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Abstract

Level vector autoregressive (VAR) models are used extensively in empirical macroe-

conomic research. However, estimated level VAR models may contain explosive roots,

which is at odds with the widespread consensus among macroeconomists that roots are

at most unity. This paper investigates the frequency of explosive roots in estimated

level VAR models in the presence of stationary and nonstationary variables. Monte

Carlo simulations based on datasets from the macroeconomic literature reveal that the

frequency of explosive roots exceeds 40% in the presence of unit roots. Even when

all the variables are stationary, the frequency of explosive roots is substantial. Fur-

thermore, explosion increases significantly, to as much as 100% when the estimated

level VAR coefficients are corrected for small-sample bias. These results suggest that

researchers estimating level VAR models on macroeconomic datasets encounter explo-

sive roots, a phenomenon that is contrary to common macroeconomic belief, with a

very high frequency. Monte Carlo simulations in the paper reveal that imposing unit

roots in the estimation can substantially reduce the frequency of explosion. Hence one

way to mitigate explosive roots is to estimate vector error correction models.
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1. Introduction

Following the work of Sims (1980), impulse response analysis based on level vector autore-

gressive (VAR) models has been utilized in numerous studies and plays an important role in

contemporary macroeconomic research.1 However, estimated level VAR models may contain

explosive roots even if all the true autoregressive roots lie inside the unit circle. The incidence

of such explosive roots is at odds with the widespread agreement among macroeconomists

that roots are at most unity.2 Given that level VAR models are used extensively and may

estimate roots greater than unity, it is important to examine how frequently researchers

estimating level VAR models on macroeconomic datasets encounter explosive roots.

This paper investigates this frequency using Monte Carlo simulations based on datasets

that are representative of those commonly used in the macroeconomic literature. In spe-

cific, datasets from three highly cited papers in the literature, Christiano, Eichenbaum, &

Evans (1999, 2005), CEE henceforth, and Eichenbaum & Evans (1995), EE henceforth, are

employed to examine the frequency of explosive roots (explosion) in estimated level VAR

models.3 Monte Carlo samples are generated under two specifications of the data-generating

process (DGP). The first specification of the DGP imposes unit roots in the simulated data,

while the second specification is based on a stationary process. Subsequently, level VAR

models are estimated on the simulated data to compute the frequency of explosive roots.

Under both these specifications, this paper also examines the frequency of explosion after

correcting for the small-sample bias in estimated level VAR coefficients.

Monte Carlo results in this study reveal that the frequency of explosive roots exceeds

1One advantage of level VAR models over alternatives such as the vector error correction models is that
the former are robust to the number of unit roots in the system. This robustness is one of the reasons why
level VAR models are used extensively in applied macroeconomic research.

2Macroeconomists may model few phenomenon such as hyperinflations as explosive processes (see Neilsen
(2005) and Juselius (2002)). These are important but very specific cases and in general most macroeconomic
variables are modeled as non-explosive processes.

3CEE (1999), CEE (2005) and EE (1995) are among the most highly cited papers in the applied macroe-
conomic research. Differences in VAR order, data frequency and variables used in these papers facilitate the
assessment of explosive roots under a variety of specifications.
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40% in the presence of unit roots. Even when all the variables are stationary, the frequency

of explosive roots is substantial; it is as high as 25%. Furthermore, explosion increases signif-

icantly, to more than 90% under several specifications, when the estimated level VAR coeffi-

cients are corrected for small-sample bias. These results suggest that researchers estimating

level VAR models on macroeconomic datasets encounter explosive roots, a phenomenon that

is contrary to common macroeconomic belief, with a very high frequency.

Considering the consensus among macroeconomists that roots are at most unity, applied

macroeconomists may discard explosive VAR draws in simulated data used for constructing

confidence intervals for the impulse responses.4 However, discarding explosive VAR speci-

fications when estimating level VAR model on the actual dataset is problematic because it

may lead to biases in the estimation or even result in data mining. Data mining can be a

serious problem since it invalidates statistical theory. The high frequency of encountering

explosive roots in estimated level VAR models suggests that this data mining problem can

be severe. Additionally, the sharp increase in explosion after bias correction in estimated

level VAR coefficients indicates that researchers correcting for the small-sample bias in these

coefficients may encounter explosive roots with an even higher probability.

As per the well known evidence of nonstationarity in most macroeconomic series, one

way to reduce the frequency of explosive roots is to impose unit roots in the estimation by

estimating VECMs instead of level VAR models. I examine the frequency of explosive roots

in estimated VECMs under the same specifications of the DGPs. Monte Carlo simulations

reveal that explosion occurs much less frequently in estimated VECMs.

The rest of the paper is organized as follows. Section II examines the frequency of explo-

sive roots in estimated level VAR models in the presence of nonstationary variables. Section

III focuses on explosive roots in estimated level VAR models when all the variables are sta-

4For instance, Ditmar, Gavin & Kyland (2005) and Altig, Christiano, Eichenbaum & Linde (2004) discard
explosive VAR draws in the simulated data used for constructing error bands for their impulse responses.
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tionary. Section IV examines the frequency of explosive roots in estimated VECMs. Section

V concludes.

2. Data Generating Process with NonStationary Variables

Many macroeconomists model highly persistent time series, such as inflation, interest rate,

exchange rate and money demand, as unit root processes since empirical studies that esti-

mate these series have mostly failed to reject the null hypothesis of unit root nonstationarity.

Given this evidence for nonstationarity of several macroeconomic variables and that macroe-

conomic theory predicts that some of these series have long-run equilibrium relationships,

this paper tests for unit roots and cointegration in CEE (1995), CEE (2005) and EE (1995)

datasets.5 Several unit root tests are implemented to test stationarity of macroeconomic

variables in CEE (1999), CEE(2005) and EE (1995). These tests fail to reject the null of

unit root for most macroeconomics series. Johansen’s (1988) tests are used to estimate the

cointegration ranks in the datasets. Based on these tests, cointegration ranks of five, four

and two are used for the DGPs based on CEE (1999), CEE (2005) and EE (1995) respec-

tively.6 However, Podivinsky’s (1998) results suggest that Johansen’s cointegration test may

not be very reliable, especially in shorter samples due to severe size distortions.7 I therefore

examine the sensitivity of the results to varying cointegration ranks in the DGPs.

