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Abstract 

An asymptotically efficient likelihood-based semiparametric estimator is derived 
for the censored regression (tobit) model, based on a new technique for 
estimating the density function of the residuals in semiparametric models that 
involve an underlying partially observed regression.  Smoothing the self-
consistency equation for the nonparametric maximum likelihood estimator of the 
distribution of the residuals yields an integral equation, which in some cases can 
be solved explicitly.  The resulting estimated density is smooth enough to be used 
in a practical implementation of the profile likelihood estimator, but is still 
sufficiently close to the nonparametric maximum likelihood estimator to allow 
estimation of the semiparametric efficient score.  The parameter estimates 
obtained by solving the estimated score equations are then asymptotically 
efficient.  Details of the method and proofs are given specifically for the censored 
regression (tobit) model, with a summary of analogous results for the case of 
random censoring and for truncated regression.  Simulation results are also 
presented. 
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1.  Introduction 

This paper presents an asymptotically efficient semiparametric estimator for the censored 
regression (tobit) model, based on the profile likelihood approach together with a new 
technique for estimating the unknown distribution function of partially observed 
residuals.  The error distribution is estimated by solving an integral equation, derived 
from the self-consistency equation for the corresponding nonparametric maximum 
likelihood estimator (MLE).  The estimated density is smooth enough to be plugged into 
the parametric likelihood function; it yields a score function that is asymptotically 
equivalent to the semiparametric efficient score, leading to asymptotically efficient 
parameter estimates. 

Consider a semiparametric model with an underlying latent variable ∗y  generated by 
the linear model ε+β=∗

0xy , and an observed dependent variable y with likelihood 
),,( fxy β .  Here  is a known function of the index βx  and the density function f of 

the error terms ε.  One standard approach, associated with the profile likelihood method 
of Severini and Wong (1992), is to first estimate the density function )|( β⋅f  of the 
residuals β−= ∗ xye  by some suitable estimator )|(~ β⋅f ; substitute this estimator for f in 
the likelihood; and then estimate β either by maximizing the log likelihood or by solving 
the corresponding score equation.  Under some regularity and convergence-rate 
conditions on f~ , (see, for example, van der Vaart, 1998, p.391), the score ))|(~,( β⋅β fS  
will be asymptotically equivalent to the efficient score ))|(,( β⋅β fS .  In that case the 
estimator β̂  will achieve the semiparametric efficiency bound.  A natural estimator of 

)|( β⋅f  in this context is the nonparametric MLE, but this may be irregular, typically with 
discrete mass points, and the desirable asymptotic properties of the estimated score 
function may not survive the necessary smoothing and trimming operations. 

The estimator proposed here is based on the “self-consistency” equation for the MLE 
of f (Efron, 1967; see also Turnbull, 1976, and Tsai and Crowley, 1985).  Informally, an 
observed residual ie  contributes a point mass )(1

ien −εδ−  to the empirical density; if it is 
not observable, then its contribution is distributed in proportion to its density conditional 
on the observed variables, ))|(,,|(1 β⋅βε− fxypn ii .  Replacing f by its estimate f̂  then 
gives 

 ∑ β⋅β=β i ii fxyupuf ))|(ˆ,,|()|(ˆ , 

which can be integrated to give a self-consistency equation for the estimated distribution 
function )|(ˆ β⋅F .  In a number of common applications, the solution can be expressed in 
closed form and is equal to the MLE of F. 
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In the present approach, instead of directly solving for F̂ , the self-consistency 
equation is first smoothed over the index βix  (by a conventional kernel method).  This 
results in an integral equation for the smoothed estimator F~ .  In general, this integral 
equation could be solved for F~  by the EM algorithm, or by some direct numerical 
method of solution.  However, in a class of relatively simple semiparametric models, 
which includes binary choice, tobit, truncated regression, the two-equation censored 
regression model, and endogenously stratified regression with two strata, the integral 
equation can be solved to give an explicit solution for F~  and its derivative f~ .  The 
estimated log likelihood is then ))|(~,(log)(~log β⋅β=β fLL , and the resulting first-order 
conditions 0)(~ =βS  are solved for β̂ . 

In two of these cases, this approach leads to efficient semiparametric estimators that 
are already known: the Klein and Spady (1993) estimator for binary choice, and the 
semiparametric maximum likelihood estimator of Ai (1997) for the two-equation 
censored regression model (type 2 tobit). 

This paper formulates the estimator and derives its asymptotic properties for a 
specific case, the tobit model ),0(max ε+β= xy  (i.e., left-censored regression with a 
fixed censoring point), where the errors are i.i.d. with unknown probability density 
function )(εf  and are independent of the regressors.  Results for some other models are 
summarized in the appendix.  Key properties needed for this approach to work are, first, 
that the solution of the self-consistency equation is fact a consistent estimator of F, and 
secondly, that trimming affects neither the expected value of the score function nor the 
asymptotic orthogonality between the estimators of β and f (as expressed by the moment 
condition given in equation A.22 below); in general it would be difficult to characterize 
the set of models for which these conditions hold. 

For censored regression, the MLE of F is the Kaplan-Meier estimator (Kaplan and 
Meier, 1958).2  It underlies a number of semiparametric estimators for the censored 
regression model, including the M-function approach of Buckley and James (1979) and 
its modifications by Lai and Ying (1991), Ritov (1990), and others.  Related work in the 
econometric literature on the tobit model includes the SGLS (semiparametric generalized 
least squares) estimators of Horowitz (1986, 1988) and Ichimura (1993).3  However, 
these estimators do not achieve the efficiency bound.  In related work on the censored 
regression model with random censoring, Lai and Ying (1992) proposed using a rank 

                                                 
2 For a discussion of the Kaplan-Meier estimator, see for example Pagan and Ullah (1999, p.325). 
3 Previous likelihood-based semiparametric estimators of the tobit model with an estimated f include those 
of Duncan (1986) and Fernandez (1986). 
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estimator, weighted by a preliminary smoothed consistent estimator of εdFfd /)/(log  
to achieve the semiparametric efficiency bound; more recently Kim and Lai (2000), using 
asymptotic results derived by Lai and Ying (1994), developed an asymptotically efficient 
adaptive M-estimator for random censoring, using spline estimation of the appropriate 
weight factor εdfd /log .4 

Tobit estimators based on weaker assumptions about the relationship between the 
errors and the regressors include those of Powell (1984) for the case where the 
conditional median of the error terms is zero, and Newey (2001) (and other references 
cited there) for the case of conditional moment restrictions.  Powell’s estimator can be 
used when an initial consistent estimator is required. 

