
The Pakistan Development Review 
45 : 3 (Autumn 2006) pp. 369–381     

Predictability in Stock Returns in an Emerging Market: 
Evidence from KSE 100 Stock Price Index  

KHURSHID M. KIANI
*  

We investigate the persistence in monthly KSE100 excess stock returns over the Treasury 
bills rates using non-Gaussian state space or unobservable component model with stable 
distributions and volatility persistence.  

Results from our non-Gaussian state space model, which is an improvement over Conard 
and Kaul (1988), show that the conditional distribution has a stable  of 1.748 and normality is 
rejected even after accounting for GARCH. There exists a statistically significant predictable 
component in the KSE 100 excess stock returns. The optimal predictor in the unconditional 
expectation of the series is estimated to be 0.18 percent per annum. An evidence of highly non-
constant scales in different periods of time exhibits a tendency towards stock market crashes 
which invites remedial policy action.  

JEL classification:  C22, C53, G14 
Keywords:   Stock Return Predictability; Unobserved Components; Fat Tails; 

Stable Distributions  

1.  INTRODUCTION 

There has been a growing tendency on forecasting stock return predictability over 
time because stock return predictability, if it exists, can help attain large economic gains 
with suitable trading strategies. In his survey article, Fama (1991) demonstrates that 
predictability in stock returns has been explored extensively in the literature.  

While there are a number of studies that include Summers (1986), Fama and 
French (1988), Lo and MacKinlay (1998), Poterba and Summers (1988) and Bailey, et 
al. (1990) that show evidence against random walk hypothesis in emerging markets, 
there are others that include studies by Divecha, Drach and Stefek (1992), and Wilcox 
(1992) that demonstrate that high volatility exists in stock returns. 

A number of other parametric and non-parametric approaches have been 
employed to forecast predictability in stock returns but most of these approaches do not 
consider fat tails in return series that are widely documented in the literature. For 
example McQueen and Thorely (1991) used Markov chains to test stock returns 
predictability. However, in Markov chains the outcome from current period experiment 
is assumed to affect the outcome of the next period with some probability and so on. 
Similarly, in non-parametric approaches, for example, artificial neural networks seems to 
be a candidate approach to predict stock returns although neural networks are under  
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heavy criticism for not having an explicit functional form (being black boxes) and 
overfitting12issues associated with them. However, in this study we are not merely 
working with stock return predictability, therefore, we feel that state space models 
encompassing a signal extraction approach might do a better job to extract predictable 
signals (if any) in return series while taking into account non-normality and time varying 
volatility that is well-documented in the literature. 

While a number of techniques were used in the empirical literature to forecast 
stock return predictability, researchers focused on two aspects of empirical distribution of 
stock returns, which, they think, are important for accurate predictability. For example, 
Akgiray and Booth (1988), Jensen (1991), De Vries (1991), Buckel (1995), Mantegna 
and Stanley (1995), and McCulloch (1997) show existence of non-normality in stock 
returns. On the other hand, Nelson (1991) Danielsson (1994), Pagan and Schwert (1990), 
Diebold and Lopez (1995), and Goose and Kroner (1995) show evidence of volatility 
persistence in stock returns. 

Conard and Kaul (1988) employed state space or unobservable component model 
for stock return predictability considering that shocks in both the observation and state 
equations are i.i.d. normal. Similarly, Harvey (1989) and Watson (1986) also used state 
space models with assumptions that the underlying errors are i.i.d. normal. However, 
McCulloch (1996a) and Bidarkota and McCulloch (2004) considered modeling stock 
returns to be non-Gaussian with fat tails because the empirical literature recommends 
using non-normality and volatility persistence in models that are employed for accurate 
forecasts of stock returns. One might employ either t-distributions or stable distribution 
to account for fat tails while modeling stock returns, however, following Bidarkota and 
McCulloch (2004) we employ stable distributions for technical reasons that will be 
elaborated in the later sections. 

In this study, we employ state space or unobservable component model to 
investigate whether persistent predictable signal is present in Karachi Stock Exchange 
(KSE) 100 index monthly excess returns over the risk free rates (Treasury bill rates). In 
order to account for non-Gaussian data, we model returns within the framework of 
Parisian stable distributions that were also employed by Mantegna and Stanley (1995), 
Buckel (1995), and McCulloch (1997). Therefore, as in Oh (1994) and Bidarkota and 
McCulloch (1998) we relax the normality assumption in favour of stable distributions 
because the Kalman filter is not operable efficiently with stable distributions. Similarly, 
to explicitly account for volatility persistence in the return series we employ GARCH-
like model.  