Given the evidence for the existence of nonstationarity and cointegration, common stochas-

tic trends are imposed in the Monte Carlo samples by estimating vector error correction mod-

els (VECMs) on the datasets and using the estimated regression coefficients for the DGP.

Subsequently, the frequency of explosive roots in estimated level VAR models is computed.8

5Unit root tests, Cointegration tests and a description of the datasets are reported in the appendix.
6These cointegration ranks are chosen based on trace tests. The maximum eigenvalue tests, on the other

hand, yield cointegration ranks of four for CEE (1999), and one for CEE (2005) and EE (1995). Given these
mixed results, sensitivity of results to different cointegration ranks is also examined.

7Johansen(2002) proposes a small sample Barlett correction that improves the finite-sample performance
of his test. However, Juselius(2006) points out that these corrections do not solve the power problem and in
some cases the size of the test and the power of alternative hypotheses close to the unit circle are almost of
the same magnitude.

8Unrestricted level VAR models are robust to the number of unit roots in the system and hence are not
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Estimation Procedure
Monte Carlo experiments in the paper can be summarized into the following steps:

1. First I estimate reduced form VECMs using Johansen’s maximum likelihood method

on the datasets.9

∆Yt = c+ ζ1∆Yt−1 + ζ2∆Yt−2 + ...+ ζp−1∆Yt−p+1 + ζ0Yt−1 + εt (1)

Assuming normal errors, VECM coefficients can be estimated by maximizing the fol-

lowing likelihood function:

L (Ω, ζ1, ..., ζp−1, c, ζ0) = (−Tn/2) log (2π)− (T/2) log |Ω| (2)

− 1

2

T∑
t=1

[(∆Yt − c− ζ1∆Yt−1 − ...− ζp−1∆Yt−p+1 − ζ0Yt−1)′

Ω−1 (∆Yt − c− ζ1∆Yt−1 − ...− ζp−1∆Yt−p+1 − ζ0Yt−1)]

subject to ζ0 = −BA′

where Yt is a n-dimensional vector of variables, Ω is the covariance matrix of εt, B

is an (n x h) matrix, A′ is an (h x n) matrix of cointegrating vectors, and h is the

cointegration rank based on Johansen’s test.10

2. Next I use the estimated VECM coefficients to generate 10,000 Monte Carlo samples.11

3. Finally I estimate level VAR models on each of these samples to get the reduced form

coefficients:

Yt = ci + θi
1Yt−1 + θi

2Yt−2 + ...+ θi
pYt−p + εt for i=1,2,... 10,000 (3)

and subsequently check their stability to compute the frequency of explosive roots.12

misspecified in the presence of unit roots and cointegration, as is the case in the simulated data under this
specification. However, estimating VAR in levels in the presence of cointegration involves a loss of efficiency
because some restrictions, namely the reduced rank of ζ0 in (2), are not imposed.

9VECM(4) is estimated on the CEE (1999) and CEE (2005) datasets, and VECM(6) is estimated on the
EE (1995) dataset, since CEE (1999, 2005) used level VAR(4) and EE (1995) used VAR(6) specifications for
their reduced form estimations.

10The likelihood function is maximized by implementing the step by step procedure proposed by Johansen
(1988, 1991) as outlined in Hamilton (1994).

11Initial values from the datasets are used as the starting values for the Monte Carlo samples.
12Stability of a VAR(p) model can be checked by calculating λmax, the modulus of the largest root of its

companion matrix. If λmax of an estimated VAR model lies outside the unit circle in a given sample, the
VAR model would be unstable for that Monte Carlo sample. Frequency of explosive roots corresponds to
the proportion of unstable VAR draws in the Monte Carlo samples. In order to allow for rounding off errors,
I consider a VAR model to be explosive only if its λmax exceeds a threshold value of 1.00001 (instead of
exactly one). Results are essentially the same for other thresholds such as 1.0001 or 1.0005.
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Theoretical Predictions

Consider an estimator that yields median-unbiased estimates of autoregressive roots in mul-

tivariate time series models. I refer to this imaginary estimator as ‘median unbiased au-

toregressive roots estimator’ (MUAR).13 If the true data-generating process is a VECM and

the magnitude of the largest autoregressive root, λmax, is exactly one, we would expect to

encounter explosive roots with a probability of 0.5 with MUAR. Needless to say, a 50% like-

lihood of explosion is extremely high. However, since the least-squares estimator used for

level VAR estimations is not median-unbiased, we can expect lower frequency of explosive

roots if the least-squares bias in λmax is downward, whereas in the case of an upward bias it

would be even higher.

Least-squares bias in autoregressive roots can be downward or upward. Andrews (1993)

shows that the least-squares estimator is significantly downward biased in AR(1)/unit root

models. Similarly Andrews and Chen (1994) show that least-squares estimates of α, the sum

of autoregressive coefficients in AR(p) models, are substantially downward biased in small

samples. However, since the mapping from autoregressive coefficients to autoregressive roots

is nonlinear, the bias in autoregressive roots can go either way even if the autoregressive

coefficients are downward biased. For instance, Andrews and Chen (1994, Table 2) report

upward least-squares bias in most autoregressive roots.14 Given that the least-squares es-

timator can be significantly biased in small samples and the bias in autoregressive roots

can go in either direction, it is hard to predict how often estimated level VAR models may

contain explosive roots. Consequently, Monte Carlo simulations are used to estimate the

frequency of explosive roots in estimated level VAR models with and without correcting for

13It must be emphasized that no such estimator exists and MUAR is just an imaginary estimator, men-
tioned solely for expository purpose.

14Andrews and Chen (1994, Table 2) report results for three autoregressive models, which have upward bias
in the magnitude of most autoregressive roots other than that of the largest one. Monte Carlo simulations
(available upon request) based on their models with slightly different coefficient values yield upward bias in
the magnitude of the largest root.
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the small-sample bias using standard bias correction procedures.

Andrews (1993) and Andrews & Chen (1994) among others have proposed bias-corrected

estimators for univariate autoregressive models. Kilian (1998) proposes a bias correction

approach for multivariate time series models such as VAR. His approach relies on calcu-

lating the mean-bias using nonparametric bootstrapping. Nicholls and Pope (1988), on the

other hand, provide a closed-form expression for the bias in stationary multivariate Gaussian

autoregressions. Pope (1990) extends these results by relaxing the assumption of Gaussian

innovations. It must be emphasized that common bias correction procedures, including those

by Kilian (1998) and Pope (1990), are designed to correct the small-sample bias in the au-

toregressive coefficients, which may not correct the bias in autoregressive roots due to the

nonlinear relationship between the two.15 This paper uses bias correction procedures based

on Kilian (1998) and Pope (1990) to correct for the small-sample bias in estimated level

VAR coefficients.

