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ABSTRACT 
 

Knowledge-based expert systems are used to enhance and automate manual processes 

through the use of a knowledge base and modern computing power.  The traditional 

methodology for creating knowledge-based expert systems has many commonly 

encountered issues that can prevent successful implementations.  Complications during 

the knowledge acquisition phase can prevent a knowledge-based expert system from 

functioning properly.  Furthermore, the time and resources required to maintain a 

knowledge-based expert system once implemented can become problematic.   

There are several concepts that can be integrated into a proposed methodology to 

improve the knowledge-based expert system lifecycle to create a more efficient process.  

These methods are commonly used in other disciplines but have not traditionally been 

incorporated into the knowledge-based expert system lifecycle.  A container-loading 

knowledge-based expert system was created to test the concepts in the proposed 

methodology.  The results from the container-loading knowledge-based expert system 

test were compared against the historical records of thirteen container ships loaded 

between 2008 and 2011.  
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Chapter 1    
 

INTRODUCTION 
 
 

Starting in the late 1950’s and early 1960’s, computer programs were written with the 

explicit goal of problem solving [Giarratano89].  Knowledge-based expert systems are 

one manifestation of the applications that trace their roots back to those early programs.  

Knowledge-based expert systems are computer systems that have expertise in a given 

domain and are useful when analyzing and processing large amounts of data in a short 

amount of time [Grosan11] [Dabbaghchi97].  They use knowledge that has been gathered 

and stored within the knowledge base in order to solve problems in the specific domain 

for which they were created. 

Organizations are always at risk of losing experts in key areas within their business 

processes due to turnover, illness, or death.  Knowledge-based expert systems help 

alleviate such risks by taking the knowledge obtained by experts, also called problem 

domain experts, over the course of their careers and storing it within a knowledge base.  

A knowledge-based expert system can also reduce the amount of time problem domain 

experts will require to solve problems in the problem domain.  A problem domain is a 

specific area of business process for which a knowledge-based expert system is created to 

support.   

1.1   Knowledge-Based Expert System Components  

Knowledge-based expert systems are composed of several independent components.  

Figure 1, as described by Grosan and Hoplin [Grosan11] [Hoplin90], shows the 
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independent components and how they work together to solve a problem within the 

problem domain.  The arrows depicted in Figure 1 outline the flow of information 

throughout the system.  The first component is the knowledge base in which heuristic 

knowledge of the domain experts as well as pertinent facts about the problem are stored 

[Grosan11] [Hoplin90].  The second component is the inference engine that utilizes 

strategies from the searching and sorting domains to test the rules contained in the 

knowledge base on a particular problem.  The inference engine accomplishes this by 

querying information from the knowledge base and applying the returned results.  The 

knowledge acquisition module, the third component, facilitates the transfer of knowledge 

into the knowledge base for future use [Grosan11] [Hoplin90].  The fourth component is 

the user interface that allows users to interact with the knowledge-based expert system by 

presenting the problem to the inference engine and viewing solutions.  The fifth 

component is the working storage which the knowledge-based expert system uses to store 

information while a specific problem is being solved [Aniba09] and then contains the 

information pertaining to the solution.   
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Figure 1: Knowledge-Based Expert System Components

Although there are many advantages to using knowledge-based expert systems, there are 

some serious disadvantages that can prevent successful development and implementation.  

Complications during the knowledge acquisition phase could ultimately prevent the 

system from functioning properly.  Furthermore, the time and resources required to 

maintain the knowledge-based expert system once implemented can detract users from 

the system and render the system obsolete.  Sections 1.2 and 1.3 describe these 

drawbacks in more detail. 

1.2   Barriers to Knowledge Acquisition 

One issue pertaining to knowledge-based expert systems is that they are only as accurate 

as the knowledge contained within the knowledge base.  Knowledge acquisition is 

defined as the process of extracting knowledge from problem domain experts in order to 

define the required functionality of the knowledge-based expert system.  Knowledge 
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acquisition has been referred to as the “bottleneck in the process of building expert 

systems” [Golabchi08] [Forsythe89].  The two key groups of stakeholders during 

knowledge acquisition are the knowledge engineer and the problem domain experts.  The 

knowledge engineer acts as the conduit for extracting domain specific information from 

the problem domain experts. 

The capability of the system is limited by the intelligence and quality of the interviews 

conducted between the knowledge engineer and the problem domain experts 

[Mertens04].  Research has been conducted to create standardized frameworks for the 

knowledge acquisition process.  However, the process still relies exclusively on the 

manual transfer of knowledge from the problem domain experts to the knowledge 

engineer, thus the success of the process lies entirely on the interviewing capabilities of 

the knowledge engineer [Wagner86].     

Lack of communication is a common problem encountered during the knowledge 

acquisition phase.  There are a multitude of causes starting with issues of missing 

common terminology and misconceptions made by both the knowledge engineer and the 

problem domain experts [Hardaway90].  During the interview process the knowledge 

engineer attaches to a problem domain expert or a group of problem domain experts for a 

significant amount of time.  Personality issues can arise between knowledge engineers 

and problem domain experts and can create a serious barrier to the knowledge acquisition 

process [Golabchi08] [Forsyhte89].    Also not all problem domain experts are familiar 

with information technologies and thus can be reluctant to participate in the development 

effort.  They often do not believe that any automated system can be created to support 

their complex business processes.  Additionally, if the problem domain experts feel that 
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the knowledge-based expert system can undermine their knowledge and make their jobs 

seem obsolete, they will be unlikely to assist the knowledge engineer in the development 

effort. 

The knowledge acquisition processes developed were traditionally centered on gathering 

information directly from the problem domain experts.  There were no existing 

searchable databases containing historical records of problem domain expert’s work.  

Modern experts no longer predominantly use pencil and paper to solve problems.  

Instead, they use some form of software application created to help them work through 

the problem and create a solution.  The process is still manual because all knowledge still 

resides with the experts.  However, the solutions created using the software based on the 

manual methods are stored and archived using modern techniques.  The modern archival 

techniques create a searchable historical database or data warehouse of problems and 

solutions created by experts in the problem domain.  The databases can be as simple as 

spreadsheets stored on a hard drive or can be full-scale database management systems.  

Traditional knowledge-based expert system implementations do not utilize the 

information contained in these historical data repositories even though these repositories 

contain valuable information that could be mined into the knowledge base for future use. 

1.3   Issues Associated with Knowledge Base Maintenance 

Another issue with knowledge-based expert systems arises in the fact that the domains 

that these systems are created to function in are dynamic in nature.  In order for the 

system to remain relevant, it must adapt to the changing conditions within the problem 

domain.  Knowledge-based expert systems cannot adapt on their own or create new 

innovative ways of solving problems [Grosan11] [Hoplin90].  The way that the 
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knowledge-based expert systems adapt is through maintenance of the knowledge 

contained within the knowledge base.  The difficulty associated with maintaining a 

knowledge base is dependent on how complex the data structure of the knowledge base is 

and how well the knowledge acquisition module is constructed.  Not all problem domain 

experts are information technology experts, and therefore knowledge base maintenance 

can be difficult and time consuming.  The knowledge engineer must work with the 

problem domain experts as soon as a new variable is introduced into the problem domain 

to ensure the knowledge is updated into the knowledge base properly.  This implies that 

knowledge base maintenance is an ongoing process that can require significant 

investments of time from both knowledge engineers and problem domain experts after 

the system has been implemented.   

The amount of time necessary to keep up with knowledge base maintenance can present 

significant problems to an organization.  The experts in the problem domain can be 

extremely busy, can retire, or leave the company for a host of different reasons.  

Furthermore, information technology personnel are typically stretched thin.  They often 

do not have the necessary resources to train a knowledge engineer to work with the 

problem domain experts as often as is required to keep up with the maintenance.  Thus, 

problem domain experts are typically left to maintain the knowledge base on their own.  

This can be frustrating to the problem domain experts and can create a lack of trust in the 

system as a whole.  Problem domain experts would be more apt to revert to the manual 

method of solving problems as opposed to maintaining the knowledge base.  
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1.4   Opportunities for Improvement 

In order for a knowledge-based expert system to be successfully implemented, the issues 

discussed above must be mitigated.  This thesis will incorporate several tools and 

techniques not typically associated with knowledge-based expert system development 

into an improved methodology designed specifically to mitigate the risks described 

above.  The first improvement to the traditional methodology is to enhance the 

knowledge acquisition phase.  Data mining and data warehousing techniques can be 

utilized to enhance and streamline the knowledge acquisition phase.  The second 

improvement is to change the way knowledge base expert systems are maintained post 

implementation.  By utilizing the power of artificial intelligence to aid problem domain 

experts, the resources and time required to keep the knowledge base maintained can be 

drastically reduced. 

1.5   Organization 

The second chapter of this thesis will provide an overview of the knowledge-based expert 

system lifecycle.  The second chapter will also provide background information on the 

tools and techniques that will be incorporated into the improved knowledge-based expert 

system methodology.  The third chapter will describe the improved methodology in 

detail.  The fourth chapter will describe an implementation of a knowledge-based expert 

system using the improved methodology in the container-loading domain.  The fifth 

chapter will present the results from implementing the knowledge-based expert system.  

The sixth chapter will present the conclusions of this thesis and opportunities for future 

research.  
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Chapter 2    
 

OVERVIEW OF KNOWLEDGE-BASED EXPERT SYSTEMS 
 

This chapter provides an overview of the background concepts that support the improved 

knowledge-based expert system methodology.  Section 2.1 describes the traditional 

knowledge-based expert system lifecycle.  Section 2.2 summarizes basic concepts in 

artificial intelligence and provides specific examples that will be incorporated in the 

proposed container-loading knowledge-based expert system implementation.  Section 2.3 

describes the basic concepts associated with data warehousing that will be incorporated in 

the improved knowledge-based expert system methodology.  Section 2.4 outlines extract 

transformation load (ETL) processes and data mining techniques that can be used to help 

enhance the knowledge acquisition phase in the improved knowledge-based expert 

system methodology. 

2.1   Knowledge-Based Expert System Lifecycle 

The creation of a knowledge-based expert system requires that an appropriate problem 

statement be constructed.  There must be a problem that justifies the amount of effort and 

cost necessary to implement knowledge-based expert systems for all stakeholders.  As 

with all software implementations, a formal process must be followed to ensure 

requirements from all levels of an organization are met.  Software development 

methodologies are continually evolving and thus affect how knowledge-based expert 

systems are developed [Golabchi08].  Modern knowledge-based expert systems are 



-9- 
 

developed using an iterative development approach, depicted in Figure 2 as described by 

La Salle [LaSalle90].   

 

Figure 2: Knowledge-Based Expert System Lifecycle 

The key stakeholders during the development and implementation phases of a 

knowledge-based expert system are the development staff, the knowledge engineer, and 

the problem domain experts, as depicted at the top of Figure 2.  The development staff is 

a team whose purpose is to construct the components of the expert system as designed by 

the knowledge engineer.  They will have little problem domain expertise and thus must 

rely on the knowledge engineer to help define the problem domain and associated 

processes.  The knowledge engineer acts as a mediator between the problem domain 
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experts and the development staff.  The knowledge engineer must understand both the 

technical capabilities of the development staff and also be able to draw out expertise from 

the problem domain experts.  The knowledge engineer must gather system requirements 

and draw problem domain specific knowledge out of the experts in order for the 

knowledge base to be filled.  In addition to being the end users of the knowledge-based 

expert system, the problem domain experts understand the requirements and knowledge 

necessary to construct a knowledge-based expert system.   

The first step in the software development lifecycle is for the knowledge engineer to 

become acclimated with the problem domain, as shown as Phase 1 of Figure 2.  The 

knowledge engineer is then responsible for gathering and interpreting knowledge 

acquired from problem domain experts into the knowledge base [Grosan11] [Hoplin90].  

The knowledge engineer must start gathering information and understanding domain 

specific terminology prior to conducting any formal meetings or interviews with the 

problem domain experts.  Becoming more acclimated with the domain specific 

terminology enables the knowledge engineer to communicate with the problem domain 

experts, and thus aids the knowledge engineer with understanding problem solving in the 

problem domain. 

Knowledge acquisition, Phase 2 of Figure 2, is the process of extracting knowledge from 

problem domain experts by the knowledge engineer [Grosan11] [Hoplin90].  The goals 

during the knowledge acquisition phase are to gather system requirements and to 

document knowledge needed to construct the knowledge base.  The knowledge engineer 

must gather the complete breadth and depth of knowledge from the problem domain 

experts that will be required to completely solve problems in the problem domain.  The 
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completeness and correctness of the knowledge base is a critical factor to a knowledge-

based expert system’s success.  The knowledge engineer must determine all steps used by 

problem domain experts in order to solve problems and then turn such steps into detailed 

requirements for the development staff.  Traditionally the knowledge engineer performs a 

series of interviews with the problem domain experts during the knowledge acquisition 

phase.  The interviews can be conducted using various techniques to facilitate the 

knowledge transfer from the problem domain experts to the knowledge engineer.    

The next phase in development is data modeling for the knowledge base, as shown in 

Phase 3 of Figure 2.  Using the information collected during the knowledge acquisition 

phase, knowledge engineers use modern data modeling techniques, such as logical and 

physical modeling, to construct the data structure needed to house the information 

permanently.  As knowledge-based expert systems have evolved, databases have become 

the standard method of storing and maintaining knowledge in knowledge bases 

[Grosan11] [Hoplin90].    