The next section derives the smoothed version of the Kaplan-Meier estimator and 
shows how it is used to set up the estimated score function )(~ βS  that defines the 
semiparametric estimator β̂ .  Section 3 outlines the convergence of )(~ βS  to the efficient 
score )(βS , and then brings in the relevant trimming functions needed to establish 
uniform convergence.  Finally, the asymptotic properties of β̂  are established by showing 
that it is asymptotically equivalent to the solution of 0)( =βS .  Important steps are to 
verify that trimming has no effect on consistency or on the asymptotic orthogonality 
between the estimators of β and f, which implies that only the terms of second order in 
the kernel estimation errors have to converge fast enough not to interfere with the 
asymptotic variance of β̂ .  This can be done without the need for either sample splitting 
or bias-reducing kernels.  Concluding remarks are given in Section 4. 

Appendix A contains technical assumptions and proofs of the propositions stated in 
the main text.  Since the proofs closely follow those developed in previous research on 
kernel-based semiparametric estimators, particularly by Ichimura and Lee (1991), Klein 
and Spady (1993), and Ai (1997), only the essential steps are given here.  The final two 
sections of the Appendix A summarize the corresponding estimators for the case of 
random censoring and the case of truncated regression.  Appendix B gives the results of a 
small simulation study to investigate how closely the estimator approaches the efficiency 
bound for samples of realistic size, and a comparison with the adaptive M-estimator of 
Kim and Lai (2000). 
 

                                                 
4 Efficient estimation of censored regression via an M-estimator with adaptive weights was first proposed 
by Ritov (1986). 
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2.  Semiparametric Likelihood Function 

A smoothed version of the Kaplan-Meier estimator 

The starting point is the “self-consistency” equation for the nonparametric maximum 
likelihood estimator of the distribution function )(εF  of a censored random variable ε 
from a sample of n observations ),,( iii dcu , where ),max( iii cu ε=  and )(1 iii cd >ε= .  
Assign a weight 1−n  to each observation.  For uncensored observations, the weight is 
concentrated at the observed point iu .  For censored observations, suppose that the 
weight is distributed according to the probability density of the unobserved point iε , i.e., 

)(/)()(1 ii cFfc ε≤ε , where f is the corresponding density function.  That would give the 
following formal representation of the empirical density function, 

 { }∑
=

ββεε>=+−εδ==βε
n

i
iiiii uFfudud

n
f

1
)|(/)|()(1)0(1)()1(11)|(ˆ . (2.1) 

Integrating (2.1) with respect to ε gives the empirical distribution function, 

 { }∑
=

εε>=+ε≤=ε
n

i
iiii uFFudu

n
F

1
)(/)()(1)0(1)(11)(ˆ  (2.2) 

To make this operational, replace the unknown F on the right-hand side by its estimate 
F̂ , giving 

 { }∑
=

εε>=+ε≤=ε
n

i
iiii uFFudu

n
F

1
)(ˆ/)(ˆ)(1)0(1)(11)(ˆ  (2.3) 

As is well known, the solution of this equation is the Kaplan-Meier product-limit 
estimator, which is the nonparametric maximum likelihood estimator of F. 

To obtain an estimate of F more suitable for use in semiparametric estimation, we 
smooth the terms on the right-hand side over the observed values iu .  In general, a 
function )( izγ  of an observation iz  is “smoothed” by replacing it by 

 ∫ 




 −γ=γ
n

i

n
i h

zvKvdv
h

z )(1)(~  (2.4) 

with a suitable kernel function K and bandwidth nh .  Then equation (2.3) becomes 

 ∑ ∫
=

∞

ε 
















 −ε=+




 −ε=ε
n

i n

i

n
i

n

i
h

uvK
vF

dv
h

Fd
h

uK
n

F
1 )(~

11)(~)0(11)(~  (2.5) 

where 
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 ∫
∞−

=
u

vKdvuK )()(  (2.6) 

The integral equation (2.5) is linear in )(~/1 uF , and can readily be solved to give 

 





−=ε ∫

∞

ε
)(~/)(~exp)(~ vGvgdvF  (2.7) 

where 

 

∑

∑






 −
=






 −
==

j
n

j

j
n

j
j

n

h
uu

K
n

uG

h
uu

Kd
nh

ug

1)(~

)1(11)(~

 (2.8) 

The integral in (2.7) always exists because by construction the right-hand tail decreases at 
the same rate as the tail of the kernel function.  The main difference between this and 
other smoothed versions of the Kaplan-Meier estimator is that the smoothing is applied to 
the underlying equation (2.3), which is then solved for F~ , as opposed to first solving 
(2.2) and then applying smoothing techniques to the solution F̂ . 
 
Estimated likelihood function for censored regression 

Returning to the censored regression equation, we can use this method to estimate the 
probability distribution )|( βuF  of the latent residuals 

 )()( 0
* β−β−ε=β−=β iiiii xxye  (2.9) 

with β−= ii xc , )0(1 >= ii yd , and β−=β= iiii xyuu )( .  This gives the estimator 

 





ββ−=β ∫

∞

u
vGvgdvuF )|(~/)|(~exp)|(~  (2.10) 

and the corresponding probability density function 

 ( ) 





ββ−ββ=β ∫

∞

u
vGvgdvuGuguf )|(~/)|(~exp)|(~/)|(~)|(~  (2.11) 

where 
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∑

∑






 β−−
=β






 β−−
>=β

j
n

jj

j
n

jj
j

n

h
xyu

K
n

uG

h
xyu

Ky
nh

ug

)(1)|(~

)(
)0(11)|(~

 (2.12) 

(When these functions are evaluated at iuu = , the terms with ij =  are dropped.)  Using 
)|(~ β⋅f  and )|(~ β⋅F  in place of f and F in the tobit likelihood function then gives 

 

( )







ββ+ββ+−





ββ−ββ>=β

∫

∑

∞

=

0

1

)|)((~/)|)((~

)|)((~log)|)((~log)0(1)(~log

ii

n

i
iiin

uvGuvgdv

uGugyL

 (2.13) 

An estimator of β could be defined by maximizing this objective function, but it will be 
more convenient to define β̂  as the solution of the likelihood equations 0)(~ =βnS .5  
Since an initial consistent estimator, say β~ , is available, numerical solution of the 
likelihood equations can be started at β=β ~ , and the theoretical analysis of the 
asymptotic properties of β̂  can be restricted to a neighborhood of 0β . 

