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Abstract

In this paper we consider four different game-theoretic approaches to describe the forma-
tion of social networks under mutual consent and costly communication. First, we consider
Jackson-Wolinsky’s concept of pairwise stability. Next, we introduce a stronger version of
this concept based on linking decisions by nodes, denoted as strict pairwise stability. Third,
we consider Myerson’s consent game and its Nash equilibria. Fourth, within the context of
Myerson’s consent game, we consider self-confirming equilibria based on simple myopic
belief systems.

We provide an exhaustive comparison of the classes of equilibrium networks that result
from each of these four approaches. We determine the conditions under which there is
equivalence of pairwise stability and strict pairwise stability. Second, we show that the
Nash equilibria of Myerson’s consent game form a super set of the class of pairwise stable
networks, while strict pairwise stability and monadic stability are fully equivalent.
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1 On network formation under mutual consent

The theory of network formation has been extensively studied by economists and game theorists

in the past decade. Following the seminal contribution by Jackson and Wolinsky (1996) that

initiated the game theoretic literature on network formation, a relatively sparse strand in this

literature has addressed the modeling of mutual consent in link formation. This realistic crite-

rion requires that both parties actively communicate their agreement to the formation of a link

between them.1 Jackson and Wolinsky (1996) introduced the fundamental concept of pairwise

stability to describe this behavioral hypothesis. In a pairwise stable network no player wishes

to sever any of her links—considered one at a time—and no pair of players wishes to form a

new link. Pairwise stability thus is a non-strategic, link-based stability concept that functions

like an algorithm checking whether an existing network satisfies this stability concept.

A purely non-cooperative approach to network formation under mutual consent can be based

on the consent game introduced in Myerson (1991). In this normal form non-cooperative game,

every player sends a list of messages to the other players whether she wants to form a link

with any of them or not. The links formed are exactly those for which both players indicate

to want to form a link. It has already been pointed out by Myerson that the resulting class of

networks supported by Nash equilibria in the consent game is very large and, thus, there is a

major indeterminacy problem concerning the non-cooperative approach to network formation

under mutual consent. In this paper we confirm this assessment. This problem is even more

pressing when communication is costly; under strictly positive communication costs, the empty

network is always supported through a strict Nash equilibrium in the consent game, indicating

that it is very unlikely that myopic, selfish behavior can lead to the formation of meaningful,

non-trivial social networks.

In this paper we introduce two new concepts to describe the formation of social networks

under mutual consent and costly communication leading to reasonably restrictive sets of non-

trivial stable networks. First, we develop a belief-based stability concept denoted as monadic

stability for understanding a purely non-cooperative process of network formation itself. We

amend Myerson’s consent game such that players form simple, myopic beliefs about the direct

benefits other players have to form links with them. According to these myopic beliefs, each

player i assumes that another player j is willing to form a new link with i if j stands to benefit

from it in the prevailing network. Similarly i also assumes that j will break an existing link i j in

the prevailing network if j does not benefit from having this link in the current network. In this

1This is stands in contrast to one-sided link formation in so-called Nash networks, seminally introduced in Bala
and Goyal (2000). In the Bala-Goyal approach, players decide independently whether to link with another player
or not.
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process player i assumes that all other links in the prevailing network remain unchanged.2 These

simple and myopic beliefs capture the fact that network formation occurs primarily between

acquaintances who sufficiently large an amount of information about each other to assess second

order effects of network changes.3 This concept can also be viewed as a normal form version

of the self-confirming equilibrium concept introduced by Fudenberg and Levine (1993).

Second, we consider a subclass of pairwise stable networks that is based on a node-based

formulation of the Jackson-Wolinsky pairwise stability conditions. This reformulation supports

the development of an alternative non-cooperative approach to network formation. From this

perspective, a network is strictly pairwise stable if each individual player represented by a node

in the network has no incentives to sever one or more of her links and to form any new link

with another player. This reformulated, node-based stability notion leads to a much smaller

class of networks than the original Jackson-Wolinsky pairwise stability concept. Moreover, this

reduced class of networks consists only of non-trivial networks, usually excluding the empty

network from consideration.

We show three equivalencies in this paper. First, we establish the necessary and sufficient

conditions under which pairwise stability and strict pairwise stability are equivalent. These

conditions are twofold. On the one hand, different players should exhibit the same ordinal

preference over the formation of new links in any network. Hence, there is underlying objective

source for the value of adding links to an existing network. In many applications this is indeed

plausible. On the other hand, the payoffs from network formation should satisfy a convexity

condition. This convexity condition imposes that there are only limited negative synergies from

link formation for each participating player. Thus, forming multiple beneficial links still yields

an overall positive payoff from these links.

The second equivalence result states that the class of networks supported by Nash equilibria

in Myerson’s consent game under costly communication is exactly the class of so-called strong

link deletion proof networks. Thus, no player has any incentives to delete one or more of her

existing links. In other words, we determine that myopic, selfish behavior results into a very

poor class of equilibrium networks in the context of mutual consent and costly communication.

Indeed, in particular the empty network is always strongly link deletion proof. Hence, it is

reasonable to ask how a non-trivial network can at all be formed by selfish individuals. This

formalizes the well-known consensus that Myerson’s consent game results into too large a class

of equilibrium networks, which always includes the empty network.
2Thus, these beliefs are “myopic” in the sense that they only pertain to direct effects of the addition or removal

of a link in the network. In this regard these beliefs disregard higher order effects on the payoffs of all players in
the network due to the addition or removal of such a link.

3Another reason for chosing a simple set of beliefs was to understand the role beliefs have in supporting
networks with desirable properties.
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Our third equivalence result provides a partial solution to this question of proper network

formation under mutual consent and costly communication. We show that the class of monad-

ically stable networks in the consent game under costly communication is exactly equal to the

family of strictly pairwise stable networks. Thus, the introduction of simple myopic beliefs

overcomes the unwillingness to form links induced by the costly nature of communication and

the selfishness incorporated into the Nash equilibrium concept within Myerson’s consent game.

In this regard these myopic belief systems represent a certain “confidence” on part of each

player to engage in communication to form links with players that have a obvious (first-order)

benefit from the addition of such a link. This confidence suffices to form non-trivial social

networks.

We assess the third equivalency as the most important of the three presented in this paper,

although combined with the two other equivalencies a rather complete picture emerges of how

the various equilibrium concepts and approaches are related. In short, the third equivalency

shows that “trust builds networks” even though there are very significant hurdles imposed on the

players to build links. The introduction of “trust” in the form of confidence through a myopic

belief system requires that beliefs are confirmed. Thus, a certain commonality is required to

achieve such common priors and beliefs. This is precisely the foundation for the confidence as

a form of social trust incorporated into our monadic stability concept.