Once the knowledge acquisition and knowledge base data modeling phases have 

completed, the knowledge engineer then can begin the knowledge representation phase, 

as shown in Phase 4 of Figure 2.  The knowledge representation phase is defined as the 

process of translating data into a form useable by a computer system [Hoplin90].  In this 

phase, the knowledge extracted from the problem domain experts, during the knowledge 

acquisition phase, is translated into the data structure of the knowledge base.  The goal of 

this phase is to create the data necessary for the initial implementation of the knowledge 

base.   
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Knowledge-based expert system methodology is best implemented as an iterative 

process.  Knowledge engineers do not traditionally have experience or training in the 

processes that make the knowledge acquisition phase successful [La Salle90].  Therefore, 

the knowledge acquisition, data modeling, and knowledge representation phases can be 

performed iteratively until the knowledge base represents the complete breadth and depth 

of knowledge in the problem domain.  Iterating through the knowledge acquisition, data 

modeling, and knowledge representation phases allows for the knowledge engineer to 

work out the complexities of the problem domain gradually and test the expanding data 

model [Grosan11] [La Salle90]. 

The next phase in development is the creation of the inference engine, as depicted in 

Phase 5 of Figure 2.  The main function of the inference engine is to take a problem and 

search the knowledge base for rules to apply in order to produce a solution.  The 

inference engine should function following the requirements gathered by the knowledge 

engineer from the problem domain experts.  Completeness, correctness, and speed are the 

three main concepts that must be achieved in an optimal inference engine [Grosan11] 

[Hanson90].  The inference engine must also be able to traverse all possible combinations 

of rules in order to design an optimal solution.  All solutions created must be correct and 

reached in a reasonable amount of time.  The two types of inference engine 

implementations are forward chaining and backward chaining [Mattos03].  The problem 

domain will dictate which implementation the knowledge engineer and development staff 

select to build for an inference engine. 

After the inference engine is created, the next phase of the knowledge-based expert 

system lifecycle is the creation of the user interfaces, as shown in Phase 6 of Figure 2.  
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User interfaces allow users to present a problem to the system, view solutions created by 

the system, and perform maintenance on the knowledge base [La Salle90].  The user 

interface can be implemented in a variety of ways, including web pages, application 

forms, or any other modern techniques. 

Once the user interfaces are constructed, the system is ready to be tested, as shown in 

Phase 7 of Figure 2.  The most common testing technique is a comparison to a manually 

solved problem by the problem domain experts.  If the solutions vary, the knowledge 

engineer would have to conduct a gap fit analysis, as shown in Phase 8 of Figure 2.  The 

gap fit analysis would then highlight where the discrepancy originated and the knowledge 

engineer would either modify the knowledge base or the inference engine algorithms.  

The testing and gap fit analysis phases are additional iterative processes that allow the 

knowledge engineer and development staff to gradually evolve towards the final product.  

Multiple problems spanning the entire problem domain must be analyzed to ensure the 

knowledge-based expert system’s conclusions are compatible with those of the problem 

domain experts. 

Once the knowledge-based expert system can correctly solve problems previously solved 

by the problem domain experts, the knowledge-based expert system can be used to solve 

new problems.  Initial implementations, Phase 9 of Figure 2, often resemble the testing 

phase in that the problem domain experts will solve the problem simultaneously to ensure 

the system is functioning properly.  However, after initial implementation success, the 

knowledge-based expert system is ready to function independently. 
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After the initial implementation of the knowledge-based expert system, the lifecycle is 

not complete.  Maintenance is required after implementation for knowledge-based expert 

systems, as shown in Phase 10 of Figure 2.  The problem domains for which knowledge-

based expert systems are developed are never static.  As the problem domains evolve, 

knowledge-based expert systems must also evolve.  The knowledge acquisition module 

becomes paramount to maintain the system’s effectiveness.  The problem domain experts 

must constantly analyze new conditions introduced to the problem domain and adjust the 

knowledge base accordingly.  If the knowledge base is left stagnant and changes to the 

environment are not incorporated, then the knowledge-based expert system will become 

outdated, ineffective, and possibly incorrect.   

2.2   Artificial Intelligence 

The first new concept that will be incorporated into the improved methodology is 

artificial intelligence.  Artificial intelligence is a broad field with the goal of making 

computers capable of solving problems in a particular domain [Millinton09].  Artificial 

intelligence theory extends into the realm of human thought and how humans process 

thoughts to reach conclusions.  The term artificial intelligence was coined in 1956 with 

the earliest work in the field dating back to the end of World War II [Russell03].  The 

impact of research in artificial intelligence can be seen in everything from Bayesian 

filters for email, commonly called spam filters, to computer games with realistic 

algorithms to model game play and everything in between. 

One specific area of research is known as the knapsack problem.  The classic knapsack or 

rucksack problem, as shown in Figure 3, is defined as follows:  given n items, with each 
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item j having an integer profit pj and an integer weight wj, choose a subset of items such 

that their overall profit is maximized without exceeding a total weight c [Pisinger05]. 

 

Figure 3: Traditional Knapsack Problem Definition 

The traditional knapsack problem and the derived problems based off of the knapsack 

problem are defined as NP-hard [Khan02] [Russell03].  A problem being designated NP-

hard means that an algorithm cannot be created to construct the most optimal solution to 

the problem in polynomial time.  However, researchers have been able to create 

algorithms that create an approximately optimal solution for NP-hard problems within 

polynomial time. 

The shipping industry has invested heavily in research in solving the knapsack problem 

[Whelan96].  Algorithms based off the knapsack problem have been developed to support 

many processes central to the business of shipping.  I.D. Wilson’s algorithm is one 

example of how research is being done into the optimization of how containers are 

stowed aboard a container ship [Wilson99].  Container ships travel in circular routes 

across the globe with multiple ports of embarkation and debarkation.  The goal of 

Wilson’s algorithm is to minimize the number of container lifts needed to unload the 

containers at each port.  Wilson’s algorithm takes into account the different types of lifts 
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that would be required to access each container and identifies which port each container 

needs to be unloaded.  When containers block access to other containers that must be 

unloaded at a particular port, they have to be lifted and temporarily moved.  Each lift 

costs the shipping company money so reducing the number of lifts at each port is in the 

best financial interest for shipping companies.  Wilson’s algorithm can create a load plan 

that minimizes the cost for a shipping company.   

Another area of research related to the knapsack problem in the shipping industry is the 

automation of the container packing process.  Customers order varying numbers of 

products that must be packed by shipping companies and shipped via standard sized 

shipping containers.  Loading different numbers of products of varying sizes is an area of 

interest for research in artificial intelligence.  Kun He and Wenqi Huang have developed 

an algorithm to support this process in which a single container with objects of varying 

sizes is loaded [He10] [Huang07].   

He and Huang’s algorithm utilizes a caving degree calculation as a metric to determine 

the best item to load next in the loading process and has shown promising results in 

reliability and speed.  The algorithm, as shown in Figure 4, maintains the available 

corners within the container in which items may be loaded.  Each item that still needs to 

be loaded is provisionally loaded by the algorithm into each available corner and the 

caving degree is then calculated.  After all items have been provisionally loaded into each 

corner available, the one that produced the highest caving degree is loaded.  The 

algorithm then updates the list of available corners after loading that particular item.  The 

process then repeats itself until the container is loaded or there are no more items to be 

loaded.   
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Figure 4: Container-Loading Algorithm 

There are three factors taken into account when calculating the caving degree.  The first 

factor is how much surface area of the item being loaded is flat against another surface 

within the container.  The second factor is how far the item is from the other surrounding 

objects.  The final factor is the total volume of the item.  He and Huang’s algorithm 

produces an approximation of the best way to load a container, by utilizing the caving 

degree calculation, without having to test all possible ways of loading a container.  This 

allows the algorithm to function in a reasonable amount of time.  He and Huang’s 

algorithm creates an approximate solution to a NP-hard problem with a high degree of 

reliability. 

Each time an item is loaded in He and Huang’s algorithm, the collection is updated with 

new available corners and corners that are now blocked are removed.  In order to 

accomplish the update to the collection of corners, concepts from multivariable calculus 

Create list of available items 
Create collection of available corners and insert the origin 
While there are still available items that can fit in the container { 

 For each available corner { 
  For each type of available item { 
   For each valid item orientation { 
    Provisionally pack the item into the corner with the current orientation 
    If  the item fits in the corner given container size and other objects already 

   packed { 
     Compute Caving Degree 
    } 
   } 
  } 
  Pack the item with the highest Caving Degree calculation 
  Update the list of available corners 
  Update the list of available items 
 } 

} 
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have to be introduced.  A corner, according to He and Huang, is defined as an unoccupied 

point in three-dimensional space where three orthogonal surfaces meet [Huang07] 

[He10].  Two surfaces, or planes, are called orthogonal if the normal vectors of those 

surfaces are perpendicular [Stewart05].  Therefore in order for a point, or coordinate, in 

three-dimensional space to meet the criteria for an available corner according to He and 

Huang, each surface that contains the coordinate must be evaluated.  When an item is 

loaded, the corner in which the object was loaded into is removed from the collection.  

The seven other corners of the object being loaded must be evaluated to see if they meet 

the criteria of an available corner.  Furthermore, any existing corners that intersect with 

the object must be reevaluated to see if they still meet the criteria for an available corner. 

The process for evaluating a potential corner, as described in Figure 5, begins by finding 

all objects that intersect that corner, to include the container walls and floor.  Then for 

each object that intersects the potential corner, the specific plane or planes that intersect 

the potential corner must be identified.  Once each plane is identified, two vectors on 

each plane must be constructed.  By taking the cross product of the two vectors, a normal 

vector is constructed for each plane.  The normal vectors of all the planes that intersect 

with the potential corner are then tested by calculating the dot product of each 

combination of normal vectors.  If the dot product of the normal vectors of three planes 

all equal zero simultaneously then the corner meets the criteria identified by He and 

Huang. 
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Figure 5: Orthogonality Test 

2.3   Data Warehousing 

The second new concept that will be incorporated into the improved methodology is data 

warehousing.  “A data warehouse is a large repository of historical data that can be 

integrated for decision support” [Teorey11] [Teorey06].  Many organizations today have 

vast amounts of data yet little information is drawn out of all that data.  “Data 

warehousing is a process, not a product, for assembling and managing data from various 

sources for the purpose of gaining a single detailed view of part or all of a business” 

[Gardner98].  Data warehouses leverage the historical data from a company and turn it 

into useful information to support decision making.  The goal of constructing a data 

Known Info: 
 
Three points each plane: 
P0 = (x0,y0,z0) 
P1=(x1,y1,z1) 
P2=(x2,y2,z2) 
 
Step 1: Construct 2 Vectors on the Plane for each Plane 
 
P0P1 = (x1-x0,y1-y0,z1-z0) = <a> = (xa,ya,za) 
P0P2 = (x2-x0,y2-y0,z2-z0) = <b> = (xb,yb,zb) 
 
Step 2: Construct Cross Product to Create Normal Vector for each Plane 
 
<a> X <b> = <yazb-ybza, zayb-xazb, xayb-yaxB> 
 
Step 3: Test Dot product of all three normal Vectors to see if they equal 0 
 
Normal Vector for plane 1 = <n1> = <n1x,n1y,n1z> 
Normal Vector for plane 2 = <n2> =  <n2x, n2y, n2z> 
Normal Vector for plane 3 = <n3> = <n3x, n3y, n3z> 
 
Ensure that: 
 
<n1> · <n2> = n1x*n2x + n1y*n2y + n1z*n2z = 0 
<n1> · <n3> = n1x*n3x + n1y*n3y + n1z*n3z = 0 
<n2> · <n3> = n2x*n3x + n2y*n3y + n2z*n3z = 0 



-20- 
 

warehouse is to provide fast access to historical data that has been archived in such a 

manner as to provide useful information for decision making while minimizing the size 

of transactional databases [Kimball94].   

Designing a data warehouse requires a different methodology than is required for 

traditional transactional databases.  Data warehouses are created by using one of two 

basic structures: the star schema or the snowflake schema.  A star schema has one main 

fact table that is connected to many smaller supporting tables known as dimension tables, 

as shown in Figure 6 [Teorey06].  Fact tables store the attributes and measures associated 

with information in the data warehouse.  A dimension table stores the additional 

referential attributes, known as dimensions, for data stored within a fact table [Teorey11] 

[Teorey06].  Dimension tables are also where hierarchical data is stored that can be used 

for analysis.   

 

Figure 6: Example of Star Schema
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If the supporting dimension tables are normalized to show a hierarchy in the data, as 

shown in Figure 7, then the schema is known as a snowflake schema.  In general, 

normalizing the dimension tables will slow down processing time, but can be critical in 

creating a logical separation of data [Levene03].  The goal of data warehousing is to 

provide historical data for decision support, so the types of data that need to be extracted 

from the data warehouse will dictate whether a star schema or snowflake schema is used. 

Once the schema has been created for the data warehouse, data from one or more 

operational transactional based databases are processed into a data warehouses in batches 

at some predefined interval [Levene03].  Data warehouses grow without bounds; this 

unregulated growth is a deviation from traditional operational databases.  Traditional 

operational databases are kept relatively small with old data being purged periodically.  