The remaining paper is organised as follows. Section 2 outlines the most 
general model used in this paper and some estimation issues. In Section 3, we present 
data sources and empirical results and hypotheses tests. Finally Section 4 concludes 
the study.  

1Even with their tendency to overfit, artificial neural networks can be applied efficiently with adequate 
selection of neural network architecture [Kiani (2005)]. 
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2.  STATE SPACE MODEL FOR STOCK RETURNS 

In this research we use six types of models. Model 1 is the most general model 
that encompasses unobservable component in stock returns including non-normal errors 
and GARCH-like effects. The most general unobserved component or state space model 
is shown in the following three Equations: 

)1,0(~,~ 11 siidzzcxr ttttttt … … … (1a) 

ttttt zccxx 21 ~)()(

 

)1,0(~2 Siidz t … … … … … … … (1b) 

|),....,|(| 11111 ttttt rrrErcc 

|),....,|(| 11111 tttt rrrErd … … … … … (1c) 

Where, 

1td
0).,,.........,|(1

0
22111{ ttt rrrrErif

otherwise 

Here rt is the observed one-period excess return, xt is an unobserved persistence 
components in the series, and Z1, and Z2 are independent white noise processes. 

Model 2 is obtained restricting a=2 in model 1 which is shown in Equations 2a 
and 2b. 
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Setting  =  =  = 0 in model 1, gives model 3 which is given in Equations 3a and 3b.  
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We restrict 

 

= 0 in model 1 to obtain model 4. In this case the shocks t and t are not 
separately identified so c  = 0 resulting in model 4 that is shown in Equations 4a and 4b. 
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Model 5 is obtained restricting 2

 
in model 5 which is presented in Equations 

5a and 5b. 
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Restricting 

 
= 

 
= 

 
= 0 in model 4 results in model 6 results that is shown in 

Equation 6. 
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A random variable x will have stable distribution Sa(0,c) when its log 
characteristic function can be represented as: 

ln ||)exp( tctiixtE … … … … … … (7) 

The parameter c > 0 measures scale whereas the parameter (– , ) measures 
location and (o,2) is the characteristic exponent that governs the tail behaviour. A small 
value of 

 

indicates thicker tail and normal distribution pertaining to a symmetric stable 
family but when  = 2 errors come from the normal family whose variance is equal to 2c2.  

In the process contained in Equation 1c, we restrict 

 

> 0, 

 

>

 

0, 

 

>

 

0, and 

 

>

 

0. 
The theoretical term involving dummy variable dt–1 captures leveraged effects that is 
transmitted from negative shock to increase in future volatility more than a positive 
shock of equal magnitude [Nelson (1991) and Hamilton and Susmel (1994)]. Abstracting 
from the threshold term, when the errors are normal, the model of volatility persistence 
reduces to GARCH-normal process. 

Any predictable variation in excess return is because of persistent component xt, 
which are assumed to follow a simple AR (1) process. When the predictable component 
in Equation 1 becomes significant, then ),.....,|( 111 trrrE provides a useful forecast of 

returns. However, when c

 

and 

 

or one of these is negligible, the returns are purely 
random, so these may display spurious predictions.   

2.1.  Estimation Issues 

Non-Gaussianity of the state space model shown in Equations 1a – 1c creates 
complication in estimation even without the presence of conditional heteroskedasticity. 
This happens because the Kalman filter is no longer optimal due to the non-Gaussian 
nature of shocks. In such situations, the general recursive-filtering algorithm due to 
Sorenson and Alspach (1971) works better and provides optimal filtering and predictive 
densities under any distribution for the errors and the formula for computing the log 
likelihood function. These formulas are shown in  Appendix-A. 

The recursive equation that is employed to compute filtering and predicting 
densities are given in the form of integrals whose close form analytical expressions are 
generally intractable, especially in very special cases. Therefore, in this study, these 
integrals  are numerically evaluated.  
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Stable distribution and density may be evaluated using Zolotarev’s (1986) 

proper integral representation or by taking the inverse Fourier transformation of the 
characteristic function. However, McCulloch (1996a) developed a fast numerical 
approximation to stable distribution and density that has an expected relative density 
of the precision of  10–6 for [0.84, 2]. Therefore, we restrict 

 
in this range for 

computational convenience. 
Lumsdaine (1996) shows that the effect of initial values in GARCH volatility 

process on the properties of the parameter estimates in GARCH (1,1) is asymptotically 
negligible. Diebold and Lopez (1995) suggests to set the initial conditional variance 

2
02( c , where it exists) equal to sample variance at the first iteration and the subsequent 

iterations to sample variance from simulated realisations with estimated parameters from 
the previous iterations. Engle and Bollerslev (1986) suggests initialising the GARCH 
process using unconditional estimates of c0 obtained from the volatility process contained 
in Equation 1c.  

