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Abstract

This paper addresses the existence of Nash networks for the one-way flow model of Bala

and Goyal (2000) in a number of different settings. We provide conditions for the ex-

istence of Nash networks in models where costs and values of links are heterogeneous

and players obtain resources from others through the directed path between them. We

find that costs of establishing links play a vital role in the existence of Nash networks.

Next we examine the existence of Nash networks when there are congestion effects in

the model.
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1 Introduction

The importance of networks in economic and social activities has led to the emer-

gence of a growing literature seeking to understand the formation of these networks.

This literature in economics has focused on three main questions: (i) What are the

incentives for self-interested players to form links with each others and what are the set

of the stable resulting networks? (ii) What networks are efficient? and (iii) Is there a

conflict between the set of stable and efficient networks?

We can discern two distinct strands in the literature differentiated by the type of sta-

bility concept used.

The first type employs the notion of pairwise stability and its variants and is inspired

by Jackson and Wolinsky’s (1996 [9]) work. These authors assume that a link is formed

between two players if both players involved in the link agree to form that link, though

link deletion occurs unilaterally. While benefits depend on the overall graph, the cost of

setting up a relationship is shared equally between the two participating players. In a

pairwise stable network no pair of players has an incentive to form a link and no player

has an incentive to delete a link. Necessary and sufficient conditions for the existence

of pairwise stable networks can be found in Jackson and Watts (2001 [8]) .

The second literature develops a non-cooperative version of network formation. This

literature was initiated by Bala and Goyal (BG, 2000 [1]). These authors assume that

a player can establish a link with another player without the latter’s consent, as long

as she incurs the cost of forming the link. They present two versions of their model:

the one-way flow model and the two-way flow model. In the one-way flow model, only

the (link) initiating player has access to the other player’s information, whereas in the
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two-way flow model both players have access to each others information, regardless of

who initiates the link. For both versions, the corresponding static stable networks are

called Nash networks since Nash equilibrium is used to determine stability. In a Nash

network, no player has an incentive to change her links, given the links formed by the

other players.

The reason why Nash equilibria is an adequate concept for the one-way flow model but

not for the consent model is that no coordination problem arises over setting up links

in the former and each links anouncement is guaranted to change the network.

Most of the existing studies in this literature have explored the characterization

of Nash networks, either in the two-way flow model (Galeotti, Goyal and Kamphorst

(2005 [5]), Haller and Sarangi (2005 [7]) or in the one-way flow model (Galeotti, 2004

[4], Billand and Bravard, 2005 [2]). The existence of Nash networks however has not

been studied in great detail. Indeed, although BG (2000 [1]) provide a constructive

proof of the existence of Nash networks in the one-way flow model and the two-way

flow model, this is done in a rather restrictive setting, since the authors assume that all

costs and benefits are homogeneous across players. In a recent paper Haller, Kamphorst

and Sarangi (2005 [6]) study the existence of Nash networks in two-way flow models

by incorporating value, cost and link heterogeneity. However, the existence issue had

remained unexplored in the one-way flow setting.

In this paper, we investigate the existence of Nash networks in BG’s one-way flow

model when costs and values of links are heterogeneous and players use pure strategies.

More precisely, we focus on one-way flow model with linear payoffs and no decay.

The one-way flow model is worth studying since it includes some important settings. For
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instance, a web site can provide a link or pointer to another web site without the sec-

ond web site’s permission. Likewise, a researcher can generally cite another researcher

without the second researcher’s permission. Lastly, firms can unilaterally establish links

with other firms, through intelligence economic activities, which include among others

reading of industry trade press or patent literature, talking with technology vendors,

sales representative or industry experts, and analyzing the competitors’ product.

Moreover, the question of existence of equilibria under heterogeneity is important, since

ex-ante asymmetries across players arise quite naturally in reality. For instance, in the

context of information networks, it is often the case that some individuals are better

informed, which makes them more valuable contacts. Similarly, as individuals differ, it

seems natural that forming links is cheaper for some individuals as compared to others.

For instance, players can be defined in terms of cultural, legal or geographical proximity,

and it may be cheaper for a given player to set a link with a closer player.

We can discern three types of heterogeneity. The first one, value heterogeneity, concerns

the value of the ressources of a given player for the other players. The second one, cost

heterogeneity, concerns the cost of forming a link with a given player for the other play-

ers. The third type of heterogeneity, link heterogeneity, concerns the probability that a

link formed by a player with a given player fails to transmit information from the latter

player to the former player. It may also concern the loss of information that is incurred

when information is transmitted from a player to another player.

The introduction of various heterogeneity conditions for costs, values and links provides

a sensitivity check for the results obtained with homogeneous parameters. In other

words, we can ask if the introduction of different kinds of heterogeneities in the Bala

and Goyal’s model alters the Nash networks existence results.

Our results concerning the existence of Nash network in the ono-way flow model under
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various heterogeneity assumptions complement the existing literature. Indeed, Galeotti,

(2004 [4]) characterizes the (strict) Nash networks when cost and values of links are

heterogeneous, but we do not know under what conditions such equilibria exist. Fi-

nally, the existence of Nash networks has never been studied, when there are congestion

effects. The possibility of congestion effects was introduced by Billand and Bravard

(2005 [2]) as an extension of BG’s model (2000 [1]). Congestion effects exist in several

situations where getting too many resources can actually prove an hindrance to agents.

For instance, when researchers are seeking to get some information about a part of their

field which they are unsure about, they often read a literature survey written by an-

other scholar. This activity is costly in terms of time and effort, for instance, to identify

relevant information sources. The reading effort can be expensive and tedious if they

are too many sources. In extreme cases, if a survey is too exhaustive, it might have

little or no value to the scholarly reader. Billand and Bravard (2005 [2]) characterize

Nash networks when this assumption arises. However, they do not address the issue of

existence of Nash networks.

We now provide a quick overview of our results. We show that there does not al-

ways exist a Nash network when costs and values are heterogeneous. More precisely, we

find that, as in the two-way flow model, heterogeneity of cost in forming links plays a

great role in the non existence of Nash network. We then provide conditions on costs of

setting links to allow for the existence of Nash networks. We also show that if costs are

homogeneous, then there always exist Nash networks. Finally, we show that if costs and

values are homogeneous, but congestion effects can occur, then a Nash network does not

always exist.
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The remainder of the paper is organized as follows. In Section 2 we set the basic one-

way flow model. In Section 3 we present the results about the existence of Nash networks

in this model. More precisely we first study this problem under various heterogeneity

conditions for costs, values and links. We then introduce the presence of congestion

effects in Section 4.