As the data is processed into a data warehouse it is typically translated into an order of 

larger magnitude, meaning specific details are aggregated in order to support long term 

trend analysis [Levene03]. 
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2.4   Extraction Transformation Loading (ETL) Tools and Data Mining 

The final concepts that will be incorporated into the improved methodology are 

extraction transformation loading (ETL) tools and data mining.  ETL tools are software 

components that have the capability to extract data from one or multiple data sources, 

transform or customize that data, and then insert the transformed data into a data 

warehouse [Vassiliadis02].  ETL tools are sold commercially or can be created by an 

organization for their data warehouse.   

The extraction phase of the ETL process is where the raw data is pulled out of the various 

data sources.  In order for the extraction process to occur, there must be a temporary 

storage location with a data model that can support data from the various data sources.  

 

Figure 7: Example of Snowflake Schema 
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The temporary data storage must be capable of holding data that needs to be transformed 

into the data model of the data warehouse it is destined for [Skautas11].   

The transformation phase of the ETL process begins as the data is extracted out of the 

temporary storage location and then cleansed and transformed into the data that will be 

inserted into the data warehouse.  The transformation techniques used in this phase are 

common with data mining.  “Data mining is the automatic extraction of implicit and 

interesting patterns from large data collections” [Romero07].  The process of data mining 

allows for new patterns to be identified in data.  Data mining has been used to discover 

new patterns and trends in many industries and fields to include medical drug testing, 

educational trends, and sports analysis.  Data mining can be customized as needed to 

support a variety of data, but there are four basic concepts that are at the center of all data 

mining applications supporting ETL processes: classification, regression, clustering, and 

association rule learning. 

Classification, also known as supervised learning, is a data mining technique, used during 

the transformation phase of ETL, in which data is mapped into one of several predefined 

groups based off of specific criteria [Fayyad96].  The first step in classification is to setup 

the model for which data will be classified into by defining the different data sets that 

need to be identified.  The second step is to parse the data set and identify which data 

belongs in which data set [Lutu02].  Classification is used to study financial market 

trends, credit scoring, geospatial analysis, and many other domains. 

Regression is another data mining technique used during the transformation phase that 

attempts to map relationships between variables [Fayyad96].  Regression techniques are 
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commonly used in applications when prediction or forecasting is required.  The goal of 

regression is to understand the relationship between a dependent variable and one or 

more independent variables.  Once the nature of the relationship is quantified, it can be 

used to predict future results based off of environmental changes [Fan06]. 

A third common technique used during the transformation phase of ETL is clustering.  

Clustering is defined as a data mining technique that describes a set of data into a finite 

set of clusters or groups [Fayyad96].  Clustering, also called unsupervised learning, is a 

technique in which the data has no predefined classifications.  Data is placed into 

meaningful groups based on similarities found during the clustering process [Dalal11].  

Clustering has been used in medical research, social networking, and many other 

domains. 

The last common technique used during the transformation phase is association rule 

learning.  Association rule learning is a data mining technique that identifies interesting 

associations between data attributes [Orriols-Puig08].  The relationships are identified 

and stored with some measure of interestingness.  The interestingness factor is a metric 

that differentiates how beneficial an association rule is as compared to other association 

rules.  “Association rules are widely used in various areas such as telecommunication 

networks, market and risk management, and inventory control” [Orriols-Puig08]. 

Once the data has been transformed, it is ready to be loaded to the data warehouse.  The 

loading process typically takes place when the data warehouse is not in use.  After the 

data is loaded into the data warehouse, it is removed from the temporary storage location.  

The ETL process as a whole is performed at predefined intervals so the data is loaded in 
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batches.  Research suggests that approximately one third of the effort and budget 

allocated to an organization’s data warehouse is expended on the ETL process 

[Vassiliadis02]. 
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Chapter 3    
 

METHODOLOGY 
 
 

There are several concepts that can be integrated into a proposed methodology to 

improve the knowledge-based expert system lifecycle and components to create a more 

efficient process.  These methods are commonly used in other disciplines but have not 

traditionally been incorporated into the knowledge-based expert system lifecycle.  Figure 

8 shows a comparison between a traditional knowledge-based expert system 

methodology and the proposed knowledge-based expert system methodology described 

in the following sections.  

 

Figure 8: Methodology Comparison 
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Section 3.1 describes how modern data modeling, ETL processes, and data mining 

techniques for the knowledge base data warehouse can be used to enhance the knowledge 

acquisition process.  Section 3.2 describes how artificial intelligence can be used to 

reduce the effort required to maintain the knowledge base of an expert system.  

Integrating these concepts with the traditional knowledge-based expert system lifecycle 

will result in the proposed knowledge-based expert system lifecycle, as depicted in 

Figure 9.  

 

Figure 9: Proposed Knowledge-Based Expert System Lifecycle 
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3.1   Enhanced Knowledge Acquisition 

Once the logical and physical modeling phases of knowledge-based expert system 

construction have been completed, the knowledge engineer must start to extract 

knowledge from the problem domain experts in order to fill the knowledge base.  In 

addition to the traditional interview techniques, ETL techniques can be used to extract 

knowledge from the data contained in historical databases or data warehouses, shown as 

Phase 2.1 in Figure 9.  This ETL process can be used to augment the knowledge 

acquisition process from the problem domain experts.  Depending on the knowledge base 

construction and the structure of the historical database or warehouse, one or more data 

mining techniques could be utilized during the transformation phase of ETL: clustering, 

classification, regression, summarization, or association rule learning [Han12].  

Knowledge-based expert systems utilize rules contained within the knowledge base to 

solve problems.  Therefore, association rule learning typically will be used during the 

knowledge acquisition phase.  However, the other data mining techniques can be used to 

determine which rules are worth keeping and which rules should be discarded.  By 

analyzing the problems and solutions contained within the historical database or data 

warehouse, the knowledge engineer can extract vast amounts of knowledge used by the 

experts in the past.   

Once the data have been extracted, it must be transformed into a new structure so that it 

can be inserted into the knowledge base, shown as Phase 4.1 in Figure 9.  Database 

scripts or one time use code can be created to complete the transformation and loading 

processes.  The knowledge representation process can now transfer large amounts of 

historical data into the knowledge base data warehouse.  Historical data is processed into 
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the knowledge base, which will now be implemented as a data warehouse, for storing 

facts gathered from the historical data of a transactional database.  Data warehousing 

techniques can be employed in this phase to produce a rich data warehouse that will 

provide fast access to historical data for the inference engine.   

Through ETL techniques and by utilizing the historical data sources containing problems 

and solutions in the problem domain, the knowledge acquisition process can be enhanced 

and streamlined.  Data models can be verified for accuracy using historical data, meaning 

the construct of the new data model can be verified by extracting historical data into the 

new data model.  If the data cannot be extracted or information is lost during the 

extraction, then the data model needs to be modified.  Furthermore, gathering the 

information for the initial starting point for the knowledge base can be simplified and 

would require less time from the problem domain experts.  This will reduce the number 

of interviews required by the knowledge engineer with the problem domain experts and 

increase the reliability of the knowledge gathered.  This process will help to reduce the 

bottleneck that is traditionally encountered during the knowledge acquisition phase of 

knowledge-based expert system development. 

3.2   Integration of Artificial Intelligence for Knowledge Base Maintenance 

Using the specific requirements of a problem domain, a rule-generating algorithm based 

on artificial intelligence techniques will create new rules to be added to a knowledge 

base, as shown in Phase 5.1 of Figure 9.  The goal of this rule-generating algorithm is to 

take a partially completed solution where no existing rules can be used to complete the 

solution, and then construct potential rules that can be added to the knowledge base to 
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complete the solution.  This implies that the manual process of updating the knowledge 

base is now an automated process.   

The algorithm would combine techniques from the specific problem domain and the 

artificial intelligence domain, thereby allowing the algorithm to construct new potential 

rules.  The new rules could then be ordered from the most optimal solutions down to the 

least optimal solutions.  The problem domain experts would then be able to review each 

of the potential additions to ensure their validity.  Once the problem domain experts 

approve a set of rules that will allow the knowledge-based expert systems to completely 

solve the problem, it will be presented to the user as a complete solution. 

Once the knowledge-based expert system has been created, all the rejected rules will be 

stored in the data warehouse for use in future analysis.  As part of the maintenance phase, 

rejected rules can be analyzed by the knowledge engineer and development staff to see if 

there are any significant trends in the data, signified in Phase 10.1 of Figure 9.  If trends 

are discovered then the algorithm will be modified so that these types of rules are not 

presented to the users again.  This process will provide the empirical data that will allow 

for the algorithm to be updated as the system and the problem domain evolve.  

As artificial intelligence is incorporated into the knowledge-based expert system, the 

problem domain expert’s responsibility becomes only to approve modifications to the 

knowledge base that have been created by the rule-generating algorithm.  The algorithm 

will reduce the amount of effort necessary to keep the knowledge base maintained, and 

will also eliminate the need for a manual knowledge acquisition module.  Another 

inherent benefit lies in the fact that in order for the algorithm to prioritize the potential 
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solutions, a metric must be established.  The rule metric will determine a ranking method 

for the rules contained within the knowledge base.  Ranking rules will allow the inference 

engine to select the highest ranking rules first and allows the knowledge engineer to 

establish minimum rankings for rules within the knowledge base.   The proposed 

algorithm could be used on the existing rules in the knowledge base.  Statistical analysis 

could then be performed on the quality of the knowledge in the knowledge base.  

Knowledge deemed statistically poor could then be removed from the knowledge base by 

the system. 

The most logical place to incorporate the statistical measure of historical data is in the 

inference engine.  The inference engine should be setup to allow for a configurable 

minimum value based off the rule metric for rules to be used when solving problems.  

During the testing and gap fit analysis phases, the same problems can be solved using 

different minimum values.  The results can be recorded and analyzed to determine what 

the long-term minimum value should be for the inference engine.  Since the knowledge 

base is now created as a data warehouse, it will be able to accommodate all the historical 

data and still be able to function within a reasonable amount of time.   

3.3   Advantages of the Improved Methodology 

The proposed knowledge-based expert system lifecycle, as shown in Figure 9, utilizes the 

benefits of a variety of disciplines that are not traditionally associated with knowledge-

based expert systems.  By combining ETL processes, data mining, and data warehousing, 

the knowledge acquisition process is streamlined.  It reduces the potential for human 

error between the knowledge engineer and the problem domain experts.  The vast 

amounts of historical data for an organization can be turned into information that the 



-32- 
 

knowledge-based expert system can draw upon to solve problems.  Integration of 

artificial intelligence reduces the maintenance required for the knowledge base.  The rule 

metric determined when creating the rule-generating artificial intelligence algorithm is 

incorporated into the inference engine to allow for a true statistical analysis on the 

historical data to determine which rules should be used in the future.  All these changes 

coupled together will result in a faster and more effective design and implementation 

process for knowledge-based expert systems and a much less complicated maintenance 

process post implementation.  Figure 10 depicts the components of the proposed expert 

system.  The knowledge base is constructed as a data warehouse providing fast access to 

historical data for the knowledge-based expert system.  The artificial intelligence module 

is now acting as the automated means to keep the knowledge base current post 

implementation, as opposed to the traditional manual methods. 

 

Figure 10: Proposed Knowledge-Based Expert System Components 
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Chapter 4    
    

IMPLEMENTATION 
 
 

Both civilian and military organizations transport materials across the globe using 

standard shipping containers.  The process of loading containers with the materials 

needing to be shipped is currently a manual process that could be enhanced with the 

implementation of a knowledge-based expert system.  This chapter will describe the 

process of creating an improved knowledge-based expert system for the container-

loading domain. 

4.1   Phase 1 – Assemblage of Relevant Facts and Rules 

Civilian and military transportation organizations ship equipment and supplies across the 

globe using standard sized shipping containers.  In some cases, the military leaves 

equipment afloat as a strategic asset to enable streamlined emergency responses.  Due to 

shelf life limitations, calibration requirements, and maintenance requirements of the 

equipment and supplies, the equipment must be periodically unloaded and maintained.   

As ships come into port for their regularly scheduled maintenance, they must be 

completely unloaded.  All containers, once unloaded, are emptied and their contents are 

sent to designated areas for maintenance.  Once the maintenance is complete, all 

equipment and supplies are sent back to a central warehouse where they will be reloaded 

into standard shipping containers. The total number of containers that will fit aboard a 

ship is a predetermined quantity.  The equipment and supplies required to support the 

military’s capability exceeds the available space aboard each ship.  Only equipment and 
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supplies with a high priority are loaded onto the ship whereas those with a lower priority 

are left behind.  The optimization of space inside each container is important because the 

more compactly a container is loaded, the more equipment and supplies can be loaded on 

each ship. 

The process of reloading the standard shipping containers is a manual process.  

Container-loading experts place equipment and supplies on the warehouse floor in piles.  

Once the container-loading experts feel that the pile represents a fully loaded container, a 

new pile is started for the next container.  The piles are then loaded by a forklift into each 

container one by one and sealed.  Information regarding the equipment and supplies in 

each container loaded is manually collected and entered into a transportation system.  The 

containers are then staged until the ship is ready to be loaded.   