3.  EMPIRICAL RESULTS  

3.1.  Data Sources 

We obtained KSE 100 index stock price data for Karachi Stock Exchange from 
DataStream and Treasury bill rates for Pakistan from September 2004 version of 
International Financial Statistic CD-ROM. The treasury bill rates are used as risk free 
rates that are used to calculate excess returns that are expressed as percent per month 
throughout the study. The data span for excess returns used in the study ranges from 
March 1991 to February 2004. 

Figure 1 plots excess return series for KSE 100 index. These plots encourage us to 
employ state space or unobserved component model that is  presented in Equations 1a – 
1c for detecting possible persistence of predictable component in mean returns.    
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Figure 1   Monthly KSE100 excess stock returns 
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Fig. 1. Monthly KSE 100 Excess Stock Returns 
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3.2.  Estimation Results  

Table 1 show estimation results for models 1 through 6 estimated for this study. 
Parameter estimates for characteristric exponent , volatility persistence parameter , the 
ARCH parameter , leverage parameter , signal to noise ratio c , and AR coefficient of 
persistent component for returns , respectively are 1.610, 0.000, 0.002, 18.170, 0.000, 
and 0.191.  

Figure 2 illustrate mean of the filter density E(xt 

 
r1, r2, r3,……., rr) which 

demonstrates that due to constant predictable component, any variation in its parameter 
estimates may be of a little importance in forecasting excess returns.   

3.3.  Hypotheses Test 

In the following sub-sections, we elaborate the test for normality, volatility 
persistence, and persistence in mean returns. All the tests are based on likelihood ratio 
test.  

3.3.1. Test for Normality 

This test is based on the null of normality (  = 2) in model 1. The LR test statistics 
for this test has non-standard distribution because the null hypothesis lies on the 
boundary of the admissible values for , therefore, standard regularity conditions are not 
satisfied. Therefore, inferences are drawn from test statistics based on critical values due 
to McCulloch (1997). 

Based on LR test statistics, the null hypothesis can easily be rejected at a 
significance level of better than 0.005 using critical values from McCulloch (1997). 
Consequently, even after accounting for GARCH-like behaviour, the excess returns are 
significantly non-normal.  
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Figure 2   KSE100 excess returns and filter estimates
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Fig. 2. KSE 100 Excess Returns and Filter Estimates 
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Table 1 

Estimates for non-Gaussian Space State Models and its Restricted Versions 
Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

  
1.610 

(0.110) 

2 
(restricted) 

1.749 

(0.131) 

1.748 

(0.130) 

2 
(restricted) 

1.748 

(0.177) 

  
0.013 

(0.013) 

0.024 

(0.016) 

0.012 

(0.002) 

0.015 

(0.011) 

0.023 

(0.011) 

0.088 

(0.008)  

 

0.000 

(0.000) 

0.007 

(0.007)  

0.014 

(0.006) 

0.010 

(0.009)   

 

0.000 

(0.000) 

0.014 

(1.079)  

0.031 

(0.468) 

0.004 

(0.946)   

 

0.002 

(0.005) 

6.45e-13 

(8.46e-10) 

  

2.85e-13 

(1.06e-10) 

8.58e-13 

(2.36e-9)   

 

18.170 

(5.916) 

0.541 

(0.442)  

1.66e-9 

(6.34e-7) 

3.038e-10 

(3.20e-7)  

c

 

6.25e-9 

(6.77e-7) 

1.25e-10 

(1.65e-7) 

0.086 

(0.007)     

C   

0.001 

(0.003)   

0.016 

(0.012)  

 

0.191 

(0.070) 

0.613 

(0.313) 

0.156 

(0.001)    

Log L  

88.494  83.738  85.411  82.529  79.792  82.528  

LR (  = 2)   9.512     5.474    

LR ( = = =0)   6.166    0.002   

LR (  = c  = 0)  11.930 2.418     

Notes: on Table 1. 
1. The following unobserved component or state space model with non-normality (stable model) is 

employed to estimate the results shown in Table 1. 

