identified by Ebert (2001).

16Assuming that %i is representable by a utility function. Henceforth I will gloss over the distinction

between an %∈ Φ(x̂) and an extension of % that may be represented by a utility function defined on Y .
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variety of potential g-transforms, we can see how welfare analysis for differences in a state

preference variable is impossible using only the preference information available from the

demand function. For example, the maximal range of our previously defined welfare measure

EV is (−w0,∞), and as a consequence of Theorem 1, every EV value in this maximal range

will be taken on by some element of Φ(x̂).17 The same is true for other traditional exact

welfare measures such as compensating variation and assorted price indices with respect to

their maximal ranges. Moreover, we do not even know if such traditional measures are well

defined (i.e., exist). To see this I need to introduce a new concept.

For some purposes it useful to know that a preference level obtained with one z ∈ Z can

also be obtained with any other element of Z.

Definition. An indifference relation “∼” defined on some Ỹ ⊆ Y .18 is said to be unified if

whenever za, zb ∈ Z and (xa, za) ∈ Ỹ , there exists some (xb, zb) ∈ Ỹ such that (xa, za) ∼
(xb, zb). A preference relation defined on Ỹ is said to be unified if its associated indifference

relation is unified.

Economists typically assume that preference is unified. In particular, this property is locally

necessary for the application of any of our standard compensating welfare measures such

as EV . However, non-unified preferences may be useful in capturing the effect of dramatic

state preference variables such as the loss of a child or some catastrophic environmental

state variable. Theorem 1 tells us that Φ(x̂) always includes both unified and non-unified

preferences.19 Thus we cannot determine from the demand function whether our standard

welfare measures are globally well defined.

Finally, suppose that a traditional demand function x̂(p, w) can be obtained with an

ordinary utility function u(x), but that there is also a state preference variable z that might

affect preference (we do not know if it does or does not). Then any utility function of the form

g(u(x), z) would yield the same demand function. Thus the lack of demand sensitivity to

17For any fixed (xa, za), (xb, zb) ∈ Ŷ with za 6= zb.

18Formally, an indifference relation on a set B is based on a complete partition of the set into indifference

sets, I = {Ii ⊆ B}. The indifference relation is then a binary relation defined on elements of B represented

by “∼” such that for a, b ∈ B, a ∈ Ia, b ∈ Ib with Ia, Ib ∈ I, we have a ∼ b if and only if Ia = Ib. At the

extreme, this definition allows for indifference relations where each Ii is a singleton and a ∼ b ⇔ a = b. As

the individual sets become larger (and fewer), an indifference relation includes more indifference information

in that we are then able to say “a ∼ b” for more pairs a, b ∈ B. Sometimes an indifference relation may be

specified by some rule of the form “If x, y ∈ B share some property A, then x ∼ y.” The actual indifference

relation is then defined by the transitive closure with respect to this property, which thus determines a

partition on B.

19For example if %i∈ Φ(x̂) is unified with representative utility function ui, then for any fixed z0 ∈ Z, the

preference relation represented by

uj(x, z) =

{
tanh (ui(x, z)) , if z = z0,

ui(x, z), if z 6= z0.
,

is a non-unified element of Φ(x̂). The hyperbolic tangent function tanh(·) maps [0,∞) to [0, 1). For any

non-unified preference it is also possible to specify a g-transform that will convert it into a unified preference.
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potential state preference variables cannot by itself be used to preclude preference sensitivity,

and offers no particular help in identifying the “true” underlying preference relation.20 Again,

what we need is additional preference information (API). In the rest of the paper, I first

specify a structure for characterizing the missing preference information that allows us to

know when some suggested API is sufficient and test the API when it is more than sufficient,

and then close with several examples.

3 Reference Sets and Seed Relations

Reference sets and seed relations provide a way of specifying the additional information

required to identify a unique complete preference relation on Ŷ . As will be seen, they

can also be used to provide precise characterizations of the various preference restrictions

prevalent in the literature that allow us to determine precisely when these restrictions can be

tested against revealed preference information. With a fixed reference set and seed preference

relations we can uniquely specify each element of Φ(x̂).

The reference set concept is illustrated with Figure 2 using the same indifference curves

depicted in Figure 1. Recall that each of these curves drawn in X space actually represents

an indifference set in X × Z, with z fixed in parts (a) and (b) at either z = za or z = zb

respectively. A horizontal line has been added in both parts of the figure representing the set

XR = {(x1, x2) ∈ ℜ2
+ | x2 = x0

2}, for some fixed value x0
2. As will be demonstrated shortly, XR

provides a common frame of reference between the two sets of indifference curves presented

in the two parts of Figure 2, and is hence called a reference set. In general, a reference set

is some subset of the choice set, XR ⊆ X.

With this common frame of reference and some additional information we can compare

the Ia and Ib indifference sets, and thereby establish a complete preference relation on Ŷ .

With Figure 2, suppose for example that we knew the consumer is indifferent between za

and zb for any fixed x ∈ XR: (x, za) ∼Y (x, zb). Then from (x1
1, x

0
2, z

a) ∼Y (x1
1, x

0
2, z

b),

with (x1
1, x

0
2, z

a) ∈ Ia
2 and (x1

1, x
0
2, z

b) ∈ Ib
2, we know that the consumer does not perceive any

preference distinction between the Ia
2 and Ib

2 indifference sets, and thus is indifferent between

all the (x, z) points in Ia
2

⋃
Ib
2. Similarly the consumer is also indifferent between all points

in Ia
3

⋃
Ib
4. Thus we can combine an understanding of preference on XR × Z with revealed

preference to establish a preference relation on all of Ŷ , showing for example that each point

in Ia
3 is preferred to each point in Ib

3. The preference relation on XR × Z is called a seed

relation. I first discuss some properties of reference sets, and then the role of seed relations.

3.1 Reference Set Properties

There are four desirable properties of reference sets and I begin with three of them. A

reference set XR is said to be sufficient if for any (x, z) ∈ Ŷ we can always find some

xR ∈ XR that is in the same %z indifference set as x, that is x ∼z xR. A reference set is

20The lack of demand sensitivity only tells us that %za=%zb for all za, zb ∈ Z.
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(a) With z = za
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(b) With z = zb

Figure 2: A complete non-redundant reference set.

termed non-redundant if the just discussed xR is always unique.21 A reference set XR is non-

redundant if and only if the indifference sets of XR

⋂
X̂ under each %z are all singletons. For

example, the x2 = x0
2 line in Figure 2 intersects each indifference curve at exactly one point.

Finally, a subset of X is said to be naturally ordered if each element is either monotonically

superior or monotonically inferior to any other element.22 The first two properties depend

on the demand function via revealed preference while the third does not. The reference set

depicted in Figure 2 is sufficient, non-redundant and naturally ordered for Z = {za, zb}.
There are also some useful relationships between these three properties. With the follow-

ing theorem we know that any naturally ordered reference set is universally non-redundant

for all demand functions.

Theorem 2. A naturally ordered reference set XR ⊆ X is non-redundant for any feasible

demand function x̂ : ℜL
++ × Z ×ℜ++ → ℜL, for any possible Z.

While a reference set that is non-redundant with a given demand function might not be

naturally ordered, the next theorem shows that any universally non-redundant reference set

must be naturally ordered.

21More formally, a reference set XR is redundant if for some (x, z) ∈ Ŷ , there are x1
R, x2

R ∈ XR with

x1
R 6= x2

R such that x ∼z x1
R and x ∼z x2

R.

22Formally, a set X̃ ⊆ X is naturally ordered if for any x1, x2 ∈ X̃ with x1 6= x2, we have either x1 ≤ x2

or x2 ≤ x1. Editorial note: This terminology indicates that we immediately know the complete preference

ordering on XR for all %z. Alternatively, we could say that XR is monotone. However in practice that would

create confusion with monotone preference, such as with Theorems P2 and P3 (next subsection).

9



Theorem 3. Let XR ⊆ X be a non-redundant reference set for any feasible demand function

x̂ : ℜL
++ × Z ×ℜ++ → ℜL, for any possible Z. Then XR must be naturally ordered.

There is also a useful relationship between sufficiency and being naturally ordered.

Theorem 4. Let XR ⊆ X such that XR is naturally ordered and sufficient. For any fixed

z ∈ Z, if %z can be extended to a monotone relation on X, then XR\{0} ⊆ X̂.

As discussed below in the context of weak complementarity, this last theorem can sometimes

be used to substantially simplify testing for sufficiency.

The notion of universal sufficiency is not as easily captured as universal non-redundancy.

However some reference sets are more likely to be sufficient than others. For example if %Y

is strictly convex and strongly monotone, so that ℜL
++ ⊆ X̂ (as is typical), then the diagonal

reference set XD = {x ∈ ℜL
+ | xi = xj ∀ i, j, 1 ≤ i < j ≤ L} must be sufficient. On the other

hand, the reference set depicted in Figure 2 may be insufficient in the same circumstance.23

Unfortunately, in many situations the most natural or convenient reference set does not have

this universal quality (as we see below with our main example, weak complementarity).

Our last reference set property builds upon sufficiency and redundancy. Sometimes a

proper subset of a sufficient redundant reference set is also sufficient. In such a case, we

may prefer to use the smaller set as our reference set. Any sufficient reference set whereby

the deletion of any point will make the set insufficient is called irreducible. Obviously any

sufficient and non-redundant reference set is irreducible. However, many sufficient redundant

reference sets are also irreducible. Thus given sufficiency, non-redundancy is stronger that

irreducibility, as it is also weaker than being naturally ordered.

3.2 Seed Preference Relations and Preference Generation

The desirability of sufficiency and non-redundancy becomes apparent in the context of seed

preference relations. Given a reference set XR, a seed preference relation, %s, is a complete

and transitive preference relation defined on the set ŶR = (XR × Z)
⋂

Ŷ . Let %s be a x̂-

consistent seed preference relation defined on (XR × Z)
⋂

Ŷ , where XR is a sufficient and

non-redundant reference set (given the demand function x̂), and let (xa, za), (xb, zb) ∈ Ŷ .

Then we know that there are unique xa
R, xb

R ∈ XR such that xa ∼za xa
R and xb ∼zb xb

R, and

we can therefore define the relation %S∈ Φ(x̂) such that (xa, za) %S (xb, zb) if and only if

(xa
R, za) %s (xb

R, zb). Here, we have used the seed preference relation %s defined on ŶR to

generate the complete preference relation %S on Ŷ , where %s and %S are both x̂-consistent.

If XR were not sufficient, then xa
R does not exist for some (xa, za) ∈ Ŷ , preventing this

construction and thus leaving %S incomplete. If XR were redundant then xa
R and xb

R might

not be unique. More importantly, with redundancy it becomes harder to specify x̂-consistent

seed relations (as will be demonstrated in the applications section).

The purpose of a seed relation is to provide the missing preference information so that

the “true” %Ŷ ∈ Φ(x̂) can be identified and recovered as the generated preference relation.

23For example, with CES preference, many indifference curves will not intersect with this reference set.
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The following theorem specifies how individual seed relations uniquely identify elements of

Φ(x̂), as well as showing that any %∈ Φ(x̂) can be generated by such a seed relation.24

Theorem P1. Given the demand function x̂ with obtainable set Ŷ , let XR be a sufficient

reference set and define ŶR = (XR × Z)
⋂

Ŷ .

a. Let %s be a x̂-consistent seed preference relation defined on ŶR. Then there is a unique

%S∈ Φ(x̂) that is consistent with %s on ŶR. This %S is said to be generated by %s.

b. Any %S∈ Φ(x̂) can be generated by a unique x̂-consistent seed preference relation on ŶR.

Part a tells us that with the information available from x̂ and %s, we can identify a unique

element of Φ(x̂). Together, parts a and b tell us that with XR fixed there is a one-to-one

relationship between the set of all x̂-consistent seed preference relations defined on ŶR and

the elements of Φ(x̂). Thus with XR fixed, identifying the unique “true” element of Φ(x̂) is

equivalent to identifying the unique “true” x̂-consistent seed preference relation on ŶR.

Theorem P1 does not explicitly deal with redundancy or reducibility. However these prop-

erties affect preference generation as described by the theorem. Suppose that XR is reducible.

Then for any given seed relation, the generated relation %S∈ Φ(x̂) can also be generated with

an alternative seed relation defined on a smaller preference domain, (X̃R × Z)
⋂

Ŷ where

X̃R ⊂ XR is also sufficient. Thus we may generate each element of Φ(x̂) with less additional

preference information. Alternatively, if XR is non-redundant, or at least irreducible, then

in a sense each demand-consistent seed relation represents the minimal additional preference

information required to generate individual elements of Φ(x̂). Moreover, as an already suffi-

cient reference set is augmented by additional points, the number of possible seed preference

relations is vastly increased but the number of x̂-consistent seed relations remains constant.

Consequently, it becomes increasingly difficult to specify a demand-consistent seed preference

relation as the reference set becomes more redundant.

On the other hand, the x̂-consistency requirement is quite easy to satisfy if the reference

set is naturally ordered (i.e., “super-non-redundant”). Any x̂-consistent preference relation

defined on some Ỹ ⊆ Ŷ is strongly monotone.25 However, strong monotonicity does not

imply that a preference relation is x̂-consistent. As indicated by the following theorem, a

strongly monotone seed preference relation is always demand-consistent if and only if XR

⋂
X̂

is naturally ordered.

24Editorial note: Fourteen theorems are presented in this paper. To help the reader keep track of their

individual roles, I use four distinct numbering sequences. With Theorems 1 through 4 we have already

encountered most of the “regular” sequence. With “P” for “seed Preference,” the three P-theorems presented

in this subsection match up one-to-one with the three I-theorems in the next subsection (“I” for “seed

Indifference”). Finally, to distinguish between the general aspects of reference sets and seed relations, and

properties that are specific to particular applications, we have the A-sequence in the applications section.