Kilian’s bias correction procedure involves estimating VAR models and generating N

replications of the estimated coefficients using standard nonparametric bootstrap techniques.

Subsequently, the mean-bias is estimated as the difference between the average of the N

replications of coefficients and the initial estimate of coefficients used in the DGP. This

procedure is computationally demanding since it requires generating N replications on each

Monte Carlo sample. Therefore, this paper uses a modest number of Monte Carlo samples:

it generates 1000 Monte Carlo samples for the bias correction simulations and estimates the

bias using 1000 replications of the estimated coefficients on each Monte Carlo sample.16

15Median-unbiasedness is preserved under monotone transformation whereas mean-unbiasedness is presev-
ered under linear combinations. Since the autoregressive roots are neither a monotone transformation nor a
linear combination of the autoregressive coefficients, median or mean bias corrections in coefficients will not
in general correct the bias in the roots. To my knowledge, there does not exist any bias correction procedure
that is designed to correct the bias in autoregressive roots of VAR models. Qureshi (2008) proposes a method
to numerically correct the median-bias in autoregressive roots.

16This would result in 10002 or one million simulations which take considerable time even with the fast
processors available to date. Sensitivity of results to increasing the number of simulations to 20002 is
examined for simulations reported in Table 1. Frequency of explosive roots essentially remains the same.
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Kilian implements a stationarity correction after correcting the bias in coefficients to

avoid pushing stationary impulse response estimates into the nonstationary region. Kilian’s

bias correction with stationarity correction would ensure that explosive roots in estimated

VAR models are eliminated. However, Sims and Zha (1995) criticize Kilian’s stationarity

correction as ‘ad hoc’. This paper implements Kilian’s bias correction method without the

stationarity correction. Hence results in this paper reveal how frequently Kilian’s method

relies on stationarity correction to avoid explosive roots in estimated level VAR models.

Pope’s expression for the mean-bias in VAR coefficients is defined for demeaned sta-

tionary VAR(1) models. In order to implement bias correction based on this expression,

VAR(p)s are estimated on demeaned simulated data and then reformulated as VAR(1)s.17

Subsequently, the mean-bias is calculated using Pope’s expression. Finally the mean-bias is

subtracted from the estimated VAR coefficients to yield bias-corrected coefficients. I refer

to these steps as Pope’s bias correction.18

Results

Figure 1 presents an example illustrating the frequency of explosive roots in estimated level

VAR models. It plots the distribution of λmax, the modulus of the largest autoregressive

root, in estimated level VAR(4) models with and without bias correction. The DGP is based

on VECM estimation on the CEE (1999) dataset, with a cointegration rank of five. The

frequency of explosive roots corresponds to the area under the distribution to the right of

17Demeaned data for simulations with Pope’s bias correction is generated by using estimated VECM
coefficients in (1) without the constant, and by setting the initial values in the Monte Carlo samples to zero.

18In this paper the bias correction procedures are implemented only on stable VAR draws and explosive
roots in unstable VARs are counted towards the frequency of explosion without bias correction. This is
because Pope’s solution for the bias in VAR coefficients is defined for stationary VAR models. Similarly,
Kilian’s approach is designed for stationary models. However, Kilian (1998) argues that based on the
continuity of the finite-sample distribution of the OLS estimator, the bootstrap approximation may still be
used for slightly explosive cases. In light of this argument, I estimate the frequency of explosive roots after
implementing Kilian’s and Pope’s bias corrections on all Monte Carlo samples (including the explosive ones).
Results based on this exercise are essentially the same as the benchmark case of bias correction on stable
VARs only.
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unity. The following tables report these frequencies under various specifications.19
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Figure 1: Distribution of λmax

Table I reports the frequency of explosive roots in estimated level VAR models for the

benchmark estimations of VAR(4) in CEE(1999) and CEE(2005), and VAR(6) in EE(1995).

The frequency of explosion is considerably high. Estimated level VAR models have explosive

roots in 46.4%, 47.7% and 41.9% of the Monte Carlo samples based on CEE (1999), CEE

(2005) and EE (1995) respectively. Furthermore, the frequency of explosion increases sub-

stantially after correcting for the small-sample bias. Results for both Pope (1990) and Kilian

(1998) bias correction procedures, denoted by ‘Pope’ and ‘Kilian’ respectively, are reported.

Estimated level VAR models have explosive roots more that 75% of the time after Kilian’s

bias correction and 100% of the time after Pope’s bias correction. Table 1 reveals that λmax

has downward median-bias because the frequency of explosive roots is less than 50% in the

benchmark specifications. Additionally, Kilian’s and Pope’s bias corrections on level VAR

coefficients overcorrect this bias in λmax, consequently resulting in upward median-bias.

19EE (1995) estimate level VAR models with five, seven and eight variables and examine five different
nominal and real exchange rates. For more details, please refer to the appendix. In the interest of brevity,
this paper only presents results for their nominal $/Franc exchange rate model with five variables. Results
for other specifications and exchange rates are essentially the same. CEE (1999) report results with both
M1 and M2 in their benchmark specification. This paper only presents results with M1. Once again, results
are almost the same if M1 is replaced by M2.
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These results suggest that researchers estimating level VAR on macroeconomic datasets,

which include some nonstationary I(1) variables, encounter explosive roots very frequently,

and even more so if they correct for the finite-sample bias in their estimation.

The following subsection examines the sensitivity of these results to varying cointegra-

tion ranks in the DGP, and to shorter samples and different lag orders in the estimated VAR

models. Results from table 1 are reproduced (in italics) in the following tables to facilitate

comparison with these benchmark specifications.