The score function is given by 

 ∑
=

β=β
n

i
iin yxsS

1
),,(~)(~  (2.14) 

with 

 ),,)((~),),((~)0(1),,(~
2

0
1 β+β−ββ>=β ∫

∞
xvumdvxumyyxs  (2.15) 

where β−=β xyu )(  and 

 





ββ
ββ

β
=ββ

)|)((~
)|)((~

log),),((~
1 uG

ug
d
dxum  (2.16) 

 





ββ
ββ

β
=ββ

)|)((~
)|)((~

),),((~
2 uG

ug
d
dxum  (2.17) 

In this notation, βdd /  represents the total derivative with respect to β, i.e., 

                                                 
5 As with other semiparametric estimators of this type, we rely on solving the score equations rather than 
maximizing the likelihood function because of the difficulty in trimming the log likelihood function while 
retaining its desirable asymptotic properties. 
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β∂

ββ∂+
β∂
β∂

∂
ββ∂=

β
ββ )|)(()()|)(()|)(( ugu

u
ug

d
ugd  (2.18) 

and thus 

 ∑
=






 β−−β−
′−>=

β
ββ n

j n

jjii
ijj

n

i
h

xyxy
Kxxy

nhd
ugd

1
2

)()(
)()0(11)|)((~

 (2.19) 

 ∑
=






 β−−β−
−=

β
ββ n

j n

jjii
ij

n

i
h

xyxy
Kxx

nhd
uGd

1

)()(
)(1)|)((~

 (2.20) 

where uduKduK /)()( =′  and the terms with ij =  are dropped. 
 
3.  Properties of the Estimator 

A related artificial likelihood function for censored regression 

To interpret the estimator β̂ , consider first the functions 

 ∫ −>ββ−β+=β )(1)][()()|( 0 uxxufxhdxug  (3.1) 

 ∫ −>ββ−β+=β )(1)][()()|( 0 uxxuFxhdxuG  (3.2) 

where )(xh  is the density of x.  The function )0Pr(/)|( >β yug  is the density of the 
residuals )(βu  conditional on 0>y , while )|( βuG  is the (unconditional) distribution 
function of )(βu .6 

By calculating the means and variances of the kernel estimates )|(~ βug  and )|(~ βuG  
in the usual way, and letting 0→nh  and ∞→nnh  as ∞→n , we see that )|(~ βug  and 

)|(~ βuG  are consistent estimators of )|( βug  and )|( βuG  (for fixed u and β, not both 
equal to zero).  Therefore, )(~log βnL  can be viewed as an estimate of the artificial log 
likelihood function 

 

( )







ββ+ββ+−





ββ−ββ>=β

∫

∑

∞

=

0

1

)|)((/)|)((

)|)((log)|)((log)0(1)(log

ii

n

i
iiin

uvGuvgdv

uGugyL

 (3.3) 

(which is of course not a feasible objective function, because the functions g and G 
depend on the unknown parameter 0β  as well as the unknown density f ).  To verify that 
the integral in (3.3) exists, we note that β∂β∂≤β /)|()|( uGug .  Applying the bounded 

                                                 
6 Note that g is not the derivative of G. 
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convergence theorem to the integral in (3.2) shows that 1)|( =β∞G .  It then follows that 
the integral in (3.3) is bounded by )|)((log ββiuG . 

Let β  be the “estimator” that results from solving the likelihood equations 0)( =βnS , 
where )(βnS  is the score function corresponding to the log likelihood in (3.3).  At 0β=β  
we have 

 uduFduFufuGug /)(log)(/)()|(/)|( 00 ==ββ  (3.4) 

and therefore )()( 00 β=β nn LL , the likelihood of the data-generating process.  It follows 
that under standard regularity conditions (which follow from Assumptions 1–7 in the 
appendix) for classical maximum likelihood estimation, the “estimator” β  is consistent 
and asymptotically normal with asymptotic variance equal to the limiting variance of 

)( 0
2/1 β−

nSn .  Let 

 ∑
=

β=β
n

i
iin yxsS

1
),,()(  (3.5) 

with s defined by an equation analogous to (2.15) in terms of 1m  and 2m , where 

 ( ))|)((/)|)((log)/(),),((1 βββββ=ββ uGugddxum  (3.6) 

 ( ))|)((/)|)(()/(),),((2 βββββ=ββ uGugddxum  (3.7) 

Evaluating the functions g, G and their derivatives at 0β=β  (with 00 ≠β ),7 

 )]|(1[)()|( 00 β−−=β uHufug ,        )]|(1[)()|( 00 β−−=β uHuFuG  

 
}]|[E{)|()(

}]|[E{)]|(1[)()|(

00

00
0

xuXXuhuf

xuXXuHuf
d
udg

−−=ββ−+

−−>ββ−−′=
β
β

 

 
}]|[E{)|()(

}]|[E{)]|(1[)()|(

00

00
0

xuXXuhuF

xuXXuHuf
d
udG

−−=ββ−+

−−>ββ−−=
β
β

 

where )|( β⋅h  is the marginal probability density function of βx  and )|( β⋅H  is the 
corresponding distribution function.  After some calculations, we find that 

                                                 
7 A different formulation is needed in the case 00 =β  because the marginal density function )|( βuh  is 
singular at 0=β .  Details are given in Appendix A.3. 
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( )

( )]|E[
)(
)(

)0(1]|E[
)(
)(

)(
)(),,(

0

00

vXXx
vF
vf

vd
ddv

yuXXx
uf
uf

uF
ufyxs

u
−>β−





+

>−>β−




 ′
−=β

∫
∞

 (3.8) 

(where 0β−= xyu ), which is the same as the efficient semiparametric score (Cosslett, 
1987; see also Bickel et al., 1993).  The asymptotic variance of β  is therefore equal to 
the semiparametric efficiency bound *V , which is given (in the present notation) by 

 [ ]∫ −>ββ−−













=−

∗ uxxuH
uF
uf

du
dufduV 00

2
1 |var)]|(1[

)(
)(log)(  (3.9) 