2 Model Setup

Let N = {1, . . . , n} be the set of players. The network relations among these players are

formally represented by directed graphs whose nodes are identified with the players. A

network g = (N, E) is a pair of sets: the set N of players and the edges set E(g) ⊂ N×N

of directed links. A link initiated by player i to player j is denoted by i, j. Pictorially

this is depicted as link from j to i to show the direction of information flow.1 Each player

i chooses a strategy gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n), gi,j ∈ {0, 1} for all j ∈ N \{i},

which describes the act of establishing links. More precisely, gi,j = 1 if and only if

i, j ∈ E(g). The interpretation of gi,j = 1 is that player i forms a link with player j 6= i,

and the interpretation of gi,j = 0 is that i does not form a link with player j. We only

use pure strategies. Note that gi,j = 1 does not necessarily imply that gj,i = 1. It can

be that i is linked to j, but j is not linked to i. Let G = ×n
i=1Gi be the set of all possible

networks where Gi is the set of all possible strategies of player i ∈ N .

We now provide some important graph theoretic definitions. For a directed graph,

g ∈ G, a path P (g) of length m in g from player j to i, i 6= j, is a finite sequence

i0, i1, . . . , im of distinct players such that i0 = i, im = j and gik,ik+1
= 1 for k =

0, . . . , m − 1. If i0 = im, then the path is a cycle. We denote the set of cycles in the

1Throughout the paper we refer to this as link from j to i. The same is true for other network

components like paths.
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network g by C(g). In the empty network, ġ, there are no links between any agents.

To sum up, a link from a player j to a player i (gi,j = 1) allows player i to get

resources from player j and since we are in a one-way flow model, this link does not

allow player j to obtain resources from i. Moreover, a player i may receive information

from other players through a sequence of indirect links. To be precise, information flows

from player j to player i, if i and j are linked by a path of length m in g from j to i.

Let

Ni(g) = {j ∈ N | there exists a path in g from j to i},

be the set of players that player i can access in the network g. By definition, we assume

that i ∈ Ni(g) for all i ∈ N and for all g ∈ G. Let ni(g) be the cardinality of the set

Ni(g). Information received from player j is worth Vi,j to player i. Moreover, i incurs

a cost ci,j when she initiates a direct link with j, i.e. when gi,j = 1. We can now define

the payoff function of player i ∈ N :

πi(g) =
∑

j∈Ni(g)

Vi,j −
∑

j∈N

gi,jci,j.

We assume that ci,j > 0 and Vi,j > 0 for all i ∈ N , j ∈ N , i 6= j. Moreover, we

assume that Vi,i = 0 for all i ∈ N . The next definition introduces the different notions

of heterogeneity in our model.

Definition 1 Values (or costs) are said heterogeneous by pairs of players if there exist

i ∈ N , j ∈ N , k ∈ N such that Vi,j 6= Vi,k (ci,j 6= ci,k) and there exist i′ ∈ N , j′ ∈ N ,

k′ ∈ N such that Vj′,i′ 6= Vk′,i′. Values (or costs) are said heterogeneous by players if for

all i ∈ N , j ∈ N , k ∈ N : Vi,j = Vi,k = Vi (ci,j = ci,k = ci) but there exists i ∈ N , i′ ∈ N

such that Vi 6= Vi′ (ci 6= ci′).
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We now provide some useful definitions for studying the existence of Nash networks.

Given a network g ∈ G, let g−i denote the network obtained when all of player i’s links

are removed. The network g can be written as g = g−i ⊕ gi, where the operator ⊕

indicates that g is formed by the union of links in gi and g−i. The strategy gi is said

to be a best response of player i to g−i if:

πi(gi ⊕ g−i) ≥ πi(g
′
i ⊕ g−i), for all g

′
i ∈ Gi.

The set of player i’s best responses to g−i is denoted by BRi(g−i). Furthermore, a

network g = (g1, . . . , gi, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each

i ∈ N .

Definition 2 We say that two networks g and g
′ are adjacent if there is a unique player

i such that gi,j 6= g′
i,j for at least one player j 6= i and if for all player k 6= i, gk,j = g′

k,j,

for all j ∈ N .

An improving path is a sequence of adjacent networks that results when players

form or sever links based on payoff improvement the new network offers over the current

network. More precisely, each network in the sequence differs from the previous one by

the links formed by one unique player. If a player changes her links, then it must be

that this player strictly benefits from such a change.

Definition 3 Formally, an improving path from a network g to a network g
′ is a finite

sequence of networks g
1, . . . , gk, with g

1 = g and g
k = g

′, such that the two following

conditions are verified :

1. g
ℓ and g

ℓ+1, are adjacent networks;
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2. for this unique player i, we have g
ℓ+1
i ∈ BRi(g

ℓ
−i) and g

ℓ
i 6∈ BRi(g

ℓ
−i), that is g

ℓ+1

is a network where i plays a best response while g
ℓ is a network where i does not

play a best response.

Moreover, if g
1 = g

k, then the improving path is called an improving cycle.

It is obvious that a network g is a Nash network if and only if it has no improving path

emanating from it.

Finally, we define η : G → R, η(g) =
∑

i∈N ni(g) as a function.

3 Model with Heterogeneous Agents without Con-

gestion Effect

Bala and Goyal (2000 [1]) outlines a constructive proof of the existence of Nash networks

in the case of costs and values of links homogeneity. Here we begin by showing that in

one-way flow models with cost and value heterogeneity by pairs of players (see Galeotti,

2004 [4]) there always exists a Nash network if the number of players is n = 3. This

result is no longer true if the number of players is n > 4. However, if values of links are

heterogeneous by pairs of players and costs of links are heterogeneous by players, there

always exists a Nash network.

Proposition 1 If the values and costs of links are heterogeneous by pairs and n = 3,

then a Nash network exists.

Proof Let N = {1, 2, 3}. We begin with the empty network ġ. Either ġ is a Nash

network and we are done, or ġ is not a Nash network and there exists an improving

path from ġ to an adjacent network g
1. That is, there exists a player, say without loss
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of generality player 1, such that ġ1 6∈ BR1(ġ−1) and g
1
1 ∈ BR1(ġ−1). Since 1 ∈ N has

no link in ġ and forms links in g
1 = g

1
1⊕ ġ−1, we have η(ġ) < η(g1). Now we will repeat

the same step. Assume an improving path from a network g
1 to a network g

k where

for each player i ∈ N , we have Ni(g
k−1) ⊆ Ni(g

k). We show that if there exists an

improving path from g
k to g

k+1, then for each player i ∈ N , Ni(g
k) ⊆ Ni(g

k+1). Let i

be a player such that g
k+1
i ∈ BRi(g

k
−i) and g

k
i 6∈ BRi(g

k
−i). We show that if j ∈ Ni(g

k),

then j ∈ Ni(g
k+1). Indeed there are two possibilities for j ∈ Ni(g

k).

1. Either g
k
i,j = 1, that is i directly obtains the resources of player j. Then there are

two possibilities.

• If Vi,j − ci,j > 0 then j ∈ Ni(g
k+1), otherwise i does not play a best response

in g
k+1.

• If Vi,j−ci,j < 0, then there is a network g
k′

, k′ < k, such that ℓ ∈ Nj(g
k′

) and

Vi,j + Vi,ℓ − ci,j > max{0, Vi,ℓ − ci,ℓ}, else g
k
i,j = 0. Since Nj(g

k′

) ⊆ Nj(g
k),

for all k′ < k and for all j ∈ N , we have ℓ ∈ Nj(g
k) and player i deletes her

link with j only if j ∈ Nℓ(g
k) and Vi,j + Vi,ℓ − ci,j < Vi,j + Vi,ℓ − ci,ℓ. In that

case, i forms a link with ℓ and j ∈ Ni(g
k+1).