Sensitivity Analysis

Considering that cointegration rank tests may not be reliable in small samples, table 2 ex-

amines the sensitivity of results to different cointegration ranks in the DGP.20 In most cases

as the cointegration rank, h, increases, and hence the number of unit roots in the DGP

decreases, the frequency of explosion goes down. For instance, as h increases from 3 to 6 in

CEE (1999), the frequency of explosion decreases from 41.7% to 36.7%. However, explosion

still remains high; in most simulations estimated level VAR models have explosive roots in

more than 40% of the Monte Carlo samples. Once again, explosion increases substantially,

to more than 90% in several cases, after bias correction. These results confirm that the high

frequency of explosive roots is robust to varying cointegration rank in the DGP. The next

table assesses the sensitivity of results to different subsamples and lag orders in estimated

level VAR models.

Macroeconomic datasets for the post-Bretton Woods or post-Volcker eras are relatively

short, which may exacerbate explosion in estimated level VAR models.21 Level VAR models

are estimated on truncated Monte Carlo samples, namely ‘post-Bretton Woods’ and ‘Volcker

20Number of variables in the system, n, equals 7, 9 and 5 for CEE (1999), CEE (2005) and EE (1995)
respectively. Any remaining cointegration ranks that are not reported yield very similar results.

21For example, if λmax is biased downward explosion may rise due to an increase in the variance of λmax

in shorter samples. However, it must be emphasized that median-bias as well as other characteristics of the
distribution (skewness, kurtosis, etc.) would also in general change in smaller samples making it hard to
predict how the frequency of explosion would be affected.
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& post-Volcker’, to estimate the frequency of explosion in shorter samples.22

Different lag orders in estimated level VAR models may also affect the frequency of ex-

plosive roots. I therefore examine the sensitivity of results to varying orders in level VAR

models in the full-sample as well as the two subsamples. CEE (1999) and CEE (2005) use

level VAR(4) models while EE (1995) use level VAR(6) model for their reduced form esti-

mation. Since these subsamples are fairly short, degrees of freedom would be low for the

benchmark specifications of for four lags in CEE (1999, 2005) and six lags in EE (1995).

Hence, the frequency of explosion is also reported for lower lag orders in level VAR models.

Table 3 reveals that the frequency of explosive roots remains high for different lag orders

in estimated models. Moreover, explosion increases further in shorter samples in several

simulations. For instance, the frequency of explosion in the benchmark cases increases to

56.1%, 70.2% and 44.9% in the ‘Volcker & post-Volcker’ subsamples. Once more, explosion

increases appreciably after correcting for the small-sample bias in estimated level VAR co-

efficients. The frequency of explosive roots is more than 75% under all specifications after

Kilian’s bias correction and increases to 100% in all cases after Pope’s correction.

3. Data Generating Process with Stationary Variables

The previous section examined the frequency of explosive roots in estimated level VAR mod-

els in the presence of unit root nonstationary variables. This section focuses on explosive

roots in estimated level VAR models when all the variables are stationary. In this case the

data-generating processes are based on level VAR models, as opposed to VECMs.

Estimation Procedure

The procedure for conducting Monte Carlo experiments is the same as that in the previous

22‘post-Bretton Woods’ and ‘Volcker & post-Volcker’ subsamples correspond to the following sample pe-
riods: CEE (1999, 2005) quarterly - ‘post-Bretton Woods’ (1974:1 to 1995:2) and ‘Volcker & post-Volcker’
(1979:3 to 1995:2). EE (1995) monthly - ‘post-Bretton Woods’ (1974:1 to 1991:12) and ‘Volcker & post-
Volcker’ (1979:8 to 1991:12).
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section except for the first two steps in which level VAR(p) models are estimated on de-

meaned datasets and the corresponding coefficients are used to generate 10,000 Monte Carlo

samples.23 Starting values for the Monte Carlo samples are drawn from the stable VAR

distribution. Subsequently, level VAR models are estimated on these samples to compute

the frequency of explosive roots.24

Results

Table 4 summarizes results for the frequency of explosive roots in estimated level VAR mod-

els when the DGP is stationary. It presents results under the same specifications of estimated

level VAR models as those reported in the table 3. Results in table 4 reveal that even in the

absence of any unit roots, the frequency of explosive roots is considerable. Estimated level

VAR models on full-samples have explosive roots in 25.9%, 12.9% and 19.6% of the simu-

lations based on the benchmark specifications in CEE (1999), CEE (2005) and EE (1995)

respectively. Furthermore, explosion increases substantially in shorter subsamples. For in-

stance, the frequency of explosive roots in these benchmark cases increases to 56.0%, 61.4%

and 31.7% respectively in the ‘Volcker & post-Volcker’ subsamples. Results for different

lag orders in estimated models show that the high frequency of explosive roots is robust

to varying order in level VAR estimation. As before, explosion increases substantially after

bias correction. In most cases, explosive roots are encountered in more that 70% simulations

after Kilian’s bias correction and in more than 90% simulations after Pope’s bias correction.

These results indicate that macroeconomists estimating level VAR model on datasets en-

counter explosive roots very frequently even if all the variables in their dataset are stationary.

Moreover, they may almost always estimate explosive roots on macroeconomic datasets if

they correct for the small-sample bias in level VAR coefficients.

23p equals 4 for the DGP based on CEE (1999, 2005) datasets and 6 for EE (1995) dataset. Since the DGP
is based on demeaned data, I estimate level VAR models (without constant) on the Monte Carlo samples.
This is useful for Pope’s bias correction since Pope’s expression is defined for demeaned stationary VARs.

24Since λmax in the stationary DGP is less than unity, it is hard to predict the frequency of explosion even
for the imaginary MUAR estimator.
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Considering that the frequency of explosive roots in estimated level VAR models is very

high, the next section explores alternatives to level VAR models and examines the frequency

of explosion in one such alternative, namely the vector error correction models.

4. Explosive Roots in Vector Error Correction Models

As per the well known evidence of nonstationarity in most macroeconomic series, one way to

reduce the frequency of explosive roots is to impose unit roots in the estimation by estimat-

ing VECMs instead of level VAR models.25 This section examines the frequency of explosive

roots in estimated VECMs under the same specifications of the DGPs as the previous sec-

tions.

Estimation Procedure

The procedure for conducting Monte Carlo experiments is identical to that in the previous

sections, except for the third step in which VECMs are estimated on the simulated datasets

instead of level VAR models. Cointegration ranks of five, four and two are imposed on each

simulated dataset for CEE (1999), CEE (2005) and EE (1995) respectively. These cointer-

gation ranks are the same as those imposed in the nonstationary DGP.26

Results

Table 5 reports the frequency of explosive roots in estimated VECMs when the DGP is

nonstationary. Since the standard bias correction procedures for level VAR models can not

be applied to VECMs, the following tables only report the cases without bias correction.