The rest of the paper is organized as follows. In Section 2 we introduce some mathematical

preliminaries. Section 3 discusses models of network formation. In particular, we develop

different network-based stability concepts and the belief based model of network formation.

Section 4 contains the three equivalence theorems. Section 5 has some concluding remarks.

Currently the proofs of all three results are collected in Section 6. An appendix discusses some

subtleties regarding Jackson-Wolinsky’s definition of link addition proofness.

2 Preliminaries and notation

In this section we introduce the basic concepts and notation pertaining to non-cooperative

games and networks. The section concludes with a brief overview of the consent model of

network formation with two-sided costs. We follow the notation and terminology outlined in

Jackson (2003) and Jackson (2004).

2.1 Non-cooperative games

A non-cooperative game on a fixed, finite player set N = {1, . . . , n} is given by a list (Ai, πi)i∈N

where for every player i ∈ N, Ai denotes an action set. For every a ∈ A and i ∈ N, we use
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a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i =
∏

j,i A j to represent the actions selected by the players

other than i. Let πi : A → R denote player i’s payoff function with A = A1 × · · · × An being the

set of all action tuples, and π = (π1, . . . , πn) : A→ RN be the composite payoff function.

An action ai ∈ Ai for player i ∈ N is called a best response to a−i ∈ A−i if for every action

bi ∈ Ai we have that πi(ai, a−i) > πi(bi, a−i). An action tuple â ∈ A is a Nash equilibrium of the

game (A, π) if for every player i ∈ N

πi(â) > πi(bi, â−i) for every action bi ∈ Ai.

Hence, a Nash equilibrium â ∈ A satisfies the property that for every player i ∈ N the action âi

is a best response to â−i.

2.2 Networks

In introducing the basic networks terminology we use established notation from Jackson and

Wolinsky (1996), Dutta and Jackson (2003), and Jackson (2004). The reader may refer to these

sources for a more elaborate discussion.

We limit our discussion to non-directed networks on the player set N. In such networks the

two players making up a single link are both equally essential and the links have therefore a

bi-directional nature. Formally, if two players i, j ∈ N with i , j are related we say that there

exists a link between players them. We use the notion of a link to formalize the presence of

some social relationship between players i and j. We use the notation i j to describe the binary

link {i, j}. Let gN = {i j | i, j ∈ N, i , j} be the set of all potential links.

A network g on N is now introduced as any set of links g ⊂ gN . In particular, the set of

all feasible links gN itself is called the complete network and g0 = ∅ is known as the empty

network. The collection of all networks is defined as

GN = {g | g ⊂ gN}.

The set of (direct) neighbors of a player i ∈ N in the network g is given by

Ni(g) = { j ∈ N | i j ∈ g} ⊂ N.

Similarly we introduce

Li(g) = {i j ∈ gN | j ∈ Ni(g)} ⊂ g
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as the link set of player i in the network g. It only contains links with i’s direct neighbors in g.

We apply the convention that for every player i ∈ N, Li = Li(gN) = {i j | i , j} is the set of all

potential links involving player i.

For every pair of players i, j ∈ N with i , j we denote by g + i j = g ∪ {i j} the network that

results from adding the link i j to the network g. Similarly, g − i j = g \ {i j} denotes the network

obtained by removing the link i j from network g. This convention can be extended to sets of

links h, denoted by g + h = g ∪ h and g − h = g \ h, respectively.

Relationship building—formalized in a link formation process—results into a network and

within a network, benefits for the players are generated depending on how they are connected

to each other. For every player i ∈ N, the function σi : GN → R denotes her network payoff

function. This function assigns to every network g ⊂ gN a value σi(g) that is obtained by player

i when she participates in network g.

The payoffs obtained through the function σi(g) can be interpreted in two different fashions.

First, σi(g) can be interpreted as the net payoffs that player i realizes through participating in

the network g, i.e., player i’s gross benefits from network g minus all costs of participating in g

induced by player i. Second, in some applications, the quantity σi(g) denotes the gross benefits

that accrue to player i ∈ N from participation in network g. In that case it is normal to assume

that σi(g) > 0. In this paper we use the network payoff function σi in both capacities.4

The composite network payoff function is now given by σ = (σ1, . . . , σn) : GN → RN .

Note that the empty network g0 = ∅ generates (reservation) values σ(g0) ∈ RN that might be

non-zero.

Several examples of standard network payoff functions for both noncooperative and cooper-

ative games are reviewed in Jackson (2003). Additionally, in van den Nouweland (1993), Dutta,

van den Nouweland, and Tijs (1998), Slikker (2000), Slikker and van den Nouweland (2000),

and Garratt and Qin (2003) these network payoff functions are based on underlying cooperative

games from where a lot of the networks literature originated. For a review of this strand of the

literature we refer to van den Nouweland (2004).

3 Models of network formation under mutual consent

In this paper we base our analysis on the hypothesis that in the formation of a link between

two individuals, these individuals have to consent to the formation of this link explicitly. This

4In particular σ is used as a net payoff function in the discussion of Jackson and Wolinsky (1996)’s approach
to network formation, while it is used as a gross payoff function in defining our main equilibrium concept.
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imposes restrictions on the modeling of link formation and, thus, on the resulting theories of

network formation.

We distinguish three fundamentally different approaches in the modeling of consent in link

or network formation. First, one can consider equilibrium concepts based on the network struc-

ture directly. Thus, the addition or removal of a link affects the network payoffs received by the

interacting players in a certain fashion. This approach was seminally developed by Jackson and

Wolinsky (1996).

Second, one can model link formation as the outcome of a purely non-cooperative game.

In this approach the players are driven by individual (game-theoretic) payoffs derived from

the network payoff function and standard game-theoretic equilibrium concepts can be used to

model the outcomes of such network forming behavior. This approach was initialized in the

normal form game developed in Myerson (1991).

Third, in this paper we develop a belief-based approach to network formation within My-

erson’s consent game. In this approach we assume that players form beliefs about which other

links will be formed by other players. Subsequently, they forecast how other players will re-

spond to proposals to form links. Each player now optimizes her payoff in view of these beliefs.

This leads to a certain self-confirming equilibrium concept (Fudenberg and Levine, 1993) and

to a so-called “monadic” stability concept in network formation.

Next we discuss some equilibrium concepts based on these three different approaches in

detail.

3.1 Network-based stability concepts

Jackson and Wolinsky (1996) introduced the idea that equilibrium in a network formation pro-

cess is based on whether the participating players have no incentives to delete existing links or

add additional links to the network. This approach has further been developed by Jackson and

Watts (2002), Jackson and van den Nouweland (2005), and Bloch and Jackson (2007). For a

more complete overview we refer also to Bloch and Jackson (2006).

Within the network-based approach we may distinguish two types of equilibrium concepts.