 
Alternative score function 

The artificial log likelihood )(βnL  in (3.3) has the following peculiar feature.  If we drop 
the second term and use the simplified log likelihood 

 ( ){∑
=

ββ−ββ>=β
n

i
iiin uGugyL

1
,1 )|)((log)|)((log)0(1)(log  (3.10) 

with the corresponding score function 

 ∑
=

>ββ=β
n

i
iiin yxumS

1
1,1 )0(1),),(()(  (3.11) 

then the resulting “estimator” )1(β , i.e., the solution of 0)(,1 =βnS , is also consistent with  
asymptotic variance equal to the semiparametric efficiency bound.  One might therefore 
question the role of the integral term in (3.3), and instead use an estimate of the 
alternative score function (3.11).  However, the important properties of the efficient score 
at 0β=β  are, not only that its variance is equal to the asymptotic information bound 
(3.9), but also that it is asymptotically uncorrelated with the score function corresponding 
to variation in f.  That in turn allows β̂  to have the same asymptotic variance despite the 
presence of the estimated functions ĝ  and Ĝ .  More specifically, the orthogonality 
condition represented by (A.22) (in the Appendix) holds for the estimated score function 
(2.14) but not for the estimated version of the score function in (3.11). 
 
Trimming functions 

The goal, of course, is to show that the kernel-based estimator β̂  and the artificial 
estimator β  are asymptotically equivalent, using methods developed for kernel-based 
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semiparametric estimators by Klein and Spady (1993), Ichimura and Lee (1991), Ai 
(1997), and others.  The key step is to show that the various kernel estimates in 

),,(~ βyxsn  and their ratios converge uniformly in (x, y) and β to the corresponding 
functions in ),,( βyxsn .  In order to do this, as with other kernel-based semiparametric 
estimators of this type, trimming functions are needed to bound the denominator terms 
and, for technical reasons, the magnitudes of x and ε.  Let )(ut  be a trimming function 
such that 

 




≤
≥

=
0for0

1for1
)(

u
u

ut  

To make τ twice differentiable with continuous second derivative, a suitable bridging 
function for 10 ≤≤ u  is )10156()( 23 +−= uuuut . 

(i)  Consider a term in the score function of the form DN / , where the numerator N is 
a bounded function with some structure that we do not want to lose inside a trimming 
function, while the denominator D is positive but not bounded away from zero.  Then to 
give the denominator a shrinking lower bound of order nb , the factor D/1  is replaced by 
the trimmed function 

 )/]([1)(1 nn bbDt
D

D −=τ . (3.12) 

The first and second derivatives of )(1 Dτ  are of order 2−
nb  and 3−

nb  respectively.8 
(ii)  The range of integration is restricted to an expanding interval of order nu  by 

multiplying the integrand by the trimming function 

 )||()(2 uutu n −=τ , (3.13) 

where u is the integration variable. 
(iii)  If we need to allow for the case 00 =β , then u is also restricted to lie outside a 

shrinking neighborhood of the point 0=u .  A suitable trimming function is 

 )/]|[|()(3 nnutu µµ−=τ , (3.14) 

where u is the residual in 1m  or the integration variable in 2m . 
(iv)  x and ε are restricted to an expanding set nW  with volume bounded by a power 

of n (as in Ai, 1997).  Under the assumptions leading to equation (A.5) in the appendix, 
all observations fall within nW  with probability approaching 1, and so this restriction 
does not affect convergence in probability. 

                                                 
8 A similar trimming factor is used by Ai (1997). 
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In order for needed cancellations to occur, all the terms in the score function have to 
have a common trimmed denominator. At the expense of a rather complicated score 
function, we therefore use the following denominator and trimming factor 

 2)|()|()|( ββ=β uGuguD  

 )()]|([)|( 21 uuDu τβτ=βτ , (3.15) 

with the additional factor )(3 uτ  if needed.  )|(~ βuD  and )|(~ βτ u  are defined similarly in 
terms of the estimated functions g~  and G~ .  In fact, the relative rates of convergence of 

nb  and nu  turn out to be immaterial to the proofs of consistency and asymptotic 
efficiency (see Condition 2 in Appendix A).  Since the denominator terms )|( βuD  and 

)|(~ βuD  necessarily converge to zero for large ||u , it can always be arranged for )(1 Dτ  
to dominate )(2 uτ , and so make the second trimming factor unnecessary.9 

The trimmed estimated score function is 

 ∑
=

∗∗ β=β
n

i
iin yxsS

1
),,(~)(~  (3.16) 

where 

 ∫
∞

∗∗∗ β+β+>ββ=β
0

21 ),,)((~)0(1),),((~),,(~ xvumdvyxumyxs  (3.17) 

 )|(~)|(~),,(~),,(~
11 βτββ=β∗ uuDxumxum  (3.18) 

 )|(~)|(~),,(~),,(~
22 βτββ=β∗ uuDxumxum  (3.19) 

The score function )(β∗
nS  and its components ),,( β∗ yxs , ),,(1 β∗ xum  and ),,(2 β∗ xum  are 

defined analogously in terms of g and G.  The estimator β̂  is the solution of 0)(~ =β∗
nS .10 

For this approach to work, the trimming must be done in a way that does not affect 
the expected value of the score at 0β=β .11  If not, trimming may produce asymptotic 
bias in the estimator, depending on the rates of convergence of nb  and nu .  The 
following result is derived in the appendix: 

Proposition 1.  With ∗s  as defined above, 0]|),,(E[ 0 =εβ∗ YXs . 

                                                 
9 This does not, of course, have any bearing on the merits of trimming the integral in a practical 
implementation of the estimator. 
10 Under standard regularity conditions, a consistent solution exists with probability approaching 1 as 

∞→n .  If there is no solution, then instead β̂  minimizes )(~)(~ β′β ∗∗
nn SS . 

11 Lai and Ying, 1991, discuss this problem in connection with the modified Buckley-James estimator. 
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Asymptotic equivalence of β̂  and β . 

The following results show that β̂  and β  are asymptotically equivalent, and therefore 
that β̂  is consistent and asymptotically efficient. 

