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Abstract

For the connections model of strategic network formation, with two-way flow
of information and without information decay, specific parameter configura-
tions are given for which Nash networks do not exist. Moreover, existence
and the scope of Nash network architectures are briefly discussed.
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1 Introduction

Jackson and Watts (2001) give necessary as well as sufficient conditions for
the existence of pairwise stable networks. Jackson and Watts (2002) provide
an example for non-existence of pairwise stable networks. Jackson (2005)
shows existence of such networks for several prominent allocation rules. In
comparison with the work on pairwise stability, existence has been less sys-
tematically explored in the literature on Nash networks. In this note, we
consider a strategic model of network formation that is based on the con-
nections model without decay and allows for heterogeneity of costs, values
and links. The model permits two-way flow of information. We draw and
expand on previous work by Bala and Goyal (2000a, b), Galeotti, Goyal, and
Kamphorst (2004), and Haller and Sarangi (2004). We provide examples of
non-existence and present instances of existence of Nash networks. We de-
lineate the scope of Nash network architectures under various heterogeneity
assumptions.

2 The Model

Let n ≥ 3. N = {1, . . . , n} denotes the set of players with generic elements
i, j, k. For ordered pairs (i, j) ∈ N × N , the shorthand notation ij is used
and for non-ordered pairs {i, j} the shorthand [ij] is used. The symbol ⊂
for set inclusion permits equality. The model is specified by three families
of parameters, indexed by ij, with i 6= j:

• Cost parameters cij > 0.

• Value parameters Vij > 0.

• Link success probabilities pij ∈ (0, 1].

In case cij 6= ckl (Vij 6= Vkl, pij 6= pkl) for some ij 6= kl, the model exhibits
cost (value, link) heterogeneity; otherwise, it exhibits cost (value,
link) homogeneity. In case pij = 1 for all ij, the model has perfectly
reliable links; otherwise, it has imperfectly reliable links.

A pure strategy for player i’s is a vector gi = (gi1, . . . , gii−1, gii+1, . . . , gin)
∈ {0, 1}N\{i}. We only consider pure strategies. The set of all pure strategies
of agent i is denoted by Gi. It consists of 2n−1 elements. The joint strategy
space is given by G = G1 × · · · × Gn.

There is a one-to-one correspondence between the set of joint strategies
G and the set of all directed graphs or networks with vertex set N . Namely,
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to a strategy profile g = (g1, . . . , gn) ∈ G corresponds the graph (N,E(g))
with edge or node set E(g) = {(i, j) ∈ N ×N | i 6= j, gij = 1}. In the sequel,
we shall identify a joint strategy g and the corresponding graph and use the
terminology directed graph or directed network g. Since our aim is to
model network formation, gij = 1 is interpreted to mean that a direct link
between i and j is initiated by player i (node ij is formed by i) whereas
gij = 0 means that i does not initiate the link (ij is not formed). Regardless
of what player i does, player j can set gji = 1, i.e. initiate a link with i, or
set gji = 0, i.e. not initiate a link with i.

To describe information flows and compute benefits associated with the
network g, it is useful to introduce the closure of g. This is a non-directed
network denoted g and defined by gij := max {gij , gji} for i 6= j. Pictorially,
forming the closure of a network simply means replacing every directed edge
ij of g by the non-directed edge [ij].

Benefits with Perfectly Reliable Links. A link between agents i
and j potentially allows for two-way (symmetric) flow of information.
Therefore, the benefits from network g are derived from its closure g. More-
over, a player receives information from others not only through direct links,
but also via indirect links. To be precise, information flows from player j
to player i, if i and j are linked by means of a path in g from i to j. For a
non-directed graph h ∈ G, a path of length m in h from player i to player
j 6= i, is a finite sequence i0, i1, . . . , im of pairwise distinct players such that
i0 = i, im = j, and hikik+1

= 1 for k = 0, . . . ,m− 1. Let us denote

Ni(h) = {j ∈ N | j 6= i, there exists a path in h from i to j},

the set of other players whom player i can access or “observe” in the non-
directed network h. Information received from player j is worth Vij to player
i. Therefore, player i’s benefit from a network g with perfectly reliable links
is

bi(g) = bi(g) =
∑

j ∈ Ni(g)
Vij .