These results reveal that the frequency of explosion reduces dramatically once VECMs are

estimated on the simulated datasets. Imposing unit roots in the estimation restricts the

magnitude of some of the explosive roots to unity, hence reducing the frequency of explo-

25Imposing unit roots in the estimation would restrict the magnitude of some of the otherwise explosive
roots to unity, hence reducing the frequency of explosive roots.

26An alternative approach would be to estimate cointergration rank for each simulated dataset and impose
the corresponding number of unit roots in the estimation.
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sion. Based on the benchmark specifications in CEE (1999), CEE (2005) and EE (1995),

estimated VECMs on full-samples have explosive roots in only 2.3%, 0.6% and 0.4% of the

simulations respectively, compared to 46.4%, 47.7% and 41.9% in estimated level VAR mod-

els. Frequency of explosive roots in estimated VECMs increases to some extent in shorter

subsamples. Explosion increases to 9.4% in the ‘Volker & post-Volker’ subsamples in the

benchmark specification of CEE (1999). However, the frequency of explosive roots in esti-

mated VECMs is still much lower than estimated level VAR models.

Table 6 reports the frequency of explosive roots when the DGP is stationary. It presents

results under the same specifications of estimated VECMs as those reported in table 5. Once

again, the frequency of explosive roots is very low. It is less that 1% under all specifications

on full-samples. Estimated VECMs on full-samples have explosive roots in only 0.9%, 0.0%

and 0.1% of the simulations based on the benchmark specifications in CEE (1999), CEE

(2005) and EE (1995) respectively. Even in shorter samples, the frequency of explosive is

less than 5% under most specifications.

The last table presents the sensitivity of these results to varying cointegration ranks in

estimated VECMs. Results in table 7 reveal that the frequency of explosion decreases as

more unit roots are imposed in the VECM estimation. For instance, explosion decreases

from 47.7% to 5.1% in CEE (2005) simulations if the cointegration rank, h, is reduced from

9 to 7. These results show that the frequency of explosion in estimated VAR models can

be reduced dramatically by imposing just one or two unit roots. This suggests that even if

researchers are not confident about the exact cointegration rank, but expect atleast one or

two unit roots in the system, they would be better off estimating VECMs with h equal to

n-1 or n-2 as opposed to estimating a level VAR model (i.e. h equals n), where n in the

number of variables in the system.

Overall, these results show that the frequency of explosive roots can be reduced substan-

tially by estimating VECMs instead of level VAR models.
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4. Conclusion

Level VAR models are used extensively in applied macroeconomic research. However, es-

timating VAR in levels may result in explosive roots even if all the true roots lie strictly

inside the unit circle. The occurence of such explosive roots is inconsistent with the preva-

lent agreement among macroeconomists that roots are at most unity. Given that level VAR

models are used extensively and may estimate roots greater than unity, this paper examines

how frequently researchers estimating level VAR models on macroeconomic datasets may

encounter explosive roots. Monte Carlo simulations based on datasets from the macroeco-

nomic literature reveal that the frequency of explosive roots exceeds 40% in the presence of

unit roots and is substantial even if all the variables are stationary. Furthermore, explosion

increases substantially, to as much as 100%, after correcting for the small-sample bias in

estimated level VAR coefficients.

These results suggest that researchers estimating level VAR models on macroeconomic

datasets encounter explosive roots with a very high frequency. Considering the consensus

among macroeconomists that roots are at most unity, if applied macroeconomists discard

explosive VAR specifications when VAR models are estimated on the datasets, it may lead

to biases in the estimation or can even result in data mining. Data mining can be a serious

problem since it invalidates statistical theory. The high frequency of encountering explosive

roots in level VAR models suggests that this data mining problem can be severe. Addi-

tionally, the sharp increase in explosion after bias correction indicates that researchers, who

correct for the small-sample bias in level VAR coefficients, may almost always estimate ex-

plosive roots on macroeconomic datasets.

As per the well known evidence of nonstationarity in most macroeconomic series, one

way to reduce the frequency of explosive roots is to impose unit roots in the estimation by
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estimating VECMs instead of level VAR models. Simulation results suggest that VECMs can

substantially reduce the frequency of explosive roots. Another alternative could be imposing

cointegrating relationships among variables in the VAR as in Shapiro & Watson (1988).27

Evaluating these alternatives in terms of the accuracy of estimated impulse responses, vari-

ance decompositions and robustness to various specifications such as the number of unit

roots in the system would be an interesting topic for future research.

27Based on the continuity of the finite sample distribution of least-squares estimator, applied macroe-
conomists may ignore explosive roots with magnitudes artibrarily close to unity. Hence depending on the
objective of the analysis, ignoring slightly explosive roots may be another alternative. However, it is not
clear as to what would be a reasonable cutoff for categorizing an autoregressive root as slightly explosive.
Moreover, such a cutoff would vary with the system and the purpose of the research.
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Results

Table 1: Explosive Roots in Estimated Level VAR Models

Explosive Roots (percent) CEE 99 CEE 05 EE 95

VAR(p) 46.4 47.7 41.9

VAR(p) - Pope 100 100 100
VAR(p) - Kilian 77.2 92.4 85.3

DGP: VECM(p*) with cointegration rank h. Estimated Model: VAR(p).
p* and p equal 4 for CEE (1999, 2005) and 6 for EE (1995). h equals 5, 4 and
2 for CEE(1999), CEE (2005) and EE(1995) respectively.