The seminal concept introduced by Jackson and Wolinsky (1996) is link-based and requires

that no player has the incentive to delete an existing link and no pair of players have common

interests to form an additional link in the network. This “pairwise stability” concept can be

defined in three steps:

(i) A network g ⊂ gN is link deletion proof if for every player i ∈ N and every link

i j ∈ Li(g) it holds that σi(g) > σi(g − i j).
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The class of link deletion proof networks for σ is denoted byD(σ) ⊂ GN .

(ii) A network g ⊂ gN is link addition proof if for every pair of players i, j ∈ N with

i j < g :

σi(g + i j) > σi(g) implies σ j(g + i j) < σ j(g).

The class of link addition proof networks for σ is denoted byA(σ) ⊂ GN .

(iii) A network g ⊂ gN is pairwise stable if g is link deletion proof as well as link addition

proof.

The class of pairwise stable networks for σ is denoted by P(σ) ≡ D(σ)∩A(σ) ⊂ GN .

We point out that Jackson-Wolinsky’s definition of link addition proofness is ambiguous in the

sense that links which are payoff-neutral for both players, can either be in a link addition proof

network or not. In the appendix of this paper we sketch an alternative formulation that resolves

this ambiguity and tightens some of our equivalency statements.

An alternative approach is to consider a node- or individual-based approach to the same

incentive constraints. Here each player is required to have no incentives to delete any set of

links under her control or to favor the formation of any new link in which she participates.

Formally, this leads to the notion of “strict” pairwise stability:

(i) A network g ⊂ gN is strong link deletion proof if for every player i ∈ N and every

link set h ⊂ Li(g) it holds that σi(g) > σi(g − h).

The class of strong link deletion proof networks for σ is denoted byDs(σ) ⊂ GN .

(ii) A network g ⊂ gN is strict link addition proof if for every pair of players i, j ∈ N :

i j < g implies σi(g + i j) < σi(g) and σ j(g + i j) < σ j(g).

The class of strict link addition proof networks for σ is denoted byAs(σ) ⊂ GN .

(iii) A network g ⊂ gN is strictly pairwise stable if g is strong link deletion proof as well

as strict link addition proof.

The class of strictly pairwise stable networks for σ is denoted by Ps(σ) ≡ Ds(σ) ∩

As(σ) ⊂ GN .

Obviously, the individual-based concepts are much stronger than the link-based concepts and

for every network payoff function σ it clearly holds that Ds(σ) ⊂ D(σ), As(σ) ⊂ A(σ), and

Ps(σ) ⊂ P(σ).
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3.2 Individuals building networks under mutual consent

A fundamentally different approach to network formation is to model the network formation

process as a non-cooperative game. Here we base our analysis of confidence in link formation

in the setting of the “consent model of network formation” with two-sided link formation costs.

In Gilles, Chakrabarti, and Sarangi (2006) we introduced a non-cooperative model of network

formation under consent based on Myerson’s model of network formation under binary consent

Myerson (1991, page 448). Myerson’s model incorporates the fundamental idea that pairs of

players have to agree mutually on building links in any process of network formation. In our

model we extend this approach to include additive link formation costs.

As before, let σ : GN → RN be a given network payoff function representing the gross bene-

fits that accrue to the players in a network. For every player i ∈ N, we introduce individualized

link formation costs represented by ci = (ci j) j,i ∈ R
N\{i}
+ . (Here, for some links i j ∈ gN it might

hold that ci j , c ji.) Thus, the cost system c describes the difficulty of communicating messages

from one player to another. As such c represents the costly nature of human interaction.

Indeed, in our extension of Myerson’s consent game, players face a cost related to the act

of attempting to make a link with another player. Hence, if player i attempts to form a link

with player j, then player i incurs a cost ci j > 0 regardless of whether the attempt to create this

link was successful or not.5 Now, the pair 〈σ, c〉 represents the basic benefits and costs of link

formation to the players in N.

For every player i ∈ N we introduce an action set

Ai = {(`i j) j,i | `i j ∈ {0, 1} } (1)

Player i seeks contact with player j if `i j = 1. A link is formed if both players seek contact, i.e.,

`i j = ` ji = 1.

Let A =
∏

i∈N Ai where ` ∈ A. Then a resulting network is given by

g(`) = {i j ∈ gN | `i j = ` ji = 1}. (2)

As stated, link formation is costly. Approaching player j to form a link costs player i an amount

ci j > 0. This results in the following game-theoretic payoff function for player i:

πi(`) = σi(g(`)) −
∑
j,i

`i j · ci j (3)

5In the original consent game developed in Myerson (1991), players do not face any costs related to link
formation. Thus, the original consent model can be recovered by assuming that ci j = 0 for all i, j ∈ N.
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where c is the link formation cost introduced at the beginning of this section.

The pair 〈σ, c〉 thus generates the non-cooperative game (A, π) as described above. We

call this non-cooperative game the consent model of network formation with two-sided link

formation costs, or for short the “consent model”.6

3.3 A belief-based approach: Monadic stability

In this section we introduce an equilibrium concept for network formation models that incor-

porates a (limited) form of boundedly rational anticipation or “myopic confidence” into the

process of link formation. This equilibrium concept, called monadic stability, captures the idea

that social networks are mainly formed between acquaintances who have already have some

beliefs about each other. Hence, our main modeling assumption is that social networks arise

only from links between a priori acquaintances and not among random strangers.

That social relations are mainly formed between acquaintances is confirmed empirically by

Wellman, Carrington, and Hall (1988) using data from the East York area. This approach also

forms the foundation of the model in Brueckner (2006), who models friendship based on links

between players chosen from a given set of acquaintances. In the context of our model, it is

assumed that all players in N are acquainted with each other without explicitly modeling how

they get acquainted with each other. Moreover, we assume that each player has knowledge

about the payoffs of the other players and formulates expectations about how the other players

will respond to link proposals.

Under monadic stability, a player assumes that other players are likely to respond affirma-

tively to a proposal to form a link if the addition of this link is profitable for them, i.e., only

the implications of direct links affect the expectations. Note that since further consequences

are not taken into account, this form of behavior introduces a rather myopic form of forward

looking behavior. This limited form of farsightedness thus models the anticipation of a player

in a very specific manner—these beliefs assume that other players will do the “correct” thing

when asked whether to form a link or not based only on that link. Also, this formulation of the

belief structure retains a fair degree of realism in the model.

We now formalize these myopic belief systems for the case of two-sided link formation

costs.

Let 〈σ, c〉 be a network payoff function and an additive link formation cost system. Let (A, π)

be the consent model with two-sided link formation costs generated by 〈σ, c〉.