25 See Lemma 4 in the Appendix. In the realm of Y , without special restrictions on the nature of Z,

notions of monotonic preference can only be concerned with distinctions in the values of x, with z held

fixed. For example, if the elements of Z are not numbers and do not otherwise have a natural order, such as

with Z = {Rain, Snow, Sunshine}, then monotonic preference on Z is meaningless. Therefore, a preference

relation % defined on some Ỹ ⊆ Ŷ is strongly monotone if (xa, z) ≻ (xb, z) whenever xa ≥ xb and xa 6= xb

for all such (xa, z), (xb, z) ∈ Ỹ with z ∈ Z.
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Theorem P2. Given the demand function x̂ with obtainable set X̂, let XR be a reference

set and define ŶR = (XR × Z)
⋂

Ŷ .

a. Let XR

⋂
X̂ be naturally ordered and let %s be a strongly monotone seed preference relation

on ŶR. Then %s is x̂-consistent.

b. Let all strongly monotone seed preference relations on ŶR be x̂-consistent. Then XR

⋂
X̂

is naturally ordered.

With XR naturally ordered, XR

⋂
X̂ is also so that part a of this theorem follows. Thus,

with a naturally ordered reference set, demand-consistency requirements are substantially

weakened in the sense that being strongly monotone is generically a weaker requirement than

being x̂-consistent, and typically easier to demonstrate. With Theorems 2, 3, 4 and P2, we

can see that being naturally ordered has implications for non-redundancy, sufficiency, as well

as demand-consistency.

Part b of Theorem P2 suggests that when the reference set is not naturally ordered it

is possible for a strongly monotone seed relation and a demand function to be mutually

inconsistent. In particular, we know that there must be some strongly monotone seed pref-

erence relation that is not x-consistent.26 This following existence theorem is concerned with

demand-inconsistency from the context of a fixed seed relation.

Theorem P3. Let XR be a reference set that is not naturally ordered and let %s be a

strongly monotone seed preference relation defined on YR = XR×Z. Then %s is not demand-

consistent for an infinite number of valid demand functions.

Thus when the reference set is not naturally ordered, no seed relation is universally valid

with all demand functions so that it is possible to test suggested seed relations against the

demand function in the form of revealed preference. As demonstrated below, Theorems P2

and P3 are together quite useful in specifying when a preference restriction can be tested.

3.3 Seed Indifference Relations

Heretofore I have been concerned with seed preference relations to generate elements of Φ(x̂).

Sometimes we can get by with less seed information in the form of seed indifference relations.

In the following, after developing some common aspects of indifference relations, I establish

an important generic case where we can get by with just indifference information in the

seed relation. I also show that we can get by with less than what may be called “complete”

indifference information.

A preference relation % and an indifference relation ∼ defined on the same set A are said

to be associated if a ∼ b ⇔ [a % b and b % a] for all a, b ∈ A.27 There is also a weaker

condition whereby % and ∼ are said to be consistent if a ∼ b ⇒ [a % b and b % a] for all

26From the proof we know that there are an infinite number of demand-inconsistent strongly monotone

seed preference relations (one for each value of α).

27Recall that a indifference relation is based on a partition of the set. See note 18.
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a, b ∈ A. Given a complete and transitive preference relation, there is a unique associated

indifference relation and typically many merely consistent indifference relations.28 However,

for any nontrivial indifference relation there are is no unique ordering of the individual in-

difference sets and hence no unique associated preference relation. Thus, the information

content of a indifference relation is generally less than that of a preference relation defined

on the same preference domain, and the information content of an associated indifference

relation is more than that of a “merely consistent” relation. The indifference relation asso-

ciated with any generic %i is represented by ∼i, so that in particular, for any z ∈ Z, the

indifference relation associated with %z is denoted by ∼z.

To be useful, our definition of demand-consistency in the case of indifference relations

needs to be more complicated than our previous definition for preference relations.

Definition. Given an extended demand function x̂(p, z, w), with identifiable z-fixed prefer-

ence relations {%z | z ∈ Z}, an indifference relation ∼ defined on some Ỹ ⊆ Ŷ is x̂-consistent

if two conditions hold: 1) For any (xa, z), (xb, z) ∈ Ỹ with z ∈ Z, we have (xa, z) ∼ (xb, z) ⇒
xa ∼z xb; and 2) For any (x1, za), (x2, zb), (x3, za), (x4, zb) ∈ Ỹ and za, zb ∈ Z, such that

(x1, za) ∼ (x2, zb) and (x3, za) ∼ (x4, zb), we have x1 %za x3 ⇔ x2 %zb x4.

A stronger version of the first condition is also sometimes useful: 1′) For any (xa, z), (xb, z) ∈
Ỹ with z ∈ Z, (xa, z) ∼ (xb, z) ⇔ xa ∼z xb.

Given a reference set XR, a seed indifference relation ∼s is an indifference relation defined

on the set ŶR = (XR × Z)
⋂

Ŷ . With the help of a lemma we can transform the previous

results concerning seed preference relations into similar conclusions about seed indifference

relations. I begin with a result very similar to Theorem P1,

Theorem I1. Given the demand function x̂ with obtainable set Ŷ , let XR be a sufficient

reference set, and define ŶR = (XR × Z)
⋂

Ŷ .

a. Let ∼s be a unified x̂-consistent seed indifference relation on ŶR. Then there is a unique

%S∈ Φ(x̂) that is consistent with ∼s on ŶR. This %S generated by ∼s is also unified.

b. Any unified %S∈ Φ(x̂) can be generated by a unique unified x̂-consistent seed indifference

relation defined on ŶR that satisfies condition 1′, represented by ∼s. Furthermore, where ∼t

is a unified x̂-consistent seed indifference relation on ŶR, %S can generated by ∼t if and only

if (xa, za) ∼t (xb, zb) ⇒ (xa, za) ∼s (xb, zb) for all (xa, za), (xb, zb) ∈ ŶR.

As before with Theorem P1, this theorem allows us to identify a unique member of Φ(x̂)

with the information available from x̂ and a seed relation. Part a of Theorem I1 provides

sufficiency conditions for when a seed indifference relation may generate a complete unified

preference relation on Ŷ , while part b tells us that any such unified element of Φ(x̂) can

28Given %, if ∼a is the unique associated indifference relation and ∼c another merely consistent relation

(∼c 6=∼a) we have r ∼c s ⇒ r ∼a s for all r, s ∈ A, but for some t, v ∈ A we have t ∼a v and not t ∼c v. The

associated relation ∼a provides a complete account of the indifference relations implied by %, where as ∼c

does not. Thus the merely consistent indifference relation is in a sense incomplete. In allowing this kind of

incompleteness, we have a relatively weak understanding of indifference.
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be generated by possibly several seed indifference relations, of which exactly one satisfies

condition 1′. Thus, “%S is unified” is a sufficient condition for %S to be generated by an

indifference seed relation on XR.29 With XR fixed, from the uniqueness properties of both

parts of Theorem I1 we have a one-to-one relationship between the set of all possible unified

x̂-consistent seed indifference relations defined on ŶR satisfying condition 1′ and the unified

elements of Φ(x̂). (Recall that only with unified %∈ Φ(x̂) can we be sure that any of our

standard compensating welfare measures such as EV are well defined.)

From part b of Theorem I1, any unified member of Φ(x̂) can be generated by a unique

unified seed indifference relation that satisfies condition 1′, and often by many relations that

do not satisfy condition 1′. If we use anyone of these latter relations in part a, then we are in

effect using less seed indifference information to obtain the same outcome as compared with

using the unique relation that satisfies condition 1′. As before with seed preference relations,

if XR is reducible we can also lower the information content of each seed indifference relation

by using a smaller reference set. Thus, the minimal amount of indifference information

required to generate a unified %S∈ Φ(x̂) is a x̂-consistent unified seed relation that either

does not satisfy condition 1′, or is defined on a non-redundant reference set.30

We also have the following seed indifference relation equivalents of Theorems P2 and P3,

Theorem I2. Given the demand function x̂ with obtainable set X̂, let XR be a reference set

and define ŶR = (XR × Z)
⋂

Ŷ .

a. Let XR

⋂
X̂ be naturally ordered and let ∼s be a strongly monotone seed indifference

relation on ŶR. Then ∼s is x̂-consistent and satisfies condition 1′.31

b. Let all strongly monotone unified seed indifference relation on ŶR be x̂-consistent. Then

XR

⋂
X̂ is naturally ordered.

Theorem I3. Let XR be a reference set that is not naturally ordered and let ∼s be a unified

seed indifference relation defined on YR = XR × Z. Then ∼s is not demand-consistent for

an infinite number of valid demand functions.

With the two series of theorems, P1, P2 & P3 and I1, I2 & I3, we can respectively work

with either seed preference relations or unified seed indifference relations. The first theorem

of both series is the main preference generation theorem that allows us to identify unique

members of Φ(x̂), while the second and third theorems are concerned with the relationship

between demand-consistency and whether the reference set is naturally ordered. These four

29It is not a necessary condition as there always exist non-unified elements of Φ(x̂) that can be generated

by seed indifference relations. However, it is a necessary screen in that there also always exist non-unified

elements of Φ(x̂) that cannot be generated by seed indifference relations.

30With a non-redundant reference set, any x̂-consistent seed indifference relation also satisfies condition

1′.

31An indifference relation defined on some Ỹ ⊆ Ŷ is said to be strongly monotone if it is consistent with

a strongly monotone preference relation defined on Ỹ . Then any x̂-consistent unified indifference relation

defined on some Ỹ ⊆ Ŷ is strongly monotone. This follows from Lemma 5 and a previous observation. See

note 25.
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latter theorems are used extensively in the following examples as tools in helping us discern

when possible API specifications may be tested against revealed preference. The relationships

between reference set properties as specified by Theorems 2, 3 and 4 also support this work.

4 Application with Preference Assumptions

Applications with state preference variables in the literature typically invoke some assump-

tion about preference that enables the analyst to sufficiently identify %Y so that some welfare

measure may be specified. Each such assumption is an instance of Additional Preference

Information. These suggested API’s can be specified with the just developed preference-

theoretic structure in a systematic way that allows us to state whether they are sufficient

to identify a unique x̂-consistent complete preference relation on Ŷ , and also whether they

can be tested against revealed preference information. To demonstrate this, I first present

an in-depth analysis of weak complementarity and the related concept of existence value,

followed by shorter looks at five other applications including two important API concepts

from the price index literature for product quality, and also a treatment of the new and

disappearing goods problem.

4.1 Weak Complementarity and Existence Value

Most state preference variable applications in the literature are concerned with environmental

variables, product quality, or traditional public goods such as local roads. Therefore, it is

particulary appropriate to start off with “weak complementarity,” a specific API that has

been used in all three areas. The notion of weak complementarity was introduced by Mäler

as a methodology to estimate the benefits of improving an environmental quality variable

such as the quality of a sport fishery stock or of lake water for swimming.32 It requires that

a given state preference variable be associated with one of the market goods in a manner

such that it is reasonable to assume that the consumer is indifferent between values of the

state preference variable when she is consuming a zero amount of the market good. With

Mäler’s first example, the state preference variable is the quality of a sport fishery and the

market good is the use of that fishery. In this case weak complementarity applies in that we

might reasonably assume that non-fishermen do not care about the quality of the fishery,

i.e., fishing and the quality of the fishery are weak complements.

With weak complementarity we are assuming the consumer only cares about the state

preference variable as it affects the benefit she derives from her personal consumption of the

market good. That is to say, the state preference variable does not have “existence value” – I

derive no benefit from the existence of a public good that is a quality of a private good unless

I consume that private good. However reasonable this assumption may sound, forbidding

existence value is an explicitly restrictive modelling assumption that precludes many valid

preference relations. For example, I may prefer a strong sport fishery so that I will always

32The concept was first developed in Mäler (1971) and the terminology was introduced in Mäler (1974).
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have the option of using it, or perhaps because my good friend enjoys fishing.

The first step in applying the structure developed here with a given API is specifying a

reference set and seed relation that together capture the defining characteristics of the API.

Suppose that z and the private good x1 are weak complements. Then “no existence value”

requires (x, za) ∼Y (x, zb) for all x ∈ X such that x1 = 0, and all za, zb ∈ Z.33 We thus have

a ready-made reference set XWC = {x ∈ X | x1 = 0} and a unified seed indifference relation

defined by (x, za) ∼wc (x, zb) for all x ∈ XWC and all za, zb ∈ Z.34 With these we are ready

for a precise consideration of weak complementarity as an API to supplement the revealed

preference information in order to identify a unique element of Φ(x̂).

Preference generation as specified by Theorem I1 part a requires that XWC be sufficient

and ∼wc be x̂-consistent. For every (xa, z) ∈ Ŷ , sufficiency of XWC necessitates the existence

of some (0, xb
−1) ∈ XWC such that xa ∼z (0, xb

−1).
35 In the words of Willig (1978), this means

that with any fixed z “any bundle including good 1 can be matched in the [identifiable %z]

preference ordering by some other bundle which excludes good 1” so that x1 is “nonessential.”

Therefore, implementing weak complementarity requires two properties, no existence value

and the nonessentiality of x1. In the context of Theorem I1, the first property is associated

with x̂-consistency of ∼wc and the second with the sufficiency of XWC.

Testing for sufficiency and demand-consistency would be the next natural step in applying

this methodology based on reference sets and seed relations. Given a complete demand

function x̂ : P × Z × W → X, sufficiency can always be tested against revealed preference,

and demand-consistency of a specific seed relation is only sometimes testable.36 For both

properties, testing is affected by whether or not the reference set is naturally ordered. With

our current application, XWC is naturally ordered if and only if X = ℜ2
+.