Proposition 2.  Under Assumptions 1–10 and Conditions 1–2 (given in Appendix A.1), 
and if 00 ≠β , 

 (a) ( ) 0)()(~1 →β−β∗ P
nn SS

n
     uniformly in B∈β  

 (b) 0)()(~1 →









β′
β−

β′
β∗

Pnn
d
Sd

d
Sd

n
     uniformly in B∈β  

. (c) ( ) 0)()(~1
00 →β−β∗ P

nn SS
n

 

The proof is given in Appendix A.2.  Proposition 3, which is stated and proved in 
Appendix A.3, gives the analogous results for the case 00 =β . 

Part (a) of Proposition 2 shows that β̂  and β  have the same probability limit, so β̂  is 
consistent.  The usual first-order series expansions of )ˆ(~ βnS  and )(βnS  in )( 0β−β  give 

 )(~)(~
)ˆ( 0

1

0 β









β′
β−=β−β ∗

−
∗

∗

n
n S
d

Sdn  

(where ∗β  is between β̂  and 0β ), and similarly for )( 0β−βn .  Parts (b) and (c) of 
Proposition 2 then show that 0)ˆ( →β−β Pn , i.e., that β̂  and β  have the same 
asymptotic distribution.  Each result is derived in two steps.  In part (a), for example, one 
first works with the trimmed functions to show that ( ))()(~1 β−β ∗∗−

nn SSn  converges, 
using existing results on uniform convergence of kernel estimates such as )|(~ βug  at 
rates slightly slower than 2/1−n .  Then one shows that the trimming does not matter 
asymptotically, i.e., that ( ))()(1 β−β∗−

nn SSn  also converges.  Part (b) is derived 
similarly.  In the corresponding first step of part (c), where a faster rate of convergence is 
needed, quadratic and higher-order terms such as 2)~( gg −  can be made to converge 
faster than 2/1−n , but linear terms such as gg −~  cannot.  For these terms, one can show 
convergence by rewriting the sample means of kernel estimates as U-statistics, and then 
applying standard results on the asymptotic properties of U-statistics.  Because these 
linear terms have expected value zero, convergence is fast enough not to require the use 
of bias-reducing kernels.  Details are given in Appendix A.2. 
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4.  Conclusion 

The self-consistency equation for the nonparametric MLE of the distribution of a partially 
observed random variable can be converted into an integral equation by kernel 
smoothing.  Its solution can be regarded as a smoothed version of the MLE that is more 
tractable when used in semiparametric estimation.  In some applications, one can then 
construct an estimator of the efficient score and obtain parameter estimates that achieve 
the asymptotic semiparametric efficiency bound.  In this paper, the derivation and proofs 
are worked out in detail for the specific case of the censored regression (tobit) model with 
independent errors.  The resulting asymptotically efficient semiparametric estimator β̂  is 
a solution of the score equation 0)(~ =β∗

nS  (defined by equations 3.16–3.19), which is 
based the classical tobit likelihood function and a smoothed version of the Kaplan-Meier 
estimator. 

It is somewhat more complicated than other estimators of this type, since evaluation 
of the score function involves an integral of a ratio of kernel estimates, but the 
computational problem of a one-dimensional numerical quadrature in evaluating the 
objective function can be handled relatively easily.  The simulations in Appendix B show 
satisfactory performance in a tobit model with sample sizes of 100 and 400 and with 
several different error distributions.  The simulations also show that the estimator can 
handle the case 00 =β .  Further studies on bandwidth selection and on the use of 
alternative kernels may help to improve the small-sample properties of the estimator. 

The approach presented here can also be used to derive efficient semiparametric 
estimators for other problems, such as truncated regression (Appendix A.5) and 
endogenously stratified regression with two strata.12  In more general cases (for example, 
endogenous stratification with more than two strata), it is likely that the analog of the 
integral equation (2.5) will not have an explicit solution.  While the corresponding 
estimator can be implemented by numerical solution of the integral equation, the 
derivation of its asymptotic properties will be more challenging. 
 
Appendix A 

A.1.  Assumptions 

The following assumptions are intended to show that there is a reasonable set of 
conditions under which the proposed estimator has the desired asymptotic properties, i.e, 
consistency and asymptotic normality, with asymptotic variance equal to the 

                                                 
12 Details of those estimators will be presented elsewhere. 
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semiparametric efficiency bound.  The goal is to allow a relatively direct proof of the 
results, rather than to find the least restrictive conditions. 

Assumptions 1–7 provide standard regularity conditions for establishing the classical 
result that β , the solution of 0)( =βnS  (in a neighborhood of the initial consistent 
estimator) is consistent and asymptotically normal, with asymptotic variance given by the 
inverse of (3.9).  They are also used in showing that the solution of the trimmed score 
equation 0)(~ =βnS  is asymptotically equivalent to β . 

Assumption 1.  Β∈β , an open subset of kR . 

Assumption 2.  kRx∈  and R∈ε  are independent random variables with density 
functions )(xh and )(εf .  The regression function βx  is a continuous random variable 
for all Β∈β  (except of course for 0=β , if Β∈0 ). 

Assumption 3.  The data consists of a random sample ),( ii yx , ni ,,1= , with 
),0max( 0 iii xy ε+β= . 

Assumption 4.  An initial n -consistent estimator of β is available. 

This is not restrictive, because there are a number of n -consistent semiparametric 
estimators of the tobit model in the literature, such as the least absolute deviations 
estimator of Powell (1984).  As a result, the parameter space Β can be replaced by a 
neighborhood of 0β . 

Assumption 5.  The functions )|( βug  and )|( βuG  defined in (3.1) are twice 
continuously differentiable with respect to u and β (for 0≠β ). 

Note that since we have explicit expressions for )|( βug , )|( βuG  and their 
derivatives, i.e., 

 
)|(]|)([E

)]|(1[]|)][([E/)|(

0

0

β−−=ββ−+
β−−−>ββ−β+′=∂β∂

uhuXXf
uHuXXufuug

 (A.1) 

 
)|(]|)([E

)]|(1[]|)][([E/)|(

0

0

β−−=ββ−+
β−−−>ββ−β+′=β∂β∂

uhuXXfX
uHuXXufXug

 (A.2) 

 
}]|)([E)|(){/(

]|)([E)|(
)]|(1[]|)][([E/)|(

0

0

0
22

uXXfuhu
uXXfuh

uHuXXufuug

−=ββ−β−∂∂+
−=ββ−′β−+

β−−−>ββ−β+′′=∂β∂
 (A.3) 
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}]|)([E)|(){/(

]|)([E)|(
)]|(1[]|)][([E/)|(

0

0

0
2

uXXfXXuhu
uXXfXXuh

uHuXXufXXug

−=ββ−′β−∂∂+
−=ββ−′′β−+

β−−−>ββ−β+′′′=β′∂β∂β∂
 (A.4) 

and similarly for the derivatives of )|( βuG , Assumption 5 could in principle be 
expressed in terms of a (rather lengthy) set of conditions on f, h, and the conditional 
expected values of x. 