)1,0(~,~ 11 siidzzcxr ttttttt … … … (1a) 

)1,0(~,~,)()( 221 Siidzczcxx ttttttt … … … (1b) 

2. All estimates are rounded off to the third decimal place. 
3. Hessian-based standard errors for the parameter estimates are reported in parentheses. LR (

 

= c

 

= 0) 
gives the value of the likelihood ratio test statistic. It is a test for no predictable components in excess 
returns. Under this null, the distribution of the LR test statistic is non-standard (see section 3.2 in the 
text for an elaboration).  

4.  P-values generated by estimating Gaussian versions of Models 1 and 2 with data simulated from the 
estimated Gaussian Model 2 are reported in parentheses.  

5. LR (  = 2) gives the value of the likelihood ratio test statistic for the null hypothesis of normality.  
6. The small-sample critical value at the 0.01 significance level for a sample size of 300 is reported to be 

4.764 from simulations in McCulloch (1997). 

7. LR (  =  =  = 0) is the test for no volatility persistence. The 2
3  p-values equal 2.5e-26. 
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3.3.2.  Test for Volatility Persistence 

The test for no volatility persistence (homoskedasticity) can be constructed 
restricting 

 
= 

 
= 

 
= 0 in the most general state space model shown in Equations 1a – 

1c. Statistical inferences for this test are based on 2
3  distributions. 

The LR for the null of no GARCH which is to test the restriction of 

 
= 

 
= 

 
= 0  

that is reported in Table 1 showing that homoskedasticity is strongly rejected with 
2
3 critical values.  

3.3.3.  Test for Persistence in Mean Returns 

The null hypothesis for this test assumes that return series are random. The null is 
obtained by setting 

 

= 0 in the most general state space model shown in Equations 1a – 
1c. In this case the shocks t and t are not identified separately, so c  = 0.  

The standard likelihood ratio test statistics for this test are not applicable because 
the two shocks t and t are not separately identified, so the scale ratio c

 

is also not 
identified. Similarly the bound for the asymptotic distribution of a standardised 
likelihood ratio test statistics due to Hansen (1992) which is applicable in such cases may 
result in under-rejection of the null or a subsequent  power loss as noticed by Hansen 
himself. In addition, the test statistics is computationally very intense especially in our 
case, so we abstain using it. Therefore, the inferences are drawn based on the critical 

values obtained from both 2
1 , and 2

2  distributions. 

Based on the  LR test statistics for null hypothesis for no predictable component (

 

= c

 

= 0) is not rejected. Accordingly, after accounting for normality and volatility 
persistence, there exists a statistically significant evidence of persistence component in 
monthly KSE 100 Index excess returns.  

3.4.  Results on Additional Tests on Normality and Volatility Persistence 

The test for non-normality and volatility persistence is repeated considering model 
4 as alternative model. Needless to mention that model 4 is a version of the most general 

state space model that restricts predictable components (

 

= c

 

= 0) in the general 
model. Using model 4 as an alternate model, we use model 5 as null model for testing  
non-normality and model 6 as null model for testing homoskedasticity. The rational for 
the additional tests is to discover the effects of excluding predictable components from 
our most general model on the significance level of the tests for non-normality and 
vitality persistence.  

LR test statistics for normality and volatility persistence are reported in the last 
two rows of column 5 in Table 1. Once again the hypothesis of normality and no 
volatility persistence are rejected. Figure 3 plots scales from model 4 which show the 
evidence of highly non-constant scales. Moreover, scales in monthly KSE100 index 
shows spikes in different time periods exhibiting a tendency towards stock market 
crashes. This should be an indication for the policy-makers to step ahead and take 
necessary policy measure for the stability of the major stock market of the country. 
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3.5.  Test for Leverage Effect 

The leverage effect imply that negative shock do not necessarily lead to negative 
increase in future volatility more than the positive shocks of the same magnitude. This 
hypothesis can be tested setting 

 

= 0 for the null and 

 

> 0 for the alternate hypothesis 
showing that the leverage effect exists. The results (not reported for brevity) strongly 
reject the null hypothesis in favour of leverage effects.  

3.6.  Discussions on Results 

Our results on hypothesis tests reveal that the monthly KSE100 index excess 
returns from March 1991 through February 2004 do posses significant non-normality that 
is predictable even after accounting for conditional heteroskedasticity. Similarly, 
volatility persistence is also statistically significant. The leverage effect in volatility is 
insignificant, however, there is an evidence of statistically significant predictable 
component in this market.  

An evidence of highly non-constant scales in the monthly KSE100 index shows 
spikes in different time periods exhibiting a tendency towards stock market crashes. Our 
analysis reveals that the KSE 100 index was affected significantly is due to sudden 
external shocks. For example, in the year 1992, due to the Gulf war, in 1998 due to the 
economic sanctions on India and Pakistan, and in 2001-02 due to the incidence of 
September 11, 2001 and recession in the US economy. These shocks did not affect that 
drastically to S&P CNX 500 Indian stock price index. 