2. Or g
k
i,j = 0, g

k
i,ℓ = 1 and g

k
ℓ,j = 1, that is i indirectly obtains the resources of

player j. Then, we use the same argument as above to show that player i deletes

her link with ℓ only if she has an incentive to form a link with j and j ∈ Ni(g
k+1).

We now show that there does not exist any cycle in an improving path Q = {ġ, g1, . . . ,

g
t, . . . , gt+h, . . . , gt+h′

, . . .}, with h′ > h > 0. In other words, we show that if g
t
i,j = 1,

g
t+h
i,j = 0, and g

t+h′

i,j = 1, then we have Ni(g
t) ( Ni(g

t+h′

). We note that as j ∈ Ni(g
t)

and Ni(g
t) ⊆ Ni(g

t+h), we have j ∈ Ni(g
t+h). Also, as g

t+h
i,j = 0, we have g

t+h
i,ℓ = 1 and

ℓ ∈ Ni(g
t+h). Moreover, as Ni(g

t+h) ⊆ Ni(g
t+h′

), we have Ni(g
t+h′

) = {j, ℓ}.
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Without loss of generality, we suppose that player i deletes the link i, j for the first time,

between t and t + h, in g
t+h. Likewise, we assume that player i forms the link i, j for

the first time, between t + h and t + h′, in g
t+h′

.

We have two cases.

1. Suppose we have g
t
i,ℓ = 0. To obtain a contradiction, assume that ℓ ∈ Ni(g

t).

It follows that g
t+h
j,ℓ = 1 since player i does not form the link i, ℓ between g

t and

g
t+h if j preserves the link j, ℓ. Also j does not delete the link j, ℓ between g

t

and g
t+h if i does not form the link i, ℓ (recall that in our process only one player

changes her strategy at each period). Since player i chooses to delete the link

i, j in g
t+h, then she must form the link i, ℓ and we must have g

t+h
ℓ,j = 1, since

ℓ ∈ Ni(g
t) ⊆ Ni(g

t+h). Moreover, we note that the substitution of the link i, j

by the link i, ℓ implies that ci,j > ci,ℓ. Using same argument, player ℓ has not

deleted the link ℓ, j between g
t+h and g

t+h′

. Therefore, if player i forms the link

i, j in g
t+h′

(and so deletes the link i, ℓ), then we have ci,j < ci,ℓ and we obtain the

desired contradiction.

2. Next, suppose that we have g
t
i,ℓ = 1. If player i deletes the link i, j in g

t+h, then

we obtain the situation in case 1 up to a permutation of players j and ℓ. Hence

the proof follows.

�

We have shown that if values and costs of links are heterogeneous by pairs and n = 3,

then there always exists a Nash network. Note that this result is not true for the model

with directed links and two-way flow of resources (see Haller, Kamphorst and Sarangi

2006 [6] p. 7). We next show with an example that the above proposition is not valid

for n > 3.
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Example 1 Let N = {1, 2, 3, 4} be the set of players and Vi,j = V for all i ∈ N , j ∈ N .

More precisely, we suppose that c1,3 = V −V/16 and c1,2 = c1,4 = 4V ; c2,1 = 2V − V/16

and c2,3 = c2,4 = 4V ; c3,2 = 2V − V/8, c3,4 = 2V − V/6 and c3,1 = 4V ; c4,1 = 3V − V/8

and c4,2 = c4,3 = 4V .

1. In a best response, player 2 never forms any link with player 3 or player 4. More-

over, player 2 has an incentive to form a link with player 1 if the latter gets

resources from player 3 or player 4.

2. In a best response, player 4 never forms links with player 3 or player 2.

3. Then the unique best response of player 1 to any network in which she does not

observe player 3 is to add a link with player 3 (since player 2 and player 4 never

form a link with player 3). Moreover, we note that player 1 never has any incentive

to form a link with player 2 or player 4.

4. In a best response, player 3 never forms any link with player 1.

Now let us take those best replies for granted and consider best responses regarding the

remaining links 2, 1; 3, 2; 3, 4 and 4, 1. If player 2 initiates link 2, 1 (see g
0 in figure 1),

then player 3’s best response is to initiate link 3, 2 (see g
1). In that case player 4 must

initiate the link 4, 1 (see g
2) and player 3 must replace the link 3, 2 by the link 3, 4 (see

g
3). Then, player 4 must delete the link 4, 1 (see g

4) and the player 3 must replace the

link 3, 4 by the link 3, 2 (see g
1). Hence there do not exist any mutual best responses.

Therefore, a Nash network does not exist. Finally, by appropriately adjusting costs, it

can be verified that this example holds even if we relax the assumption that Vi,j = V

for all i ∈ N , j ∈ N .
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Figure 1: Best responses process of example 1
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This example shows that existence results in one-way flow model with heterogeneity

depends crucialy on the number of players. Indeed, the proof of existence of Nash

networks with three players is based on the following fact. After a given player i has

played a best response, the set of players whom she obtains resources always contains

the set of players whom she obtained resources before.

Our example stresses that this property does not hold anymore when n > 3. More

precisely, in this example, player 3’s best response leads him not to obtain resources

from player 2 anymore in network g
4.

3.1 Existence of Nash networks and heterogeneity of values by

pairs

In this section, we present a proof of the existence of Nash network in the one-way flow

model where values are heterogeneous by pairs and costs are heterogeneous by players.

This proof can not be similar to the proof of Haller, Kamphorst and Sarangi (2006 [6])

who adress the Nash existence problem in the two-way flow model. Indeed, to prove

that a Nash network always exists, the authors built a sequence of networks, beginning

with the empty network. At each step of the sequence, a player who does not play a
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best response gets an opportunity to modify her links and play a best response (if no

player has an incentive to modify her links, then the network is Nash). A distinctive

feature of this process is that there can not exist a step in the sequence where a player

has an incentive to modify her links and as a consequence to let another player get

access to the resources of a smaller number of players than in the preceding step. Since

the number of players is finite, there inevitably exists a step in the sequence where

the corresponding network is a Nash network. In the one-way flow model, the above

characteristic is no longer true. As a consequence, we cannot exclude the existence

of cycles in the best response process. So we will not be able to conclude about the

existence of Nash networks The following example is an illustration.

Example 2 Let N = {1, . . . , 5}. Suppose that the best responses process lead to the

network g
0 in figure 2. Suppose now that player 4 is such that V4,2 + V4,3 < V4,5. So, if

player 4 revises her strategy, we obtain the network g
1. We observe that player 5 does

not hold resources anymore from 2 and 3 in g
1. If V5,1 + V5,4 < c, then player 5 has an

incentive to delete the link 5, 1 and we obtain the network g
2. If V4,5 < c, then player 4

has an incentive to delete the link 4, 5 and to form the link 4, 3. In that case, we obtain

the network g
3. Lastly in this network, player 5 has an incentive to form the link 5, 1,

and we obtain the network g
0.