6While we limit our discussion to the two-sided cost setting in the current paper, Gilles, Chakrabarti, and
Sarangi (2006) also discuss the consent model with one-sided link formation costs. Due to severe coordination
problems this model performs even worse than the model with two-sided link formation costs.
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Within this setting we are now able to introduce myopic beliefs of players regarding the

actions undertaken by the other players in the network formation process. This forms the foun-

dation for the formulation of confidence in link formation.

Definition 3.1 Let ` ∈ A be an arbitrary action tuple. For every player i ∈ N we define i’s

belief system as expectations about direct links `i? ∈ A based on ` by

1. for every j , i with i j ∈ g(`) we let

• `i?
ji = 0 if σ j(g(`) − i j) + c ji > σ j(g(`)) and

• `i?
ji = 1 if σ j(g(`) − i j) + c ji 6 σ j(g(`)),

2. for every j , i with i j < g(`) we let

• `i?
ji = 0 if σ j(g(`) + i j) − c ji < σ j(g(`)) and

• `i?
ji = 1 if σ j(g(`) + i j) − c ji > σ j(g(`)),

3. and for all j, k ∈ N with j , i and k , i we define `i?
jk = ` jk.

In the myopic belief system introduced here each player assumes that other players will re-

spond according to their direct incentives to form a link or not. Of course, these beliefs are

rather limited since they may seem unreasonable if players can engage in some forward look-

ing behavior. On the other hand, these beliefs are myopic and rather simple and can arise in the

absence of substantial interaction among players, i.e., even among mere acquaintances. Hence,

these beliefs form an excellent starting point for link formation. The definition used allows for

a sequential form of rationality in the reasoning of the players during the network formation

process which is at the foundation of the following definitions of stability.

Definition 3.2 Let 〈σ, c〉 be given.

(i) A network g ∈ GN is weakly monadically stable if there exists some action tuple ˆ̀ ∈ A

such that g = g( ˆ̀) and for every player i ∈ N: ˆ̀i ∈ Ai is a best response to ˆ̀i?
−i ∈ A−i

for the payoff function π.

(ii) A network g ∈ GN is monadically stable if there exists some action tuple ˆ̀ ∈ A with

g = g( ˆ̀) for which g is weakly monadically stable such that for every player i ∈ N

player i’s myopic beliefs ˆ̀i? are confirmed, i.e., for every j , i it holds that ˆ̀i?
ji = ˆ̀ ji.
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Weak monadic stability of a network is founded on the principle that every player i ∈ N

anticipates—as captured by her expectations about direct links—that other players will respond

“correctly” to her attempts to form a link with them. Note that `−i is fully replaced by `i?
−i in

the standard best-response formulation of equilibrium for player i and is therefore irrelevant for

the decision making process of i. Hence, a player will agree to form a link with i when it is

myopically profitable to form this link. Similarly, unprofitable direct links initiated by i will be

turned down.

Monadic stability strengthens the above concept by requiring that the beliefs of each player

are confirmed in the resulting equilibrium. Hence, we impose a self-confirming condition on

the equilibrium. This describes the situation that all players are fully satisfied with their beliefs;

the observations that they make about the resulting network confirm their beliefs about the

other players’ payoffs. This can be explained as the outcome of a process of updating the initial

beliefs. The notion of self-confirming equilibrium was developed seminally by Fudenberg and

Levine (1993).

To delineate the two monadic stability concepts for networks, we discuss a three player

example. This example shows that the set of monadically stable networks is usually a strict

subset of the weakly monadically stable networks.

Example 3.3 Consider three players N = {1, 2, 3} and assume that ci j = 1 for all players i ∈ N

and all potential links i j ∈ Li, i.e., we assume uniform link formation costs. Let the network

payoff function σ be given by the table below. This table identifies whether the network in

question is weak monadically stable—indicated by Mw—or whether it is monadically stable—

indicated by M.

Network σ1(g) σ2(g) σ3(g) Stability
g0 = ∅ 0 0 0 Mw

g1 = {12} 0 1 0

g2 = {13} 0 0 3

g3 = {23} 0 0 0

g4 = {12, 13} 3 0 0

g5 = {12, 23} 1 3 3

g6 = {13, 23} 2 2 5 Mw

g7 = gN 3 5 6 M

We consider four networks in this example explicitly, namely g0, g5, g6 and g7 = gN .
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Network g0: We show that this network is weakly monadically stable. In fact, we claim that it

is supported by the strategy tuple `0 = ((1, 1), (0, 0), (0, 0)). Now we compute

`1?
0 = (−, (1, 0), (1, 0))

`2?
0 = ((0, 1),−, (0, 0))

`3?
0 = ((1, 0), (0, 0),−)

We emphasize that in this case Player 1 believes that both other players are willing to

make links with him, because there are direct benefits to forming such links. However,

the other players believe that Player 1 will not attempt to make a link with them, because

she has no direct (net) benefit from doing so.

Now we determine that

• β1

(
`1?

0

)
= (1, 1) is the unique best response to `1?

0 ,

• β2

(
`2?

0

)
= (0, 0) is the unique best response to `2?

0 , and

• β3

(
`3?

0

)
= (0, 0) is the unique best response to `3?

0 .

Observe that Player 1 incurs link formation costs in this case and, hence, π1(`0) = −2 and

π2(`0) = π3(`0) = 0.

Also, note that g0 is not monadically stable. In the strategy tuple `0 player 1’s belief sys-

tem is not confirmed. He expects the other two players to form links with him, although

they do not do so.

Network g5: We argue that this network is neither weakly monadically stable nor monadically

stable. The obvious candidate action tuple to support g5 is `5 = ((1, 0), (1, 1), (0, 1)). We

compute the players’ belief systems as follows:

`1?
5 = (−, (1, 1), (1, 1))

`2?
5 = ((1, 0),−, (0, 1))

`3?
5 = ((1, 1), (1, 1),−)

We now derive that

• β1

(
`1?

5

)
= (1, 1) is the unique best response to `1?

5 ,

• β2

(
`2?

5

)
= (1, 1) is the unique best response to `2?

5 , and

• β3

(
`3?

5

)
= (1, 1) is the unique best response to `3?

5 .
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From this it is clear that g5 cannot be supported by `5. This illustrates that weak monadic

stability requires playing best response to a specific set of beliefs for each i ∈ N. Without

such a restriction on the beliefs it would be possible to support any strategy as weakly

monadic stable. Moreover, observe that players only form beliefs about the behavior of

their acquaintances with regard to direct links, making it myopic but realistic. In fact,

because of this, it is possible that monadically stable equilibria do not exist. Finally, note

that other action tuples can be ruled out in similar fashion.