Sufficiency in the form of nonessentiality holds if and only if for every (xa, z) ∈ Ŷ there

exists some (0, xb
−1) ∈ X̂ such that xa ∼z (0, xb

−1). From x̂, we can identify the obtainable set

X̂ and revealed preference in form of {%z | z ∈ Z}. Thus nonessentiality can always be fully

verified with revealed preference. However, this may necessitate examining all %z indifference

sets in X̂ for all z ∈ Z. With XWC naturally ordered we do have additional one-way tests of

33The no existence value aspect of weak complementarity is usually defined in the literature in terms of a

partial directive and a utility function such as

∂u(0, x2, x3, . . . , xL, z)

∂z
= 0,

for state preference variable z associated with good 1. However this definition only applies with continuous

state preference variables for which the derivative is well defined.

34This is a valid indifference relation as it clearly defines a partition on XWC × Z; this partition includes

exactly one set for each x ∈ XWC . (See Note 18 for the relationship between indifference and partitions.)

35Here I adopt the notational convention x−1 = (x2, . . . , xL) so that x = (x1, x−1).

36This testability depends on our assumption that the given demand function is fully known. If instead,

for example, the demand function was estimated from a more limited data set using a parametric form that

assumed either nonessentiality or no existence value, then we have effectively assumed away our ability to

test these issues by the methods described here.
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nonessentiality that might save some labor. Theorem 4 allows us to reject sufficiency by only

examining the membership of a naturally ordered reference set. In particular, with X = ℜ2
+

we can reject nonessentiality if for any z ∈ Z, %z is consistent with a monotone relation on

X and we find some x ∈ XWC where x 6= 0 and x /∈ X̂. We thus have a separate one-way

test of nonessentiality for each distinct %z, z ∈ Z. With each such test, all we have to do

is linearly scan the reference set looking for a nonzero element that is not obtainable. For a

very simple example, if any %z is Cobb-Douglas then X̂
⋂

XWC = ∅ so that we may reject

nonessentiality on the basis of Theorem 4.

We can test the demand-consistency of ∼wc if and only if L > 2 (where X = ℜL
+). When

such testing is permitted, we can either affirm or reject so that we have a two-way test of

x̂-consistency. However, we have at most only a one-way test concerning the “true” %
Ŷ
. If

X = ℜ2
+, then XWC is naturally ordered and hence by Theorem I2 we know that ∼wc is

automatically x̂-consistent,37 and as a consequence we cannot use revealed preference to test

the no existence value hypothesis. On the other hand, if X = ℜL
+ with L > 2, XWC is not

naturally ordered and possibly redundant (recall Theorem 3) and therefore ∼wc might not

be x̂-consistent. Moreover, Theorem I3 guarantees the existence of demand functions for

which ∼wc is in fact not demand-consistent. Thus demand-consistency requires additional

special conditions. Typically such conditions may be found by simply applying the definition

of x̂-consistency with the seed relation. In this case, we thereby obtain the property of

“single-preference.” We say that a demand function is single-preferenced on some X̃ ⊆ X

if all the identifiable z-fixed preference relations are identical on this restricted set. More

formally, for all possible pairs za, zb ∈ Z and all x1, x2 ∈ X̃
⋂

X̂, single-preference requires

x1 %za x2 ⇔ x1 %zb x2. We then have our first applications theorem,

Theorem A1. The weak complementarity seed indifference relation ∼wc is demand-consistent

if and only if the demand function is single-preferenced on XWC.

Thus whenever we observe demand that is not single-preferenced on XWC, we must reject

“no existence value,” so that there is no element of Φ(x̂) that is consistent with ∼wc. On the

other hand when x̂ is single-preferenced XWC , we know that there does exist some member

of Φ(x̂) that can be generated from ∼wc in the context of Theorem I1. However, we cannot

affirm that this member is the “true” %Ŷ . It is in this sense that Theorem A1 only provides

a one-way test of no existence value, and hence of weak complementarity.

With L = 2, demand is trivially always single preferenced on XWC and ∼wc is auto-

matically x̂-consistent, so that Theorem A1 is not informative. However with L > 2, this

theorem is meaningful since neither single preference nor demand-consistency is then auto-

matic. From Theorems I2 and I3, we understand that this ability to test x̂-consistency is

a consequence of XWC not being naturally ordered. However, I believe our intuitive under-

standing of this should focus on the redundancy of the reference set. With this redundancy

it is possible to obtain contradictions when we apply a seed relation with the reference set,

37Application of Theorem I2 part a requires that ∼wc be strongly monotone. The seed preference relation

defined by (0, xa
2 , za) %wc (0, xb

2, z
b) ⇔ xa

2 ≥ xb
2 is strongly monotone and also associated with ∼wc. Therefore

∼wc is also strongly monotone.
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contradictions that refute demand-consistency.38

Weak complementarity is a good example for demonstrating the advantages of using

condition 1 rather than 1′ in defining demand-consistency for indifference relations. If I had

instead used condition 1′ then ∼wc as currently defined would be deficient since with L > 2 it

would not satisfy the requirement that xa ∼z xb ⇒ (xa, z) ∼wc (xb, z) for any z ∈ Z and any

xa, xb ∈ X̂
⋂

XWC with xa 6= xb. Satisfying this requirement would necessitate additional

statements in the seed relation definition that simply replicate revealed preference informa-

tion so that the definition is no longer fully specified independently of the demand function.

Moreover this additional seed indifference information is not necessary for preference gener-

ation, and with it we would lose the simple intuitive clarity of our current definition. With

weak complementarity I have reduced the seed relation information in two ways from what

it might be otherwise, first by using a seed indifference relation instead of a seed preference

relation and by second by availing ourselves of condition 1 instead of 1′.

With our methodology it is possible to extend a result such as Theorem A1 so that we

are able to characterize the entire membership of Φ(x̂). In particular, we are able to reject

“no existence value” (in the form of ∼wc) as indicated by Theorem A1 if and only if we can

also reject a specific kind of existence value. By definition, existence value occurs when the

consumer has strict preference distinctions between z values when x1 = 0. These preference

distinctions generally depend on the quantities of the remaining commodities. We say that

there is a separable existence value if the preference interaction between z and x−1 depends

only on a simple aggregate metric of the commodity values. More formally, a preference

relation on Ŷ has separable existence value if its restriction to XWC ×Z can be specified by

some %sx where,

(xa, za) %sx (xb, zb) ⇔ (u(xa), za) %UZ (u(xb), zb), (3)

for all (xa, za), (xb, zb) ∈ ŶWC = (XWC × Z)
⋂

Ŷ , where u is some utility function on XWC

and %UZ is a preference relation defined on ℜ×Z.39 Equation (3) is also valid in the case of

no existence value so that the latter may be regarded as a special case of separable existence

value.40 If existence value instead depends on the individual values of the x−1 vector in a

manner that cannot be captured by equation (3) then it is nonseparable. We might expect

this if the existence value has a particular relationship with specific consumption goods other

than x1. With L = 2 the distinction between separable and nonseparable existence value

degenerates so that all preference relations on Ŷ trivially have separable existence value.

The following theorem gives us a strong relationship between the two types of existence

value and whether the demand function is single-preferenced on XWC.

38Also recall the close link between naturally ordered and redundancy as specified by Theorems 2 and 3.

39Editorial note: The “sx” of %sx is for “separable existence,” and the “UZ” of %UZ refers to the preference

domain as the cross of utility values and Z.

40Therefore, for some purposes we may want a more strict notion of separable existence value that requires

%UZ to be active in z such that there exists some x ∈ XWC and za, zb ∈ Z so that (u(x), za) ≻UZ (u(x), zb).
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Theorem A2. If x̂ is single-preferenced on XWC, then all members of Φ(x̂) have separable

existence value.41 Otherwise all members of Φ(x̂) have nonseparable existence value.

Each instance of %sx as defined by equation (3) is a seed preference relation so that we can

apply Theorem P1, just as we applied Theorem I1 with the seed indifference relation ∼wc.

However preference generation with either of these theorems requires the seed relations be x̂-

consistent. Theorems A1 and A2 tell us that demand-consistency of these seed relations can

be tested by determining if demand is single-preferenced. Theorem A2 generalizes Theorem

A1.42 Previously, with only Theorem A1, we could reject “no existence value” if demand is

not single-preferenced, while now with Theorem A2, we can also reject all separable existence

value seed relations. Moreover, Theorem A1 gave us only had a one-way test in that we could

not affirm the nature of the “true” seed relation – we could not state that the seed relation

must be ∼wc. However with Theorem A2 we have a two-way test such that with single

preferenced demand we can state that the true seed relation must have the form of %sx.

The distinction is that ∼wc is a specific seed relation, while %sx is a seed relation form that

admits a whole class individual seed relations as specified by all the feasible %SX .43

Application of these theorems depends on Theorems P2 and I2 since they tell us that

we can reject seed relations only when XWC is not naturally ordered, i.e., when L > 2 so

that single-preference is not a degenerate property. Theorem I3 provided the initial basis for

developing this context-specific analytic structure. From it we knew that special conditions

are required to guarantee demand-consistency of ∼wc when L > 2, giving us an impetus

to find those conditions in the form of single-preferenced demand on XWC as stated in

Theorem A1. Then recognizing the general implications of single-preference, we extended

our results with Theorem A2 to all separable existence value seed relations, thereby providing

a characterization of all the entire Φ(x̂) set that depends only on the observable property as

to whether x̂ is single-preferenced.

In general, if a reference set XR is complete but not naturally ordered, then the demand

function and seed relation together provide an overabundance of preference information so

that the generated relation is over-determined. Trusting the empirical demand information,

I have developed a structure which uses this excess information to test the feasibility of

proposed seed relations. However if the researcher is quite confident with a given seed

relation, the same process of testing for demand-consistency could instead be used to test

the accuracy of demand information. For example, if in a specific context the logical case

for weak complementarity seems irrefutable, then an estimated demand function that is not

single-preferenced on XWC would be suspect.

On the other hand, if the researcher has no need to test either source of preference

41Where again “no existence value” is a special case of separable existence value.

42Ignoring the technical distinctions between indifference and preference seed relations.

43With x̂ single-preferenced on XWC , it can be shown that for any %SX relation that is strictly monotone

on u, there is an element of Φ(x̂) whose restriction to (XWC × Z)
⋂

Ŷ can be represented by a preference

relation defined by equation (3) using this %SX . Thus Φ(x̂) includes elements for all possible separable

existence value structures (including “no existence value”) as represented by all the feasible %SX relations.
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information, we can reduce the information requirements so that the generated relation is

no longer over-identified, i.e., so that the seed relation is automatically demand-consistent.

With weak complementarity, one simple but extreme example would be to treat all the

other commodities as a single composite commodity so that we force L = 2, and thereby

radically reduce the required preference information from both the demand function and

seed relation. However, with our structure we can usually get automatic demand-consistency

without changing L by simply selecting a new naturally ordered reference set that is a subset

of the previous reference set. The seed relation is then redefined as the simple restriction

of the old relation with respect to the new reference set. While this clearly reduces the

amount of seed preference information, it can also be interpreted, perhaps more usefully, as

a reduction in the required demand preference information.

In the context of weak complementarity, this process may be thought of as a strengthening

of nonessentiality and a consequent weakening of the no existence value requirement. For

example, with L > 2 suppose that (0, x−1) ∈ X̂ for any x−1 ∈ ℜL−1
++ . Then XWC is clearly

reducible, so that we might consider an alternative sufficient reference set that is naturally

ordered such as XD1 ⊂ XWC defined by XD1 = {x ∈ X | x1 = 0, xi = xj for all 1 <

i, j ≤ L}.44 The sufficiency of XD1 may be formally interpreted as a strengthening of

nonessentiality such that “any bundle including good 1 can be matched in the preference

ordering by some other bundle which excludes good 1 and where all other goods are of

the same quantity.” With XD1, ∼wc is automatically x̂-consistent. This weakens the no

existence value requirement so that now the consumer is allowed to care about differences

in the state preference variable with x1 = 0 if xi 6= xj for some 1 < i, j ≤ L. This example

with XD1 suggests a whole family of possible extensions to the basic weak complementarity

assumptions, some of which may be intuitive in some contexts.

Changing the preference domain of ∼wc from XWC × Z to XD1 × Z clearly reduces the

amount of seed indifference information. On a practical level this can also be interpreted as

a reduction in the required revealed preference information. Nonessentiality formally only

requires that each z-fixed indifference surface include at least one point in XWC. However,

with L > 2 it is difficult to imagine indifference surfaces that would include only one such

point. Instead, the nonempty intersection of any z-fixed indifference surface with XWC would

typically be a non-trivial curve or surface. Previously we required complete knowledge of

each %z on the preference domain X̂, including all such preference information in XWC .

This information is obtained as revealed preference from the demand function when x1 = 0,

and therefore may be particularly difficult to obtain: tracking the consumption of an item

may be simpler than tracking non-consumption. However, with a weakened nonessentiality

requirement defined with respect to a complete naturally ordered reference set such as XD1,

we need the preference information for only one point in XWC on each z-fixed indifference

surface in order to identify an almost complete x̂-consistent preference relation on Ŷ .45 Thus

the required revealed preference information for points in XWC is substantially reduced.

44This is the diagonal reference set in the ℜL−1
+ space defined by x1 = 0. When L = 2, XD1 = XWC .

45It is “almost” complete because we may not be able to recover preferences between other points in XWC .
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4.2 Other Examples

The preceding analysis of weak complementarity and existence value illustrates the depth

of analysis possible with this methodology. Five shorter applications presented here provide

some indication of the possible breadth of analysis. These include two brief examples closely

related to weak complementarity, two from the price index literature concerned with product

quality, and finally a treatment of the problem of new and disappearing goods. These

examples especially differ in the choice of a most convenient reference set.

The first two and last examples use a common seed relation definition that we have

already seen. For any reference set XR, one possible seed indifference relation is the “neutral

relation” defined by (x, za) ∼n (x, zb) for all x ∈ XR and all za, zb ∈ Z.46 The weak

complementarity seed relation is an example of the neutral relation, as is the seed relation

discussed at the beginning of the main section in the context of Figure 2. On the other hand,

most instances of the %sx seed relation form are “non-neutral” seed relations.