Figure 2: Best responses process of example 2
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Our proof takes into account this problem of cycle, by modifying the network obtained

when a player plays a best response in such a way that no player has any incentive to

remove one of her links.

The profit function when values are heterogeneous by pairs and costs are heterogeneous

by players is:

πi(g) =
∑

j∈Ni(g)

Vi,j − ci

∑

j∈N

gi,j .

Let πj
i (g) be the marginal payoff of player i from player j in the network g. If gi,j = 1,

then πj
i (g) = πi(g) − πi(g ⊖ i, j). Let K(g; i, j) = Ni(g ⊖ i, j)

⋂
Ni(g−i ⊕ i, j), where

g ⊖ i, j denotes the network g without the link i, j. We can rewrite πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi,k −
∑

k∈K(g;i,j)

Vi,k − ci. (1)

Proposition 2 If values of links are heterogeneous by pairs and costs of links are het-

erogeneous by players, then a Nash network exists.

The proof of Proposition 2 is long, and involving a number of lemmas. So we first

provide a quick overview of the proof. It consists of constructing a sequence of networks,

Q = (g0, . . . , gt−1, gt, . . .) beginning with the empty network. In each subsequent net-

work, no player should have an incentive to decrease the amount of resources she obtains.

Note that this sequence of networks is not an improving path. Indeed, we go from g
t

to g
t+1 in several operations. First, in g

t we let a player i ∈ N , who is not playing

a best response in g
t, to play a best response (if no such player exists, g

t is a Nash

network) and obtain a network called bri(g
t). Second, we modify the network bri(g

t) as

follows: we construct a cycle using all players j ∈ N who obtain resources from a player

k who forms part of a cycle in bri(g
t), while preserving all links in bri(g

t) between a

player k ∈ N and a player j who is not part of a cycle in bri(g
t). We obtain a network
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called h(bri(g
t)). Thirdly, we delete all links i, j which does not allow player i to obtain

additional resources in h(bri(g
t)). We obtain a network called m(h(bri(g

t))) = g
t
i, and

in the sequence Q, we have g
t+1 = g

t
i.

When a player i receive an opportunity to revise her strategy, we go from a network g
t−1

to a network g
t, and we will show that η(gt−1) < η(gt). Since the amount of resources

that players can obtain in a network g ∈ Q is finite, Q is finite and there exists a Nash

network.

In the following paragraph, we define a class of networks G3 which contains all net-

works in the sequence Q. Then, we provide a condition which implies that no player has

an incentive to delete a link in a network g ∈ G3 (Lemma 2). Finally, we show that all

networks g
t ∈ Q satisfy this condition since the empty network satisfies this condition

(Lemma 6).

Let us formally define the set G3. Let M : G → P(G), g 7→ M(g) ⊂ G be a

correspondence. Let m(g) ∈ M(g) be a minimal network associated to the network g,

m(g) is a network such that, for all i ∈ N , j ∈ N , Ni(g) = Ni(m(g)) and if m(g)i,j = 1,

then j 6∈ Ni(m(g) ⊖ i, j) and gi,j = 1. We note that in a network m(g) ∈ M(g), there

is at most one path from a player i ∈ N to a player j ∈ N . In the following, we can

take, without loss of generality, any element of M(g). Let m(g) be a typical element of

M(g). Obviously, we have η(g) = η(m(g)).

We say that g is a minimal network if g = m(g). We denote by Gm the set of

minimal networks. Let G1 = {g ∈ Gm|i ∈ Nj(g), j 6∈ Ni(g), k 6∈ Nj(g) ⇒ gk,i = 0} be

a subset of minimal networks. If g ∈ G2 and g contains a cycle, then we denote by

C(g) the cycle in the network g. We denote by NC(g) the set of players who belong to

16



the cycle C(g), and EC(g) ⊂ NC(g) × NC(g) the set of links which belong to the cycle

C(g). Let G3 = {g ∈ G2|i ∈ C(g), j 6∈ C(g) ⇒ gj,i = 0} be the set of networks which

belong to G2 and where there does not exist any link from a player i ∈ NC(g) to a player

j 6∈ NC(g).

We now present some lemmas which allow us to prove Proposition 2. The first lemma

presents some properties about links that cannot arise in the set G3.

Lemma 1 Suppose values of links are heterogeneous by pairs and costs of links are

heterogeneous by players and g ∈ G3.

1. If gj,i = 1, then there does not exist a player k such that gk,i = 1.

2. If gi,j = 1, then K(g; i, j) = Ni(g ⊖ i, j)
⋂

Ni(g−i ⊕ i, j) is an empty set.

Proof We successively prove both parts of the lemma.

1. To obtain a contradiction suppose that there exist two players i and j such that

gj,i = 1 and gk,i = 1 in g ∈ G3. Then there are two possibilities:

Suppose i ∈ NC(g). Given that i ∈ NC(g) there can be at most one link to player

i. Hence it is not possible that j ∈ NC(g) and k ∈ NC(g) simultaneously. Only

one of them is in NC(g). Without loss of generality let j ∈ NC(g). Then gk,i = 1

violates the fact that g ∈ G3.

Suppose i /∈ NC(g). Then we know that gi,j = 0 = gi,k otherwise i ∈ NC(g).

From the minimality of g we know that j /∈ Nk(g) and k /∈ Nj(g). Putting all

this together we have i ∈ Nj(g), j /∈ Nk(g), k /∈ Nj(g) ⇒ gk,i = 0. This is a

contradiction.

17



2. Suppose there exists a player k ∈ Ni(g ⊖ i, j)
⋂

Ni(g−i ⊕ i, j). Then, there exist

two different paths from player k to player i which is impossible by the minimality

of g.

�

It follows that if g ∈ G3, then we can write πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi,k − ci. (2)

In the following lemma, we let g
′
i ∈ Gi be a strategy of player i, with g

′
i 6= gi. This

lemma provides the best response properties of the networks g ∈ G3.

Lemma 2 Suppose values of links are heterogeneous by pairs, costs of links are hetero-

geneous by players and g ∈ G3.

1. Suppose players i ∈ N , j ∈ N , k ∈ N are such that j 6∈ Ni(g), i ∈ Nj(g),

k 6∈ Nj(g). If g
′
k,i = 1, then g

′
k 6∈ BRk(g−k).

2. Suppose g contains a cycle C(g) and for all i ∈ NC(g), and for all i, j ∈ EC(g), we

have πj
i (g) > 0. If g

′
i,j = 0, then g

′
i 6∈ BRi(g−i).

3. Suppose i ∈ N , j ∈ N \ NC(g) and gi,j = 1 ⇒ πj
i (g) > 0. If g

′
i,j = 0, then

g
′
i 6∈ BRi(g−i).

Proof We now prove each part of the lemma.