Table 2: Sensitivity Analysis of Cointegration Rank h in the DGP

Explosive Roots (percent) CEE 99 CEE 05 EE 95

h 3 4 5 n-1 3 4 5 n-1 1 2 3 n-1

VAR(p) 41.7 44.5 46.4 36.7 48.7 47.7 39.9 28.4 45.2 41.9 39.9 35.7

VAR(p) - Pope 100 100 100 100 100 100 100 100 100 100 100 100
VAR(p) - Kilian 89.4 83.7 77.2 67.9 96.5 92.4 88.9 62.4 89.1 85.3 75.4 59.4

DGP: VECM(p*) with cointegration rank h. Estimated Model: VAR(p). p* and p equal 4 for CEE (1999, 2005) and 6 for
EE (1995). Benchmark cases from Table 1 are in italics. n is the number of variables in the system: n equals 7, 9 and 5 for CEE-
(1999), CEE (2005) and EE(1995) respectively.
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Table 3: Explosive Roots in Estimated Level VAR Models - DGP: VECM

Explosive Roots (percent) CEE 99 CEE 05 EE 95

p 3 4 5 3 4 5 5 6 7

Full Sample
VAR(p) 44.7 46.4 47.1 46.3 47.7 50.3 42.4 41.9 42.5

VAR(p) - Pope 100 100 100 100 100 100 100 100 100
VAR(p) - Kilian 75.0 77.2 77.0 95.3 92.4 93.3 83.7 85.3 85.5

p 2 3 4 2 3 4 4 5 6

Post-Bretton Woods
VAR(p) 47.3 47.9 49.7 46.9 50.4 55.9 42.4 43.9 44.0

VAR(p) - Pope 100 100 100 100 100 100 100 100 100
VAR(p) - Kilian 79.3 77.7 79.5 92.2 92.8 93.2 76.9 83.2 84.2

Volcker & Post-Volcker
VAR(p) 48.8 50.3 56.1 48.2 56.5 70.2 42.6 44.7 44.9

VAR(p) - Pope 100 100 100 100 100 100 100 100 100
VAR(p) - Kilian 82.6 81.5 82.5 92.4 91.5 94.2 82.9 85.1 87.1

DGP: VECM(p*) with cointegration rank h. Estimated Model: VAR(p). p* equals 4 for CEE (1999, 2005) and 6 for
EE (1995). Benchmark cases from Table 1 are in italics. h equals 5, 4 and 2 for CEE(1999), CEE (2005) and EE(1995) res-
pectively.

Table 4: Explosive Roots in Estimated Level VAR Models - DGP: VAR

Explosive Roots (percent) CEE 99 CEE 05 EE 95

p 3 4 5 3 4 5 5 6 7

Full Sample
VAR(p) 24.9 25.9 29.6 12.4 12.9 16.8 21.4 19.6 17.7

VAR(p) - Pope 95.5 95.2 95.0 82.3 79.4 80.3 92.0 88.6 87.0
VAR(p) - Kilian 74.1 72.8 72.6 64.0 64.2 64.3 56.4 53.3 51.3

p 2 3 4 2 3 4 4 5 6

Post-Bretton Woods
VAR(p) 33.0 35.1 41.3 24.2 26.9 35.9 24.1 22.5 20.4

VAR(p) - Pope 98.9 98.5 98.5 95.3 92.7 93.5 94.5 92.5 90.3
VAR(p) - Kilian 80.8 81.7 81.4 82.3 85.3 87.2 55.4 59.7 60.2

Volcker & Post-Volcker
VAR(p) 41.5 46.3 56.0 33.6 44.1 61.4 30.9 31.6 31.7

VAR(p) - Pope 99.6 99.5 99.5 97.5 97.1 98.1 97.3 96.5 96.1
VAR(p) - Kilian 83.8 86.4 89.5 88.1 92.0 93.3 70.0 75.4 78.4

DGP: VAR(p*). Estimated Model: VAR(p). p* equals 4 for CEE (1999, 2005) and 6 for EE (1995).
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Table 5: Explosive Roots in Estimated VECM - DGP: VECM

Explosive Roots (percent) CEE 99 CEE 05 EE 95

p 3 4 5 3 4 5 5 6 7

Full Sample
VECM(p) 1.8 2.3 2.3 0.0 0.6 0.2 0.1 0.4 0.3

p 2 3 4 2 3 4 4 5 6

Post-Bretton Woods
VECM(p) 4.4 3.4 4.8 0.2 0.2 0.8 0.3 0.8 2.5

Volcker & Post-Volcker
VECM(p) 5.6 6.6 9.4 0.4 1.0 5.6 0.4 1.1 3.2

DGP: VECM(p*) with cointegration rank h. Estimated Model: VECM(p) with cointegration rank h. p*
equals 4 for CEE (1999, 2005) and 6 for EE (1995). Benchmark cases are in italics. h equals 5, 4 and 2 for
CEE(1999), CEE (2005) and EE(1995) respectively.

Table 6: Explosive Roots in Estimated VECMs - DGP: VAR

Explosive Roots (percent) CEE 99 CEE 05 EE 95

p 3 4 5 3 4 5 5 6 7

Full Sample
VECM(p) 0.2 0.9 1.1 0.1 0.0 0.1 0.0 0.1 0.1

p 2 3 4 2 3 4 4 5 6

Post-Bretton Woods
VECM(p) 1.0 1.3 3.1 0.0 0.1 0.2 0.3 0.5 1.1

Volcker & Post-Volcker
VECM(p) 2.0 3.4 8.5 1.2 5.0 3.9 0.9 0.8 1.3

DGP: VAR(p*). Estimated Model: VECM(p) with cointegration rank h. p* equals 4 for CEE (1999, 2005)
and 6 for EE (1995). h equals 5, 4 and 2 for CEE(1999), CEE (2005) and EE(1995) respectively. Benchmark
cases are in italics.
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Table 7: Sensitivity to Cointegration Rank in Estimated VECMs

Cointergration Rank EE 95 CEE 99 CEE 05

1 0.0 0.4 0.0

2 0.2 0.6 0.0
3 1.2 1.2 0.0
4 9.5 2.1 0.0
5 41.9 2.3 1.2
6 - 11.2 2.0
7 - 46.4 5.1
8 - - 12.4
9 - - 47.7

DGP: VECM(p) with cointegration ranks of 5, 4 and 2 for CEE(1999), CEE (2005)
and EE(1995) respectively. Estimated Model: VECM(p). p equals 4 for CEE (1999,
2005) and 6 for EE (1995). h equals 5, 4 and
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Appendix

I. Data Description

This appendix describes the datasets in CEE (1999), CEE (2005) and EE (1995).

CEE (1999)

Sample Period: 1964:2 to1995:2 (quarterly)

Variables: (i) real output(Y ), (ii) implicit GDP deflator (Pdef ), (iii) change in commodity
prices (Pcom), (iv), federal funds rate (FFR), (v) nonborrowed reserves (NBR), (vi) total
reserves (TOTR), and (vii) M1.