Benefits with Imperfectly Reliable Links. Imperfect reliability of
links means that pij ∈ (0, 1) for some i 6= j. Recall that for any i 6= j,
the non-ordered pair [ij] represents the simultaneous occurrence of ij and
ji. Again, g, the closure of g, determines the possible information flows.
If gij = 0, then as before [ij] does not permit any information flow. But
now if gij = 1, then [ij] succeeds (allows information flow) with probability
pij ∈ (0, 1) and fails (does not permit information flow) with probability
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1 − pij , where pij is not necessarily equal to pik for j 6= k. It is assumed,
however, that pij = pji. Furthermore, the successes of direct links between
different pairs of agents are assumed to be independent events. Thus, g
may be regarded as a random network with possibly different probabilities
of realization for different edges. We call a non-directed network h ∈ G
a realization of g (h ⊂ g) if it satisfies hij ≤ gij for all i, j with i 6= j.
Invoking the independence assumption, the probability of the network h
being realized, given g is

λ(h | g) =
∏

[ij]∈hpij
∏

[ij]6∈h(1− pij).

Given a strategy profile g, i’s expected benefit from the random network g
is

Bi(g) =
∑
h⊂g λ(h | g)bi(h).

Namely, the probability of network h being realized is given by λ(h | g),
in which case player i obtains benefit bi(h). Summation over all possible
realizations h ⊂ g yields expected benefits.

Costs. Player i incurs the cost cij when she initiates the direct link ij,
i.e. if gij = 1. Hence i incurs the total costs

Ci(g) =
∑

j 6=i
gijcij

when the network g is formed.

Payoffs. Player i’s expected payoff from the strategy profile g is the net
benefit

Πi(g) = Bi(g)− Ci(g). (1)

Nash Networks. Given a network g ∈ G, let g−i denote the network
that remains when all of agent i’s links have been removed. Clearly g =
gi⊕ g−i where the symbol ⊕ indicates that g is formed by the union of links
in gi and g−i. A strategy gi is a best response of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g′i ⊕ g−i) for all g′i ∈ Gi.

Let BRi(g−i) denote the set of agent i’s best responses to g−i. A network
g = (g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each
i, that is if g is a Nash equilibrium of the strategic game with normal form
(N, (Gi)i∈N , (Πi)i∈N ). A strict Nash network is one where agents are playing
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strict best responses.

Graph-theoretic Concepts. We now introduce some definitions of a
more graph-theoretic nature. A network with no links is called an empty
network. A network g is said to be connected if there is a path in g
between any two agents i and j. A connected network g is minimally con-
nected, if it is no longer connected after the deletion of any link.

A set C ⊂ N is called a component of g if there exists a path in g
between any two different agents i and j in C and there is no strict superset
C ′ of C for which this holds true. For each network g, the components of g
form a partition of the player set (node set, vertex set) N into non-empty
subsets. Each isolated point i ∈ N in g, that is a player or node i with
gij = gji = 0 for all j 6= i, gives rise to a singleton component {i}. In
particular, the components of the empty network are the sets {i}, i ∈ N . N
is the only component of g if and only if g is connected. If C is a component
of the network g, we denote by gC the network induced by g on the set of
agents C, that is gCij = gij for i, j ∈ C, i 6= j. A network g is minimal, if gC

is minimally connected for every component C of g. Minimally connected
networks are both connected and minimal.

We finally introduce the notion of an essential network. A network g ∈ G
is essential if gij = 1 implies gji = 0. Note that if g ∈ G is a Nash
network or an efficient network, then it must be essential. This follows
from the fact that for each link ij, cij > 0 and the information flow is
two-way and independent of which agent invests in forming the link, that is
hij = max{gij , gji}. Minimal networks are also essential.

3 Non-Existence of Nash Networks

Our first example constitutes a 4-player game with cost homogeneity and
both value and link heterogeneity.