Assumption 6.  Let 1m  and 2m  be defined by (3.6)–(3.7), and the total derivatives by 
(2.18).  Then (i) |),),((| 1 ββ xum  and |/),),((| 1 βββ dxudm  are bounded by a function 

),(1 xεφ  such that ∞<>εφ )]0(1),([E 1 yx , and (ii) |),,(| 2 βxvm  and |/),,(| 2 ββ dxvdm  
are bounded a function ),(2 xvφ , such that ))((1),(2 β>φ∫ uvxvdv  is also bounded 

uniformly in β by a function with finite expected value. 

In the case 00 =β , the functions 1,0m , 2,0m , 1,0m  and 2,0m  defined by (A.30)–(A.33) 
are substituted for 1m , 2m  and their derivatives. 

While there does not appear to be a straightforward way of expressing Assumption 6 in 
terms of primitive conditions on the underlying density functions f and h, we note that the 
conditions are satisfied in the case where x and ε are normally distributed.  In that case, 
(i) ),,(1 βxum , ),,(2 βxum  and their derivatives have bounds of the form )()( 21 upxp , 
where 1p  and 2p  are polynomials, and (ii) 2m  and its derivatives decrease rapidly for 
large positive u.  With bounds of that form, and β restricted to a compact set, Assumption 
6 can readily be verified. 

Assumption 7.  The asymptotic information bound ∗I  is finite. 

The asymptotic information bound is equal to )]0(1),,(),,([E 00101 >ε+β′βεβε xxmxm .  
Explicit expressions for ∗I  are given by (3.9), or in the case 00 =β  by (A.35). 

The following Assumptions 8–10 are used in determining the rates of convergence of 
the kernel estimators of g, G and their derivatives.  In the next assumption, let 

 ∫ −>ββ−β+=β )(1)][()()|( 01 uxxufxxhdxug  

 ∫ −>ββ−β+′=β )(1)][()()|( 02 uxxufxxxhdxug  

and similarly for )|(1 βuG  and )|(2 βuG . 

Assumption 8.  (i) )(εf  is bounded; (ii) in the case 00 ≠β , the derivatives of )|( βug , 
)|(1 βug , )|(2 βug , )|( βuG , )|(1 βuG  and )|(2 βuG  up to fourth order are bounded for 

Β∈β ; (iii) in the case 00 =β , the derivatives of )(εf  up to fourth order are bounded. 
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It follows from (i) that )|( βug  is bounded; )|( βuG  is of course bounded by 
construction.  Assumption 8(ii) is the usual type of condition needed for bounding the 
bias terms in the kernel estimators.  Up to fourth derivatives are needed in (ii) because we 
need to estimate the second derivatives β′βddgd /~2  and β′βddGd /~2 , and two further 
derivatives are then needed to evaluate the bias term.  If required, (A.1)–(A.4) and similar 
equations for the higher-order derivatives could be used to express Assumption 8 in terms 
of f, h, and the relevant conditional moments of x. 

Assumption 9.  ∞<]||[E px  for some 4>p . 

This assumption, together with Assumption 8(i), bounds the variances of the kernel 
estimators. 

Assumption 10.  ∞<ε ]||E[ q  for some 0>q . 

This rules out, for example, distributions with logarithmically decreasing tail 
probabilities.  It follows from Assumptions 9 and 10 that we can find a set 1+⊂ k

n RW , 
with volume increasing no faster than a power of n, such that 

 )(}),Pr{( 1−=∉ε noWx n  (A.5) 

and therefore, with probability approaching 1 as ∞→n , all sample observations are in 

nW .  This allows for uniform convergence on an expanding set (see Lemma B.1 in Ai, 
1997). 

The following conditions refer to the construction of the estimator, specifically the 
properties of the kernel function and the rates of convergence of the window width and 
the trimming parameters. 

Condition 1.  K is a conventional kernel function, i.e., a bounded, differentiable, 
symmetric function that satisfies ∫ = 1)( duuK , ∫ ∞<duuKu )(2 , ∫ ∞<duduudK 2]/)([ , 

and ∫ ∞<duduuKd 222 ]/)([ . 

Condition 2.  Let the convergence rates of the kernel bandwidth nh  and the trimming 

parameters nb  and nu  be α−nhn ~ , β−nbn ~ , γnun ~  (with 0>α , 0>β , and 0>γ ).  

Then α−<γ+β 2
5

2
1 , α<γ+β 2

12 , 2
143 −α<γ+β , and )4/()4( +−<α pp  (where p 

comes from Assumption 9). 

The rate restrictions in Condition 2 imply 5
1

8
1 <α< , and also 7

36>p .  (This could be 
relaxed by using a kernel with higher-order bias reduction, but in any event we need 

4>p .)  Note that one implication of Condition 2 is that 2/1
nh  decreases faster than nb , 
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which is useful in the following proofs when we have to determine which terms have the 
slowest rate of convergence. 

To see where the restrictions in Condition 2 come from, note that in Propositions 2(i) 
and 2(ii), the critical term (the one with the slowest rate of convergence) is the kernel 
estimation error β′β∆ ddgd /~2 .  This term is )()( 2/12/5 +−− nohO pn , and so we must have 

5
1<α .  With trimming, convergence requires 02/12/51 →−−− nhbu nnn , which gives the first 

restriction.  Because nh  decreases slower than 5/1−n , the kernel estimation errors g~∆ , 
G~∆  and β∆ dGd /~  are bounded by the bias, which is )( 2

nhO , whereas β∆ dgd /~  may be 
either )()( 2/12/3 +−− nohO pn  or )( 2

nhO  depending on the value of α.  In Proposition 2(iii), 
the critical terms are products of kernel estimation errors, which have to converge to zero 
at a rate faster than 2/1−n .  Terms of the form 1/~~ τ′⋅β∆⋅∆ dgdg  and 1

2)~( τ ′′⋅∆g  have 
worst-case convergence rates of )( 2/12/12 +−− nhbO nn  and )( 43

nn hbO − , and those rates give 
the second and third restrictions.  A key step in the proof of Proposition 2(iii) will then be 
to show that the terms linear in the kernel estimators converge at a faster rate and so 
impose no further restrictions.  The fourth restriction in Condition 2 is a technical 
requirement needed for uniform convergence of the kernel estimators. 