The value of the characteristic exponent 

 

for KSE 100 stock market excess 
returns equal 1.748 that is well below the value that would show normal behaviour in a 
market. The value of characteristic exponent for KSE 100 index is in line with 

Fig. 3. Stock Returns Volatility-stable GARCH(1, 1) Model 4 
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developed, transition, and emerging stock markets in the world. For example the value of 
characteristic exponent 

 
for USA due to Bidarkota and McCulloch (2004) is 1.890. 

Similarly, the values of 

 
due to Kiani and Bidarkota (2004) for Canada, France, 

Germany, Japan, UK, and USA are 1.645, 1.867, 1.748, 2.00, 1.999, 1.879, and 1.866 
respectively. 

Similarly, we can also compare the values of KSE 100 characteristic exponent a 
with that of the emerging markets of the world. The study results due to Kiani (2006) 
show that the value of characteristic exponent is 1.476 for Argentina, 1.694 for Brazil, 
1.668 for Chile, 1.485 for Greece, 1.999 for India, 1.623 for Indonesia, 1.645 for Jordon, 
1.820 for Malaysia, 1.806 for Mexico, 1.803 for Nigeria, 1.831 for Philippines, 1.494 for 
Portugal, 1.872 for Thailand, 1.759 for Turkey, and 1.612 for Venezuela. Moreover, the 
value of characteristic exponent 

 

for KSE 100 index can also be compared with those 
transition economies. For example the value of the characteristic exponent is 1.649 for 
Croatia, 1.647 for Hungary, 1.749 for Latvia, 1.999 for Russia, 1.722 for Slovakia, and 
1.659 for Ukraine. The results on characteristic exponent   in stock markets in transition 
economies are due to Kiani (2005). 

The values of characteristic exponent from developed economies, transition 
economies, and emerging economies of the world show that most stock markets encompass 
non-normality. Our results from the KSE 100 stock price excess returns are in line with the 
results from most developed, transition, and emerging stock markets of the world. However, 
the results on characteristic exponent 

 

for Germany, Italy, India, and Russia stock markets 
appear to be in sharp contrast showing normal behaviour in these markets.  

4.  CONCLUSION 

In this study, we employ non-Gaussian state space or unobservable component 
model to find possible predictability in KSE100 index excess returns. Our state space 
models account for non-normality and volatility persistence that might be present in the 
series. The KSE100 index excess stock returns demonstrate significant leptokurtosis. The 
estimated value of chaistristrict exponent 

  

is well away from value pertaining to normal 
behaviour. Similarly, excess stock returns exhibit persistence in stock return volatility that 
can be characterised by a GARCH-like process. In addition, there is an insignificant 
leverage effect in the stock return volatility indicating that the negative shocks lead to 
greater increases in future volatility than the positive shocks of equal magnitude. 

Our results on predictability of monthly stock returns are statistically significant. 
Moreover, the stock returns encompass statistically significant predictable components. The 
efficiently estimated excess returns are 0.015  percent per month (0.18 percent per annum). 

An evidence of highly non-constant scales in monthly KSE100 index shows 
spikes in different time periods exhibiting a tendency towards stock market crashes. Our 
analyses show that the KSE 100 index was affected significantly is due to sudden 
external shocks in the years 1992, 1998, and 2001-2. However, S&P CNX 500 Indian 
stock price index was not affected that severely with these sudden external shocks. This 
is an issue that policy-makers should seriously consider so that even non-constant scales 
should show a pattern avoiding chances of stock market crashes.  



Predictability in Stock Returns 379

 
APPENDIX A   

Sorenson-Alspach Filtering Equations 

Let Ttyt ,...,1, , be an observed time series and xt an unobserved state variable, 

stochastically determining yt. Denote Yt = {y1m…,yt}. The recursive formulae for 
obtaining one-step ahead prediction and filtering densities, due to Sorenson and Alspach 
(1971), are as follows: 

11111 )|()|()|( ttttttt dxYxpxxpYxp , … … … … (A1) 

)|(/)|()|()|( 11 tttttttt YypYxpxypYxp , … … … … (A2) 

ttttttt dxYxpxypYyp )|()|()|( 11 . … … … … (A3) 

Finally, the log-likelihood function is given by: 

T

t
ttT Yypyyp

1
11 ).|(log),...,(log … … … … … (A4)  
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