Example 1: Let n = 4, cij = c = 0.95 for all ij, Vi1 = 1 for i 6= 1, Vi2 =
2 for i 6= 2, Vi3 = 64 for i 6= 3, Vi4 = 16 for i 6= 4. Set p = p12 = p21 = 0.4;
q = p23 = p32 = 0.01473; r = p34 = p43 = 1/32; s = p14 = p41 = 1/16; and
t = pij = 1/200 < 1/(3 · 64) for all remaining ij. Obviously, none of the
links ij with pij = t will be established. Moreover, 1 will always establish
the link 14, 4 will always establish the link 43, 2 will never establish the
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link 21 and 3 will never establish the link 32. Now the existence of a Nash
network can be decided by assessing the benefits from links 12 and 23 to
players 1 and 2, respectively, given that all other links have been established
or not according to our foregoing account. We obtain:

• Without 23, player 1 strictly prefers not to establish 12.

• With 23, player 1 strictly prefers to establish 12.

• Without 12, the benefit to player 2 from link 23 is 0.95011 and estab-
lishing 23 is a strict best response.

• With 12, player 2’s benefit from link 23 is reduced by 81pqrs = 0.00093
(due to redundancies) and not establishing 23 is a strict best response.

Hence there are no mutual best responses regarding establishment of 12 and
23. Consequently, a Nash network does not exist.

To understand why the particular choice of q has player 2 switch back
and forth, replace q by a q̃ such that without 12, player 2 is indifferent be-
tween having and not having the link 23, i.e. q̃ · (64 + r · 16 + rs) = c. This
yields q̃ = 0.014728236. Then with 12, player 2 would not want the link
because of redundancies. By continuity, q slightly larger than q̃ produces
the best response properties exhibited above.

The next example constitutes a 4-player game with perfectly reliable links,
cost heterogeneity and value homogeneity.

Example 2: Let n = 4 and Vij = V > 0 for all ij. Suppose c1k > 3V
for all k 6= 1; c23 = c24 > 3V and c21 < V ; V < c34 < c32 < 2V < 3V < c31;
2V < c42 < 3V < c41 = c43. Then the unique best reply of player 1 to any
network is to add no links at all. The unique best reply of player 2 to any
network g−2 in which he does not observe player 1 is to add a link to player
1 only. Players 3 and 4 will never have a link to player 1 as part of their
best reply. Moreover, in a best reply player 4 will never initiate a link to
player 3.

Now let us take those best replies for granted and consider best responses
regarding the remaining links 32, 34, and 42. If player 4 initiates link 42,
then player 3’s best response is to initiate link 34 and not 32, and in turn
player 3’s best response is not to form link 42. If player 4 does not initiate
link 42, then player 3’s best response is to form link 32 and not 34, against
which player 4’s best response is to initiate link 42. Hence there do not exist
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any mutual best responses. Therefore, a Nash network does not exist.

Remark 1. Example 1 can be viewed a reduced form of Example 2 in
Haller and Sarangi (2004), a 83-player game with cost as well as value homo-
geneity and based only on link heterogeneity. The latter example is obtained
by introducing additional players labelled 0, 301, . . . , 363, 401, . . . , 415. Choose
cij = 0.95 and Vij = 1 for all ij. As before, set p = p12 = p21 = 0.4;
q = p23 = p32 = 0.01473; r = p34 = p43 = 1/32; s = p14 = p41 = 1/16.
Further put p20 = p02 = 1; p3j = pj3 = 1 for j = 301, . . . , 363; p4j = pj4 = 1
for j = 401, . . . , 415. For the remaining ij, set pij < c/82 so that the cor-
responding link will not be formed. The analysis of this example reduces to
exactly the same numerical matching pennies game regarding links 12 and
23 as in Example 1.

Remark 2. There exists a 3-player game with perfectly reliable links,
which exhibits both cost and value heterogeneity and does not have a Nash
network.

Remark 3. So far the literature on strategic network formation has
not considered equilibria in mixed strategies — which would overcome the
existence problem in finite games.

4 Existence of Nash Networks

Bala and Goyal (2000a) outline a constructive proof of the existence of
Nash networks in the case of perfect reliability of links, cost and value ho-
mogeneity. Indeed, existence can be shown under the assumption of perfect
reliability of links and cost homogeneity, allowing for value heterogeneity.