The remaining two conditions are not needed if the case 00 =β  can be excluded a 
priori. 

Condition 3.  )(uK ′  has rapidly decreasing tails, i.e., )||(/)( ν−= uoduudK  for all 0≥ν . 

This can be achieved by a function either with exponential tails or with bounded support.  
It implies that the kernel function )(uK  and the associated functions )]0(1)([ ≥− uuK  
and )(1 uK  also have rapidly decreasing tails, where ∫ ∞−= u vKdvuK )()(  and 

∫ ∞−= u vKvdvuK )()(1 .  A thin-tailed kernel allows relatively fast shrinkage of the 
trimming at 0=u , as follows: 

Condition 4.  The convergence rate of the trimming parameter nµ  is ρ−µ nn ~  where 
α<ρ . 

 
A.2.  Proofs of propositions 

First consider the case where 00 ≠β , in which case the neighborhood B can be chosen so 
as not to contain the point 0=β .  The modifications needed to allow for the case 00 =β  
are given in the next subsection. 

Proposition A.  Under Assumptions 1–7, β  is consistent and asymptotically normal, with 
asymptotic variance given by the inverse of (3.9). 
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With Assumption 6, )(1 β−
nSn  and β∂β∂− /)(1

nSn  converge in probability to their 
expected values uniformly in β.  By Assumption 7, ]),,(),,([ 00

TYXsYXsE ββ  ∞< .  By 
explicit calculation, we can then check that 0)],,([ 0 =βYXsE  and that 
both )],,([var 0βYXs  and ]/),,([ 0 β∂β−∂ YXsE  are equal to the asymptotic information 
matrix (3.9).  Consistency and asymptotic normality then follow from standard results 
(see, for example, Hansen, 1982). 

An explicit identification condition is not needed, because under the above 
assumptions (3.9) is positive definite and is equal to ]/),,([ 0 β∂β−∂ YXsE , so that 

)],,([ βYXsE  has an isolated zero at 0β=β .  Since we assumed that there is an initial 
consistent estimator, this is enough to identify β. 
 
Proof of Proposition 1 

We have to show that 0]|),,([E 0 =εβ∗ YXs , where 

 ∫
∞

∗∗∗ β+−>βε=β
0

210 ),,()0(1),,(),,( xuvmdvyxmyxs  

with 0β−= xyu .  In fact, this will follow from two slightly more general results.  First, 
let 

 βββ−βββ=µ dudGugdudguGxu /)|()|(/)|()|(),( 0000  

From (3.8), we see that ),( xuµ  depends on x only through the factor 
)]|E[( 0 uXXx −>β− .  Since 0>y  is the same as ε−>β0x , we have 

 0]|)0(1)(),([E =ε>εηεµ YX  (A.6) 

for any function )(εη .  Next, the expected value over x (conditional on ε) of the integral 

 ∫∫ ηµ>=η+µ
∞

)(),()(1)(),(
0

vxvuvdvvxuvdv  

has the form 

 ∫ ∫ β−>ε−<β+ε>ε−>βηµ )](1)(1)(1)(1[)(),()( 000 xvxvxvxvdvxhdx  

Rearranging the indicator functions as )(1)(1 0 vxv −>βε>  and reversing the order of 
integration (the trimmed functions will have finite support) gives 

 ∫ ∫
∞

ε
−>βηµ )(1)(),()( 0 vxvxvxhdxdv ) (A.7) 

As before the integral over x gives zero, so that 
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 0]|)(),()(1[E =εηµ>∫ vXvUvdv  (A.8) 

for any function )(εη .  The proposition then follows from (A.6) with τ=η G  and (A.8 
with τ=η g . 
 
Proof of Proposition 2(a) 

Under Assumptions 8–10 and Condition 1, we can apply Lemma B.1 of Ai (1997) to 
show that the following convergence bounds hold uniformly in B∈β  and nWx ∈ε),( , 
with β−=β xyu )( .  If we write ∑ β=β j j uaug ),()|(~ , then 1|| −< nj hca , 

2|/| −<∂∂ nj hcua , |||/| 2
jnj xhca −<β∂∂ , which is integrable, and 12 ]E[ −< nj hca .  It 

follows from the lemma that13 

 )()(|)]|)((~E[)|)((~| 2/12/1 +−−=ββ−ββ nohOugug pn , (A.9) 

uniformly in β and u.  Similarly, 

 )(|)]|)((~E[)|)((~| 2/1 +−=ββ−ββ nouGuG p  

 )()()||()|)((~
E)|)((~

2/12/3 +−−+=





β

ββ−
β

ββ nohOxc
d
ugd

d
ugd

pn  

 )()()||()|)((~
E)|)((~

2/12/1 +−−+=





β

ββ−
β

ββ nohOxc
d
uGd

d
uGd

pn  

The bias terms such as |]~E[| gg −  are )( 2
nhO  for g~  and G~ , and )()( 2

nhOxc +  for the 
derivatives.  Because of the rate of convergence of nh  given in Condition 2, the bias 
terms dominate except in the case of βdgd /~ .  Thus we have 

 )(|)|)(()|)((~||)|)((~| 2
nhOugugug =ββ−ββ≡ββ∆  (A.10) 

and similarly 

 )(|)|)((~| 2
nhOuG =ββ∆  

 )()()(|/)|)((~| 22/12/3
npn hOnohOdugd +=βββ∆ +−−  

 )(|/)|)((~| 2
nhOduGd =βββ∆  

Using the first-order expansion 

 )~~()~()()~~( 22
1

2
1

2
1 GgGgGgGg −γτ′=τ−τ  

                                                 
13 The notation +pn  means any power of n greater than p. 
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where γγτ=γτ′ dd /)()( 11  and γ~  is between 2~~ Gg  and 2Gg , and making repeated 
application of identities such as 