1. Let players i, j and k be such that j 6∈ Ni(g), i ∈ Nj(g) and k 6∈ Nj(g). By lemma

1.1, we know that gk,i = 0. Either already i ∈ Nk(g) and the formation of the link

k, i is not a best response for player k, or i 6∈ Nk(g). In the latter case, we have

j 6∈ Nk(g), Ni(g) ⊂ Nj(g), so πk(g ⊕ k, j) − πk(g ⊕ k, i) ≥ Vk,j > 0. From this it

18



follows that player k does not play a best response if she forms a link with player

i.

2. Without loss of generality, let C(g) be such that NC(g) = {1, 2, . . . , p} and EC(g) =

{p, 1; 2, 1; 3, 2; . . . ; 1, p}. For simplicity now consider a player i 6= p.

It is straightforward from πi−1
i (g) > 0 and the minimality of g that player i does

not play a best response if she deletes the link i, i−1 ∈ EC(g) and does not replace

that link.

We first show that player i cannot play a best response if she replaces the link

i, i− 1 by a link i, k, with k 6= i− 1. Indeed, if player i replaces the link i, i− 1 by

a link i, k, k ∈ Ni(g), then player i is not playing a best response.

We now show that if player i replaces the link i, i − 1 by a link i, k, k 6∈ Ni(g),

then player i does not play a best response. Indeed, since g ∈ G3, there does

not exist a player k 6∈ Ni(g), with k ∈ N \ NC(g), such that ℓ ∈ Nk(g) and

ℓ ∈ NC(g). Otherwise, there exist a player k′ ∈ N \ NC(g), with k ∈ Nk′(g), and

a player ℓ′ ∈ NC(g) such that gk′,ℓ′ = 1. In that case, g 6∈ G3 and we obtain

a contradiction. Likewise, there does not exist a player k 6∈ Ni(g) such that

ℓ ∈ Nk(g) and ℓ ∈ Ni(g) \NC(g). Indeed, if ℓ ∈ Nk(g) and ℓ ∈ Ni(g) \NC(g), then

there exists a player ℓ′ such that gℓ′,ℓ = 1, with ℓ′ ∈ Ni(g) and a player k′ such

that gk′,ℓ = 1, with k′ ∈ Nk(g) which is impossible by lemma 1.1. It follows that a

player i ∈ NC(g) cannot obtain the resources of a player ℓ ∈ Ni(g)\Ni(g⊖ i, i−1)

from a player k 6∈ Ni(g). Hence, if player i replaces the link i, i − 1 ∈ EC(g) by a

link i, k with k 6∈ Ni(g), then player i does not play a best response.

3. It is straightforward from πj
i (g) > 0 and the minimality of g that player i has no

incentive to delete the link i, j if she does not replace that link.
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We now show that player i has no incentive to replace the link i, j. In other words,

we show that there does not exist a player k who obtains a part of the resources

of j and allows i to obtain more resources than j.

Let k be such that Nk(g)∩Nj(g) = ∅. Then player i has no incentive to substitute

the link i, k to the link i, j. Hence Nk(g) ∩ Nj(g) 6= ∅.

First, we must show that if Nk(g) ∩ Nj(g) 6= ∅, then either Nk(g) ⊂ Nj(g) or

Nj(g) ⊂ Nk(g). If the former is true the proof is obvious and we will only focus

on the latter. Note that in g, Nk(g) 6= Nj(g) since j 6∈ NC(g). To obtain a

contradiction, suppose that Nk(g) ∩ Nj(g) 6= ∅, Nk(g) * Nj(g) and Nj(g) *

Nk(g). Then there exist players ℓ ∈ Nj(g) ∩ Nk(g), ℓj ∈ Nj(g) and ℓk ∈ Nk(g),

such that gℓj ,ℓ = gℓk,ℓ = 1, which is impossible by Lemma 1.1.

Second, we must show that there does not exist a player k ∈ N , such that Nj(g) ⊂

Nk(g) and Ni(g) * Nk(g), who obtains the resources of j and allows i additional

resources. If Ni(g) = Nk(g), then i ∈ NC(g), k ∈ NC(g) and in that case player i

cannot obtain a part of the resources of player j due to a link with player k, since

g is a minimal network. Therefore, we just need to show that the above statement

is true for strict set inclusion. To obtain a contradiction, suppose there exists a

player k ∈ N such that Nj(g) ⊂ Nk(g) and Ni(g) 6⊂ Nk(g). Then there exists a

player ℓk ∈ Nk(g) such that gℓk,j = 1. Therefore, we have gℓk,j = 1 and gi,j = 1

which is impossible by Lemma 1.1. Since Nj(g) ⊂ Nk(g), Ni(g) ⊂ Nk(g), and

gi,j = 1, by Lemma 1.2, player i cannot obtain a part of the resources of j due to

her link with player k. Consequently, if player i deletes the link i, j and replaces

it by the link i, k, then she does not play a best response.

�

20



We now introduce some additional definitions that are required to complete the

proof. Let MBRi(g−i) be a modified version of the best response function of player

i ∈ N . More precisely, g
′
i ∈ MBRi(g−i) if g

′
i is a best response of player i against

g−i and if player i does not form any links that yield zero marginal payoffs. Let bri :

G → G, g 7→ bri(g) be a function. The network bri(g) = (g′
i ⊕ g−i) is a network

where g
′
i ∈ MBRi(g−i), and all other players j 6= i having the same links as in the

network g. In other words, in bri(g), we have bri(g)i,j = 1 ⇒ πj
i (bri(g)) > 0 and

bri(g)i,j = 0 ⇒ πj
i (bri(g)) ≤ 0.

Let NC(g) be the set of players who belong to a cycle in g. Let H : G → P(G) be

a correspondence. A network h(g) ∈ H(g) is a network associated with g such that

h(g) contains at most one cycle, C(h(g)). Moreover, if k is such that ℓ ∈ Nk(g) and

ℓ ∈ NC(g), then k ∈ NC(h(g)). If k 6∈ NC(h(g)), then for all ℓ ∈ N , we have gℓ,k = h(g)ℓ,k.

This is different from the networks in G2 since there is no minimality restriction here.

This operation creates one cycle leaving unchanged the strategies of those players that

do not form a part of the cycle.

Observe that for all g ∈ G and for all k ∈ N , we have, by construction, for all

g
′ ∈ M◦H(g), Nk(g) ⊆ Nk(g

′).

Finally, we define

g
i ∈ M◦H ◦ bri(g), (3)

to be a network obtained from g after performing the three operations defined above.

Note that the superscript in g
i refers to the fact that in this network player i is playing

a best response.

Lemma 3 If g ∈ G3, then g
i ∈ G3.

Proof We must show that g
i has the following four properties: it is a minimal network,

it contains at most one cycle, there does not exist a link from j 6∈ NC(gi) to k ∈ NC(gi)
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and if ℓ ∈ Nj(g
i), j 6∈ Nℓ(g

i), k 6∈ Nj(g
i) then g

i
k,ℓ = 0. The first property follows from

the correspondence M and the next two from the correspondence H. We just need to

verify that the last property is enjoyed.