After substantial consideration of weak complementarity, Smith and Banzhaf (2004) in

their closing section briefly consider two other potential APIs that can also be specified by

the neutral seed relation. The first generalizes weak complementarity so that the consumer

does not care about z as long as x1 ≤ x0
1 for some fixed x0

1 ≥ 0. For the example given,

z is the availability of campsites in a wilderness area and x1 is the length of a hike in the

wilderness, so that any x1 ≤ x0
1 represents a day-hike and hence does not require camping

facilities. In this case the natural reference set is clearly X≤x0

1
= {x ∈ X | x1 ≤ x0

1}.47

Let x0
1 > 0 so that this reference set is typically sufficient48 but not naturally ordered

(with L > 1). Then from Theorem I3 we know that special conditions are again required

to ensure demand-consistency. These conditions imply a result very similar to Theorem A1

requiring demand to be single-preferenced on X≤x0

1
. We can also obtain a result similar

to Theorem A2 as it relates to equation (3) but where the preference seed relation form is

instead defined on X≤x0

1
×Z; Φ(x̂) either contains only preference relations that are consistent

with this seed relation form, or contains no such member. Smith and Banzhaf’s proposed

API is only feasible in the first instance. The main difference from before is that these results

now also have meaning when L = 2 (demand-consistency is not automatic).

Smith and Banzhaf’s third API involves “weak substitution” as introduced by Feenberg

and Mills.49 Here the consumer does not care about z as long as x1 ≥ x0
1, with x0

1 again

fixed. With the Smith and Banzhaf specification as applied to Feenberg and Mills’ original

education example, x1 is the quantity of private education and z is the quality of public

education. Increased consumption of private education is associated with lower consumption

of public education so that at some point the consumer no longer cares about the quality

of public education. This API is fully specified by applying the neutral seed indifference

46The consumer is “neutral” (or apathetic) about distinctions in z for any fixed x ∈ XR.

47So that X≤x0

1

= XWC when x0
1 = 0.

48However there are exceptions such as when one or more %z have CES preference.

49Feenberg and Mills (1980), p.80.
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relation with the reference set X≥x0

1
= {x ∈ X | x1 ≥ x0

1}. All of the results with X≤x0

1

discussed in the immediately preceding paragraph also apply here in an obvious way.

Our two examples with product quality in the context of price indexes are based on the

seminal work by Fisher and Shell50 with some subsequent development by Willig (1978). The

first example concerns repackaging, so that with the classic shrinking candy bar example,

we might expect preference (or utility) to depend on the total volume consumed of a given

candy type (e.g. ounces) rather than on the number of bars irrespective of size. Fisher and

Shell first provide a general formulation of repackaging such that

(xa, za) %rp (xb, zb) ⇔ U(f(xa
1, z

a), xa
−1) ≥ U(f(xb

1, z
b), xb

−1), (4)

for all (xa, za), (xb, zb) ∈ Ŷ where z is a quality vector for good x1, and with appropriately

defined real valued functions U and f .51 The special case of “pure repackaging,” such as

with the candy bar example, is then captured by imposing a multiplicative restriction on the

functional form, f(x1, z) = x1h(z), so that preference for a good with per unit satisfaction

content h(z) depends on the product of that satisfaction content and the number of items.

For this example application with %pr I shall assume that X̂ = ℜL
++ so that Ŷ = ℜL

++ × Z.

Repackaging is a universal property in the sense that it requires equation (4) to be true

for all x vectors. Thus our reference set is naturally defined as the entirety of X = ℜL
+ which

is always sufficient, redundant and not naturally ordered (with L > 1). Thus we can apply

Theorem P3 (as we have previously applied Theorem I3) requiring additional conditions for

demand-consistency. However we typically do not start out with specific U and f functions,

and therefore have a somewhat different demand-consistency question. Given the demand

function x̂, we instead want to know if there are any U and f functions such that %rp is

x̂-consistent. Or, if we are concerned with pure repackaging, we wish to verify the existence

of U and h functions. Thus we are not concerned with verifying the demand-consistency of

any specific seed relation, but rather the feasibility of the form given by equation (4).

As is evident from Theorem A2, the methodology presented in this paper can be used

to draw conclusions about the demand-consistency of general seed forms such as %sx and

%rp. We shall see that demand-consistency of the %rp preference form requires a condition

that bears some similarity to single-preference. Suppose there exists some U and f functions

such that %rp is x̂-consistent. For this application we shall adopt a simplifying assumption

similar to unified preference: for any xa
1 > 0 and za, zb ∈ Z there exists some xb

1 > 0 so

that f(xa
1, z

a) = f(xb
1, z

b). (In the case of pure repackaging we only need h > 0 so that

xb
1 = xa

1h(za)/h(zb) > 0.) Thus with x−1 fixed, any change in the “packaging” of good 1 can

be offset by a change in the quantity consumed so that the consumer is left indifferent. This

is represented by the function χ so that xb
1 = χ(xa

1, z
a, zb). Then for any xαa

1 , xβa
1 ∈ ℜ++,

xα
−1, x

β
−1 ∈ ℜL−1

++ and za, zb ∈ Z, demand-consistency of %rp implies

(xαa
1 , xα

−1) %za (xβa
1 , xβ

−1) ⇔ (xαb
1 , xα

−1) %zb (xβb
1 , xβ

−1), (5)

50Fisher and Shell (1971) as originally published in Griliches (1971) has omitted notation (especially

brackets) with much of the displayed mathematical type and is consequently often difficult to read. These

typesetting errors are corrected in the version subsequently published in Fisher and Shell (1972).

51See Fisher and Shell (1971) equation (5.15).
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where xαb
1 = χ(xαa

1 , za, zb) and xβb
1 = χ(xβa

1 , za, zb).52

To more easily see the similarity with single-preference, let xαa
1 = xβa

1 ≡ xa
1 so that we

also have xαb
1 = xβb

1 ≡ xb
1. Then equation (5) simplifies to

(xa
1, x

α
−1) %za (xa

1, x
β
−1) ⇔ (xb

1, x
α
−1) %zb (xb

1, x
β
−1), (6)

so that the restricted preference relation on all x−1 ∈ ℜL−1
++ is the same with (xa

1, z
a) and

(xb
1, z

b). This compares with single-preferenced demand such as on XWC where the restricted

preference relation on all x−1 ∈ ℜL−1
++ is the same with for all za, zb ∈ Z when x1 = 0. This

simpler equation also suggests a one-way test for x̂-consistency of the %rp form utilizing

revealed preference in the form of {%z | z ∈ Z}. Simply choose some xa
1, za and zb, and

systematically look for some xb
1 so that this simpler equation is valid, i.e., where we find the

same preference relation on x−1 with (xb
1, z

b) as we did with (xa
1, z

a). Demand-consistency

must be rejected if there is no such xb
1. To be more precise, we must reject either x̂-consistency

or the existence of χ. When %rp is x̂-consistent, the existence of χ has a strong intuitive

appeal that is allied with the compensating aspect of the price indexing concept. We will

reject x̂-consistency if this intuition is stronger than that of demand-consistency itself. With

pure repackaging there is an especially strong case for the existence of χ.

However, even if this test is passed for all possible combinations of xa
1, za and zb, demand-

consistency is not guaranteed.53 Instead, as indicated by the following theorem, we need the

existence of a χ function whereby equation (5) is universally valid.

Theorem A3. Given x̂, let a function χ exist such that for any xαa
1 , xβa

1 ∈ ℜ++, xα
−1, x

β
−1 ∈

ℜL−1
++ and za, zb ∈ Z, equation (5) is valid with xαb

1 = χ(xαa
1 , za, zb) and xβb

1 = χ(xβa
1 , za, zb).

Then some functions U and f exist such that %rp as defined by equation (4) is x̂-consistent.

This gives us a two-way test of demand-consistency: the %rp seed form is x̂-consistent if

and only if equation 5 is satisfied for some χ function. However as just noted, rejection of

demand-consistency depends on the intuitive appeal of χ.

If the conditions of Theorem A3 are satisfied then we know that there exists at least one

repackaging preference relation that is demand-consistent. However, it will generally not be

unique. In particular from Theorem 1, a %rp preference relation will be uniquely demand-

consistent only if there are no other functions Ualt and falt such that Ualt(falt(x1, z), x−1) =

g(U(f(x1, z), x−1), z) for some g-transform g(U, z) that is an active function of z.54 For ex-

ample, it will not be unique if U is either additively or multiplicatively separable in its first

argument.55 Therefore we cannot typically use revealed preference information to identify a

52Equation (5) is obtained by directly applying the definition of x̂-consistent preference relations with

equation (4) and the χ function.

53For example this test never fails when L = 2 even though there exist preference relations that cannot

be specified with equation (4).

54Because the reference set is all of X and we have a utility representation, we are able to use Theorem

1 to directly characterize φ(x̂). Our previous tool for such characterizations, Theorem P1 part b, does not

tell us anything meaningful with this reference set since each seed relation is its own generated relation.

55That is if either U(f, x−1) = f + Ū(x−1) or U(f, x−1) = f · Ū(x−1) for some real valued function Ū .
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unique repackaging preference relation. Thus again, like Theorem A2 we have a result con-

cerning a preference relation form that provides necessary and sufficient conditions for when

there exists demand-consistent representatives of this form, but which permits a large class

of such demand-consistent representatives (%sx is never unique and %rp is rarely unique).

If we are specifically interested in the demand-consistency of the pure repackaging pref-

erence form, Theorem A3 needs to be strengthened such that the required χ function must

have the form x1χ̄(za, zb) for some function χ̄ : Z × Z → ℜ. Willig (1978) examines pure

repackaging for the more specialized case where x1 is nonessential, z has no existence value,

and utility and demand functions are differentiable on z (so that z must be continuous).56

He shows that under these conditions, whenever the component demand function for good

one has the form x̂1(p, z, w) = H(p1/h(z), p−1, w)/h(z), the pure repackaging preference re-

lation using this h function will be demand-consistent. However he does not show that pure

repackaging (as I have defined it) must yield an x̂1 component function of this form.57

Sometimes a quality change in a good primarily affects preference through its effect on

one or more other goods. Fisher and Shell use the example of quality change of refriger-

ators enhancing the enjoyment of ice-cream. This could be the case with any good that

primarily provides a functionality in support of other desired outcomes such as with most

transportation. Following Fisher and Shell (1971) equation (5.26), this may be represented

by the general seed relation form,

(xa, za) %cpr (xb, zb) ⇔ U(xa
1, f(xa

1, x
a
2, z

a), xa
3, . . . , x

a
L) ≥ U(xb

1, f(xb
1, x

b
2, z

b), xb
3, . . . , x

b
L),

for all (xa, za), (xb, zb) ∈ Ŷ where z is again the quality of x1. Here the quantity of good one

can have a direct impact on preference, but the quality of that good only affects preference

through the second good argument in the outside utility function U . Fisher and Shell

again offer a more specific multiplicative form, f(x1, x2, z) = x2h(x1, z), while Willig (1978)

provides an additive form f(x1, x2, z) = x2 + x1h(z) and the terminology “cross-product

repackaging” (and hence the “cpr” of %cpr). Our analysis of repackaging can be also be

applied to the more complicated cross-product repackaging, to include parallels to equations

5 and 6 and Theorem A3.

Our modelling structure is intended to be quite general to accommodate a large variety

of applications. However, it may need to be modified for some applications, as with our last

example, the new and disappearing goods problem, an important issue in the construction

of price indices. Suppose that in going from one period to the next there are D disappearing

goods {x1d, x2d, . . . , xDd}, N new goods {x1n, x2n, . . . , xNn}, and the usual L goods that exist

in both periods. With D > 0 and N > 0 we have the problem of simultaneous new and

disappearing goods. On the other hand with either D = 0 or N = 0 we would respectively

have the new goods problem or the disappearing goods problem. With this application z

indexes the consumption set: initially with z = za, we have Xa = ℜL+D
+ with typical element

(x1, . . . , xL, x1d, . . . , xDd), and in the second period (z = zb) we have Xb = ℜL+N
+ with typical

element (x1, . . . , xL, x1n, . . . , xNn).

56With X̂ = ℜL
++ I have explicitly (and deliberately) not taken advantage of nonessentiality.

57Willig (1978) defines pure repackaging by this x̂1 functional form.
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Even though this violates our assumption that the consumption set is invariant with z, the

modelling structure developed here is still applicable.58 In particular, this situation naturally

lends itself to an application of the neutral indifference seed relation with the reference set

XDN = ℜL
+ and typical element (x1, . . . , xL). XDN may be identified with the subset of Xa

where x1d = . . . = xDd = 0, and also as the subset of Xb with x1n = . . . = xNn = 0, so

that Xa

⋂
Xb = XDN . Sufficiency of XDN requires that x1d, . . . , xDd are all simultaneously

nonessential in the first period. That is, “any bundle including positive amounts of any the

goods x1d, . . . , xDd can be matched in the %za preference ordering by some other bundle which

excludes all of these goods.” In this same way, sufficiency also requires that x1n, . . . , xNn are

all simultaneously nonessential in the second period.59

In this case, demand-consistency of the neutral indifference seed relation requires that %za

and %zb be identical on XDN (i.e., demand is single-preferenced on XDN). In implementing

the neutral seed relation we are assuming that none of the goods x1d, . . . , xDd, x1n, . . . , xNn

has any existence value. As with the previous discussion with respect to Theorems A1 and

A2, single-preference provides a one-way test of this assumption; it can be rejected but

cannot be affirmed. With sufficiency and x̂-consistency, application of Theorem I1 part a

guarantees in this context a unique generated complete preference relation on Ŷ . Thus, any

obtainable consumption bundle in the first period is fully comparable with any obtainable

consumption bundle in the second.