Network g6: We argue that this network is weakly monadically stable as well. We can show

that g6 is supported by the action tuple `6 = ((0, 1), (1, 1, ), (1, 1)). Again we compute

`1?
6 = (−, (1, 1), (1, 1))

`2?
6 = ((1, 1),−, (1, 1))

`3?
6 = ((0, 1), (1, 1),−)

Note here that player 1 is indifferent between g6 and g7 interms of her net payoff. Thus,

in the computation of `2?
6 we use the bias of player 1 towards having more links rather

than fewer in the definition of player 2’s belief system.

From this we conclude that

• (0, 1) and (1, 1) are both best responses to `1?
6 , i.e., β1

(
`1?

6

)
= {(0, 1), (1, 1)},

• β2

(
`2?

6

)
= (1, 1) is the unique best response to `2?

6 , and

• β3

(
`3?

6

)
= (1, 1) is the unique best response to `3?

6 .

This shows that `6 is indeed a best response to the generated myopic beliefs. We therefore

conclude that g6 is weakly monadically stable. On the other hand, g6 is not monadically

stable. Indeed, in `6 the beliefs of player 2 are not confirmed.

Network g7: First, we claim that this network is strictly pairwise stable. Strong link deletion

proofness follows trivially from the payoffs listed for all other networks. Indeed, the net

payoffs in these networks are at most the net payoff in g7 for all players. The second

condition of strict link addition proofness is trivially satisfied since there are no links that

are not part of g7 = gN .

Second, we argue that the complete network g7 = gN is weakly monadically stable.

We claim that g7 is supported by the action tuple `7 = ((1, 1), (1, 1, ), (1, 1)).7 Here we

7Obviously this is the only candidate action tuple for the complete network gN .
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determine that the players’ belief systems are given by

`1?
7 = (−, (1, 1), (1, 1))

`2?
7 = ((1, 1),−, (1, 1))

`3?
7 = ((1, 1), (1, 1),−)

From this we conclude that

• (0, 1) and (1, 1) are both best responses to `1?
7 , i.e., β1

(
`1?

7

)
= {(0, 1), (1, 1)},

• β2

(
`2?

7

)
= (1, 1) is the unique best response to `2?

7 , and

• β3

(
`3?

7

)
= (1, 1) is the unique best response to `3?

7 .

This shows that `7 is indeed a best response to the generated myopic beliefs. We therefore

conclude that g7 is weakly monadically stable.

Furthermore, all players’ beliefs are confirmed in `7. Thus, we conclude that g7 is monad-

ically stable for `7.

This example clarifies the relationship between the notion of weak monadic stability and the

monadic stability concept. Using the insights from this example we now provide a more general

characterization. �

The following result gives a characterization of the relationship between weak monadic stability

and monadic stability.

Proposition 3.4 Let 〈σ, c〉 be given. Every monadically stable network g ∈ GN for 〈σ, c〉 is

weakly monadically stable such that the supporting belief system ˆ̀ satisfies the property that
ˆ̀i j = ˆ̀ ji for all pairs of players i, j ∈ N.

Proof. Let g ∈ GN be monadically stable and let action tuple ˆ̀ ∈ A support g as such. Suppose

that i j < g with ˆ̀i j = 1 and ˆ̀ ji = 0. Then from the property that ˆ̀i is a best response to the belief

system ˆ̀i? it can be concluded that ˆ̀i j = 1 implies that ˆ̀i?
ji = 1. But this would then imply that

ˆ̀ ji , ˆ̀i?
ji , violating the monadic stability self-confirmation condition.

The reverse of the assertion of Proposition 3.4 is not true. Simple examples can be constructed

in which weakly monadically stable networks exist that satisfy the stated property, but which

are not monadically stable.

Furthermore, we comment on the relationship between weak monadic stability and the

network-based stability concepts. First, we remark that weakly monadically stable networks
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are not necessarily strong link deletion proof or link addition proof. Second, a network that is

strong link deletion proof as well as link addition proof is not necessarily weakly monadically

stable. We refer to network g6 in Example 3.3 of a network that is weakly monadically stable,

but not link addition proof. The other claims can be shown by properly constructed examples.

4 Equivalence results

In this section we present three fundamental equivalencies between the various approaches to

the modeling of network formation. First, we compare the pairwise stability and the strict

pairwise stability concepts within the network-based approach. Second, we compare the Nash

equilibria in the Myerson game with the network-based stability concepts. Finally, we investi-

gate the equivalence of the belief-based stability concept with strict pairwise stability.

For the proofs of these three equivalence results we refer to Section 6 of this paper.

Our first equivalency is between the link-based and node-based concepts within the network-

based approach to network formation. For the statement of this equivalence result we require

three additional properties.

• A network payoff function σ is discerning on a class of networks G ⊂ GN if for every

network g ∈ G it holds that for all players i, j ∈ N with i j < g either σi(g + i j) , σi(g) or

σ j(g + i j) , σ j(g) or both.

• A network function σ is link uniform on a class of networksG ⊂ GN if for every network

g ∈ G and all pairs of players i, j ∈ N with i j < g :

σi(g) 6 σi(g + i j) implies σ j(g) 6 σ j(g + i j).

• Finally, a network payoff function σ is network convex on a class of networks G ⊂ GN if

for every network g ∈ G, every player i ∈ N, and every link set h ⊂ Li with h∩Li(g) = ∅ :∑
i j∈h

[
σi(g + i j) − σi(g)

]
> 0 implies σi(g + h) > σi(g).

Using these properties we can now state our first equivalency.

Equivalence Theorem 1 Letσ be some network payoff function. Then the following properties

hold:

(a) As(σ) = A(σ) if and only if σ is discerning as well as link uniform onA(σ).
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(b) Ds(σ) = D(σ) if and only if σ is network convex onD(σ).

This equivalence theorem gives an exact characterization of equalities between various classes

of stable networks in terms of properties of the network payoff function. The nature of these

characterizing properties is that they are rather strong, what is to be expected in light of the

desired equivalencies. It may be clear that these characterizing properties cannot be weakened.

The main consequence of Equivalence Theorem 1 is the equivalence of pairwise stable and

strictly pairwise stable networks for a given network payoff function.

Corollary 4.1 For a network payoff function σ it holds that Ps(σ) = P(σ) if and only if σ is

discerning and link uniform onA(σ) as well as network convex onD(σ).

The second equivalency concerns the comparison of the class of networks supported by Nash

equilibria in Myerson’s consent game and the classes of stable networks defined in the network-

based approach to network formation. It is well known that the Nash equilibria of the Myerson

model support a very extensive class of networks. In fact, it is the class of strongly link deletion

proof networks of a corresponding network payoff function.

Equivalence Theorem 2 Let σ and c > 0 be a network payoff function and an additive link

building cost system. A network g ⊂ gN is supported by a Nash equilibrium in the consent

model (A, π) if and only if g is strong link deletion proof for the net payoff function ϕ given by

ϕi(g) = σi(g) −
∑

i j∈Li(g)

ci j.