Proposition. Let links be perfectly reliable and costs be homogeneous. Then
a Nash network exists.

proof. We construct a minimal network which is Nash, beginning with
the empty network. The empty network is minimal and has the property
that no player benefits from deleting a link.

Next let g be any minimal network with the property that no player
benefits from deleting a link. Since g is minimal, a link ik in g connects i
with the members of k’s component in g−i. By assumption, i does not gain
from simply severing that link. Because of cost homogeneity, player i does
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not strictly prefer to replace that link with a link to another member of k’s
component in g−i. Consequently, there remain two possibilities: either (a) g
is Nash or (b) some player is better off by sponsoring an additional link. In
the latter case, suppose that player i is better off sponsoring the additional
link ij and denote g′ = g ⊕ ij. Since player i is better off sponsoring the
extra link ij, i and j belong to different components of g. Hence g′ is
also minimal. Moreover, adding the link ij makes the existing links more
valuable. Therefore, no player benefits from deleting a link in g′.

We have shown so far: If g is a minimal network with the property
that no player benefits from deleting a link and g is not Nash, then adding
a suitably chosen link to g creates a larger minimal network g′ with the
property that no player benefits from deleting a link.

Now let us begin with the empty network and label it g0. In case g0

is Nash, we are done. Otherwise, by the previous argument, there exists a
minimal network g1 with one link and the property that no player benefits
from deleting a link. In case g1 is Nash, we are done. Otherwise, there
exists a minimal network g2 with two links and the property that no player
benefits from deleting a link, etc. Since a minimal network with n nodes has
at most n− 1 links, in finitely many steps, say k steps with 0 ≤ k ≤ n− 1,
a minimal network gk is reached which has k links and is Nash.

To summarize, in the case of perfect reliability of links, a Nash network
always exists when costs are homogeneous, whereas Nash network do not
always exist when costs are heterogeneous. We have also presented exam-
ples of non-existence which exhibit link heterogeneity and cost homogeneity,
with or without value homogeneity.

In addition, the literature contains assertions that for certain parame-
ter ranges, the model admits Nash networks with specific properties. This
amounts to providing sufficient conditions for the existence of certain Nash
networks. If the various regions happen to cover the entire parameter space,
then as a by-product, existence has been shown for the particular model.
For instance, Bala and Goyal (2000b) do this for the case of n = 3, with im-
perfect reliability of links and cost, link, and value homogeneity. Existence
for n > 3 is an open question.
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5 Scope of Nash Network Architectures

Instead of addressing the existence problem directly, most of the literature is
devoted to the question of which Nash network architectures may arise under
specific parameter restrictions. Here we delineate the scope of Nash network
architectures in our model under various heterogeneity assumptions. In each
instance, we list the only possible (strict) Nash network architectures — and
in each instance except (E), any such network can be obtained as a (strict)
Nash network upon suitable choice of parameters.

(A) Perfectly reliable links; cost and value homogeneity. Nash
networks (Bala and Goyal (2000a)): The empty network and minimally
connected networks. Strict Nash networks (Bala and Goyal (2000a)): The
empty network and center-sponsored stars.

(B) Perfectly reliable links; cost homogeneity; value hetero-
geneity. Strict Nash networks (Galeotti, Goyal, and Kamphorst (2004)):
The empty network and minimal networks in which every non-singleton
component is a center-sponsored star.

(C) Perfectly reliable links; cost heterogeneity; value homo-
geneity. Strict Nash networks (Galeotti, Goyal, and Kamphorst (2004)):
Minimal networks.

(D) Perfectly reliable links; cost and value heterogeneity. Strict
Nash networks (Galeotti, Goyal, and Kamphorst (2004)): Minimal networks.

(E) Imperfectly reliable links; cost, link, and value homogene-
ity. Nash networks (Bala and Goyal (2000b)): The empty network and
connected essential networks.

(F) Imperfectly reliable links; cost and value homogeneity; link
heterogeneity. Nash networks, strict Nash networks (Haller and Sarangi
(2004)): Essential networks.
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