In this section I have shown how the previously developed structure based on reference

sets and seed relations can be applied with various API rationales. Some preference assump-

tions such as weak complementarity are most naturally stated as seed indifference relations.

For these applications we have Theorems I1, I2 and I3. However other API rationales such

as separable existence value and repackaging are best specified as seed preference relations,

for which we have Theorems P1, P2 and P3.

Our two core requirements for preference generation – a sufficient reference set and a

x̂-consistent seed relation – provide the basis for examining the efficacy of a given API.

Typically the most important consideration in this context is our ability to test the demand-

consistency of a given seed relation or seed relation form. In particular, with reference sets

that are not naturally ordered, x̂-consistency requires additional conditions that we can

specify on the identifiable z-fixed revealed preference relations {%z | z ∈ Z}. The original

API rationale can thus be tested against revealed preference.

With a specific seed relation, demand-consistency testing provides only a one-way test

of a rationale’s validity. For example, we can reject weak complementarity if demand is not

single-preferenced on XWC , but with single-preference we are not able to affirm that the

“true” relation on Ŷ conforms with weak complementarity. On the other hand, with seed

forms such as %sx and %rp we typically lose uniqueness but it is sometimes possible to obtain

a two-way test of the seed form’s validity. For instance, we know that the “true” relation on

58Also, the simplifying assumption that X̂ is identical for all z ∈ Z is clearly not viable with this applica-

tion. However, none of our general results, such as the P and I theorems, depend on this assumption.

59With the pure new goods problem nonessentiality is trivially true for %za since consumption of any xid

is not possible. Similarly, nonessentiality is trivially true for %zb with the pure disappearing goods problem.
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Ŷ has separable existence value if and only if demand is single-preferenced on XWC .

With a complete redundant reference set, between the seed relation and revealed prefer-

ence information, there is a surplus of preference information so that the generated relation

on Ŷ is over-identified. This excess preference information may be used to either test the

seed relation against revealed preference, test an estimated demand function against the seed

relation, or reduce the overall preference information requirements. As was illustrated with

weak complementarity, that last option may be formally specified so that the seed relation

includes less information (by using a smaller reference set), but in practice may be inter-

preted as reducing the required amount of revealed preference information from the demand

function. This may have practical implications.

5 Conclusions

The problem addressed in this paper is the specification of the missing preference information

in the context of state preference variables so that we can identify complete individual

demand-consistent relations on Ŷ , i.e., elements of Φ(x̂). The key assumption underlying

this work is that a complete demand function is available from which we can obtain revealed

preference information for distinctions in commodity space. With Theorem 1 the significance

of the problem becomes clear: without additional preference information, meaningful welfare

analysis involving differences in state preference variables is impossible.

The core results of this paper are contained in Theorems P1 and I1 which show how

elements of Φ(x̂) can be uniquely identified by x̂-consistent seed relations defined with respect

to fixed sufficient reference sets. Application of these theorems depends on knowing that a

given seed relation is indeed demand-consistent. With a general (reducible) reference set,

x̂-consistency among seed relations can be very rare. However, from Theorems P2 and I2

we know that strongly monotone seed relations are always x̂-consistent if (and only if) the

reference set is naturally ordered. This result is strengthened with Theorems P3 and I3 so

that when a reference set is not naturally ordered, there always exists a large class of demand

functions for which a gvien seed relation is not demand-consistent.

The structure developed here can be applied in at least three distinct ways. First, we

may customize both the reference set and seed relation to capture the intuition of a specific

assumed API such as with weak complementarity, repackaging or any of the other examples

of the preceding section. We can then know whether or not a given API is testable against

the revealed preference information. If it is testable, we can construct one-way tests of

specific seed relations such as weak complementarity and possibly two-way tests of seed

relation forms such as with separable existence value. In this context, Theorems P3 and I3

are critical tools in telling us when demand-consistency requires additional conditions that

can be verified with revealed preference. A more substantial summary of this approach is

presented in the last four paragraphs of the applications section.

A second way of applying this structure is to focus on alternative seed relations that

might be used with the same reference set. If a reference set is sufficient and non-redundant,
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then each seed relation defined with respect to that set represents the minimal information

(preference or indifference) required to identify a unique demand-consistent relation on Ŷ .

We can compare all the members of Φ(x̂) in complete detail by restricting our attention to

differences in the individual seed relations. This works particularly well when the reference

set is naturally ordered so that all monotonic seed relations are demand-consistent. Thus

Theorems P2 and I2 may be a critical tools for this type of application.60 Applications with

the first approach, such as with ∼wc and %rp, focus on specifying and vetting potential API’s

that are based on specific rationales, whereas with this second approach we would typically

only work with seed relations that are known to be valid without necessarily considering

rationales. I approximated this second type of analysis with the characterization of Φ(x̂) in

terms of separable versus nonseparable existence value (Theorem A2).

The structure developed here could also be applied in a third way whereby it is used to

provide a precise characterization of the minimal missing preference information that in turn

can be used to design behavioral experiments or surveys to elicit the missing information.

Such experiments and surveys would be designed to elicit a seed relation defined with respect

to a specific non-redundant reference set. Alternatively, a redundant reference set may be

carefully designed to strategically verify the internal consistency of this non-market prefer-

ence data. An important distinction with this third type of application in comparison with

the first type is that with experiments or surveys, API’s would actually represent real “ad-

ditional preference information” instead of mere supposition on the part of the investigators

(however thoughtful that supposition might be).

Focusing on the first type of application, the system presented here is a general structure

that can be used with the many varied methodologies (API specifications) that have been

developed to deal with state preference variables in diverse areas such as the nonmarket

goods and price index literatures. It is thus a meta-system for examining and applying these

individual methodologies that brings to bear a level of precision and rigor for dealing with

issues such as whether a given methodology allows us to specify a complete preference rela-

tion on Ŷ , or whether the assumptions of another methodology are testable against revealed

preference. At present there is a lack of clarity in the literature concerning these issues.

For example, even thought weak complementarity is much discussed in the literature, it

does not seem to be well understood that a complete preference relation on Ŷ sufficient for

exact welfare analysis is fully determined by revealed preference information in the context

of nonessentiality and the no existence value assumption.61 There is also misunderstand-

ing in the literature concerning when assumptions such as weak complementarity can be

60With the first approach Theorems P3 and I3 are important in telling us that not naturally ordered implies

instances of not demand-consistent, while with the second approach Theorems P2 and I2 are important

because they tells that naturally ordered implies demand-consistency.

61For example, Smith and Banzhaf (2004) perceive a need for an additional preference relation assumption

in the form of the “Willig conditions” (Willig, 1978) in order to facilitate exact welfare analysis. This

is discussed some in their footnote 11. However, with nonessentiality and no existence value, the state

preference relation is fully determined on Ŷ , thus enabling any of our standard exact measures such as

EV . Moreover, with a complete state preference relation, the Willig conditions are fully testable so that

introducing them as an assumption is questionable. This distinction does not seem to be a consequence of

my key assumption that all the z-fixed relations {%z | z ∈ Z} are fully known.
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tested against revealed preference.62 Application of this structure in a systematic way with

these various methodologies may substantially increase our understanding of them, and thus

increase their efficacy with real world applications.

All work to date known to this author with the various API’s discussed here is specifically

concerned with continuous state preference variables, where results are obtained by exploiting

differential and integral calculus conditions involving these variables in relation to price and

quantity.63 By comparison, the findings presented here are not restricted to continuous state

preference variables or other special conditions required for the application of calculus with

these variables.64 This generality is obtained by working instead directly with the logical

properties of preference such as transitivity, in conjunction with basic set theory. Given the

results obtained here which have escaped this calculus-based literature, it seems that methods

of real analysis are not only overly specialized for some applications, but by themselves are

also substantially incomplete as a general tool for understanding state preference variables

for purposes of welfare analysis.

Some potential API specifications are defined in terms of the preference interaction be-

tween price and state preference variables. Examples may be found in Willig (1978) and

Ebert (2001). This is often the most natural way to state price indexing constructs. The

core concept of such a specification is most naturally captured with a reference set defined in

the realm of prices, PR ⊆ P , and a seed relation defined on PR × Z. It is possible to extend

the structure presented here in terms of commodity preference to the realm of prices. That

development includes results which allow us to combine the power of preference generation

with commodities and prices respectively, so that we can identify unique elements of Φ(x̂)

from seed relations defined with respect to price reference sets.

Appendix: Proofs of Theorems

We begin with three lemmas. Lemma 1 is used in the proofs of Lemma 3 and Theorem 4,

Lemma 2 in that of Lemma 3 and Theorem 1, and Lemma 3 in the proof of Theorem 1.

Lemma 1. Let %Y be a preference relation on Y that yields the demand function x̂, with

obtainable preference set Ŷ , and let z ∈ Z.

62For example, in the introduction of Ebert (2001), he states that “one is unable to reject” preference

assumptions such as weak complementarity with revealed preference. However, from the work presented

here we know that we can reject (but not affirm) weak complementarity when L > 2. (Ebert (2001) is

presented in the realm of general L.) Ebert is sufficiently aware of Theorem 1 (see Note 15) such that it

is impossible to affirm a specific preference assumption such as weak complementarity using only revealed

preference information. However, it does not follow that we cannot reject a specific preference assumption

with only this information.

63Such as with Bradford and Hildebrandt (1977), Feenberg and Mills (1980), Fisher and Shell (1971),

Mäler (1971), Mäler (1974), Smith and Banzhaf (2004), and Willig (1978).

64My treatment of the new and disappearing goods problem is an example of this whereby z is explicitly

discrete with no continuous analog. Consequently, the usual differential definition of the neutral seed relation

such as with weak complementarity (see Note 33) cannot be applied here.
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a. Let xa ∈ X with (xa, z) ≻Y (0, z). Then (xa, z) ∼Y (xb, z) for some xb ∈ X̂.

b. Let xa ∈ X with (0, z) %Y (xa, z). Then (xb, z) ≻Y (xa, z) for all xb ∈ X̂.

Proof. a. Let xa ∈ X with (xa, z) ≻Y (0, z). If xa ∈ X̂ we would be done since trivially

(xa, z) ∼Y (xa, z). Suppose that xa /∈ X̂. For any p ∈ ℜL
++ let ŵ = p · xa. Since xa is in the

budget set defined by p and ŵ, but xa 6= x̂(p, z, ŵ), it must be that (x̂(p, z, ŵ), z) ≻Y (xa, z).

We have restricted the domain of our demand function to w > 0. However, a natural

extension to include w = 0 would give us x̂(p, z, 0) = 0 while still maintaining the continuity

of x̂. We thus have (xa, z) ≻Y (x̂(p, z, 0), z). Then by the continuity of %Y and x̂ (in p and

w), there must be some w̄ ∈ (0, ŵ) such that where xb = x̂(p, z, w̄) we have (xa, z) ∼Y (xb, z).

b. Let xa ∈ X with (0, z) %Y (xa, z) and let xb ∈ X̂. We know that for some (p, w) ∈ ℜL+1
++ ,

x̂(p, z, w) = xb. Then since 0 ∈ X is in the budget set defined by (p, w), we have (xb, z) ≻Y

(0, z). Thus by the transitivity of ≻Y we have (xb, z) ≻Y (xa, z).

Lemma 2. Let u1 and u2 be two utility functions representing respectively the preference

relations, %1 and %2, on some generic preference domain Q, with ui : Q → ℜ, i = 1, 2. Let

R ⊆ ℜ be the range of u1. Then %1=%2 if and only if there is some (strictly) increasing

monotonic transformation f : R → ℜ such that u2 = f(u1).

Proof. (⇐): Let f : R → ℜ be an increasing monotonic transformation such that f(u1) = u2.

Let qa, qb ∈ Q. Then, u1(q
a) ≥ u1(q

b) ⇔ f (u1(q
a)) ≥ f

(
u1(q

b)
)
⇔ u2(q

a) ≥ u2(q
b). Thus,

u1 and u2 represent the same preference relation.

(⇒): Define the utility value sets Ui = {v ∈ ℜ | v = ui(q) for some q ∈ Q}, for i = 1, 2. Then

with the common preference relation %Q≡%1=%2, the preference set Q can be partitioned

into indifference sets such that if I ⊆ Q is such an indifference set, then q1, q2 ∈ I ⇒ q1 ∼Q q2,

and if q1, q2 ∈ Q and q1 ∼Q q2 then q1 and q2 are elements of the same indifference set. The

set of such indifference sets is I = {I ⊆ Q | I is indifference set with respect to %Q}.
For i = 1, 2, there is a one-to-one relationship, fi, between the elements of I and Ui such

that for I ∈ I and vi ∈ Ui, then I = fi(vi) if and only if vi = ui(q) for all q ∈ I. With these

we can construct a one-to-one relationship, f , between the elements of U1 and U2 such that

for vi ∈ Ui, i = 1, 2, v2 = f(v1) if and only if f1(v1) = f2(v2). Moreover, where f−1

2 is the

inverse function of f2, we have v2 = f−1

2 (f1(v1)), so that f = f−1

2 ◦ f1.

Let q ∈ Q. Then there is some I ∈ I, v1 ∈ U1 and v2 ∈ U2, such that q ∈ I, u1(q) = v1

and u2(q) = v2, with f1(v1) = f2(v2) = I. It then follows that u2(q) = f (u1(q)), so that

u2 = f ◦ u1, often written as u2 = f(u1).

Let va
1 , v

b
1 ∈ U1 such that va

1 > vb
1. Then there is some qa, qb ∈ Q such that u1(q

a) = va
1 ,

u1(q
b) = vb

1 and qa %Q qb. Then where u2(q
a) = va

2 and u2(q
b) = vb

2, it must be that

va
2 > vb

2. Thus since f(va
1) = va

2 and f(vb
1) = vb

2, we have f(va
1) > f(vb

1), showing that f is a

monotonically increasing transformation. The domain of f and f1 is U1 = R.