A consequence of Equivalence Theorem 2 is that the empty network g0 = ∅ is supported

as a Nash equilibrium in the consent model (A, π). Furthermore, g0 can even be supported

through a strict Nash equilibrium. Given the generality of the the consent model, this is a very

undesirable result for network formation theory. It implies that equilibrium concepts based on

different notions of stability have to be developed to explain the emergence of non-trivial social

networks.

Our third equivalency concerns the monadically stable networks generated through a belief-

based equilibrium concept in Myerson’s consent model and the class of strictly pairwise stable

networks.

Equivalence Theorem 3 Let σ and c � 0 be a network payoff function and an additive link

building cost system. A network g ⊂ gN is monadically stable for 〈σ, c〉 if and only if the network

g is strictly pairwise stable for the net payoff function ϕ given by

ϕi(g) = σi(g) −
∑

i j∈Li(g)

ci j.
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Equivalence Theorem 3 gives us a tool to formulate an existence result for monadically stable

networks. Indeed, as stated in Theorem 5.7, Chakrabarti and Gilles (2007), there exists at

least one strictly pairwise stable network if the consent model corresponding to 〈σ, c〉 admits

an ordinal potential function. (Monderer and Shapley, 1996) This results into the following

corollary to Equivalence Theorem 3:

Corollary 4.2 If the consent model (A, π) based on 〈σ, c〉 admits an ordinal potential, then

there exists at least one monadically stable network for 〈σ, c〉.

5 Coda: Concluding remarks

We have discussed four approaches to describe network formation under mutual consent and

costly communication. Under pairwise stability one only considers the addition and deletion of

a single link. The stronger notion of strict pairwise stability players determine in a sovereign

fashion whether links are added or deleted; adding a link requires benefits for both consenting

parties. Third, in Myerson’s consent model one considers the Nash equilibria of the consent

model. Unfortunately, these Nash equilibria have little discerning properties and include always

the empty network. This is a consequence of the purely selfish nature of the behavior described

by the Nash equilibrium concept.

Finally, we introduced Monadic stability as an alternative concept to Myerson’s consent

model. Here, individuals act on their beliefs about what other decision makers might gain from

adding links. Beliefs have to be confirmed by the resulting actions of the various players.

We explored the main relationships between these models through the formulation of three

equivalence results:

• Equivalence between pairwise stability and strict pairwise stability only occurs under

strong assumptions;

• The Nash equilibria of Myerson’s consent model exactly support the strongly link dele-

tion proof networks;

• Monadic stability is equivalent to strict pairwise stability, implying existence of monadi-

cally stable networks for situations admitting an ordinal potential.

Through the monadic stability concept we considered the notion of confidence (as a form of

mutual trust) into an advanced equilibrium concept, specifically designed for network forma-

tion. Confidence is introduced as an “internalized” feature into the behavior of the players in
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network formation. Thus, trusting behavior is internalized and as such an individualized fea-

ture rather than a social normative phenomenon. The strength as well as the weakness of this

approach is the myopic nature of the belief systems. Players do not apply very sophisticated

reasoning; they only look at the first order effects of link formation. It is yet unclear how a fully

developed theory of trust as a social phernomenon looks like.

6 Proofs of the main equivalencies

6.1 Proof of Equivalence Theorem 1

Proof of assertion (a).

If: Suppose that the network payoff function σ is discerning and link uniform on A(σ). Since

As(σ) ⊂ A(σ), we have to show thatA(σ) ⊂ As(σ).

Let g ∈ A(σ) and take i, j ∈ N such that i j < g. Now first suppose that

σi(g) < σi(g + i j) (4)

Then by link addition proofness it holds that

σ j(g) > σ j(g + i j) (5)

and at the same time by link uniformity that

σ j(g) 6 σ j(g + i j) (6)

Now (5) is in direct contradiction to (6). Thus, we conclude that (4) cannot hold and, as a

consequence, for any i j < g it holds that σi(g) > σi(g + i j) as well as σ j(g) > σ j(g + i j).

Next suppose that

σi(g) = σi(g + i j) (7)

Then from link uniformity it follows that

σ j(g) 6 σ j(g + i j) 6 σ j(g)

and, therefore, σ j(g) = σ j(g+i j). But this equality and (7) are in contradiction with the assumed

property that σ is discerning onA(σ).
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Thus, we conclude from the above that for any i j < g it holds that σi(g) > σi(g + i j) as well as

σ j(g) > σ j(g + i j). Thus, g ∈ As(σ).

Only if: Assume that As(σ) = A(σ) for the given network payoff function σ. Now let g ∈

A(σ) and i j < g. Then from g ∈ As(σ) it follows that σi(g) > σi(g + i j) as well as σ j(g) >

σ j(g + i j). But this straightforwardly implies that σ is discerning as well as link uniform for g.

This completes the proof of the assertion (a).

Proof of assertion (b).

If: Let σ be network convex on D(σ). Obviously from the definitions it follows that Ds(σ) ⊂

D(σ). Thus, we only have to show thatD(σ) ⊂ Ds(σ).

Now let g ∈ D(σ). Then for every player i ∈ N and link i j ∈ Li(g) it has to hold that

σi(g) > σi(g − i j) due to link deletion proofness of g. In particular, for any link set h ⊂

Li(g) :
∑

i j∈h
[
σi(g) − σi(g − i j)

]
> 0. Since σ is network convex on D(σ) and g ∈ D(σ), it

follows that σi(g) > σi(g − h) for every link set h ⊂ Li(g). In other words, g is strong link

deletion proof, i.e., g ∈ Ds(σ).

Only if: Assume that D(σ) = Ds(σ). Suppose further to the contrary that σ is not network

convex on D(σ). Then there exists some g ∈ D(σ) and some i ∈ N such that for some link set

h ⊂ Li(g) we have that
∑

i j∈h
[
σi(g) − σi(g − i j)

]
> 0 as well as σi(g) < σi(g − h).8 But then

this implies straightforwardly that player i would prefer to sever all links in h, i.e., g < Ds(σ).

Thus, g cannot be strong link deletion proof giving us the necessary contradiction

This completes the proof of the assertion (b).

6.2 Proof of Equivalence Theorem 2

Before we construct a proof of this equivalence result, we introduce some auxiliary concepts.

First, note that in Myerson’s consent game (A, π) based on 〈σ, c〉 a strategy profile supports a

unique network, but a given network can be supported by many different strategy profiles. We

limit ourselves to the most obvious supporting strategy profile: A strategy profile l in (Aa, πa) is

non-superfluous if for all pairs i, j it holds that li j = 1 if and only if l ji = 1.