The container-loading experts understand how to correctly load equipment and supplies 

into a container and all the potential issues in loading a container as well.  The loading of 

each container is treated as an independent process.  All the knowledge required to create 

a container load resides with the container-loading experts.  There is no database or data 

repository that contains the specific information about how to load a container.  Therefore 

the quality and compactness of the container loads resides strictly on the knowledge of 

the container-loading experts.  These military processes are paralleled in the civilian 

sector as well.  Many transportation companies must prioritize and load cargo into 

containers to be shipped.  Thus, creating a container-loading knowledge-based expert 

system will be beneficial to both the civilian and military transportation organizations. 
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4.2   Phase 2 – Knowledge Acquisition for the Knowledge Base Data Warehouse 

The goal of the knowledge acquisition phase was to learn all the different types of rules 

that the container-loading experts use while loading containers.  Each individual 

combination of equipment and supplies, meaning each potential rule in the problem 

domain, did not have to be identified.  Traditionally every possibility of how a container 

could be loaded would have to be identified in this phase.  However, because the 

improved methodology incorporates data mining historical data for the inference engine 

coupled with the artificial intelligence, this was not necessary.   

After meeting with the container-loading experts, two basic principles were identified as 

the main limiting factors when loading a container.  The first principle states that not all 

equipment and supplies can be stacked inside a container.  Due to the weight, sensitivity, 

and several other factors, certain items cannot be placed on top of any other items.  

However, some items can be loaded anywhere in a container, including being on top of 

other items.  This principle implies that the overall compactness of loading a container 

will reside in properly integrating items that can be stacked with items that cannot be 

stacked.  Furthermore, once all the items that can be stacked have been loaded, the 

overall compactness of the containers being loaded is reduced because the remaining 

items cannot be loaded on top of each other.  The second principle states that some items 

can be stored in a rotated configuration. This concept is important because an item could 

be rotated to potentially fit into a space it would not fit into in its original orientation, and 

can increase the overall compactness of a container.  Container-loading experts were able 

to create lists of both the items that can be stacked and the items that can be rotated. 
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4.3   Phase 2.1 – Data Mining for the Knowledge Base Data Warehouse 

As described above, the content level detail for each container loaded is entered into a 

transportation system.  This implies that there is a historical record of each container that 

has been loaded.  Each record in the transportation system, as shown in Figure 11, has a 

plan identifier, serial number and a national stock number (NSN).  The plan identifier 

designates which ship the container was loaded onto, and the NSN, a unique thirteen-

character code, identifies every different item in the military’s inventory.  Each record 

also has a field for the parent serial number and the parent NSN.  When an item is loaded 

into a container, the serial number and NSN of the container are put into these fields.  

The records for the containers have the same information in the serial number and NSN 

fields as the parent serial number and parent NSN fields.   

 

Figure 11: Example of Transportation System Data Set 

The data from the transportation system was extracted and stored in its raw form.  The 

transportation system also contains a technical data table, with the length, width, height, 

weight, and description of each NSN.  The data from the technical data table was also 

extracted from the transportation system in its raw form. 
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4.4   Phase 3 – Data Modeling for the Knowledge Base Data Warehouse 

Once all the historical data was extracted from the transportation system, a data model 

was constructed to store the data.  The data model for the data warehouse, as shown in 

Figure12, had to be setup in order to enable the inference engine to access the data.  The 

data warehouse was created by utilizing SQL commands on a Microsoft SQL Server 

2008 implementation.  First, as shown in Figure 12, a fact table was constructed to hold 

the unique rule identifier, the unique item identifier, the time when the rule was entered, 

the person who entered the rule, and the quantity of the item.  An item dimension table 

was then constructed to hold the description of the item, the dimensional data of the item, 

whether the item could be loaded in a rotated configuration, and whether the item could 

be stacked.  The rule dimension table was created to hold a description about the rule and 

the total volume of all the items that make up the rule.  The time dimension table holds 

the specifics regarding the date and time which is used for creation of a rule.  Finally, the 

person dimension table was constructed to hold the information about the users of the 

system. 
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Figure 12: Data Warehouse Schema 

4.5   Phases 4 and 4.1 – Knowledge Representation and Historical Data Transformation  

The proposed methodology strengthens the traditional knowledge representation phase.  

The process for executing this phase was a multistep.  The first step of the knowledge 

representation phase was to transform and load the historical data that was extracted from 

the transportation system into the newly constructed data warehouse.  In order to 

accomplish the transformation and loading, one time use code was created.  The code was 

written in Visual Basic and had two main processes: to load the unique item information 

into the item dimension table and to populate the rule dimension and fact tables with the 

historical data once transformed.  Since the transportation system does not maintain a 

user account associated with the data, a user was entered into the person dimension as 

“Historical Data” in order to support the data loading. 
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The first step in the knowledge representation phase was to load the information from the 

transportation system’s technical data table into the item dimension table.  No 

transformation was required of this data except that all items were temporarily loaded 

with the rotate and stack fields set to false.  The information for those fields did not reside 

in the transportation system; the container-loading experts provided the information 

during the knowledge acquisition phase.  Once the item dimension table was populated, 

manual SQL scripts were created to update the rotate and stack fields on appropriate 

records using the information provided by the container-loading experts. 

 

Figure 13: Associate Rule Learning Process 

The second step in the knowledge representation phase was to load the information for 

the rule dimension and fact tables.  The data mining technique used to transform the data 

was association rule learning.  As shown in Figure 13, each container from the extracted 

data was turned into a unique rule with the quantities summed by each distinct NSN.  The 
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time dimensional data and person dimensional data were then added to the transformed 

data.  The data was then in a compatible format with the fact table in the data warehouse 

and was loaded.  The final step was to create an entry in the rule dimension table for each 

distinct rule in which the total volume of all items pertaining to each rule was summed 

and added. 

4.6   Phase 5 – Inference Engine Creation 

The inference engine for the container-loading knowledge-based expert system was 

implemented as a forward chaining inference engine.  Forward chaining inference 

engines start with the problem and select rules from the knowledge base in order to work 

forward to a solution.  The inference engine was created as its own class using Visual 

Basic in order to isolate and encapsulate the functionality.  A supporting class was 

created to hold information pertaining to the actual containers being loaded using the 

rules from the knowledge base by the inference engine.  Another supporting class was 

created to store the information for an object that was being loaded into a container. 

As shown in Figure 14, the inference engine starts by selecting all the equipment and 

supplies from the problem presented into a collection ordered from the equipment or 

supplies with the largest volume to ones with the smallest volume.  Then for the 

equipment or supply with the largest volume, all rules that contain that item are pulled 

out of the knowledge base.  Only the rules that represent a container that will be filled 

above the minimum percentage set for the problem will be used.  The inference engine 

was created so that problems can be solved with different minimum values for historical 

data that will be used.  Therefore the same set of data, representing a problem, could be 
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solved with different minimum values which enabled the long-term minimum threshold 

to be identified using empirical data during the testing and gap fit analysis phases.   

 

Figure 14: Inference Engine Process 

The rules are ordered by the percentage of a fully loaded container that each rule 

represents from largest to smallest.  Starting with the first rule, the inference engine will 

check to see if the other items in the rule exist in the items collection.  If the other items 

exist, those items are moved from the items collection to the solution along with the rule 

identifier as a loaded container.  The rule is then tested to see if it can be used again.  If 

the rule cannot be used because the other items are not in the items collection, the next 

rule is tried and the process repeats until there are no items left in the items collection or 

 
Load all items from the problem into the Items Collection from largest to smallest 
For each item in the Items Collection { 
        Select all rules from the Knowledge Base that contain the item into the Rules Collection 
        Remove rules that are below the minimum value set for the problem 
        Order the rules in the Rules Collection from the most optimal to least optimal 
        For each rule in the Rules Collection { 
                If there are no more items to spread { 
                        Inference Engine Completely Solved the Problem 
                } 
                If all the other items in the rule are in the Items Collection { 
                        Remove the items from the Items Collection 
                        Add the items to the solution as a loaded container along with the Rule Identifier 
                        Try the rule again until it cannot be used any more 
                } 
        } 
} 
 
If items remain in the Items Collection { 
        Inference Engine Could Not Completely Solve the Problem 
} Else { 
        Inference Engine Completely Solved the Problem 
} 
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there are no more rules for that item. Once all the possible rules for that item are tested, 

the process repeats itself on the next largest item in the items collection.  The inference 

engine forward chaining process will stop once all the items are removed from the items 

collection.  If all the items cannot be removed from the items collection then the 

inference engine cannot completely solve the problem with the knowledge contained 

within the knowledge base.  The items that remain in the items collection are passed into 

the artificial intelligence algorithm in order to create new rules to complete the solution. 

4.7   Phase 5.1 – Artificial Intelligence Implementation 

The next phase in the development of the container-loading knowledge-based expert 

system is the creation of the artificial intelligence algorithm that will be used in 

conjunction with the inference engine.  Similar to the inference engine, the artificial 

intelligence algorithms were created as their own class using Visual Basic.  The artificial 

intelligence algorithm will accept a list of items from the inference engine that could not 

be loaded into a container using the rules in the knowledge base.  The artificial 

intelligence algorithms were created with the capability to analyze the list of items 

presented to it and construct a list of potential rules that can be added to the knowledge 

base in order to complete the solution.   

He and Huang developed a three-dimensional single container packing optimization 

algorithm [Huang07] [He10], as described in Chapter 2, which was implemented to 

support the knowledge base maintenance.  He and Huang’s algorithm was developed 

independently from any system and is designed to load items sequentially by 

provisionally loading each remaining item and testing to see which one is the best fit.  

The original algorithm was slightly modified, shown in red in Figure 15, in order to 
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function properly with the inference engine. The first modification allowed the algorithm 

to rotate items into different configurations.  Rules contained within the knowledge base 

tied to each item will dictate whether an item can be rotated or not.  The second 

modification will allow the algorithm to load multiple containers instead of just one.  The 

modifications to He and Huang’s algorithm provide the ability to construct all necessary 

potential rules to be added to the knowledge base that will allow the knowledge-based 

expert system to complete the entire solution automatically without user input.   

He and Huang’s algorithm was simple to implement and the changes to the algorithm 

were easily incorporated.  The Caving Degree Calculation was a straightforward 

calculation and thus easy to implement as its own class as well.  However, there was one 

part of the algorithm that was difficult to implement.  As described in Chapter 2, the 

algorithm maintains a collection of corners that items can be loaded into.  In order to 

support all the calculations necessary to accomplish the orthogonality test, as shown in 

Figure 5, supporting classes had to be created.  A coordinate class was created to store 

information about the X, Y, and Z information required to define a three-dimensional 

coordinate.  A class was also created to store information about a plane in three-

dimensional space, and to create the vectors and normal vectors for each plane.  Also a 

three-dimensional object class was created to store the information about the three-

dimensional objects being loaded by the artificial intelligence algorithm. 
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Figure 15: Artificial Intelligence Algorithm 

4.8   Phase 6 – User Interface Design 

The user interfaces for the container-loading knowledge-based expert system were 

constructed as web forms in Visual Basic.  The web forms had access to all the classes 

corresponding to the inference engine, the artificial intelligence algorithms, and all 

supporting classes.  The logic created on the user interfaces included the ability to create 

a problem, the ability for the system to create a solution for a particular problem, and the 

Create list of available items 
For current container { 
      Create collection of available corners and insert the origin 
      While there are still available items that can fit in the container { 
            For each available corner { 
                  For each type of available item { 
                        If the corner is on the ground or the item can be stacked { 
                              Provisionally pack the item into the corner with the original orientation 
                              If the item fits in the corner given container size and other objects already packed { 
                                    Compute Caving Degree 
                              } 
                              If item can be rotated { 
                                    For all other orientations { 
                                          Provisionally pack the item into the corner with the current orientation 
                                          If the item fits in the corner given container size and other objects already packed { 
                                                Compute Caving Degree 
                                          } 
                                    } 
                              } 
                        } 
                  } 
            } 
            Pack the item with the highest Caving Degree calculation 
            Update the list of available corners 
            Update the list of available items 
      } 
      Create new potential rule to be added to the data warehouse based on current results 
      Create new container 
} 
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ability to view the solution.  All the logic for solving problems was encapsulated into the 

inference engine and artificial intelligence classes.   

Several web forms were also created in order to generate statistical comparisons.  The 

first form compares problems solved by human experts to the same problems solved by 

using artificial intelligence.  The comparison was designed as a control to see how well 

the artificial intelligence algorithm operates.  The second form compares the solutions of 

the same problem with different minimum values for the inference engine, which allows 

for statistical analysis to be performed identifying what the long-term minimum value 

should be.   

4.9   Phase 7 – Testing  

The first step in the testing phase was to evaluate how the artificial intelligence 

algorithms functioned independently.  Problems that had been previously solved by 

container-loading experts were recreated in the container-loading knowledge-based 

expert system.  Those problems were then solved using only the artificial intelligence 

algorithms.  No rules from historical data were used.  This allowed for a controlled 

comparison between the capabilities of the container-loading experts and the artificial 

intelligence.  In order to quantify the value of adding historical data, the capability of the 

artificial intelligence algorithms had to be verified.  The results of this comparison are 

discussed in detail in Chapter 5. 