Lemma 3. Let u1 and u2 be two utility functions representing preferences on X with respec-
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tive demand functions x̂1 and x̂2 obtained from solving the optimization program,

Program UX: max
x

u(x)

s.t. p · x ≤ w,

x ∈ X,

so that they have the same obtainable set X̂ = {x ∈ X | x = x̂i(p, w) for some (p, w) ∈
ℜL+1

++ }, i = 1, 2. Then x̂1 = x̂2 if and only if there is some monotonic transformation

f : R → ℜ such that u2(x) = f (u1(x)) for all x ∈ X̂ (where R is the range of u1).

Proof. (⇐): Let there be some monotonic transformation f : R → ℜ such that u2(x) =

f (u1(x)) for all x ∈ X̂. Then for any (pa, wa) ∈ ℜL+1
++ with xa = x̂1(p

a, wa), we need to

show that xa = x̂2(p
a, wa). We know that x̂2(p

a, wa) ∈ X̂. Let xb 6= xa be any other feasible

solution (xb ∈ X̂ with paxb ≤ wa). Then u1(x
b) < u1(x

a) ⇒ f(u1(x
b)) < f(u1(x

a)) ⇒
u2(x

b) < u2(x
a). Thus xb 6= x̂2(p

a, wa) so that xa = x̂2(p
a, wa), and hence x̂1 = x̂2.

(⇒): Let x̂1 = x̂2. Define the utility functions û1 and û2 to be the respective restrictions of

u1 and u2 to X̂: ûi(x) = ui(x), i = 1, 2 for all x ∈ X̂.

For each i = 1, 2: Denote the range of ui as ℜi, the range of ûi as ℜ̂i ⊆ ℜi, and define

v0
i = ui(0). Then from Lemma 1 part a, for any vi ∈ ℜi with vi > v0

i there is some xi ∈ X̂

such that ui(x
i) = vi and hence vi ∈ ℜ̂i. From Lemma 1 part b, for any vi ∈ ℜi such that

vi ≤ v0
i , there is no xi ∈ X̂ such that ui(x

i) = vi. Thus ℜ̂i = (v0
i ,∞)

⋂ℜi. (For these

applications of Lemma 1, Z is a singleton so that preference on Y is equivalent to preference

on X.)

By an assumption stated in the text of the paper, û1 and û2 represent the same pref-

erence relation on X̂, and hence by Lemma 2 there is some (strictly) increasing monotonic

transformation h : ℜ̂1 → ℜ such that û2 = h (û1), or û2(x) = h (û1(x)) for all x ∈ X̂. Finally

we can define the monotonic transformation f : ℜ1 → ℜ, by f(v) = h(v) if v ∈ ℜ̂1, and

f(v) = v + v0
2 − v0

1 otherwise, so that u2(x) = f (u1(x)) for all x ∈ X̂.

Theorem 1

Proof. Let u1 and u2 be two utility functions representing preferences on Y .

a. Then for each i ∈ {1, 2} and z ∈ Z, we have a utility function on X, uiz, such that

uiz(x) = ui(x, z). u1 and u2 will yield the same demand function x̂(p, z, w) with Program

UY if and only if for all z ∈ Z, u1z and u2z yield the same demand function x̂z(p, w) with

Program UX of Lemma 3, where x̂(p, z, w) = x̂z(p, w).

From Lemma 3, for each z ∈ Z, u1z and u2z yield the same demand function x̂z(p, w) with

Program UX if and only if there is some increasing monotonic transformation fz : ℜu → ℜ
such that u2z(x) = fz (u1z(x)) for all x ∈ X̂.

When all the fz exist we can define g : ℜu × Z → ℜ by g(u, z) = fz(u). Since each fz

is increasing monotonic, it follows that g is strictly increasing in u. Also, if start with a

g-transform, then we can similarly define a complete set of fz transformations. Thus, having

such a g-transform is equivalent to having all the fz-transforms.
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Therefore, from the three previous paragraphs, u1 and u2 will yield the same demand

function x̂(p, z, w) with Program UY if and only if there is some transformation g : ℜu×Z →
ℜ such that u2(x, z) = g (u1(x, z), z) for all (x, z) ∈ Ŷ , with g increasing in u.

b. Let g be a g-transform such that u2 = g (u1, z). From Lemma 2, u1 and u2 represent the

same preference relation on Ŷ if and only if there is some (strictly) increasing monotonic

transformation f : ℜu → ℜ such that u2(x, z) = f(u1(x, z)) for all (x, z) ∈ Ŷ . But we also

have u2(x, z) = g (u1(x, z), z), and hence g (u1(x, z), z) = f(u1(x, z)) for all (x, z) ∈ Ŷ . Thus

g(u, z) = f(u) for all u ∈ ℜ̂1, where ℜ̂1 is the range of u1 when restricted to the domain Ŷ ,

ℜ̂1 = {u ∈ ℜu | u = u1(x, z) for some (x, z) ∈ Ŷ }.

The following lemma, showing that each %z is strongly monotone is used in the proofs

of Theorems 2 and P2.

Lemma 4. For each z ∈ Z, the preference relation %z is strongly monotone: if x0, x1 ∈ X̂,

with x1 ≥ x0 (x1
ℓ ≥ x0

ℓ for all ℓ = 1, . . . , L) and x1 6= x0, then x1 ≻z x0.

Proof. Let z ∈ Z, x0 ∈ X and x1 ∈ X̂, with x1 ≥ x0 (x1
ℓ ≥ x0

ℓ for all ℓ = 1, . . . , L) and

x1 6= x0. Then for some p1 ∈ ℜL
+, x̂(p1, z, 1) = x1 and hence p1 · x1 = 1. Then x1 ≥ x0

implies that p1 · x0 ≤ 1 so that bundle x0 is affordable when x1 is chosen. Since x0 is not

chosen, it must be that x1 ≻z x0.

Theorem 2

Proof. Let XR ⊆ X be a naturally ordered reference set, and for any possible Z let x̂ :

ℜL
++ × Z × ℜ++ → ℜL be a feasible demand function. Now suppose that XR is redundant

so that for some (x, z) ∈ Ŷ , there are x1
R, x2

R ∈ XR with x1
R 6= x2

R such that x ∼z x1
R and

x ∼z x2
R. Then we also have x1

R ∼z x2
R with both x1

R, x2
R ∈ X̂. Applying Lemma 4 we know

that %z is strongly monotone. Then x1
R ∼z x2

R precludes the possibility of either x1
R ≤ x2

R or

x2
R ≤ x1

R, and hence XR cannot be naturally ordered. Thus by contradiction, XR must be

non-redundant.

Theorem 3

Proof. Let XR ⊆ X be a reference set that is not naturally ordered, so that for some

x1, x2 ∈ XR with x1 6= x2 we have neither x1 ≤ x2 nor x2 ≤ x1. Then for some integers

k and ℓ with 1 ≤ k ≤ L and 1 ≤ ℓ ≤ L, we have x1
k < x2

k and x1
ℓ > x2

ℓ . Define α =

(x2
k − x1

k)
/(√

x1
ℓ −

√
x2

ℓ

)
. With the singleton set of feasible state preference variable values,

Z̃ = {z̃}, we define the z-fixed preference relation xa %z̃ xb ⇔ u(xa) ≥ u(xb) where u(x) is

the quasilinear utility function u(x) = xk + α
√

xℓ. Then %z̃ is strictly convex and strongly

monotone over ℜL
+ such that ℜL

++ ⊂ X̂z̃ ⊂ ℜL
+. The utility function was constructed so that

u(x1) = u(x2) and hence XR is redundant with respect to the demand function obtained

with %z̃ . Thus a reference set that is not naturally ordered cannot be universally non-

redundant.
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Theorem 4

Proof. Let XR ⊆ X such that XR is naturally ordered and sufficient. For any fixed z ∈ Z,

let %z be a strongly monotone preference relation on X such that the identifiable preference

relation %z is the restriction of %z to X̂.

Let x1 ∈ XR\{0}. Then x1 ≻z 0, and hence by Lemma 1 part a, there exists some x2 ∈ X̂

such that x1 ∼z x2. From sufficiency, there also must be some x3 ∈ XR so that x2 ∼z x3 and

hence x3 ∈ X̂. Assume that x1 6= x3. Since XR is naturally ordered, we must have either

x1 ≥ x3 or x3 ≥ x1 (but not both). Then from the strong monotonicity of %z , we have either

x1 ≻z x3 or x3 ≻z x1, but not x1 ∼z x3. Thus by contradiction x1 = x3, and hence x1 ∈ X̂.

We have demonstrated that XR\{0} ⊆ X̂.

Theorem P1

Proof. For the demand function x̂ : ℜL
++ × Z × ℜ++ → ℜL with identifiable {%z | z ∈ Z}

and obtainable set X̂, let XR be a sufficient reference set relative to x̂.

Part a:

Let %s be a complete and transitive preference relation on ŶR = (XR×Z)
⋂

Ŷ , such that

for any z ∈ Z and xa, xb ∈ XR

⋂
X̂, (xa, z) %s (xb, z) ⇔ xa %z xb (i.e., %s is x̂-consistent).

Let (xa, za), (xb, zb) ∈ Ŷ . Then by the properties of a complete reference set we know

that there are some xa
R, xb

R ∈ XR such that xa ∼za xa
R and xb ∼zb xb

R, and we can define the

relation %S on Ŷ such that (xa, za) %S (xb, zb) if and only if (xa
R, za) %s (xb

R, zb). It follows

from this construction that %S is complete on Ŷ .

Suppose that we also had x̃a
R, x̃b

R ∈ XR such that xa ∼za x̃a
R and xb ∼zb x̃b

R, allowing us

to define the alternative preference relation %T on Ŷ such that (xa, za) %T (xb, zb) if and

only if (x̃a
R, za) %s (x̃b

R, zb). Since %za and %zb are both transitive, we have xa
R ∼za x̃a

R and

xb
R ∼zb x̃b

R, so that by the consistency property of %s we know that (xa
R, za) ∼s (x̃a

R, za)

and (xb
R, zb) ∼s (x̃b

R, zb). Then (xa
R, za) %s (xb

R, zb) ⇔ (x̃a
R, za) %s (x̃b

R, zb), and hence

(xa, za) %S (xb, zb) if and only if (xa, za) %T (xb, zb). Thus given the seed relation %s, the

generated relation %S is well defined.

We still need to show that %S is transitive; completely consistent with %s on ŶR and

with all %z as they are respectively defined on X̂; and unique.

Let (xa, za), (xb, zb), (xc, zc) ∈ Ŷ such that (xa, za) %S (xb, zb) and (xb, zb) %S (xc, zc).

Then let xa
R, xb

R, xc
R ∈ XR such that xa ∼za xa

R, xb ∼zb xb
R and xc ∼zc xc

R, so that (xa
R, za) %s

(xb
R, zb) and (xb

R, zb) %s (xc
R, zc). By the transitivity of %s, we then have (xa

R, za) %s (xc
R, zc),

and hence (xa, za) %S (xb, zb) so that %S is transitive.

For any (xa
R, za), (xb

R, zb) ∈ ŶR we have (xa
R, za) %S (xb

R, zb) ⇔ (xa
R, za) %s (xb

R, zb), so

that %S completely consistent with %s.

For any z ∈ Z, let (xa, z), (xb, z) ∈ Ŷ and assume that (xa, z) %S (xb, z). Then for some

xa
R, xb

R ∈ XR such that xa ∼z xa
R and xb ∼z xb

R, we have (xa
R, z) %s (xb

R, z), and hence

xa %z xb. Now working in the other direction, assume that xa %z xb for some z ∈ Z. Then
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there are some xa
R, xb

R ∈ XR such that xa ∼z xa
R and xb ∼z xb

R, giving us xa
R %z xb

R and

(xa
R, z) %s (xb

R, z), and hence (xa, z) %S (xb, z). Thus for any z ∈ Z, %S ≡%z when restricted

to X̂ with za = zb = z, and hence %S is x̂-consistent.

Let %T be any complete and transitive preference relation defined on Ŷ that is completely

consistent with %s and all %z for z ∈ Z. Let (xa, za), (xb, zb) ∈ Ŷ . Then there is some

xa
R, xb

R ∈ XR such that xa ∼za xa
R, xb ∼zb xb

R, and (xa, za) %S (xb, zb) ⇔ (xa
R, za) %s

(xb
R, zb). Then we have (xa, za) ∼T (xa

R, za), (xb, zb) ∼T (xb
R, zb) and (xa

R, za) %s (xb
R, zb) ⇔

(xa
R, za) %T (xb

R, zb), so that be the transitivity of %T , (xa
R, za) %s (xb

R, zb) ⇔ (xa, za) %T

(xb, zb). Thus %T ≡%S , and hence %S is unique.

Part b:

Let %S be a complete and transitive preference relation on Ŷ , such that for any z ∈ Z and

any xa, xb ∈ X̂, (xa, z) %S (xb, z) ⇔ xa %z xb (i.e., %S is x̂-consistent). Now define %s as the

restriction of %S to ŶR = (XR × Z)
⋂

Ŷ : for any (xa
R, za), (xb

R, zb) ∈ ŶR, (xa
R, za) %s (xb

R, zb)

if and only if (xa
R, za) %S (xb

R, zb). The completeness and x̂-consistency of %S implies the

completeness and x̂-consistency of %s (with completeness now defined on a smaller preference

domain). By part a just proven, there is a unique complete and transitive preference relation

on Ŷ that is consistent with %s and with %z for all z ∈ Z. Clearly that preference relation

on Ŷ must be %S.

It remains to show that %s is unique. Let %t be any complete and transitive preference

relation on ŶR that is consistent with %S. Then for any (xa
R, za), (xb

R, zb) ∈ ŶR, (xa
R, za) %t

(xb
R, zb) ⇔ (xa

R, za) %S (xb
R, zb), so that (xa

R, za) %t (xb
R, zb) ⇔ (xa

R, za) %s (xb
R, zb). Thus

%t ≡%s, and hence %s is unique.