First, we show that in bri(g), we have ℓ ∈ Nj(bri(g)), j 6∈ Nℓ(bri(g)), i 6∈ Nj(bri(g))

⇒ bri (g)i,ℓ = 0. We know that in g we have ℓ ∈ Nj(g), j 6∈ Nℓ(g), i 6∈ Nj(g) ⇒ gi,ℓ = 0

since g ∈ G3. By definition, we have bri(g)k = gk, for all k ∈ N \ {i}. Hence, if we

show that player i 6∈ Nj(bri(g)) has not formed a link i, ℓ with a player ℓ such that

ℓ ∈ Nj(bri(g)) and j 6∈ Nℓ(bri(g)) in bri(g), then we will have shown the conclusion for

bri(g). But, by Lemma 2.1, we know that if i has formed a link with player ℓ, then i is

not playing a best response which is a contradiction.

Second, by construction, if g is such that ℓ ∈ Nj(g), j 6∈ Nℓ(g), k 6∈ Nj(g) ⇒ g
k,ℓ

= 0,

then g
′ ∈ M ◦ H(g) is such that ℓ ∈ Nj(g

′), j 6∈ Nℓ(g
′), k 6∈ Nj(g

′) ⇒ g
′
k,ℓ = 0. The

conclusion follows. �

The next lemma covers properties of networks in g
i and bri(g).

Lemma 4 Suppose g ∈ G3 and for all k ∈ N , j ∈ N , gk,j = 1 ⇒ πj
k(g) > 0.

1. If k ∈ Nj(g), then k ∈ Nj(bri(g)).

2. If k ∈ Nj(g), then k ∈ Nj(g
i).

3. If gi 6∈ BRi(g−i), then η(g) < η(gi).

Proof We successively prove each part of the Lemma.

1. Observe that for all k 6= i, and for all j ∈ N , we have gk,j = bri(g)k,j. Hence,

if Nj(g) * Nj(bri(g)), then there exists a player k such that k ∈ Ni(g) and

k 6∈ Ni(bri(g)). Since g ∈ G3, we know from Lemma 2.2 and 2.3, that player i will
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not be playing a best response if she deletes one of her links. Hence, if k ∈ Ni(g),

then k ∈ Ni(bri(g)), and we obtain the desired conclusion.

2. We know from the first part of the lemma that Nj(g) ⊆ Nj(bri(g)), and we know

that Nj(bri(g)) ⊆ Nj(g
′), for all g

′ ∈ M ◦H(bri(g)). The result follows.

3. From the second part of the lemma, we know that Nj(g) ⊆ Nj(g
i) for all j 6= i.

We now show that if gi 6∈ BRi(g−i), then Ni(g) ⊂ Ni(g
i). By Lemma 2.2 and

2.3, we know that player i cannot be playing a best response if she deletes links.

Hence, if she is playing a best response, it must be that Ni(g) ⊂ Ni(bri(g)). Since,

we know that, for all g
′ ∈ M ◦ H(bri(g)), Ni(bri(g)) ⊆ Ni(g

′), we conclude that

Ni(g) ⊂ Ni(g
i). Therefore, η(g) < η(gi).

�

Let us denote by g \MBRi(g−i) = gm. Then gm ⊕ i, j is the network obtained from

bri(g) when player i forms no link except the link i, j.

Lemma 5 Suppose g ∈ G3.

1. If g
i
i,j = bri(g)i,j = 1, then, for all j ∈ N \ {i}, Nj(gm ⊕ i, j) ⊆ Nj(g

i
−i ⊕ i, j).

2. Suppose for all i ∈ N , j ∈ N , gi,j = 1 ⇒ πj
i (g) > 0. If g

i
k,ℓ = gk,ℓ = 1, then

Nℓ(g−k ⊕ k, ℓ) ⊆ Nℓ(g
i
−k ⊕ k, ℓ).

Proof We prove the two parts of the lemma successively.

1. If j 6∈ NC(gi), then Nj(g
i
−i) = Nj(g

i). Indeed, since g
i ∈ G3, j 6∈ NC(gi), and

g
i
i,j = 1, player j does not obtain any resources from player i. Moreover, we have

by construction, Nj(bri(g)) ⊆ Nj(g
i). It follows that Nj(gm⊕i, j) ⊆ Nj(bri(g)) ⊆

Nj(g
i) = Nj(g

i
−i) ⊆ Nj(g

i
−i ⊕ i, j).
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Assume that j ∈ NC(gi), g
i
i,j = bri(g)i,j = 1 and there exists a player ℓ such that

ℓ ∈ Nj(gm ⊕ i, j) and ℓ 6∈ Nj(g
i
−i ⊕ i, j). So in bri(g), player i obtains resources

from player ℓ through a path containing j, and in g
i player i obtains resources

from player ℓ through a path which does not contain j, since for all k ∈ N ,

Nk(bri(g)) ⊆ Nk(g
i). Hence, there is a player j′ where j′ ∈ Ni(g

i), j′ 6∈ NC(gi)

and j′ ∈ Nj(g
i) who has formed a link with player ℓ between bri(g) and g

i. This

is not possible by construction.

2. If ℓ 6∈ NC(gi), then Nℓ(g
i
−k ⊕ k, ℓ) = Nℓ(g

i) since player ℓ does not obtain any

resources from player k. Moreover, we know by Lemma 4.1 and 4.2 that Nℓ(g) ⊆

Nℓ(g
i). It follows that Nℓ(g−k ⊕ k, ℓ) ⊆ Nℓ(g) ⊆ Nℓ(g

i) = Nℓ(g
i
−k ⊕ k, ℓ).

Suppose now that ℓ ∈ NC(gi). Note that k ∈ NC(gi) since k has formed a link with

ℓ. For a contradiction assume that ℓ ∈ NC(gi) and Nℓ(g−k ⊕k, ℓ) * Nℓ(g
i
−k ⊕k, ℓ).

Then there is a player j such that j ∈ Nℓ(g−k ⊕ k, ℓ) and j 6∈ Nℓ(g
i
−k ⊕ k, ℓ). Also

note that j 6∈ NC(gi), otherwise j ∈ Nℓ(g
i
−k ⊕k, ℓ). Moreover, if j ∈ Nℓ(g−k ⊕k, ℓ)

and j 6∈ Nℓ(g
i
−k ⊕ k, ℓ), then j 6∈ Nk(g ⊖ k, ℓ) and j ∈ Nk(g

i ⊖ k, ℓ) since g ∈ G3,

and Nℓ(g) ⊆ Nℓ(g
i) by Lemma 4.1 and 4.2. In other words, player k obtains

resources from player j in g through a path which contains ℓ, and in g
i player k

obtains resources from player j through a path which does not contain ℓ. Hence,

there exists a player who has formed a link with a player ℓ′ where ℓ′ ∈ Nk(g
i),

j ∈ Nℓ′(g
i), and k 6∈ Nℓ′(g

i) between g and g
i. This is not possible by construction

of g
i.

�

Lemma 6 Let g
i be defined as in equation (3).
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1. If g ∈ G3, then g
i
i,j = 1 ⇒ πj

i (g
i) > 0.