The second step in the testing phase was to determine the minimum value for the 

inference engine to use when using historical data in problem solving.  Since shipping 

containers are a standard size, the volume of the contents of historical loads can be 
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summed up and divided by the volume of the container to determine the percentage of the 

container that is full.  The testing process was setup to solve the same problems that had 

previously been solved by the artificial intelligence alone with using both historical data 

and the artificial intelligence together.  Each problem was solved ten different times using 

different minimum percentages for historical data.  Solving the same problem with 

different minimum percentages allowed for statistical analysis to be done on what the 

best long-term minimum percentage should be for the system.  The goal in setting the 

minimum percentage is to best use the combination of historical data and artificial 

intelligence to create an optimal solution.  The results of this comparison are discussed in 

detail in Chapter 5.  

4.10   Knowledge-Based Expert System Software 

The testing phase was accomplished by using the software as described throughout in 

Chapter 4.  This section will show examples of the software and how the results 

discussed in Chapter 5 were created.  The software was setup to allow multiple users 

access to the system.  Figure 16 shows a screen shot of the login screen.   

 

Figure 16: Login Screen 
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Once a user has been authenticated to the system, the main screen will load.  The main 

screen shows all the current problems that have been created in the system, as shown in 

Figure 17.  All the details about each particular problem are shown after the name of the 

problem, to include whether to use historical data in solving the problem and what the 

minimum percentage should be for the inference engine if historical data is used.  

Solutions to problems that have already been solved can be viewed by selecting the last 

column.  If the problem has not been solved then the last column is where users select to 

have the system create the solution for that problem.  New problems can also be created 

by utilizing the form at the bottom of the screen. 

 

Figure 17: Main Screen 

If a problem has not been solved, the name of the problem is displayed as a hyperlink.  

By selecting the hyperlink a page will load where problem details can be modified, as 

shown in Figure 18.  The problem details page allows equipment and supplies to be 
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added or removed from a problem.  By utilizing this interface, each problem 

corresponding to a ship loaded by the container-loading experts was created.   

 

Figure 18: Problem Details Page 

First, a problem was created that corresponded to a ship that was loaded by the container-

loading experts.  It was then copied ten times using the copy button, as shown in Figure 

17.  Each copy was setup with a different minimum value for the inference engine to use 

for historical data, thus allowing for the same problem to be solved with different 

minimum values.  

When all the problems were created and configured properly, they were then solved.  If 

the problem was setup to use historical data, the inference engine would use as many 

rules as possible from the knowledge base data warehouse that were above the minimum 

value.  If the problem could not be completely solved using those rules, the user would be 

prompted to use the artificial intelligence to complete the solution, as shown in Figure 19. 
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Figure 19: View Solution Page 

The artificial intelligence would then construct the rules needed to be added to the 

knowledge base in order to complete the solution.  If the problem was not setup to use 

historical data, then the artificial intelligence would create the rules necessary to solve the 

entire problem.  Users could review each new potential rule independently in order to 

approve or reject them, as shown in Figure 20.  Users could also select a button to add all 

the potential rules to the knowledge base at the same time.  If users reject a rule, then the 

problem could not be completely solved using the existing rules so the artificial 

intelligence would then propose a new set of rules. 
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Figure 20: Adding Potential Rules from the Artificial Intelligence 

Once all of the problems for each ship had been solved, the results needed to be extracted 

from the system in order to be analyzed.  An interface was created in order to generate 

the statistics necessary to complete the analysis, as shown in Figure 21.  For each ship, 

each problem was analyzed, and the total number of containers was totaled for each 

problem.  The total number of containers loaded was used as the main metric for 

determining the level of optimization.  The average percentage full of the containers from 

that problem was also calculated, which was used as a second optimization metric. 



-51- 
 

 

Figure 21: Results Analysis Page 
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Chapter 5    
 

RESULTS ANALYSIS 
 

This chapter will explain the results from comparing the container-loading knowledge-

based expert system with the historical data representing the manual container-loading 

processes for thirteen ships loaded between 2008 and 2011.  The first experiment that 

will be discussed is the control experiment where the capabilities of the artificial 

intelligence algorithm were tested against the historical data without using the inference 

engine.  The next experiment discussed is how the long-term minimum percentage to be 

used by the inference engine when using historical data was determined.  Finally, once 

the minimum percentage was identified, the capabilities of the container-loading 

knowledge-based expert system are compared to the historical data corresponding to the 

ships loaded between 2008 and 2011. 

5.1   Artificial Intelligence Control Experiment 

Before testing the capabilities of the container-loading knowledge-based expert system as 

a whole, the capabilities of the artificial intelligence were tested.  The results discussed in 

this section provided the baseline to see whether using historical data provides added 

benefit in later sections.  The user interface, as described in section 4.10, in which 

problems are created allows for a problem to be solved exclusively using the artificial 

intelligence.  A problem was created for each of the thirteen ships for which historical 

data was collected.  Each problem represented the items that were loaded in the past 

aboard each ship. 
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The container-loading knowledge-based expert system solved each problem.  Figure 22 

displays the raw data from the results of the artificial intelligence control experiment.  

The historical data container count represents how many containers it took the container 

loading experts to load all the equipment and supplies for each ship.  The artificial 

intelligence container count represents how many containers were needed for the 

artificial intelligence to load the same number of equipment and supplies.  The percent 

decrease column shows the percent decreased by using the artificial intelligence for each 

ship and is averaged at the bottom.  The results show that the artificial intelligence can 

function effectively in the problem domain because for each ship tested the artificial 

intelligence was able to load the gear in fewer containers than the container-loading 

experts.  Using only the artificial intelligence, the container-loading knowledge-based 

expert system loaded all the items for each ship into an average of 45.9% fewer 

containers than the container-loading experts did manually.  Figure 23 displays the data 

from Figure 22 graphically, showing that the total container count for the artificial 

intelligence was always lower than the results from the container-loading experts. 
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Figure 22: Artificial Intelligence Control Experiment Results 

 

Figure 23: Artificial Intelligence Control Experiment Results Chart 

In addition to reducing the number of containers, the average percentage full of each 

container also increased.  The historical data column in Figure 24 shows the average 

percentage full of the containers loaded onto each ship by the container-loading experts.  
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The artificial intelligence column shows how full the average container loaded by the 

artificial intelligence was for the experiment.  The averages, shown at the bottom of 

Figure 24, show that the historical data from the container-loading experts had the 

average container 27.4% full as opposed to 51.5% by the artificial intelligence.  Figure 25 

shows the data from Figure 24 graphically in which the line representing the results from 

the artificial intelligence is always above the line representing the container-loading 

experts.  This metric was chosen because the higher the average percentage full the 

containers are for a particular ship, the fewer overall containers it will take to load all of 

the equipment and supplies.  The artificial intelligence control experiment illustrates that 

the artificial intelligence can load containers more compactly than the container-loading 

experts resulting in the same set of equipment and supplies in fewer containers. 

 

Figure 24: Artificial Intelligence Control Experiment Percentage Full Statistics 

Ship%Name Historical%Data% Artificial%Intelligence
Ship%1 27% 52%
Ship%2 27% 51%
Ship%3 28% 53%
Ship%4 26% 56%
Ship%5 29% 50%
Ship%6 34% 48%
Ship%7 27% 48%
Ship%8 29% 55%
Ship%9 25% 58%
Ship%10 25% 58%
Ship%11 23% 45%
Ship%12 27% 44%
Ship%13 29% 51%

Average 27.4% 51.5%
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Figure 25: Artificial Intelligence Control Experiment Percentage Graph 

5.2   Inference Engine Minimum Percentage Experiment 

The next experiment conducted was to determine what the minimum percentage should 

be for the inference engine when using historical data.  The user interface, where 

problems are created, was also configured to allow for any minimum value to be used for 

testing purposes.  For each of the thirteen ships, ten problems were created each with a 

different minimum percentage starting at no minimum percentage and increasing by ten 

percent up to ninety percent.  Each problem was solved using the container-loading 

knowledge-based expert system.  In this experiment, the full capabilities of the system 

were tested.  The inference engine used historical data that was above the minimum 

percentage until there were no rules left that could be applied.  The artificial intelligence 

then solved the rest of the problem.   

The resulting container counts for each problem are shown in Figure 26.  Each ship’s data 

was loaded using the ten different minimum values represented by the column headers.  
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The number in the chart represents the number of containers it took the container-loading 

knowledge-based expert system to load all the equipment and supplies for that ship. The 

results in their raw form cannot be compared across different ships because each ship had 

a different number of equipment and supplies loaded.  Therefore, for each problem the 

minimum container count across all ten problems was identified for each ship, shown as 

the absolute minimum column of Figure 26.  Each container count was then divided by 

the absolute minimum value for that ship resulting in the percentage of the minimum 

container count each total represents, shown in Figure 27.  Now each total represents the 

percentage of the minimum container count and the percentages can be compared across 

different ships.   

 

Figure 26: Container Counts for Minimum Percentage Experiment 
 

 

 

Ship%Name No%Min 10%%Min 20%%Min 30%%Min 40%%Min 50%%Min 60%%Min 70%%Min 80%%Min 90%%Min Absolute%
Min

Ship%1 198 163 130 95 88 85 82 80 80 80 80
Ship%2 218 192 159 103 93 97 86 90 91 89 86
Ship%3 162 120 105 76 67 63 59 59 60 60 59
Ship%4 218 169 135 93 84 79 76 72 76 73 72
Ship%5 247 170 134 98 87 81 75 77 81 79 75
Ship%6 278 234 176 134 111 106 108 108 107 107 106
Ship%7 102 85 58 42 38 35 35 32 34 35 32
Ship%8 248 188 155 115 97 94 86 85 89 89 85
Ship%9 214 183 148 101 88 83 76 70 78 75 70
Ship%10 128 74 56 44 34 33 33 32 31 31 31
Ship%11 92 74 52 45 38 37 35 37 39 38 35
Ship%12 212 137 110 82 77 74 70 70 73 72 70
Ship%13 196 155 119 89 80 74 69 70 71 69 69
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Figure 27: Percentages of the Absolute Minimum Values 

The percentages in Figure 27 that represent the absolute minimum container count for 

each ship are those cells with one hundred percent.  Any cell with a number greater than 

one hundred percent represents a total that was greater than the absolute minimum for 

that particular ship by the percentage in the cell.  Figure 28 shows the data from Figure 

27 in a graphical form in which the values decrease rapidly after the thirty percent 

minimum threshold and reaches its minimum at the seventy percent minimum threshold.  

Figure 29 graphs the averages for each minimum percentage, represented in the bottom 

row of Figure 27, and provides a much clearer representation of the performance.   

Ship%Name No%Min 10%%Min 20%%Min 30%%Min 40%%Min 50%%Min 60%%Min 70%%Min 80%%Min 90%%Min

Ship%1 247.5% 203.8% 162.5% 118.8% 110.0% 106.3% 102.5% 100.0% 100.0% 100.0%
Ship%2 253.5% 223.3% 184.9% 119.8% 108.1% 112.8% 100.0% 104.7% 105.8% 103.5%
Ship%3 274.6% 203.4% 178.0% 128.8% 113.6% 106.8% 100.0% 100.0% 101.7% 101.7%
Ship%4 302.8% 234.7% 187.5% 129.2% 116.7% 109.7% 105.6% 100.0% 105.6% 101.4%
Ship%5 329.3% 226.7% 178.7% 130.7% 116.0% 108.0% 100.0% 102.7% 108.0% 105.3%
Ship%6 262.3% 220.8% 166.0% 126.4% 104.7% 100.0% 101.9% 101.9% 100.9% 100.9%
Ship%7 318.8% 265.6% 181.3% 131.3% 118.8% 109.4% 109.4% 100.0% 106.3% 109.4%
Ship%8 291.8% 221.2% 182.4% 135.3% 114.1% 110.6% 101.2% 100.0% 104.7% 104.7%
Ship%9 305.7% 261.4% 211.4% 144.3% 125.7% 118.6% 108.6% 100.0% 111.4% 107.1%
Ship%10 412.9% 238.7% 180.6% 141.9% 109.7% 106.5% 106.5% 103.2% 100.0% 100.0%
Ship%11 262.9% 211.4% 148.6% 128.6% 108.6% 105.7% 100.0% 105.7% 111.4% 108.6%
Ship%12 302.9% 195.7% 157.1% 117.1% 110.0% 105.7% 100.0% 100.0% 104.3% 102.9%
Ship%13 284.1% 224.6% 172.5% 129.0% 115.9% 107.2% 100.0% 101.4% 102.9% 100.0%

Average 296.1% 225.5% 176.3% 129.3% 113.2% 108.2% 102.7% 101.5% 104.8% 103.5%
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Figure 28: Graphical Percentages of the Absolute Minimum Values 

 

Figure 29: Graph of Average Percentages of the Absolute Minimum 

The lowest average value for the minimum value threshold for historical data is at 

seventy percent.  These results imply that the minimum values created by the system are 
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Seventy percent is where the optimal combination between the historical data and the 

artificial intelligence exists.  The artificial intelligence, as shown above in Figure 24, has 

an average value of 51.5%.  Therefore, when the minimum value is set at seventy percent 

there are enough historical data rules used to increase the overall percentage full of the 

containers before the artificial intelligence solves the rest of the problem.  Increasing the 

overall percentage full of each container leads to a lower container count.  The problems 

solved with minimum values above seventy percent did not have as many rules that could 

be used from historical data and thus the artificial intelligence had to solve more of the 

problem.  Since the artificial intelligence averages loading containers 51.5% full, the 

more of the problem the artificial intelligence had to solve the more the average 

percentage full of the containers approached 51.5%.  The improved methodology relies 

on data warehousing to provide the ability to exceed the capabilities of the artificial 

intelligence alone.  The effectiveness of the data warehouse is minimized when the 

minimum percentage for the inference engine is higher than seventy percent.  