Theorem P2

Proof. For the demand function x̂ : ℜL
++×Z×ℜ++ → ℜL with identifiable z-fixed preference

relations {%z | z ∈ Z} and obtainable set X̂, let XR be a reference set.

a. Let XR be a reference set such that XR

⋂
X̂ is naturally ordered, and let %s be a strongly

monotone seed preference relation on ŶR = (XR × Z)
⋂

Ŷ . Now consider any z ∈ Z and

xa, xb ∈ XR

⋂
X̂. We need to show that (xa, z) %s (xb, z) ⇔ xa %z xb.

Since XR

⋂
X̂ is naturally ordered and %s is strongly monotone, we have either xa ≥ xb

with (xa, z) %s (xb, z), or xb ≥ xa and xb 6= xa with (xb, z) ≻s (xa, z). Applying Lemma 4

we have %z strongly monotone, and hence either xa ≥ xb ⇒ xa %z xb, or [xb ≥ xa and xb 6=
xa] ⇒ xb ≻z xa. Thus (xa, z) %s (xb, z) ⇔ xa %z xb, so that %s is x̂-consistent.

b. Let all strongly monotone seed preference relation on ŶR = (XR×Z)
⋂

Ŷ be x̂-consistent.

Suppose that XR

⋂
X̂ is not naturally ordered. Then for some x1, x2 ∈ XR

⋂
X̂ we have

neither x1 ≥ x2 nor x2 ≥ x1, so that for some integers k and ℓ with 1 ≤ k ≤ L and 1 ≤ ℓ ≤ L,

we have x1
k < x2

k and x1
ℓ > x2

ℓ . Without loss of generality we may assume that x1 %z0 x2 for

some z0 ∈ Z. For any fixed α, 0 < α < x2
k − x1

k, define β = (x2
k − x1

k − α)
/(√

x1
ℓ −

√
x2

ℓ

)
.

We now consider the strongly monotone seed preference relation %s defined on ŶR such that

(xa, za) %s (xb, zb) if and only if u(xa) ≥ u(xb) where u(x) is the quasilinear utility function
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u(x) = xk + β
√

xℓ. This utility function was constructed so that u(x1) < u(x2), and hence

%s is not consistent with x̂. Thus by contradiction, XR

⋂
X̂ is naturally ordered. Note that

with the range of possible α values, we have an infinite number of preference seed relations

that are not demand-consistent if XR

⋂
X̂ is not naturally ordered.

Theorem P3

Proof. Let XR be a reference set that is not naturally ordered and let %s be a strongly

monotone seed preference relation defined on on YR = XR ×Z. We need to show that %s is

not demand-consistent for an infinite number of valid demand functions.

Let x̂ : ℜL
++ × Z × ℜ++ → ℜL be a valid demand function with identifiable z-fixed

preference relations {%z | z ∈ Z} and obtainable set X̂. Let z0 ∈ Z. Since XR is not

naturally ordered, for some x1, x2 ∈ XR we have neither x1 ≥ x2 nor x2 ≥ x1, so that for

some integers k and ℓ with 1 ≤ k ≤ L and 1 ≤ ℓ ≤ L, we have x1
k < x2

k and x1
ℓ > x2

ℓ . Without

loss of generality we may assume that (x1, z0) %s (x2, z0). For any fixed α, 0 < α < x2
k − x1

k,

define β = (x2
k − x1

k − α)
/(√

x1
ℓ −

√
x2

ℓ

)
. We now consider the new strongly monotone

z-fixed preference relation %̇z0 defined on X such that xa%̇z0xb if and only if u(xa) ≥ u(xb)

where u(x) is the quasilinear utility function u(x) = xk + β
√

xℓ. This utility function was

constructed so that u(x1) < u(x2), and hence %̇z0 is not consistent with %s. We now define

a new demand function via equation (2) with the previous z-fixed relations {%z | z ∈ Z},
except that %z0 is replaced by %̇z0. With the range of possible α values, we have an infinite

number of such demand functions for which %s is not demand-consistent.

The following lemma, establishing a connection between x̂-consistent preference and in-

difference relations, is used in the proofs of the subsequent three theorems.

Lemma 5. Given the demand function x̂ with obtainable set Ŷ with subset Ỹ ⊆ Ŷ :

a. Let % be a x̂-consistent preference relation on Ỹ . Then any indifference relation that is

consistent with % is x̂-consistent. Furthermore, the (unique) associated indifference relation

of % also satisfies condition 1′.

b. Let ∼ be a unified x̂-consistent indifference relation on Ỹ . Then there is a unique x̂-

consistent transitive complete preference relation on Ỹ that is consistent with ∼. With ∼
also satisfying condition 1′, it is the unique indifference relation associated with the preference

relation.65

Proof. For the demand function x̂ : ℜL
++×Z×ℜ++ → ℜL with identifiable z-fixed preference

relations {%z | z ∈ Z} and obtainable set Ŷ , let Ỹ ⊆ Ŷ .

a. Let % be a x̂-consistent preference relation on Ỹ and let ∼ be any indifference relation on

Ỹ that is consistent with %, so that (xa, za) ∼ (xb, zb) ⇒ [(xa, za) % (xb, zb) and (xb, zb) %

65Without the unified property in part b, there could be either multiple, one, or even no x̂-consistent

transitive complete preference relations that are consistent with the given demand-consistent indifference

relation (even with condition 1′).
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(xa, za)] for all (xa, za), (xb, zb) ∈ Ỹ . We need to show that ∼ is: 1) x̂-consistent; and 2)

satisfies condition 1′ if it is also the (unique) associated indifference relation of %.

Let (xa, z), (xb, z) ∈ Ỹ with z ∈ Z. Then we have (xa, z) ∼ (xb, z) ⇒ [(xa, z) %

(xb, z) and (xb, z) % (xa, z)] ⇒ [xa %z xb and xb %z xa] ⇒ xa ∼z xb, so that ∼ satisfies

the first property of x̂-consistent indifference relations.

Let (x1, za), (x2, zb), (x3, za), (x4, zb) ∈ Ỹ and za, zb ∈ Z such that (x1, za) ∼ (x2, zb)

and (x3, za) ∼ (x4, zb). Then by definition we have (x1, za) % (x2, zb), (x2, zb) % (x1, za),

(x3, za) % (x4, zb) and (x4, zb) % (x3, za). If (x1, za) % (x3, za), then by transitivity we

would also have (x2, zb) % (x4, zb). Similarly, (x2, zb) % (x4, zb) ⇒ (x1, za) % (x3, za), and

hence (x1, za) % (x3, za) ⇔ (x2, zb) % (x4, zb). Since % is x̂-consistent, we have x1 %za

x3 ⇔ (x1, za) % (x3, za) and x2 %zb x4 ⇔ (x2, zb) % (x4, zb). Then applying the three

“⇔” relationships, we obtain x1 %za x3 ⇔ x2 %zb x4, and hence ∼ also satisfies the second

property of x̂-consistent indifference relations.

Now suppose that ∼ is also the (unique) associated indifference relation of % so that

(xa, za) ∼ (xb, zb) ⇔ [(xa, za) % (xb, zb) and (xb, zb) % (xa, za)] for all (xa, za), (xb, zb) ∈
Ỹ . Then for any (xa, z), (xb, z) ∈ Ỹ with z ∈ Z, we have (xa, z) ∼ (xb, z) ⇔ [(xa, z) %

(xb, z) and (xb, z) % (xa, z)] ⇔ [xa %z xb and xb %z xa] ⇔ xa ∼z xb, so that condition 1′ is

satisfied.

b. Let ∼ be a unified x̂-consistent indifference relation on Ỹ . We will construct a unique well

defined x̂-consistent transitive complete preference relation on Ỹ that is consistent with ∼.

When ∼ also satisfies condition 1′, we must show that it is the unique indifference relation

associated with the constructed preference relation.

Let (xa, za), (xb, zb) ∈ Ỹ . Since ∼ is unified, there are some (xA, zb), (xB, za) ∈ Ỹ such

that (xa, za) ∼ (xA, zb) and (xb, zb) ∼ (xB, za). Then from the second x̂-consistency property

of ∼ we know that xa %za xB if and only if xA %zb xb. We define a preference relation %i

on Ỹ such that (xa, za) %i (xb, zb) if and only if these two equivalent conditions are true. As

constructed %i is complete on Ỹ , but perhaps not well defined since it may depend on the

selection of xA and xB.

Suppose that we also had (x̃A, zb), (x̃B, za) ∈ Ỹ such that (xa, za) ∼ (x̃A, zb) and (xb, zb) ∼
(x̃B, za), allowing us to define the alternative preference relation %j on Ỹ such that (xa, za) %j

(xb, zb) if and only if xa %za x̃B, and equivalently if and only if x̃A %zb xb. Then (xA, zb) ∼
(x̃A, zb) and (xB, za) ∼ (x̃B, za), so that by the first x̂-consistency property of ∼ we know that

xA ∼zb x̃A and xB ∼za x̃B . Thus by the transitive properties of %za and %zb we respectively

have xa %za xB ⇔ xa %za x̃B and x̃A %zb xb ⇔ xA %zb xb, and hence (xa, za) %i (xb, zb) ⇔
(xa, za) %j (xb, zb). This shows that the selection of xA and xB has no effect on the definition

of %i, and hence this preference relation is well defined.

Let (xa, za), (xb, zb) ∈ Ỹ with (xa, za) ∼ (xb, zb). By defining xB = xa (for the con-

struction of %i) we have both (xb, zb) ∼ (xB, za) and (xa, za) ∼ (xB, za). Then from the

first x̂-consistency property of ∼ we get xa %za xB and xB %za xa, so that by defini-

tion, (xa, za) %i (xb, zb) and (xb, zb) %i (xa, za). Thus (xa, za) ∼ (xb, zb) ⇒ [(xa, za) %i

(xb, zb) and (xb, zb) %i (xa, za)] and hence %i is consistent with ∼.
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For this paragraph only, let ∼ also satisfy condition 1′ and assume that for some (xa, za),

(xb, zb) ∈ Ỹ we have (xa, za) %i (xb, zb) and (xb, zb) %i (xa, za). Then by definition there

is some (xA, zb) ∈ Ỹ such that (xa, za) ∼ (xA, zb), xA %zb xb and xb %zb xA, so that

xA ∼zb xb. From condition 1′ we then have (xA, zb) ∼ (xb, zb), and hence by transitivity of

∼, (xa, za) ∼ (xb, zb). Combining this with the results of the previous paragraph, we have

(xa, za) ∼ (xb, zb) ⇔ [(xa, za) %i (xb, zb) and (xb, zb) %i (xa, za)], so that ∼ is the unique

indifference relation associated with %i.

Let (xa, za), (xb, zb), (xc, zc) ∈ Ỹ such that (xa, za) %i (xb, zb) and (xb, zb) %i (xc, zc).

Then there are some (xAb, zb), (xCb, zb) ∈ Ỹ such that (xa, za) ∼ (xAb, zb), (xCb, zb) ∼ (xc, zc),

xAb %zb xb and xb %zb xCb. By the transitivity of %zb we have xAb %zb xCb. Since ∼ is unified

there exists some (xCa, za) ∈ Ỹ such that (xCa, za) ∼ (xc, zc), and by the transitivity of

∼ then have (xCa, za) ∼ (xCb, zb). Combining this result with (xa, za) ∼ (xAb, zb) and

xAb %zb xCb, the second x̂-consistency property of ∼ gives us xa %za xCa. Thus by definition

(xa, za) %i (xc, zc), demonstrating that %i is transitive.

For any z ∈ Z, let (xa, z), (xb, z) ∈ Ỹ . Then applying our definition of %i with xb = xB

and z = za = zb, we have (xa, z) %i (xb, z) ⇔ xa %z xb. Thus %i is x̂-consistent.

Suppose that %k is an x̂-consistent complete and transitive preference relation defined on

Ỹ that is consistent with ∼, and for some (xa, za), (xb, zb) ∈ Ỹ let (xa, za) %i (xb, zb). By the

definition of %i we have some (xA, zb) ∈ Ỹ such that (xa, za) ∼ (xA, zb) and xA %zb xb. Since

%k is consistent with ∼ we have (xa, za) %k (xA, zb), and since %k is x̂-consistent also have

(xA, zb) %k (xb, zb). Then by transitivity, (xa, za) %k (xb, zb) and hence %k=%i. Thus %i is

the unique x̂-consistent complete and transitive preference relation defined on Ỹ consistent

with ∼.

Theorem I1

Proof. For the demand function x̂ : ℜL
++×Z×ℜ++ → ℜL with identifiable z-fixed preference

relations {%z | z ∈ Z} and obtainable set X̂, let XR be a sufficient reference set relative to

x̂ and define ŶR = (XR × Z)
⋂

Ŷ .

a. Let ∼s be a unified x̂-consistent indifference relation defined on ŶR. From part b of Lemma

5, there is a unique x̂-consistent transitive complete preference relation on ŶR consistent with

∼s denoted by %s. Then from part a of Theorem P1, there is a unique complete and transitive

x̂-consistent generated preference relation on Ŷ that is completely consistent with %s on ŶR,

denoted by %S.

We need to show that %S is consistent with ∼s, unique and unified. For any (xa
R, za),

(xb
R, zb) ∈ (XR×Z)

⋂
Ŷ we have, (xa

R, za) ∼s (xb
R, zb) ⇒

[
(xa

R, za) %s (xb
R, zb) and (xb

R, zb) %s

(xa
R, za)] ⇒

[
(xa

R, za) %S (xb
R, zb) and (xb

R, zb) %S (xa
R, za)

]
, so that %S is consistent with ∼s.

Let %T be a complete and transitive x̂-consistent preference relation defined on Ŷ that is

consistent with ∼s such that %T 6=%S. Where %t is the restriction of %T to ŶR, %t must be

consistent with ∼s. From the unique relationship between %s and %S we know that %t 6=%s.