We remark that each network can now be supported by a unique non-superfluous strategy

profile. We call a non-superfluous strategy profile that is a Nash equilibrium a non-superfluous

Nash equilibrium.9

8Given that g is link deletion proof, we know that
[
σi(g + i j) − σi(g)

]
> 0 for every i j ∈ Li(g). Hence, for h it

has to be true that
∑

i j∈h
[
σi(g) − σi(g − i j)

]
> 0.

9We are grateful to Subhadip Chakrabarti for pointing out that the use of the notions of non-superfluous strategy
profiles and non-superfluous Nash equilibria is required in the proof of this equivalence theorem.
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If: Suppose that g? ⊂ gN is a strong link deletion proof network for ϕ. We now show that

it is supported by a non-superfluous Nash equilibrium strategy in (A, π). Consider the non-

superfluous strategy profile l? ∈ A such that g(l?) = g?. We will show that l? is a Nash

equilibrium in Myerson’s consent game (A, π). First, note that

πi(l?) = σi(g(l?)) −
∑
k,i

l?ik · cik

= σi(g?) −
∑

k∈Ni(g?)

cik = ϕi(g?).

For some player i consider li , l?i . Define hi = {ik ∈ g? | lik = 0}. Then, g(li, l?−i) = g?−hi. Since

g? is strong link deletion proof with respect to ϕ, it follows that ϕi(g? − hi) 6 ϕi(g?). Thus,

πi(li, l?−i) = σi(g(li, l?−i)) −
∑
k,i

lik · cik

= σi(g? − hi) −
∑

k∈Ni(g?−hi)

cik −
∑

k : lik=1,l?ki=0

cik

6 σi(g? − hi) −
∑

k∈Ni(g?−hi)

cik

= ϕi(g? − hi) 6 ϕi(g?) = πi(l?).

This proves that l? is indeed a Nash equilibrium.

Only if: Let l? be an arbitrary Nash equilibrium. Then g(l?) = {i j ∈ gN | l?i j · l
?
ji = 1} = g?. We

show that g? is strong link deletion proof with respect to ϕ.

Suppose player i deletes a certain link set hi ⊂ Li(g?). Define li ∈ Ai as li j = 1 if i j ∈ g? − hi

and li j = 0 for i j < g? − hi. Then g(li, l?−i) = g? − hi and πi(l?) > πi(li, l?−i). Hence,

ϕi(g?) = σi(g?) −
∑

j∈Ni(g?)

ci j

= πi(l?) +
∑

k : l?ik=1,l?ki=0

cik

> πi(l?)

> πi(li, l?−i)

= σi(g(li, l?−i)) −
∑
k,i

lik · cik

= σi(g? − hi) −
∑

k∈Ni(g?−hi)

cik = ϕi(g? − hi).
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This proves g? is strong link deletion proof for ϕ.

6.3 Proof of Equivalence Theorem 3

We first develop some simple auxiliary insights for weakly monadically stable networks. Sup-

pose that g ∈ GN is weakly monadically stable relative to 〈ϕ, c〉.

Then there exists some action tuple ˆ̀ ∈ A such that g = g( ˆ̀) and for every player i ∈ N:
ˆ̀i ∈ Ai is a best response to ˆ̀i?

−i ∈ A−i for the payoff function π.

For this setting we state two auxiliary results.

Lemma 6.1 If ˆ̀i?
ji = 0 and ci j > 0, then `i j = 0 is the unique best response to ˆ̀i?.

Proof. Clearly, if player i selects `i j = 1, i only incurs strictly positive costs ci j > 0 and no

benefits. This implies that player i makes a loss from trying to establish link i j. Hence, `i j = 0

is the unique best response to ˆ̀i?.

Lemma 6.2 If i j ∈ g( ˆ̀) with ci j > 0 and c ji > 0, then ˆ̀i?
ji = ˆ̀ j?

i j = 1.

Proof. We remark that i j ∈ g( ˆ̀) if and only if ˆ̀i j = ˆ̀ ji = 1. The negation of the assertion stated

in Lemma 6.1 applied to ˆ̀i j = 1 and ˆ̀ ji = 1 independently now implies that ˆ̀i?
ji = ˆ̀ j?

i j = 1.

We also require a partial characterization of weakly monadically stable networks. This is stated

in the following lemma.

Lemma 6.3 Let 〈σ, c〉 be such that c � 0. Then every weakly monadically stable network

g ∈ GN in Myerson’s consent model (A, π) is link deletion proof for the network payoff function

ϕ given in Equivalence Theorem 3.

Proof. Suppose that g ∈ GN is weakly monadically stable in (A, π) relative to 〈ϕ, c〉. Then there

exists some action tuple ˆ̀ ∈ A such that g = g( ˆ̀) and for every player i ∈ N: ˆ̀i ∈ Ai is a best

response to ˆ̀i?
−i ∈ A−i for the payoff function π. Of course ˆ̀i ∈ Ai is a best response to player i’s

myopic belief system ˆ̀i?.

Suppose that g is not link deletion proof for ϕ. Then there exists a player i ∈ N with i j ∈ g for

some j , i and ϕi(g − i j) > ϕi(g), or σi(g − i j) + ci j > σi(g). By definition, ˆ̀ j?
i j = 0, and hence

from Lemma 6.1 ` ji = 0 is the unique best response to ˆ̀ j?. Since i j ∈ g by assumption it has to

hold that ˆ̀ ji = 1. This contradicts the hypothesis that ˆ̀ j is a best response to ˆ̀ j?.

This contradiction indeed shows that g has to be link deletion proof relative to ϕ.

The proof of Equivalence Theorem 3 now proceeds as follows:

First we show that strict pairwise stability for ϕ implies monadic stability for 〈σ, c〉 under the
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hypothesis that c � 0.

Let g ⊂ gN be a network that is strictly pairwise stable with regard to the net payoff function ϕ.

Then g is strong link deletion proof and satisfies the property that

i j < g ⇒ ϕi(g + i j) < ϕi(g) as well as ϕ j(g + i j) < ϕ j(g).

Hence, this implies that

i j < g ⇒ σi(g + i j) − ci j < σi(g) as well as σ j(g + i j) − c ji < σ j(g). (8)

With g we now define for all i ∈ N:

• ˆ̀i j = 1 if i j ∈ g, and

• ˆ̀i j = 0 if i j < g.

We investigate whether the given strategy profile ˆ̀ is indeed a best response to ˆ̀? as required

by the definition of weak monadic stability.

Case A: i j < g.

From(8) it now follows immediately that ˆ̀i?
ji = ˆ̀ j?

i j = 0. From the fact that ci j > 0 and c ji > 0

and the beliefs it follows from Lemma 6.1 that Case A implies that ˆ̀i j = 0 is the unique best

response to ˆ̀i? as well as that ˆ̀ ji = 0 is the unique best response to ˆ̀ j?.