Figure 30 shows the average percentage full containers loaded for each problem solved 

were.  The problem corresponding to each ship was solved ten different times each with a 

different minimum value and thus generated ten different percentages.  The percentages 

at sixty, seventy, and ninety percentages are all above the 51.5% average, as shown in 

Figure 24, for the artificial intelligence by itself.  Figure 31 graphically represents the 

data from Figure 30.  The percentage full peaks at seventy percent and thus explains why 

seventy percent had the lowest container counts.  Figure 32, which graphs the average of 

all the percentages for each minimum value, shows similar results.  The containers loaded 

using seventy percent as the minimum value for historical data had the highest average 
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percentage full.  Therefore, empirical data from this experiment, including both the 

container counts and the average percentage full of containers, shows that the long term 

minimum percentage that should be used for historical data is seventy percent. 

 

Figure 30: Average Percentage Full of Containers 

 

Figure 31: Graph of Percentage Full of Containers 

Ship%Name No%Min 10%%Min 20%%Min 30%%Min 40%%Min 50%%Min 60%%Min 70%%Min 80%%Min 90%%Min
Ship%1 21% 25% 32% 44% 47% 49% 51% 52% 52% 52%
Ship%2 21% 24% 29% 44% 49% 47% 53% 51% 50% 52%
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Ship%4 19% 24% 30% 44% 49% 52% 54% 57% 54% 56%
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Figure 32: Averages of Percentage Full of Containers 
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always below the historical data container count and always below or equal to the 

artificial intelligence container count. 

 

Figure 33: Final Comparison Statistics 

 

Figure 34: Final Comparison Graph 
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The average percentage full of containers for each problem supports the same 

conclusions.  As shown in Figure 35, the average percentage full of each container is as 

high or higher for each ship in the improved methodology as compared to both the 

historical data and the artificial intelligence.  The higher the average percentage full for 

each container, the lower the overall container count will be.  The average container from 

historical data was 27.4% full, as shown in Figure 35.  The average container from the 

artificial intelligence control experiment was 51.5% full, which is a percentage increase 

of 89.2%, as shown in Figure 35.  The average container from using the container-

loading knowledge-based expert system with a minimum percentage of seventy percent 

for historical data was 52.8% full, which was a percentage increase of 94.9%, also shown 

in Figure 35.  Figure 36 graphically represents the data from Figure 35.  The line 

corresponding to the improved methodology is always as high or higher than the artificial 

intelligence and always higher than the historical data. 

The artificial intelligence experiment led to a 45.9% reduction in the container count, as 

shown in Figure 33.  However, by combining historical data and artificial intelligence, 

the container-loading knowledge-based expert system was able to reduce the container 

count by 47.2%, also shown in Figure 33.  Corresponding results were found when 

analyzing the average percentage full containers were loaded by each method.  The 

artificial intelligence led to an increase in the average percentage full of the containers 

loaded by 89.7%, as shown in Figure 35.  However, the improved methodology led to an 

increase in the average percentage full of 94.9%, also shown in Figure 35.  The improved 

methodology employed in the container-loading knowledge-based expert system 
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optimizes the balance between historical data and the capabilities of the artificial 

intelligence to produce an optimal solution. 

 

Figure 35: Average Percentage Full Final Statistics 

 

Figure 36: Average Percentage Full Final Graph 
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Chapter 6    
 

CONCLUSIONS AND FUTURE WORK 
 

In this chapter, conclusions based on the results of the previous chapter will be discussed 

in section 6.1.  Discussions about future work will be discussed in section 6.2. 

6.1   Conclusions 

Knowledge-based expert systems can drastically reduce the amount of time necessary to 

complete complex tasks in a particular domain when implemented properly.  However, 

there are significant problems that can arise during the implementation of a knowledge-

based expert system that can prevent the system from ever becoming functional.  

Furthermore, the post implementation maintenance requirements of a knowledge-based 

expert system can be difficult and time consuming.  Only by identifying and mitigating 

these risks can a knowledge-based expert system be successfully implemented and 

maintained. 

An improved methodology for creating and maintaining knowledge-based expert systems 

was introduced in this thesis.  The improved methodology streamlines the knowledge 

acquisition process by mining historical data to augment the interviews conducted by the 

knowledge engineer.  The historical data provide a strong starting point for the 

knowledge base, which is transformed into a data warehouse to provide the inference 

engine fast access to the historical data.  Furthermore, artificial intelligence is 

incorporated into the knowledge-based expert system in order to suggest new rules that 

can be added to the knowledge base.  The suggested rules will allow the knowledge-
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based expert system to completely solve problems that cannot be solved given the 

information contained within the knowledge base.  The incorporation of the artificial 

intelligence removes the need for a manual knowledge acquisition module and thus 

reduces the resource requirements for maintaining the knowledge-based expert system 

after its initial implementation. 

The improved methodology was tested by creating a knowledge-based expert system for 

a container-loading process.  Container-loading experts were interviewed to discuss their 

processes.   The transportation system where the data was recorded by the container-

loading experts was mined for the historical data from thirteen ships loaded between 

2008 and 2011.  A data warehouse was created to serve as the knowledge base to store 

historical data.  The inference engine was created in order to pass partially completed 

solutions to the artificial intelligence.  The artificial intelligence then constructed the 

rules that needed to be added to the knowledge base in order to complete the solution. 

In order to test the container-loading knowledge-based expert system, several 

experiments were conducted.  The first experiment tested the capabilities of the artificial 

intelligence algorithm.  The historical data from each of the thirteen ships loaded by the 

container-loading experts between 2008 and 2011 were turned into distinct problems in 

the system.  Each problem was then solved by the artificial intelligence without the use of 

the inference engine or any historical data. The artificial intelligence was able to load all 

the items from each ship with an average of 45.9% less containers than the container-

loading experts had done in the past, as shown in Figure 27.  The average percentage full 

the containers loaded by the artificial intelligence was 51.5% as opposed to 27.4% by the 

container-loading experts, as shown in Figure 29.  This experiment provided a control 
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baseline for later experiments to test the impact of using both historical data and artificial 

intelligence.   

The second experiment was designed to identify what the long-term minimum value 

should be for using historical data.  Each rule stored in the knowledge base represents 

some percentage of a fully loaded container.  The inference engine was created so that it 

would not use any rules below the minimum percentage set before the problem was 

solved.  For each of the thirteen ships, ten problems were created each with a different 

minimum value starting with no minimum value and increasing by ten percent up to 

ninety percent.  Each problem was then solved independently so the results could be 

compared.  The results for the problems solved with a minimum value of seventy percent 

yielded the lowest container counts on average and also yielded the highest average 

percentage full for the containers loaded.  Therefore, seventy percent was selected to be 

the long-term minimum value for the inference engine to use when selecting historical 

data. 

The final experiment compared the results from the container-loading knowledge-based 

expert system using a minimum value of seventy percent with the results from the 

artificial intelligence control experiment and the historical results.  The container-loading 

knowledge-based expert system was able to reduce the total number of containers needed 

to load the thirteen ships by 47.2%, which was a greater reduction than the artificial 

intelligence alone.  Furthermore, the containers were on average 52.8% full, which was 

greater than the artificial intelligence alone and greater than the historical results from the 

container-loading experts.  These results show that by utilizing both historical data and 
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artificial intelligence a more optimal solution can be created than by using either one of 

them independently. 

The most important part of the improved methodology was to identify where the optimal 

combination of historical data and artificial intelligence existed.  The testing phase of the 

improved methodology is thus critical to a successful implementation.  If the optimal 

balance is achieved then the knowledge-based expert system can produce optimal 

solutions while reducing the maintenance requirements of the knowledge base.   

6.2   Future Work 

Future experiments with the improved methodology for the knowledge-based expert 

systems need to be conducted in other problem domains.  Other areas within the shipping 

industry could also be analyzed, for example this methodology could be implemented to 

load a ship with vehicles.  Also, the a knowledge-based expert system could be created to 

create load plans for ships and integrated with Wilson’s algorithm, as described in 

Chapter 2 [Wilson99].  By using the improved methodology in other domains, a more 

defined process for establishing the bounds for the inference engine using historical data 

could be achieved. 

The impact of historical data when coupled with artificial intelligence is an area that 

could be improved.  Fine tuning the inference engine and possibly modifying the artificial 

intelligence could potentially allow the historical data to provide a more significant 

impact beyond the capabilities of the artificial intelligence alone.  Given the amount of 

data that is now stored and archived by organizations, it is important to investigate 

improved ways of utilizing the data to improve productivity and quality. 
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Appendix A    
 

EXAMPLE OF USER INTERFACE SOURCE CODE 
 
 
The user interfaces were created as web pages using Microsoft .Net framework 4.0.  The 
source code for these web pages is split into two files.  The first file with the extension 
“.aspx” is similar to a standard HTML file where the layout of the web page is defined.  
The second file with the extension “.aspx.vb” is where the code is created for specific 
events for the web page. 

A.1   ViewSolutions.aspx 

Description: 
 
This file is where solutions can be created and viewed in the system.  The web pages 
display the solutions using standard active server page (ASP) controls which when 
rendered to the client are transformed into standard HTML.   
 
<%@ Page Title="" Language="vb" AutoEventWireup="false" MasterPageFile="~/SiteMaster.Master" 
CodeBehind="ViewSolution.aspx.vb" Inherits="ExpertSystem.ViewSolution" %> 
<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="asp" %> 
… 
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="server"> 
… 
    <asp:GridView ID="gvSolution" runat="server" AutoGenerateColumns="False" > 
        <Columns> 
            <asp:TemplateField HeaderText="Solution Description"> 
                <ItemTemplate> 
                    <asp:Panel ID="pHeader" runat="server" cssclass="collapsePanelHeader"> 
                                <table width="100%" > 
           <tr> 
               <td style="text-align:left; width:80%"> 

Container Number:  
<asp:Label ID="lblContainerNumber" runat="server" 
Text="Label" 
ondatabinding="lblContainer_DataBinding"></asp:Label> 

                    Rule ID:  
<asp:Label ID="lblRuleGuid" runat="server" 
Text="Label"></asp:Label 

                    Percentage Full:  
<asp:Label ID="lblPercentageFull" runat="server" 
Text="Label"></asp:Label> 

               </td> 
               <td style="text-align:right; width:20%"> 

<asp:Label ID="lblHeader" runat="server" 
Text="Label"></asp:Label> 
<asp:Image ID="imgToggle" runat="server" 
ImageUrl="Images/collapse.jpg" /> 
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               </td> 
           </tr> 
      </table> 
                 </asp:Panel> 
                 <asp:Panel ID="pContent" runat="server" CssClass="collapsePanel"> 
                  <asp:GridView ID="gvChildItems" runat="server"> 
                  </asp:GridView> 
                 </asp:Panel> 
                 <asp:CollapsiblePanelExtender ID="CollapsiblePanelExtender1" runat="server" 

CollapseControlID="pHeader" Enabled="True" ExpandControlID="pHeader" 
TextLabelID="lblHeader" TargetControlID="pContent" 
CollapsedImage="~/Images/expand.jpg" ExpandedImage="~/Images/collapse.jpg" 
CollapsedText="Show Details..." ExpandedText="Hide Details..." 
ImageControlID="imgToggle" Collapsed="True" > 

    </asp:CollapsiblePanelExtender> 
            </ItemTemplate> 
        </asp:TemplateField> 
    </Columns> 
    <HeaderStyle HorizontalAlign="Left" /> 
</asp:GridView> 
<br /> 
    …    
</asp:Content> 
 

A.2   ViewSolutions.aspx.vb 

Description:  
 
ViewSolutions.aspx.vb contains the code that is executed on the different events created 
by ViewSolutions.aspx.  Also, calls to the business layer are initiated from this page.  
This class contains the code that calls the inference engine to start solving a problem and 
the artificial intelligence to complete the problem if necessary. 
 