Then from the unique relationship between %s and ∼s we know that %t cannot have all the
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properties of x̂-consistency, ∼s-consistency, transitivity and completeness. Hence %T also

cannot have all three properties. Thus by contradiction %S is unique.

Let ∼S be the (unique) indifference relation associated with %S and let za, zb ∈ Z with

xa ∈ X̂. Since XR is sufficient there is some xa
R ∈ XR such that xa ∼za xa

R and hence

(xa, za) ∼S (xa
R, za). Since ∼s is unified, there is some xb

R ∈ XR such that (xa
R, za) ∼s (xb

R, zb)

and therefore (xa
R, za) ∼S (xb

R, zb). We then have (xa, za) ∼S (xb
R, zb) so that %S is unified.

b. Let %S be a complete, transitive and unified x̂-consistent preference relation on Ŷ . From

part b of Theorem P1, %S is generated by (and hence consistent with) a unique x̂-consistent

seed preference relation on ŶR, denoted by %s. From the proof of that Theorem we also know

that %s is the restriction of %S to ŶR. Let ∼s be the unique indifference relation associated

with %s. From part a of Lemma 5 we know ∼s is x̃-consistent and satisfies condition 1′. We

need to show that ∼s is unified and unique.

Let za, zb ∈ Z and xa
R ∈ XR such that (xa

R, za) ∈ ŶR. To show that ∼s is unified

we need to demonstrate that there is also some xb
R ∈ XR such that (xb

R, zb) ∈ ŶR and

(xa
R, za) ∼s (xb

R, zb). Since %S is unified, we do know that there is some xb ∈ X̂ such that

(xa
R, za) ∼S (xb, zb). Since XR is sufficient, there is some xb

R ∈ XR such that xb
R ∼zb xb, and

hence by the x̂-consistency of %S, (xb
R, zb) ∼S (xb, zb). Then by the transitivity of %S we

have (xa
R, za) ∼S (xb

R, zb) and hence (xa
R, za) ∼s (xb

R, zb). We also have xb
R ∈ X̂ and therefore

(xb
R, zb) ∈ ŶR. Thus ∼s is unified.

Let ∼k be any unified x̂-consistent indifference relation defined on ŶR that satisfies condi-

tion 1′ and is consistent with %S. Then from Lemma 5 part b, there is a unique x̂-consistent

preference relation defined on ŶR that is consistent with ∼k. This preference relation is

clearly %s. Also from Lemma 5 part b, ∼k is the unique indifference relation associated with

%s. However ∼s is also associated with %s. Therefore ∼k=∼s and ∼s is unique.

Let ∼t be a unified x̂-consistent seed indifference relation on ŶR. Suppose that %S

can generated by ∼t. Then for any (xa, za), (xb, zb) ∈ ŶR, we have (xa, za) ∼t (xb, zb) ⇒
(xa, za) ∼S (xb, zb) ⇒ (xa, za) ∼s (xb, zb). Now instead suppose that (xa, za) ∼t (xb, zb) ⇒
(xa, za) ∼s (xb, zb) for any (xa, za), (xb, zb) ∈ ŶR. Then since all the indifference infor-

mation of ∼t is included in ∼s, they must generate the same unique element of Φ(x̂) as

described by part a of this theorem, so that %S can be generated by ∼t. We have shown

that %S can generated by ∼t if and only if (xa, za) ∼t (xb, zb) ⇒ (xa, za) ∼s (xb, zb) for any

(xa, za), (xb, zb) ∈ ŶR.

Theorem I2

Proof. Given the demand function x̂ with obtainable set X̂:

a. Let XR be a reference set such that XR

⋂
X̂ is naturally ordered, and let ∼s be a strongly

monotone seed indifference relation on ŶR = (XR × Z)
⋂

Ŷ . By definition ∼s is consistent

with a strongly monotone preference relation on ŶR, denoted %s. Then by part a of Theorem

P2, %s is x̂-consistent, so that by part a of Lemma 5, ∼s is also x̂-consistent.

Let xa, xb ∈ XR

⋂
X̂ and z ∈ Z so that (xa, z), (xb, z) ∈ ŶR. From x̂-consistency of ∼s we

have (xa, z) ∼s (xb, z) ⇒ xa ∼z xb. Suppose that xa ∼z xb. Then since XR is non-redundant
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(Theorem 2), we must have xa = xb, so that trivially (xa, z) ∼s (xb, z). We have shown that

(xa, z) ∼s (xb, z) ⇔ xa ∼z xb and hence ∼s satisfies condition 1′ for indifference relation

demand-consistency.

b. Let XR be a reference set such that any strongly monotone unified seed indifference

relation on ŶR = (XR × Z)
⋂

Ŷ is x̂-consistent. Then any strongly monotone preference

relation on ŶR must be consistent with at least one of these indifference relations (in particular

with its unique associated indifference relation), and hence by part b of Lemma 5 is also

x̂-consistent. Thus by part b of Theorem P2, XR

⋂
X̂ is naturally ordered.

Theorem I3

Proof. Let XR be a reference set that is not naturally ordered and define YR = XR ×Z, and

let ∼s be a unified seed preference relation defined on on YR.

Since XR is not naturally ordered, for some x1, x2 ∈ XR we have neither x1 ≥ x2 nor

x2 ≥ x1, so that for some integers k and ℓ with 1 ≤ k ≤ L and 1 ≤ ℓ ≤ L, we have

x1
k < x2

k and x1
ℓ > x2

ℓ . Let za, zb ∈ Z with za 6= zb. Then since ∼s is unified, there exists

some x1b, x2b ∈ XR such that (x1, za) ∼s (x1b, zb) and (x2, za) ∼s (x2b, zb). The second

condition for demand-consistent indifference relations requires x1 %za x2 ⇔ x1b %zb x2b (and

x2 %za x1 ⇔ x2b %zb x1b). With each of the following four cases we obtain violations of this

condition.

First, suppose that x1b = x2b. Then ∼s is not demand-consistent for any demand function

with an identifiable preference relation %za such that either x1 ≻za x2 or x2 ≻za x1. Clearly

there are infinitely many such demand functions for both outcomes. For each of the remaining

three cases we have x1b 6= x2b. With the second case we also have x1b ≥ x2b. Then ∼s

is demand-inconsistent whenever x2 ≻za x1. Similarly with x1b ≤ x2b, we have demand-

inconsistency whenever x1 ≻za x2. Finally with the fourth case, we have neither x1b ≥ x2b

nor x1b ≤ x2b. Demand-inconsistency is then obtained with a combination of %za and

%zb identifiable preference relations. We have four such generic combinations: (x1 ≻za

x2 & x2b %zb x1b), (x1 %za x2 & x2b ≻zb x1b), (x2 ≻za x1 & x1b %zb x2b) and (x2 %za x1 &

x1b ≻zb x2b). Each such generic combination holds for an infinite number of actual possible

{%za , %zb} combinations, and hence for an infinite number of demand functions.

Theorem A1

Proof. Given the demand function x̂ define ŶWC = (XWC × Z)
⋂

Ŷ .

a. Let x̂ have single-preference on XWC. Also let (xa, z), (xb, z) ∈ ŶWC with z ∈ Z. We need

to show that (xa, z) ∼wc (xb, z) ⇒ xa ∼z xb. However by definition of this seed relation,

(xa, z) ∼wc (xb, z) ⇒ xa = xb so that the first condition of indifference relation x̂-consistency

is trivially true. Now instead let (x1, za), (x2, zb), (x3, za), (x4, zb) ∈ (XWC × Z)
⋂

Ŷ and

za, zb ∈ Z such that (x1, za) ∼wc (x2, zb) and (x3, za) ∼wc (x4, zb). Then again by definition

of the seed relation we have x1 = x2 and x3 = x4 so that trivially x1 %zb x3 ⇔ x2 %zb x4.

Since demand is single-preferenced on XWC , x1 %za x3 ⇔ x1 %zb x3. Putting these two
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together we have x1 %za x3 ⇔ x2 %zb x4, satisfying the second condition of indifference

relation x̂-consistency. Thus ∼wc is x̂-consistent on ŶWC.

b. Let ∼wc be x̂-consistent on ŶWC, let x1, x2 ∈ XWC

⋂
X̂ and let za, zb ∈ Z. Then

(x1, za) ∼wc (x1, zb) and (x2, za) ∼wc (x2, zb), so that by the second condition of x̂-consistency

for indifference relations, x1 %za x2 ⇔ x1 %zb x2. Thus x̂ is single-preferenced on XWC.

Theorem A2

Proof. Given the demand function x̂ : ℜL
++ × Z × ℜ++ → ℜL with identifiable z-fixed

preference relations {%z | z ∈ Z} and obtainable set X̂, define X̂WC = XWC

⋂
X̂. For some

element of Φ(x̂), let %i be the restriction of that preference relation to ŶWC = X̂WC × Z.

a. Let x̂ be single-preferenced on XWC . We need to show that there exists a function

u : X̂WC → ℜ and a preference relation %SX defined on ℜ×Z such that %i can be specified

with equation (3) using this function and preference relation.

Let z0 ∈ Z, let u : X̂WC → ℜ be a utility function that represents the restriction of

%z0 to X̂WC , and let the set I be the partition of X̂WC into the set of indifference sets

based on u. We then have
⋃

I∈I
I = X̂WC; Ia

⋂
Ib = ∅ for all Ia, Ib ∈ I with Ia 6= Ib;

and u(xa) = u(xb) ⇔ Ia = Ib for any xa, xb ∈ X̂WC and Ia, Ib ∈ I such that xa ∈ Ia

and xb ∈ Ib. For each I ∈ I let x̄(I) ∈ I be an arbitrarily chosen fixed representative

element. Let U be set of all u(x) values for x ∈ X̂WC. Then for each u0 ∈ U there is

some unique I0 ∈ I such that for any x0 ∈ I0 we have u0 = u(x0). We thus have a well

defined inverse utility function Iu : U → I. We can now define our preference relation %SX

by (ua, za) ≻SX (ub, zb) ⇔ (x̄(Iu(u
a)), za) %i (x̄(Iu(u

b)), zb).

Let (xa, za), (xb, zb) ∈ ŶWC. Then (u(xa), za) %SX (u(xb), zb) ⇔ (x̄(Iu(u(xa))), za) %i

(x̄(Iu(u(xb))), zb). By construction (x̄(Iu(u(xa))), z0) ∼i (xa, z0) and (x̄(Iu(u(xb))), z0) ∼i

(xb, z0). Since x̂ is single-preferenced on XWC, we also have (x̄(Iu(u(xa))), za) ∼i (xa, za) and

(x̄(Iu(u(xb))), zb) ∼i (xb, zb), so that (x̄(Iu(u(xa))), za) %i (x̄(Iu(u(xb))), zb) ⇔ (xa, za) %i

(xb, zb). Thus (u(xa), za) %SX (u(xb), zb) ⇔ (xa, za) %i (xb, zb).

b. Let x̂ be not single-preferenced on XWC. We need to show that there does not exist any

combination of a function u : X̂WC → ℜ and a preference relation %SX defined on ℜ × Z

such that %i can be specified with equation (3) using these two elements.

This is proved by contradiction. Suppose that these two elements exist. Let za, zb ∈ Z

and x1, x2 ∈ X̂WC. Demand-consistency gives us (x1, za) %i (x2, za) ⇔ x1 %za x2 and

(x1, zb) %i (x2, zb) ⇔ x1 %zb x2. From equation (3) we have (x1, za) %i (x2, za) ⇔
(u(x1), za) %SX (u(x2), za) and (x1, zb) %i (x2, zb) ⇔ (u(x1), zb) %SX (u(x2), zb). We also

have (u(x1), za) %SX (u(x2), za) ⇔ u(x1) ≥ u(x2) ⇔ (u(x1), zb) %SX (u(x2), zb). Putting all

these together we get x1 %za x2 ⇔ x1 %zb x2, so that x̂ is single-preferenced on XWC. Then

by contradiction, the combination u and %SX cannot exist.

Theorem A3

Proof. Given the demand function x̂ with identifiable z-fixed preference relations {%z | z ∈
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Z}, let a function χ : ℜ++×Z×Z → ℜ++ exist such that for any xαa
1 , xβa

1 ∈ ℜ++, xα
−1, x

β
−1 ∈

ℜL−1
++ and za, zb ∈ Z, equation (5) is valid with xαb

1 = χ(xαa
1 , za, zb) and xβb

1 = χ(xβa
1 , za, zb).

We need to prove the existence of some functions U : ℜ× ℜL−1
++ → ℜ and f : ℜ++ × Z → ℜ

such that %rp as defined by equation (4) is x̂-consistent.

For any fixed z0 ∈ Z define f by f(x, z) = χ(x, z, z0). Let u0(x1, x−1) be a utility func-

tion that represents the identifiable preference relation %z0 and define U by U(f, x−1) =

u0(f, x−1). Finally we use these two functions in the context of equation (4) to fully define

a preference relation %rp. Then for any (xa∗
1 , xa∗

−1), (x
b∗
1 , xb∗

−1) ∈ ℜL
++ and z∗ ∈ Z, we have,

(xa∗
1 , xa∗

−1, z
∗) %rp (xb∗

1 , xb∗
−1, z

∗) ⇔ U(f(xa∗
1 , z∗), xa∗

−1) ≥ U(f(xb∗
1 , z∗), xb∗

−1) ⇔ u0(χ(xa∗
1 , z∗, z0),

xa∗
−1) ≥ u0(χ(xb∗

1 , z∗, z0), xb∗
−1) ⇔ (χ(xa∗

1 , z∗, z0), xa∗
−1) %z0 (χ(xb∗

1 , z∗, z0), xb∗
−1) ⇔ (xa∗

1 , xa∗
−1) %z∗

(xb∗
1 , xb∗

−1), so that %rp is x̂-consistent. The last equivalence relation comes from the properties

of χ in the context of equation (5).
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