Hence, for Case A the strategy satisfies the condition imposed by weak monadic stability.

Case B: i j ∈ g.

In this case ˆ̀i j = ˆ̀ ji = 1.

Link deletion proofness of g now implies that ˆ̀i?
ji = 1 or else (8) is contradicted.

Cases A and B imply now that

i j ∈ g if and only if ˆ̀i?
ji = ˆ̀ j?

i j = 1 (9)

Applying strong link deletion proofness and the conclusion from Case A leads us to the con-

clusion that ˆ̀i is the unique best response to ˆ̀i?. This in turn implies that ˆ̀ indeed supports g as

a weakly monadically stable network.

Finally, it is immediately clear from (9) and the definition of ˆ̀ that for all i, j ∈ N : ˆ̀i?
ji = ˆ̀i j.

Thus, we conclude that ˆ̀ supports g as a monadically stable network. This completes the proof

of the assertion.
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Second, we show that monadic stability for 〈σ, c〉 implies strict pairwise stability for ϕ under

the hypothesis that c � 0.

Let g be monadically stable for 〈σ, c〉. Then there exists some action tuple ˆ̀ ∈ A such that

g = g( ˆ̀) and for every player i ∈ N: ˆ̀i ∈ Ai is a best response to ˆ̀i?
−i ∈ A−i for the payoff

function π. Furthermore, ˆ̀i? = ˆ̀
−i.

From Lemma 6.3 we already know that g has to be link deletion proof for ϕ since g is weakly

monadically stable. Hence, for every i j ∈ g we have that σi(g − i j) + ci j > σi(g). Now through

the definition of the belief systems and the self-confirming condition of monadic stability we

conclude that for every i j ∈ g :

ˆ̀i j = ˆ̀ j?
i j = ˆ̀ ji = ˆ̀i?

i j = 1.

Let h ⊂ Li(g). Define `h ∈ Ai by

`h
i j =

 ˆ̀i j if i j < h

0 if i j ∈ h

Then g(`h, ˆ̀
−i) = g \ h. Since ˆ̀i is a best response to ˆ̀i? = ˆ̀

−i
10 it has to hold that πi(`h, ˆ̀

−i) 6

πi( ˆ̀). Hence,

σi(g \ h) +
∑
i j∈h

ci j 6 σi(g).

This in turn implies that ϕi(g \ h) 6 ϕi(g). Thus, since i and h were chosen arbitrarily, network

g is indeed strong link deletion proof.

Next, let i j < g. Then ˆ̀i j = 0 and/or ˆ̀ ji = 0. Suppose that ˆ̀ ji = 0. Then by the self-confirming

condition of monadic stability it has to hold that ˆ̀i?
ji = ˆ̀ ji = 0. Hence by Lemma 6.1 ˆ̀i j = 0.

Thus we conclude that for every i j < g :

ˆ̀i j = ˆ̀ j?
i j = ˆ̀ ji = ˆ̀i?

i j = 0.

This in turn implies through the definition of the belief system that σi(g + i j) − ci j < σi(g) as

well as σ j(g+ i j)−c ji < σ j(g). Or ϕi(g+ i j) < ϕi(g) as well as ϕi(g+ i j) < ϕi(g). This is desired

requirement for strict pairwise stability.

10Here we apply again the self-confirming condition that is satisfied by ˆ̀.
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A Appendix: Some remarks on link addition proofness
Let σ : GN → RN be some network payoff function that assigns to player i ∈ N her net benefits
σi(g) from participating in network g. We reformulate the link addition proofness property as
follows:

A network g ⊂ gN is link addition proof if and only if for every pair of players i, j ∈ N with
i j < g :

σi(g + i j) > σi(g) implies σ j(g + i j) 6 σ j(g).

This implies that if for some pair i, j ∈ N with i j < g for which it holds that

σi(g + i j) = σi(g) as well as σ j(g + i j) = σ j(g),

the definition of link addition proofness is ambiguous whether i j should be in network g in
order to be link addition proof or not. Hence, links that are not discerning, form an ambiguous
class for link addition proof networks. This seems rather unsatisfactory. Therefore, we consider
a modification of Jackson and Wolinsky (1996)’s definition:

Definition A.1 A network g ⊂ gN is link addition secure if for every pair of players i, j ∈ N
with i j < g :

σi(g + i j) > σi(g) implies σ j(g + i j) < σ j(g).

The class of link addition secure networks is denoted byA?(σ) ⊂ GN .

This definition of the addition of links to a network requires that all non-discerning links should
be part of a link addition secure network. This makes the definition unambiguous. Next we
explore some properties of this modified concept.

Proposition A.2 Let σ be some network payoff function. Then the following properties hold:

(a) As(σ) ⊂ A?(σ) ⊂ A(σ).

(b) It holds thatA?(σ) = A(σ) if and only if σ is discerning onA(σ).

(c) It holds thatAs(σ) = A?(σ) if and only if σ is link uniform onA?(σ).

Proof. Assertion (a) is trivial and therefore omitted.

(b) If: Let σ be discerning and let g be link addition proof. Suppose i, j ∈ N with i j < g and
that σi(g+ i j) > σi(g). Now, if σ j(g+ i j) = σ j(g), then σi(g+ i j) > σi(g) by σ being discerning.
But this contradicts with the hypothesis that g is link addition proof. Thus, σ j(g + i j) < σ j(g),
confirming that g is in fact link addition secure.

(b) Only if: Suppose that σ is not discerning on A(σ). Then there exists some g ∈ A(σ) and
some i, j ∈ N with i j < g such that σi(g + i j) = σi(g) as well as σ j(g + i j) = σ j(g). This
immediately implies that g is not link addition secure, since the link i j should be in the network
to satisfy link addition security.
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(c) If: Suppose that σ is link uniform on A?(σ) and take g ∈ A?(σ). Take i, j ∈ N such that
i j < g. Now first suppose that

σi(g) 6 σi(g + i j) (10)

Then by link addition security it holds that

σ j(g) > σ j(g + i j) (11)

and at the same time by link uniformity that

σ j(g) 6 σ j(g + i j) (12)

Now (11) is in direct contradiction to (12). Thus, we conclude that (10) cannot hold and,
therefore, for any i j < g it must hold that σi(g) > σi(g + i j) as well as σ j(g) > σ j(g + i j).
Hence, we conclude that g ∈ As(σ).

(c) Only if: Assume that As(σ) = A?(σ). Now take g ∈ A?(σ) and let i j < g. Then from
g ∈ As(σ) it follows that σi(g) > σi(g + i j) as well as σ j(g) > σ j(g + i j). This implies that σ is
link uniform for g.
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