Imports System.Data.SqlClient 
 
Partial Public Class ViewSolution 
    Inherits System.Web.UI.Page 
    Public MyInfEngine As InferenceEngine 
    Public MyAICONT As ContainerLoadingAI 
    Public MyPublicSolution As Solution 
    Public mytype As String 
 

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load 
        Try 
            If Not IsPostBack Then 
                Dim cnsql As SqlConnection = New 
SqlConnection(System.Web.Configuration.WebConfigurationManager.ConnectionStrings("ES").ToString) 
                cnsql.Open() 
 
                Dim cmsql As New SqlCommand 
                cmsql.Connection = cnsql 
                cmsql.CommandType = CommandType.StoredProcedure 
                cmsql.CommandText = "CheckSolutionExists" 



-77- 
 

 
                Dim myGUID As New Guid(Request.QueryString("id")) 
 
                cmsql.Parameters.Add("@GUID", SqlDbType.UniqueIdentifier) 
                cmsql.Parameters("@GUID").Value = myGUID 
                Dim count As Integer = cmsql.ExecuteScalar 
                If count = 1 Then 
                    LoadSolution() 
                    mytype = "Load" 
                Else 
                    mytype = "Create" 
                    cmsql = New SqlCommand 
                    cmsql.Connection = cnsql 
                    cmsql.CommandType = CommandType.StoredProcedure 
                    cmsql.CommandText = "UseHistoricalData" 
 
                    cmsql.Parameters.Add("@ProblemId", SqlDbType.UniqueIdentifier) 
                    cmsql.Parameters("@ProblemId").Value = myGUID 
 
                    Dim UseHistoricalData As Boolean = cmsql.ExecuteScalar 
                    Dim problem As New Problem(Request.QueryString("id")) 
                    Dim rules As New RuleCollection(UseHistoricalData, problem.Min) 
                    Dim myinferenceEngine As New InferenceEngine(rules, problem, UseHistoricalData) 
                    Dim completeSoultion As Boolean = myinferenceEngine.CreateSolution 
 
                    MyInfEngine = myinferenceEngine 
                    gvSolution.DataSource = myinferenceEngine.GetContainerTablefromSolution 
                    gvSolution.DataBind() 
                    Session.Add("myinfeng", myinferenceEngine) 
 
                    If Not completeSoultion Then 
                        gvUnspreadItems.DataSource = myinferenceEngine.GetUnspreadItemsTablefromSolution 
                        gvUnspreadItems.DataBind() 
                        lblUnspreadItems.Visible = True 
                        bCreateRules.Visible = True 
                        lblSolutionInfo.Text = "A Complete Solution could not be created using the existing rules.  
The items remaining are shown below.  Additional rules can be generated automatically by clicking the 
generate rules button" 
                        lblSolutionInfo.Visible = True 
                    Else 
                        bSave.Visible = True 
                        lblSolutionInfo.Text = "A Complete Solution was generated using the existing rules.  The 
data can be saved for future use by clicking the save button" 
                        lblSolutionInfo.Visible = True 
                    End If 
                End If 
                cnsql.Close() 
            End If 
 
        Catch ex As Exception 
    Throw New Exception(ex.toString) 
        End Try 
    End Sub 
… 
        Protected Sub bCreateRules_Click(ByVal sender As Object, ByVal e As EventArgs) Handles 
bCreateRules.Click 
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        Try 
            MyInfEngine = CType(Session("myinfeng"), InferenceEngine) 
            Dim myAI As New ContainerLoadingAI(MyInfEngine.GetUnspreadItems) 
            MyAICONT = myAI 
            Dim test As Integer = myAI.UnspreadTotals 
            myAI.GenerateRules() 
            gvNewRules.DataSource = myAI.ReturnContainerInfoAsTable 
            gvNewRules.DataBind() 
            Session.Add("myAI", myAI) 
            lblSaveAllRules.Visible = True 
            lblRulesGenerationInfo.Visible = True 
            bCreateRules.Visible = False 
        Catch ex As Exception 

Throw New Exception(ex.toString) 
        End Try 
    End Sub 
… 
End Class 
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Appendix B    
 

EXAMPLE OF BUSINESS LAYER SOURCE CODE 
 
 
Descriptions: 
 
The business layer was designed to hold all the logic for the system.  The classes created 
in the business later were designed to represent the different major components of the 
system, including the inference engine and the artificial intelligence.  A small example of 
the artificial intelligence is shown below. 
 
Public Class ContainerLoadingAI 
    Private myUnspreadItems As Collection 
    Private myContainers As Collection 
    Private myGroupedNSNlookup As Collection 
 
    Public Sub New(ByVal UnspreadItems As Collection) 
        myUnspreadItems = UnspreadItems 
        myContainers = New Collection 
        myGroupedNSNlookup = New Collection 
    End Sub 
… 
    Public Sub GenerateRules() 
        Dim myContainerCount As Integer = 0 
        Dim itemsLoaded As Integer = 0 
        Dim myGUID As New Guid 
 
        Dim myContainer As Container 
        Dim ItemHasBeenLoaded As Boolean = False 
        Dim ruleUsedAgain As Boolean = False 
 
        GroupUnspreadItems() 
        While ItemsRemain() 
            Dim itemloaded As Boolean = False 
            ruleUsedAgain = False 
            If Not ItemHasBeenLoaded Then 
                If myContainerCount > 0 Then 
                    myContainers.Add(myContainer) 
                    Dim NSNmappings As New Collection 
                    While TryRuleAgain(myContainer, NSNmappings, itemsLoaded) 
 
                        myContainerCount += 1 
                        ruleUsedAgain = True 
                        Dim NewContainer As New Container 
                        NewContainer = myContainer.Copy() 
                        NewContainer.UpdateItemsNSN(NSNmappings, myGroupedNSNlookup) 
                        NewContainer.GetContainerNumber = myContainerCount 
                        myContainers.Add(NewContainer) 
                        NSNmappings.Clear() 
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                        NSNmappings = New Collection 
                    End While 
                End If 
 
                myContainerCount += 1 
 
                myGUID = Guid.NewGuid 
 
                If Not ItemsRemain() Then 
                    Exit While 
                End If 
                myContainer = New Container(myContainerCount, myGUID.ToString, False) 
                myContainer.SetDimensions(240, 96, 96) 
            End If 
            Dim bestItem As ThreeDimensional_Object 
            Dim bestTotal As New AI_Calculation 
            Dim cornercount As Integer = 1 
            For Each currentCorner As Coordinate In myContainer.Corners 
                If currentCorner.IsActive Then 
                    … 
                    For Each currentItem As Child In myUnspreadItems 

… 
                        If currentItem.QTY > 0 Then 
                            'Check to see if the corner has a height > 0 and if item can be stacked 
                            If (currentCorner.Z_Coordinate > 0 And currentItem.Stack) Or 
currentCorner.Z_Coordinate = 0 Then 
 
                                'Check Configuration 1 
                                Dim testItem As New ThreeDimensional_Object(currentItem.Length, 
currentItem.Width, currentItem.Height, currentItem.NSN, False) 
                                testItem.SetCoordinateUsingMin(currentCorner) 
                                If myContainer.ItemCanBeLoaded(testItem) Then 
                                    itemloaded = True 
                                    Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                    If currentCalculation.IsGreater(bestTotal) Then 
                                        bestItem = testItem 
                                        bestTotal = currentCalculation 
                                    End If 
                                End If 
                                If currentItem.Rotate Then 
 
                                    'Check Configuration 2 
                                    testItem = New ThreeDimensional_Object(currentItem.Length, currentItem.Height, 
currentItem.Width, currentItem.NSN, False) 
                                    testItem.SetCoordinateUsingMin(currentCorner) 
                                    If myContainer.ItemCanBeLoaded(testItem) Then 
                                        itemloaded = True 
                                        Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                        If currentCalculation.IsGreater(bestTotal) Then 
                                            bestItem = testItem 
                                            bestTotal = currentCalculation 
                                        End If 
                                    End If 
                                    'Check Configuration 3 
                                    testItem = New ThreeDimensional_Object(currentItem.Height,           
currentItem.Length, currentItem.Width, currentItem.NSN, False) 
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                                    testItem.SetCoordinateUsingMin(currentCorner) 
                                    If myContainer.ItemCanBeLoaded(testItem) Then 
                                        itemloaded = True 
                                        Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                        If currentCalculation.IsGreater(bestTotal) Then 
                                            bestItem = testItem 
                                            bestTotal = currentCalculation 
                                        End If 
                                    End If 
                                    'Check Configuration 4 
                                    testItem = New ThreeDimensional_Object(currentItem.Height, currentItem.Width, 
currentItem.Length, currentItem.NSN, False) 
                                    testItem.SetCoordinateUsingMin(currentCorner) 
                                    If myContainer.ItemCanBeLoaded(testItem) Then 
                                        itemloaded = True 
                                        Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                        If currentCalculation.IsGreater(bestTotal) Then 
                                            bestItem = testItem 
                                            bestTotal = currentCalculation 
                                        End If 
                                    End If 
                                    'Check Configuration 5 
                                    testItem = New ThreeDimensional_Object(currentItem.Width, currentItem.Length, 
currentItem.Height, currentItem.NSN, False) 
                                    testItem.SetCoordinateUsingMin(currentCorner) 
                                    If myContainer.ItemCanBeLoaded(testItem) Then 
                                        itemloaded = True 
                                        Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                        If currentCalculation.IsGreater(bestTotal) Then 
                                            bestItem = testItem 
                                            bestTotal = currentCalculation 
                                        End If 
                                    End If 
                                    'Check Configuration 6 
                                    testItem = New ThreeDimensional_Object(currentItem.Width, currentItem.Height, 
currentItem.Length, currentItem.NSN, False) 
                                    testItem.SetCoordinateUsingMin(currentCorner) 
                                    If myContainer.ItemCanBeLoaded(testItem) Then 
                                        itemloaded = True 
                                        Dim currentCalculation As New AI_Calculation(myContainer, testItem) 
                                        If currentCalculation.IsGreater(bestTotal) Then 
                                            bestItem = testItem 
                                            bestTotal = currentCalculation 
                                        End If 
                                    End If 
                                End If 
                            End If 
                        End If 
                    Next 

… 
            Next 
            'if an item has been selected, load it 
            If bestTotal.HasBeenSet Then 
                Dim newitemToAdd As New ThreeDimensional_Object 
                newitemToAdd = SelectGroupedItem(bestItem) 
                myContainer.Load3DChild(newitemToAdd) 
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      … 
                ItemHasBeenLoaded = True 
            Else 
                ItemHasBeenLoaded = False 
            End If 
        End While 
 
        If ItemHasBeenLoaded And Not ruleUsedAgain Then 
            myContainers.Add(myContainer) 
        End If 
    End Sub 
… 
End Class 
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Appendix C    
 

EXAMPLE OF DATA ACCESS LAYER SOURCE CODE 
 
 
Description:   
 
The code in the data access layer was designed to interact with the database and data 
warehouse through stored procedures.  The objects created by the classes in the data 
access layer were designed to facilitate logical separations between objects within the 
database and data warehouse. 
 
Imports System.Data.SqlClient 
Imports System.Data 
 
Public Class Container 
    Private containerID As Integer 
    Private childItems As Collection 
    Private ruleID As String 
    Private mylength_X As Integer 
    Private mywidth_Y As Integer 
    Private myheight_Z As Integer 
    Private myCorners As Collection 
    Private mynewRuleID As Integer 
    Private isCopy As Boolean 
    Private myTotalVolume As Integer 
    … 
    Public Sub Load3DChild(ByVal child As ThreeDimensional_Object) 
        Dim newCoord As Coordinate 
        Dim objectCorner As Coordinate = child.MinCoordinate 
        childItems.Add(child) 
 
        'remove the corner used to store this child 
        For i As Integer = 1 To myCorners.Count 
            Dim mycorner As Coordinate = CType(myCorners(i), Coordinate) 
            If mycorner.IsEqual(child.MinCoordinate) Then 
                myCorners.Remove(i) 
                Exit For 
            End If 
        Next 
 
        'add the seven new corners for the new object 
        newCoord = New Coordinate(objectCorner.X_Coordinate + child.Length, 
objectCorner.Y_Coordinate, objectCorner.Z_Coordinate) 
        myCorners.Add(newCoord) 
 
        newCoord = New Coordinate(objectCorner.X_Coordinate + child.Length, objectCorner.Y_Coordinate 
+ child.Width, objectCorner.Z_Coordinate) 
        myCorners.Add(newCoord) 
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        newCoord = New Coordinate(objectCorner.X_Coordinate + child.Length, objectCorner.Y_Coordinate 
+ child.Width, objectCorner.Z_Coordinate + child.Height) 
        myCorners.Add(newCoord) 
 
        newCoord = New Coordinate(objectCorner.X_Coordinate + child.Length, 
objectCorner.Y_Coordinate, objectCorner.Z_Coordinate + child.Height) 
        myCorners.Add(newCoord) 
 
        newCoord = New Coordinate(objectCorner.X_Coordinate, objectCorner.Y_Coordinate + child.Width, 
objectCorner.Z_Coordinate) 
        myCorners.Add(newCoord) 
 
        newCoord = New Coordinate(objectCorner.X_Coordinate, objectCorner.Y_Coordinate + child.Width, 
objectCorner.Z_Coordinate + child.Height) 
        myCorners.Add(newCoord) 
 
        newCoord = New Coordinate(objectCorner.X_Coordinate, objectCorner.Y_Coordinate, 
objectCorner.Z_Coordinate + child.Height) 
        myCorners.Add(newCoord) 
 
        updateCorners() 
 
    End Sub 
    … 
    Public Sub SaveContainer() 
        Dim mydt As DataTable = Me.GetContainerDetailAsTable 
        Dim cnsql As New 
SqlConnection(System.Web.Configuration.WebConfigurationManager.ConnectionStrings("ES").ToString) 
        cnsql.Open() 
        Dim myGUID As New Guid(ruleID) 
        Try 
            Dim cmSQL As New SqlCommand 
            For Each myrow As DataRow In mydt.Rows 
                cmSQL = New SqlCommand 
                cmSQL.CommandType = CommandType.StoredProcedure 
                cmSQL.CommandText = "InsertRule" 
                cmSQL.Connection = cnsql 
 
                cmSQL.Parameters.Add("@GUID", SqlDbType.UniqueIdentifier) 
                cmSQL.Parameters("@GUID").Value = myGUID 
 
                cmSQL.Parameters.Add("@NSN", SqlDbType.Char) 
                cmSQL.Parameters("@NSN").Value = myrow("NSN") 
 
                cmSQL.Parameters.Add("@QTY", SqlDbType.Int) 
                cmSQL.Parameters("@QTY").Value = CInt(myrow("QTY")) 
 
 
                cmSQL.Parameters.Add("@UserName", SqlDbType.VarChar) 
                cmSQL.Parameters("@UserName").Value = HttpContext.Current.User.Identity.Name.ToString 
 
                cmSQL.ExecuteNonQuery() 
            Next 
            cmsql = New SqlCommand 
            cmSQL.CommandType = CommandType.StoredProcedure 
            cmSQL.CommandText = "UpdateVolume" 
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            cmSQL.Connection = cnsql 
 
            cmSQL.Parameters.Add("@GUID", SqlDbType.UniqueIdentifier) 
            cmSQL.Parameters("@GUID").Value = myGUID 
 
            cmSQL.ExecuteNonQuery() 
        Catch ex As Exception 
 Throw New Exception(ex.toString) 
        Finally 
            cnsql.Close() 
        End Try 
 
    End Sub 
    … 
End Class 
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Appendix D    
 

EXAMPLE OF STORED PROCEDURES 
 
 
Description:  
 
Stored procedures were used for all database and data warehouse queries.  Below are 
examples of stored procedures that were called by the data access layer. 
 