Notes:

1. All variables except for Pcom and FFR are in 100*log form

2. CEE (1999) report results with both M1 and M2 in their benchmark analyses. This
paper only presents results with M1. Results are essentially the same if M1 is replaced
by M2.

CEE (2005)

Sample Period: 1964:2 to1995:2 (quarterly)

Variables: (i) real output(Y ), (ii) inflation(Inf), (iii) consumption (C), (iv) investment
(I) (v) real wage (w), (vi) productivity(Prod), (vii) federal funds rate (FFR), (viii) money
growth for M2 (M2growth), and (ix) real profits (π ).

Notes:

1. Inf and M2growth are calculated as the difference of 100*log of price level and M2
respectively. The remaining variables (except for FFR) are in 100*log form

EE (1995)

Sample Period: 1970:1 to1991:12 (monthly)

Variables: (i) US industrial production(Yind), (ii) consumer price level (CPI), (iii) ratio
of nonborrowed to total reserves (NBRX), (iv) a measure of the difference between US
and French interest rate(RUS − RFrance), and (v) monthly average of spot $/Franc nominal
exchange rate (e$/Franc).

Notes:

1. EE (1995) estimate level VAR models with five, seven and eight variables and examine
five different nominal and real exchange rates. In the interest of brevity, this paper
only presents results for their e$/Franc model with five variables. Results for other real
or nominal exchange rates are essentially the same. Results with their seven variable
VAR models are also very similar.
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II. Unit Root Tests

Unit Root Tests

CEE(1999) SDF PP MPP MSB PT MPT DF-GLS MPP-GLS

Y (0.82) 1.37 1.47 1.42 189.3 146.6 1.52 1.38
Pdef (1.32) (10.93)* (10.85)* 0.20 3.52 2.80* (0.55) (1.27)
Pcom (3.38)* (21.32)* (19.48)* (0.16)* (1.39)* (1.39)* (3.37)* (19.48)*
FFR (2.24) (3.11) (5.97) 0.29 4.82 4.13 (1.57) (5.17)
NBR (0.49) 1.61 1.70 1.06 106.9 88.21 1.12 1.24
TOTR (0.59) 1.29 1.38 0.82 64.80 53.00 0.51 1.24
M1 (1.08) 0.08 0.17 0.54 27.40 22.06 0.08 (1.32)

CEE(2005) SDF PP MPP MSB PT MPT DF-GLS MPP-GLS

Y (0.82) 1.37 1.47 1.42 189.3 146.6 1.52 1.38
Inf (1.57) (4.17) (3.31) 0.39 8.63 7.39 (1.30) (2.79)
C (0.52) 1.19 1.29 1.20 134.46 102.97 1.41 1.02
I (1.46) 0.18 0.28 0.56 30.02 23.43 0.14 0.18
w (2.08) (2.54) (2.48) 0.44 12.50 9.76 (0.95) (2.53)
Prod (0.65) 1.48 1.60 1.32 170.02 130.57 1.92 1.44
FFR (2.24) (3.11) (5.97) 0.29 4.82 4.13 (1.57) (5.17)
M2growth (0.73) (6.75) 2.51 0.43 9.43 9.57 (0.82) (2.46)
π (1.25) 0.49 0.56 1.05 86.92 69.72 0.54 0.49

EE(1995) SDF PP MPP MSB PT MPT DF-GLS MPP-GLS

Yind (1.53) 0.85 0.87 1.10 93.61 80.63 0.85 0.86
CPI (1.38) (2.90) (2.87) 0.34 9.25 8.03 (0.18) (0.72)
NBRX (2.51) (14.00)* (13.02)* 0.19* 1.96* 1.97* (2.49)* (13.25)*
RUS −RFrance (2.21) (9.64)* (9.07)* 0.22* 3.13* 3.13* (2.11)* (9.88)*
e$/Franc (1.55) (5.15) (5.14) 0.31 4.73 4.77 (1.55) (5.14)

* denotes the rejection of the hypothesis at 5%significance level. SDF, PP, MPP, MSB, PT, MPT, DF-GLS, MPP-GLS denote
Said-Dickey-Fuller, Phillips-Perron, Modified-Phillips-Perron, Modified-Sargan Bhargava, ERS feasibale point test, Modified
feasible point test, DF with GLS detrending and Modified Philips-Perrron with GLS detrending respectively.
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III. Cointegration Rank Tests

Johansen’s Tests

Eigenvalue Eigmax Trace Rank (h) Eigmax(5% c.v) Trace(5% c.v)
CEE(1999)

0.4388 69.9** 217.1** 0 45.28 124.24
0.3455 51.3** 147.2** 1 39.37 94.15
0.2653 37.3* 95.9** 2 33.46 68.52
0.2066 28.0* 58.6** 3 27.07 47.21
0.1560 20.53 30.6* 4 20.97 29.68
0.0540 6.72 10.09 5 14.07 15.41
0.0275 3.37 3.37 6 3.76 3.76

CEE(2005)

0.4445 71.12** 251.72** 0 57.12 192.89
0.3274 47.99 180.59** 1 51.42 156.00
0.2480 34.49 132.60* 2 45.28 124.24
0.2244 30.75 98.12* 3 39.37 94.15
0.2040 27.61 67.37 4 33.46 68.52
0.1266 16.38 39.76 5 27.07 47.21
0.1009 12.68 23.37 6 20.97 29.68
0.0451 5.59 10.51 7 14.07 15.41
0.0399 4.92 4.92 8 3.76 3.76

EE(1995)

0.1453 38.63* 87.08** 0 33.46 68.52
0.0827 21.22 48.45* 1 27.07 47.21
0.0696 17.75 27.23 2 20.97 29.68
0.0274 6.83 9.48 3 14.07 15.41
0.0107 2.65 2.65 4 3.76 3.76

*(**) denotes the rejection of the hypothesis at 5%(1%) significance level. Testing Assumption: Linear trend in data
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IV. ESTIMATION PROCEDURES 
 

This section briefly describes the estimation and bias correction procedures used in this 

paper. 
 