2. If for all i ∈ N , j ∈ N , gi,j = 1 ⇒ πj
i (g) > 0, then for all i ∈ N \ {k}, j ∈ N ,

g
k
i,j = 1 ⇒ πj

i (g
k) > 0.

Proof We now prove successively the two parts of the lemma.

1. (a) First, we show that this property is true if g
i
i,j = 1 and j 6∈ NC(gi). If

j 6∈ NC(gi), then by construction bri(g)i,j = 1 and so πj
i (bri(g)) > 0. Using

Lemma 5.1, Lemma 3, and the marginal profit function defined in equation

(2) we have:

πj
i (g

i) =
∑

k∈Nj(g
i
−i⊕i,j) Vi,k − ci

≥
∑

k∈Nj(gm⊕i,j) Vi,k −
∑

k∈K(bri(g);i,j) Vi,k − ci

= πj
i (bri(g)) > 0

(b) Second, we show that this property is true if g
i
i,j = 1 and j ∈ NC(gi). By

construction if g
i
i,j = 1 and j ∈ NC(gi), then i ∈ NC(gi). If i ∈ NC(gi),

then by construction of g
i, there is at least one player ℓ ∈ NC(gi), such

that πℓ
i (bri(g)) > 0. So for all players ℓ′ ∈ NC(gi), there exists a network

(gi)′ ∈ M ◦ H ◦ bri(g) where player i forms a link with player ℓ′, and by

construction πj
i (g

i) = πℓ′

i ((gi)′). We know by Lemma 5.1, that Nj(gm ⊕

i, j) ⊆ Nj(g
i
−i ⊕ i, j). Finally, by Lemma 3, we know that g

i ∈ G3. Hence
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using the marginal profit function defined in equation (2) we have:

πj
i (g

i) =
∑

k∈Nj(g
i
−i⊕i,j) Vi,k − ci =

∑
k∈Nℓ((g

i
−i)

′⊕i,ℓ) Vi,k − ci

≥
∑

k∈Nℓ(gm⊕i,ℓ) Vi,k −
∑

k∈K(gm⊕i,ℓ;i,ℓ) Vi,k − ci

= πℓ
i (bri(g)) > 0.

2. First, we show that for all i ∈ N \ {k}, and for all j 6∈ NC(gk), if gi,j = 1 ⇒

πj
i (g) > 0, then g

k
i,j = 1 ⇒ πj

i (g
k) > 0. Indeed, if player i ∈ N \ {k} has a link

with player j 6∈ NC(gk) in g
k, then, by construction of g

k, player i has a link with

player j in g, so πj
i (g) > 0. We know, from Lemma 5.2, that for all j ∈ N , we

have Nj(g−i ⊕ i, j) ⊆ Nj(g
k
−i ⊕ i, j). Moreover, by Lemma 3, g

k ∈ G3. So using

the marginal profit function defined in equation (2) we have:

πj
i (g

k) =
∑

ℓ∈Nj(g
k
−i⊕i,j) Vi,ℓ − ci

≥
∑

ℓ∈Nj(g−i⊕i,j) Vi,ℓ − ci

= πj
i (g) > 0.

Next, we show that for all i ∈ N \ {k}, and for all j ∈ NC(gk), if gi,j = 1 ⇒

πj
i (g) > 0, then g

k
i,j = 1 ⇒ πj

i (g
k) > 0. Since g

k ∈ G3 and there exists a link

from player j to player i, we have i ∈ NC(gk). If i ∈ NC(gk), then there are

two possibilities: either k ∈ Ni(brk(g)) or i ∈ NC(g). We deal with these two

possibilities successively.

(a) If k ∈ Ni(brk(g)), then there exists in brk(g) a link i, ℓ such that brk(g)i,ℓ =

gi,ℓ = 1 and k ∈ Nℓ(brk(g)). Since, gi,ℓ = 1, we have πℓ
i (g) > 0. Furthermore,
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by construction, player ℓ ∈ NC(gk), since k ∈ Nℓ(brk(g)). We note that for

all players h′ ∈ NC(gk), there exists a network (gk)′ ∈ M ◦H ◦ brk(g) where

player i forms a link with player h′, and by construction πj
i (g

k) = πh′

i ((gk)′).

We know from Lemma 5.2 that for all j ∈ N , we have Nj(g−i ⊕ i, j) ⊆

Nj(g
k
−i ⊕ i, j). Finally, we know by Lemma 3 that g

i ∈ G3. Hence, using the

marginal profit function defined by equation (2), we obtain:

πj
i (g

k) =
∑

ℓ′∈Nj(g
k
−i⊕i,j) Vi,ℓ′ − ci =

∑
ℓ′∈Nℓ((g

k
−i)

′⊕i,ℓ) Vi,ℓ′ − ci

≥
∑

ℓ′∈Nℓ(g−i⊕i,ℓ) Vi,ℓ′ − ci

= πℓ
i (g) > 0.

(b) If i ∈ N
C(g)

, then we have πℓ
i (g) > 0 for i, ℓ ∈ EC(g). We assume, without

loss of generality, that player i forms in C(gi) a link with a player j such

that πj
i (bri(g)) > 0. By construction of g

k we have NC(g) ⊆ NC(gk) and by

Lemma 5.2, we have Nj(g−i ⊕ i, j) ⊆ Nj(g
k
−i ⊕ i, j) for all j ∈ N . Note that

for all players h′ ∈ NC(gk), there exists a network (gk)′ ∈ M◦H◦brk(g) where

player i forms a link with player h′. Also by construction πj
i (g

k) = πh′

i ((gk)′).

We know by Lemma 3 that g
i ∈ G3. Again, using the marginal profit function

defined by equation (2), we obtain:

πj
i (g

k) =
∑

ℓ′∈Nj(g
k
−i⊕i,j) Vi,ℓ′ − ci =

∑
ℓ′∈Nℓ((g

k
−i)

′⊕i,ℓ) Vi,ℓ′ − ci

≥
∑

ℓ′∈Nℓ(g−i⊕i,ℓ) Vi,ℓ′ − ci

= πℓ
i (g) > 0.
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�

Proof of Proposition 2 We start with the empty network ġ = g
0. It is straightforward

to check that g
0 ∈ G3. Either g

0 is a Nash network, and we are done, or there exists a

player, say i, who does not play a best response in g
0. In that case, we construct the

network g
1 ∈ M ◦ H ◦ bri(g

0). We know from Lemma 4.3 that η(g0) < η(g1). From

Lemma 3, g
1 ∈ G3 and from Lemma 6.1 and 6.2, we know that for all players j ∈ N and

ℓ ∈ N , g
1
j,ℓ = 1 ⇒ πℓ

j(g
1) > 0. Either g

1 is a Nash network, and we are done, or there

exists a player, say j, who does not play a best response in g
1. In that case, we construct

the network g
2 ∈ M◦H◦brj(g

1). We know from Lemma 4.3 that η(g1) < η(g2). Again

from Lemma 3, g
2 ∈ G3 and from Lemma 6.1 and 6.2, we know that for all players

j ∈ N and ℓ ∈ N , g
2
j,ℓ = 1 ⇒ πℓ

j(g
2) > 0. It follows that we can construct a sequence

of networks {g0, g1 . . . , gt, . . .} such that in g
t−1, there exists a player, say k, who does

not play a best response, and g
t ∈ M ◦H ◦ brk(g

t−1), η(gt−1) < η(gt), g
t ∈ G3 and for

all j ∈ N , g
t
j,ℓ = 1 ⇒ πℓ

j(g
t) > 0. This sequence is finite since η(g) ≤ n2, for all g ∈ G .