-- ============================================= 
-- Author: Lucien Millette 
-- Create date: 8Dec2010 
-- Description: Inserts a new problem with inputted parameters  
-- ============================================= 
CREATE PROCEDURE [dbo].[InsertProblem]  
-- Input Parameters  
@Name varchar(50), 
@UseHistoricalData bit, 
@MinimumPercentage int 
AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 -- interfering with SELECT statements. 
 SET NOCOUNT ON; 
 
    INSERT INTO [ProblemInfo] 
           ([GUID] 
           ,[Name] 
           ,[CreatedOn] 
           ,[UseHistoricalData] 
           ,[MinimumPercentage]) 
     VALUES 
           (NEWID() 
           ,@Name 
           ,CURRENT_TIMESTAMP 
           ,@UseHistoricalData 
           ,@MinimumPercentage) 
END 
 
-- ============================================= 
-- Author: Lucien Millette  
-- Create date: 7Jan2011 
-- Description: Inserts a part of a rule created by the AI 
-- ============================================= 
CREATE PROCEDURE [dbo].[InsertRule]  
-- Input Parameters 
@GUID uniqueidentifier, 
@NSN char(13), 
@QTY int, 
@UserName varchar(30) 
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AS 
BEGIN 
 -- SET NOCOUNT ON added to prevent extra result sets from 
 SET NOCOUNT ON; 
  
 Declare @ID integer; 
 Declare @CurrentTime datetime; 
 Declare @Minute int; 
 Declare @Hour int; 
 Declare @Day int; 
 Declare @Month int; 
 Declare @Year int; 
  
 Select @CurrentTime = CURRENT_TIMESTAMP 
  
 if not exists (select Time_ID from TimeDimension where Time_ID = @CurrentTime) 
 Begin 
  insert into TimeDimension values ( 

@CurrentTime,  
DatePart(MINUTE, current_timestamp),  
DatePart(HOUR, current_timestamp),  
DatePart(DAY, current_timestamp),  
DatePart(Month, current_timestamp),  
DatePart(YEAR, current_timestamp)) 

 End 
  
 if exists (Select * from RuleFactTable where GUID = @GUID) 
  BEGIN 
   select @ID = Rule_ID from RuleFactTable where GUID = @GUID 
  END 
 else 
  BEGIN 
   select @ID = MAX(Rule_ID) from RuleFactTable; 
   set @ID = @ID +1; 
  END 
 if not exists (Select Rule_ID from RuleDimension where Rule_ID = @GUID) 
  BEGIN 
   insert into  RuleDimension ( 

[Rule_ID], 
[Description], 
[RuleNumber])  
values ( 
@GUID,  
'Added by ' + @UserName + ' via the AI',  
@ID) 

  end 
 INSERT INTO RuleFactTable 
            
     VALUES 
           (@GUID 
           ,@NSN 
           ,@CurrentTime 
           ,@UserName 
           ,@ID 
           ,@QTY) 
END 
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Appendix E    
 

DATABASE AND DATA WAREHOUSE SQL 
 

Description:  
 
The SQL commands in this appendix were used to create the structures in the database 
and data warehouse that enabled the system to function. 
 
/******   Data Warehouse SQL ******/ 
 
CREATE TABLE [dbo].[RuleDimension]( 
 [Rule_ID] [uniqueidentifier] NOT NULL, 
 [Description] [varchar](50) NOT NULL, 
 [RuleNumber] [int] NULL, 
 [TotalVolume] [int] NULL, 
 CONSTRAINT [PK_RuleDimension] PRIMARY KEY CLUSTERED  
( 
 [Rule_ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[refRotationalRules]( 
 [NSN] [char](13) NOT NULL, 
 [Rotate] [bit] NOT NULL 
)  
 
CREATE TABLE [dbo].[refRejectedRules]( 
 [GUID] [uniqueidentifier] NOT NULL, 
 [NSN] [char](13) NOT NULL, 
 [QTY] [int] NOT NULL 
)  
 
CREATE TABLE [dbo].[PersonDimension]( 
 [Person_ID] [varchar](30) NOT NULL, 
 [First_Name] [varchar](30) NOT NULL, 
 [Last_Name] [varchar](30) NOT NULL, 
 [Middle_Initial] [char](1) NULL, 
 [Email_Address] [varchar](30) NULL, 
 [IsAdmin] [bit] NULL, 
 CONSTRAINT [PK_PersonDimension] PRIMARY KEY CLUSTERED  
( 
 [Person_ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[ItemDimension]( 
 [NSN] [char](13) NOT NULL, 
 [Length] [int] NULL, 
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 [Width] [int] NULL, 
 [Height] [int] NULL, 
 [Weight] [int] NULL, 
 [Description] [varchar](500) NULL, 
 [CanRotate] [bit] NULL, 
 [CanStack] [bit] NULL, 
 CONSTRAINT [PK_refDimensionalData] PRIMARY KEY CLUSTERED  
( 
 [NSN] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[TimeDimension]( 
 [Time_ID] [datetime] NOT NULL, 
 [Minute] [int] NOT NULL, 
 [Hour] [int] NOT NULL, 
 [Day] [int] NOT NULL, 
 [Month] [int] NOT NULL, 
 [Year] [int] NOT NULL, 
 CONSTRAINT [PK_TimeDimension] PRIMARY KEY CLUSTERED  
( 
 [Time_ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[RuleFactTable]( 
 [GUID] [uniqueidentifier] NOT NULL, 
 [NSN] [char](13) NOT NULL, 
 [Time_ID] [datetime] NOT NULL, 
 [Person_ID] [varchar](30) NOT NULL, 
 [Rule_ID] [int] NOT NULL, 
 [QTY] [int] NOT NULL, 
 CONSTRAINT [PK_RuleFactTable] PRIMARY KEY CLUSTERED  
( 
 [GUID] ASC, 
 [NSN] ASC, 
 [Time_ID] ASC, 
 [Person_ID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
ALTER TABLE [dbo].[RuleFactTable]  WITH CHECK ADD  CONSTRAINT 
[FK_RuleFactTable_ItemDimension] FOREIGN KEY([NSN]) 
REFERENCES [dbo].[ItemDimension] ([NSN]) 
ON UPDATE CASCADE 
 
ALTER TABLE [dbo].[RuleFactTable] CHECK CONSTRAINT [FK_RuleFactTable_ItemDimension] 
 
ALTER TABLE [dbo].[RuleFactTable]  WITH CHECK ADD  CONSTRAINT 
[FK_RuleFactTable_PersonDimension] FOREIGN KEY([Person_ID]) 
REFERENCES [dbo].[PersonDimension] ([Person_ID]) 
ON UPDATE CASCADE 
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ALTER TABLE [dbo].[RuleFactTable] CHECK CONSTRAINT [FK_RuleFactTable_PersonDimension] 
 
ALTER TABLE [dbo].[RuleFactTable]  WITH CHECK ADD  CONSTRAINT 
[FK_RuleFactTable_RuleDimension] FOREIGN KEY([GUID]) 
REFERENCES [dbo].[RuleDimension] ([Rule_ID]) 
ON UPDATE CASCADE 
ON DELETE CASCADE 
 
ALTER TABLE [dbo].[RuleFactTable] CHECK CONSTRAINT [FK_RuleFactTable_RuleDimension] 
 
ALTER TABLE [dbo].[RuleFactTable]  WITH CHECK ADD  CONSTRAINT 
[FK_RuleFactTable_TimeDimension] FOREIGN KEY([Time_ID]) 
REFERENCES [dbo].[TimeDimension] ([Time_ID]) 
 
ALTER TABLE [dbo].[RuleFactTable] CHECK CONSTRAINT [FK_RuleFactTable_TimeDimension] 
 

/******   Database SQL ******/ 
 
CREATE TABLE [dbo].[ProblemInfo]( 
 [GUID] [uniqueidentifier] NOT NULL, 
 [Name] [varchar](50) NOT NULL, 
 [CreatedOn] [date] NOT NULL, 
 [ModifiedOn] [date] NULL, 
 [UseHistoricalData] [bit] NULL, 
 [MinimumPercentage] [int] NULL, 
 CONSTRAINT [PK_ProblemInfo] PRIMARY KEY CLUSTERED  
( 
 [GUID] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[ProblemDescription]( 
 [GUID] [uniqueidentifier] NOT NULL, 
 [NSN] [char](13) NOT NULL, 
 [QTY] [int] NOT NULL, 
 CONSTRAINT [PK_ProblemDescription] PRIMARY KEY CLUSTERED  
( 
 [GUID] ASC, 
 [NSN] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[SolutionInfo]( 
 [ProblemId] [uniqueidentifier] NOT NULL, 
 [SolutionId] [uniqueidentifier] ROWGUIDCOL  NOT NULL, 
 [CreatedOn] [date] NOT NULL, 
 [CreatedDate] [datetime] NULL, 
 CONSTRAINT [PK_SolutionInfo] PRIMARY KEY CLUSTERED  
( 
 [ProblemId] ASC, 
 [SolutionId] ASC 
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)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[ShipComparison]( 
 [ShipName] [varchar](200) NOT NULL, 
 [HistoricalDataKey] [varchar](50) NOT NULL, 
 [ProblemId] [uniqueidentifier] NOT NULL, 
 [MappingId] [int] IDENTITY(1,1) NOT NULL 
) 
 
CREATE TABLE [dbo].[MinValueComparison]( 
 [Id] [int] IDENTITY(1,1) NOT NULL, 
 [ShipName] [varchar](200) NOT NULL, 
 [NoMinId] [uniqueidentifier] NOT NULL, 
 [Minof10Id] [uniqueidentifier] NOT NULL, 
 [Minof20Id] [uniqueidentifier] NOT NULL, 
 [Minof30Id] [uniqueidentifier] NOT NULL, 
 [Minof40Id] [uniqueidentifier] NOT NULL, 
 [Minof50Id] [uniqueidentifier] NOT NULL, 
 [Minof60Id] [uniqueidentifier] NOT NULL, 
 [Minof70Id] [uniqueidentifier] NOT NULL, 
 [Minof80Id] [uniqueidentifier] NOT NULL, 
 [Minof90Id] [uniqueidentifier] NOT NULL, 
 CONSTRAINT [PK_MinValueComparison] PRIMARY KEY CLUSTERED  
( 
 [Id] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
)  
 
CREATE TABLE [dbo].[SolutionDescription]( 
 [SolutionId] [uniqueidentifier] NOT NULL, 
 [ContainerNumber] [int] NOT NULL, 
 [NSN] [char](13) NOT NULL, 
 [QTY] [int] NOT NULL, 
 [RuleId] [uniqueidentifier] NOT NULL, 
 CONSTRAINT [PK_SolutionDescription] PRIMARY KEY CLUSTERED  
( 
 [SolutionId] ASC, 
 [ContainerNumber] ASC, 
 [NSN] ASC 
)WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, 
ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ON) ON [PRIMARY] 
) 

ALTER TABLE [dbo].[SolutionInfo]  WITH CHECK ADD  CONSTRAINT 
[FK_SolutionInfo_ProblemInfo] FOREIGN KEY([ProblemId]) 
REFERENCES [dbo].[ProblemInfo] ([GUID]) 
 
ALTER TABLE [dbo].[SolutionInfo] CHECK CONSTRAINT [FK_SolutionInfo_ProblemInfo] 
 
ALTER TABLE [dbo].[SolutionInfo] ADD  CONSTRAINT [DF_SolutionInfo_SolutionId]  DEFAULT 
(newid()) FOR [SolutionId] 
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ALTER TABLE [dbo].[ProblemDescription]  WITH CHECK ADD  CONSTRAINT 
[FK_ProblemDescription_ProblemInfo] FOREIGN KEY([GUID]) 
REFERENCES [dbo].[ProblemInfo] ([GUID]) 
ON DELETE CASCADE 
 
ALTER TABLE [dbo].[ProblemDescription] CHECK CONSTRAINT 
[FK_ProblemDescription_ProblemInfo] 
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