A.  VECM ESTIMATION 
   

Reduced form VECM(p) with a cointegration rank of h can be written in the form: 

 
1 1 2 2 3 0 1..... (1)

( ) 0, ( ') for ; 0 otherwise.
t t t t p t t

t t

Y c Y Y Y Y

with E E tτ

ζ ζ ζ ζ ε

ε ε ε τ
− − − −Δ = + Δ + Δ + + Δ + +

= = Ω =
 

 

Assuming normal errors, VECM coefficients can be estimated by maximizing the following 

likelihood function: 
 

1 1 0

1 1 1 1 0 1

1
1 1 1 1 1 0 1

0

( , ,...., , , ) ( / 2)log(2 ) ( / 2) log (2)

[( ...... ) '
1/ 2

( ...... )]
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T t t p t p t

t t t p t p t

L c Tn T

Y c Y Y Y

Y c Y Y Y
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ζ ζ ζ π

ζ ζ ζ

ζ ζ ζ

ζ

−

− − − + −

−
= − − − + −

Ω = − − Ω

Δ − − Δ − − Δ −
−

Ω Δ − − Δ − − Δ −

= −

∑  

where B is an (n x h) matrix of adjustment rates, A’ is an (h x n) matrix of cointegrating 

vectors, n is the number of variables in the system and h is the cointegration rank based on 

Johansen’s cointegration rank test. 

The maximum likelihood estimates in (2) can be obtained by implementing Johansen’s 

algorithm, which is summarized in the following steps. For a more detailed description and 

proofs, see Hamilton (1994). 
 

• Calculate the following Auxiliary Regressions 

 
0 1 1 2 2 1 1..... (3)t t t p t p tY Y Y Y uπ − − − − +Δ = + Π Δ + Π Δ + + Π Δ + 

1 1 1 2 2 1 1..... (4)t t t p t p tY Y Y Y vθ χ χ χ− − − − − += + Δ + Δ + + Δ +  
  

 where these vector regressions are estimated by OLS (equation by equation) 
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• Calculate the Canonical Correlations 
 

 Next, calculate the following sample covariance matrices of the OLS residuals, and  tu tv

1

1

1

(1/ ) '

(1/ ) '

(1/ ) '

T

vv t t
t
T

uu t t
t

T

vu uv t t
t

T v v

T u u

T v u

=
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=
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Σ = Σ

∑

∑
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 Subsequently, eigenvalues of the matrix 1 1
vv vu uu uv
− −Σ Σ Σ Σ  are computed with the 

 eigenvalues ordered 1 2 ... nλ λ λ> > >  
 

• Calculate Maximum Likelihood Estimates of Parameters 
 

The h normalized eigenvectors corresponding to the h largest eigenvalues are collected in 

the following matrix: 
 

  1 2[ ...... ]hA a a a=

 Johansen suggested normalizing the eigenvectors so that 'i vv ia a 1Σ =  for i =1, .. , h 

 Then the maximum likelihood estimates of 0ζ  and iζ  are   

       0 'uv AAζ = Σ  

  0i i iζ ζ χ= Π −  for i = 1, …, p-1 

 Next, the maximum likelihood estimates ofα and Ω  are give by: 

  0 0α π ζ θ= −  

   [ ]0 0
1

(1/ ) ( )( )
T

t t t t
t

T u v u vζ ζ
=

Ω = − −∑ '
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B.  POPE BIAS CORRECTION 
VAR coefficients after bias correction based on Pope’s expression are estimated by 

implementing the following steps: 
 

• Estimate a VAR(p) model without a constant are convert it to VAR(1) companion form. 

      For instance, a VAR(p) 

  
1 1 2 2 ..... (5)t t t p t p tY Y Y Y ε− − −= Φ + Φ + + Φ +

 

             can be rewritten as: 
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• Next calculate Pope’s expression for the bias in demeaned VAR(1) 
 

3/ 2( )T
bB O T
T

−= − +  

where b is given by: 

1 2 1 1 1[( ') '{ ( ') } ( ') ] (0) (7)b Q I F F I F I Fλ λ− − − −= − + − + − Γ∑  
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The sum is over the eigenvalues λ of F, weighted by their multiplicities. Q denotes the 

conditional variance of  and tv (0)Γ denotes the variance of ξ . 

Hence, 

( )( )1 1 1 1

(0) ( ')

' ( ') ' ( ') (8)
t t

t t t t t t t t

E

E F v F v FE F E v v
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1
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F F Q
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vec I F F vec Q−

Γ = Γ +
Γ = ⊗ Γ +

Γ = − ⊗

 

 

 where ⊗denotes the Kronecker product and r = n x p. 
 

• Finally Pope’s bias is subtracted from the estimated VAR coefficients to yield the bias 

corrected coefficients. 

 

C.  KILIAN BIAS CORRECTION 
 

Kilian (1998) suggests the following algorithm for the bias-corrected bootstrap method: 

• Estimate the following VAR(p) and generate 1000 bootstrap replications ˆ*φ  from   

 
1 1 2 2

ˆ ˆ ˆˆ ..... (9)t t t p t p tY c Y Y Y ε− − −= + Φ + Φ + + Φ +
 

 using standard nonparametric bootstrap techniques. 

• Approximate the bias term ˆ( )E φ φΨ = − by ˆ ˆ* *( *E )φ φΨ = − , which suggests the bias 

estimate ˆˆ *φ φΨ = , where − *φ  is the mean of the bootstrap sample of ˆ*φ . 

• Bias-corrected coefficient estimate, *φ% is given by ˆ ˆ*φ φ ψ= −% . 
 

Note: Subsequently, Kilian also implements a stationarity correction to avoid pushing 

stationary estimates into the non-stationary region. For the reasons discussed in the paper, I 

do not implement  Kilian’s stationarity correction. 
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D.  ESTIMATING FREQUENCY OF EXPLOSIVE ROOTS 
 

First a VAR(p) process is written in the VAR(1) form as in (6). Subsequently, the stability of 

VAR(p) is checked  by calculating the absolute eigenvalues of the matrix F, which 

correspond to the autoregressive roots of the system. If maxλ , the modulus of the largest 

root of an estimated VAR model lies outside the unit circle in a given sample, the VAR 

model would be unstable for that Monte Carlo sample. Frequency of explosive roots 

corresponds to the proportion of unstable VAR draws in the Monte Carlo samples. In order 

to allow for rounding off errors, I consider a VAR model to be explosive only if its _max 

exceeds a threshold value of 1.00001 (instead of exactly one). Results are essentially the same 

for other thresholds such as 1.0001 or 1.0005. 
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