�

Proposition 2 establishes that if values of links are heterogeneous by pairs of players

and costs of links are heterogeneous by players, then a Nash network always exists. This

result is similar to the result of Haller and al. [6] in two-way flow models. We now study

one-way flow models when values of links are heterogeneous by players and costs of links

are heterogeneous by pairs of players.
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3.2 Existence of Nash networks and heterogeneity of costs by

pairs

In example 1 we have shown that a Nash network does not always exist when values

of links are heterogeneous by players and costs of links are heterogeneous by pairs of

players. We now state a condition which allows for the existence of Nash networks when

costs of links are heterogeneous by pairs. In that case, we can write the payoff function

as follows:

πi(g) =
∑

j∈Ni(g)

Vi −
∑

j∈N

gi,jci,j.

Let πj
i (g) denote the marginal payoff of player i from player j in the network g. If

gi,j = 1, then πj
i (g) = πi(g) − πi(g ⊖ i, j). Let K(g; i, j) = Ni(g ⊖ i, j)

⋂
Ni(g−i ⊕ i, j).

We can rewrite πj
i (g) as follows:

πj
i (g) =

∑

k∈Ni(g−i⊕i,j)

Vi −
∑

k∈K(g;i,j)

Vi − ci,j. (4)

To prove the following proposition, we need an additional definition. First, we note

that we cannot use our previous recomposition of the best response network. More

precisely, the definition of H is not appropriate in the case of heterogeneous cost. Indeed,

in the previous section, we could place the players in the cycle without restriction because

there is no difference for player i to form a link with player j or player k since the costs

are the same. However, this is not true in the case of heterogeneous costs.

So, let Hi : G → G be a correspondence where hi(g) ∈ Hi(g) satisfies the following

conditions.

• If g contains at most one cycle and there does not exist any link from a player

j 6∈ C(g) to a player k ∈ C(g), then g = hi(g).
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• If player i has formed a link with no player j ∈ NC(g) or with at least two players

j ∈ NC(g) in g, then

1. if k is such that ℓ ∈ Nk(g) and ℓ ∈ NC(g), then k ∈ NC(hi(g));

2. if k 6∈ NC(hi(g)), then for all ℓ ∈ N , we have gℓ,k = hi(g)ℓ,k.

• If player i has formed a link with one and only one player j ∈ NC(g) in g, then:

1. if k is such that ℓ ∈ Nk(g) and ℓ ∈ NC(g), then k ∈ NC(hi(g));

2. if k 6∈ NC(hi(g)), then for all ℓ ∈ N , we have gℓ,k = hi(g)ℓ,k;

3. player i and player j belong to NC(hi(g)) and the link i, j ∈ E(hi(g)).

We now define ĝ
i as follows: ĝ

i ∈ M ◦Hi ◦ bri(g).

Proposition 3 Consider a game where values of links are heterogeneous by players and

costs of links are heterogeneous by pairs. There always exists a Nash network if for all

i ∈ N , j ∈ N , j′ ∈ N : |ci,j − ci,j′| < Vi.

Proof The proof of this proposition is similar to the proof of the proposition 2 with ĝ
i

playing the same role as g
i). �

Corollary 1 Suppose a game where values and costs of links are heterogeneous by pairs.

If for all i ∈ N , j ∈ N , j′ ∈ N : |ci,j−ci,j′| < mink∈N{Vi,k}, then there is a Nash network.

The importance of these results stems from the fact that they identify conditions under

which Nash networks always exist under heterogeneity.
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4 Model with Congestion Effect

In one-way flow models with homogeneous players BG [1] establish that Nash networks

always exist. We show that this result is no longer true when the payoff function

incorporates congestion effects – a phenomenon that frequently arises in many network

settings. Billand and Bravard (2005 [2]) characterize Nash networks under congestion

effects. In this section, we use their framework to show the non-existence of Nash

networks.

Let us define φ : N × {0, . . . , n − 1} → IR, (x, y) 7→ φi(x, y) be such that:

φi(x, y) > φi(x, y + 1).

Let ci(g) =
∑

j 6=i gi,j be the costs incurred by i in the network g. We now define the

payoff function of player i ∈ N as

π̄i(g) = φi(ni(g), ci(g)).

As before we assume that player i obtains her own resources. We now provide an

example where a Nash network does not exist.

Example 3 Let N = {1, 2, 3}, and φ1(2, 1) > φ1(1, 0) > φ1(3, 1), max {φk (2, 1) , φk(3,

2)} < φk(1, 0) < φk(3, 1), for k ∈ {2, 3}.

First, networks in which a player forms two links are not Nash.

Second, the unique best response of player 2 (respectively 3) to any network g
′ in

which player 1 and player 3 (respectively 2) have formed no link is to form no link.

Moreover, the unique best response of player 1 to a network g in which player 2 and

player 3 have formed no link is to form a link with player 2 or player 3. Therefore, the

empty network is not a Nash network.
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Third, a network g where n1(g) 6= 2 cannot be a Nash network. Indeed, it is obvious

that n1(g) = 3 cannot be a Nash network since φ1(1, 0) > φ1(3, 1) > φ1(3, 2). Moreover,

a network g where n1(g) = 1 cannot be a Nash network. Indeed, in a Nash network

where player 1 has formed no links, players 2 and 3 cannot have established any links,

since at least one of these players gets the ressources of one player only and we have

φk(2, 1) < φk(1, 0), for k ∈ {2, 3}. In that case, when players 2 and 3 create no links,

player 1 has an incentive to establish a link with player 2 or player 3. To sum up if there

exists a Nash network g, then n1(g) = 2.

Without loss of generality, we consider networks g in which player 1 has formed a

link with player 2. In these networks,

1. player 2 has not formed a link with player 3 because in that case 2, 3 ∈ N1(g) and

player 1 would have an incentive to delete the link 1, 2.

2. Player 3 has an incentive to establish a link with player 1, since φ3(1, 0) < φ3(3, 1).

3. The networks in which a player has formed two links are not Nash networks.

Hence a Nash network does not exist.

The previous result remains true when players are homogeneous. But in that case,

examples are more complicated because we need at least 7 players to show a Nash

network does not always exist.

5 Discussion

Our different results lead to two questions. The first one is: Can the introduction of the

decay assumption change the different results. Billand, Bravard and Sarangi (2006 [3])
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show that there does not always exist a Nash network in a framework with homogeneous

costs, heterogeneous values (by pairs) and decay. The second one is: How the results of

the paper are sensitive to the assumption of linearity in values and costs. This question

will be the subject of a future work.
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