 
β

⋅∆+
β

∆+
β

∆⋅∆=
β

−
β d

gdG
d

gdG
d

gdG
d

gdG
d

gdG ~~~~~~ , 

we can express ∗∗∗ −≡∆ 111
~~ mmm  and ∗∆ 2

~m  as sums of terms, each of which is a product of 
(i) approximation errors like (A.10) with known rates of convergence and (ii) factors like 

n1τ  and βddg /  with known upper bounds.  By inspection, the term with the slowest rate 
of convergence in ∗∆ 1

~m  is τβ∆ )/~(2 dgdG  (taking into account the assumption that nb  
converges to zero at a slower rate than nh ), and therefore 

 )]()()([)()||(|~| 22/12/31
1 npnn hOnohObOxcm ++=∆ +−−−∗  (A.11) 

uniformly in u and β.  The same bound also holds for |~| 2
∗∆m .  Since ),(~

2 β∆ ∗ um  has 
support in u on an interval of order nu , 

 )]()()([)()||(|~| 22/12/31
npnnn hOnohObuOxcs ++=∆ +−−−∗  

and then because ∞<→∑− |]E[|||1 xxn P
i i , we get 

 ( ) )]()()([)()()(~ 22/12/311
npnnnnn hOnohObuOSSn +=β−β +−−−∗∗−  (A.12) 

According to Condition 2, the right-hand side converges to zero.14 
Next, using |||| 11 mm ≤∗  and |||| 22 mm ≤∗  and the assumption that )(βs  is bounded 

uniformly in β by an integrable function, we have 

 ( ) )]()(E[)()(1 β−β→β−β ∗∗− ssSSn P
nn  

uniformly in β (the rate no longer matters at this point).  Since ),,(),,( 22 β→β∗ xvmxvm  
pointwise in v, and since both the integrand and its derivative with respect to β in the 
following expression are by assumption bounded uniformly in β by integrable functions 
(see Assumption 6), we can use the bounded convergence theorem to get 

 ∫ ∫
∞ ∞

∗ β+→β+
0 0

22 ),,(),,( xvumdvxvumdv  (A.13) 

uniformly in β.  Then, with ),,(),,( 11 βε→βε∗ xmxm , a further application of bounded 
convergence gives 0)]()(E[ →β−β∗ ss .  Finally, (A.5) shows that the trimming 
                                                 
14 The bound on the integral in ∗∆ ns~  may not the best that could be obtained, because in general the 
integral of a kernel estimator will converge faster (by a factor of nh ) than the kernel estimator itself.  
However, to take advantage of this one would have to establish a suitable lower bound on the rest of the 
integrand. 
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restriction niWx nii ,,1,),( =∈ε  (which was implicitly imposed up to this point) holds 
with probability approaching 1, and so can be dropped when considering convergence in 
probability.  Thus 

 ( ) 0)()(~1 →β−β∗− P
nn SSn  

uniformly in β, as required. 
 
Proof of Proposition 2(b) 

This follows along the same lines as the proof of Proposition 2(a).  The derivatives 
β∗ dmd /~

1  and β∗ dmd /~
2  contain the kernel estimators β′βddgd /~2  and β′βddGd /~2 .  As 

before, these new kernel estimators can be shown to satisfy uniform bounds, 

 )()()||(|)/~(| 2/12/5122 +−−−+=β′β∆ nohbOxcddgd pnn  

 )()()||(|)/~(| 2/12/3122 +−−−+=β′β∆ nohbOxcddGd pnn  

Expanding )/~( 1 β∆ ∗ dmd and )/~( 2 β∆ ∗ dmd  as before, identifying the terms with the 
slowest rate of convergence as those involving τβ′β∆ )/~( 2 ddgd  (again taking into 
account the assumption that nb  decreases more slowly than nh ), we get 

 )()()||(|)/~(| 2/12/512 +−−−∗ +=β∆ nohbuOxcdsd pnnn  (A.14) 

We have ∞<][E 2x  and 02/12/51 →+−−− nhbu nnn .  The rest of the proof is then the same 
as for Proposition 2(a), leading to  

 ( ) 0/)(/)(~1 →ββ−ββ∗− P
nn dSddSdn  

uniformly in β, as required. 
 
Proof of Proposition 2(c) 

We start by expanding ∗∆ 1
~m  and ∗∆ 2

~m  in the kernel approximation errors g~∆ , G~∆ , etc., 
as in the proof of Proposition 2(a).  Since we will need to isolate terms that are linear in 
the kernel estimates g~ , G~ , etc., we have to carry the expansion of 1τ  to second order 
this time: 

 222
1

222
1

2
1

2
1 )~~()~()~~()()()~~( GgGgGgGgGgGgGg −γτ′′+−τ′=τ−τ  

Let 

 ∗∗∗ ∆+∆=∆ RL sss ~~~  
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where ∗∆ Ls~  contains terms linear in kernel approximation errors, while ∗∆ Rs~  contains 
terms that are second order or higher in kernel approximation errors.  (L stands for 
“linear”, and R for “remainder”.) 

First consider ∗∆ Rs~ .  The uniform convergence results used in the proof of 
Proposition 2(a) for general β of course still hold at 0β .  The slowest rates of 
convergence come from (i) terms of the form 1

4 ~)/~( τ′⋅∆β∆ gdgdG  in ∗∆ Rm1
~  and 

1
3 ~)/~( τ′⋅∆β∆ gdgdGg  in ∗∆ Rm2

~ , bounded by )()([)()||( 2/12/12 +−−+ nohObOxc pnn  
)]( 4

nhO+ , and (ii) terms of the form 1
24 )~( τ′′⋅∆gG  in ∗∆ Rm1

~  and ∗∆ Rm2
~ , bounded by 

)( 43
nn hbO − .  Then, as in the proof of Proposition 2(a), 

 ( ) )()()()()(~ 2/1432/12
,,

2/1 nhbuOnohbuOSSn nnnpnnnnRnR
−+−∗∗− +=β−β , (A.15) 

and according to Condition 2, the right-hand side converges to zero. 
Next, consider ∗∆ Ls~ .  The linear terms coming from ),,(~

01 βε∆ ∗
ii xm  are 

 

({
)

( )( ) } )(1~2~//

/~/~
)/~(/~2)/~(~

021
2

1

2
1

ii

L

xGggGddGgddgGG

ddGgGddGGg

dGdGgddgGGdgdGm

ε−>βττ′∆+∆β−β+

τβ⋅∆−β⋅∆−

β∆−β⋅∆+β∆=∆ ∗

 (A.16) 

while the linear terms from ),,(~
02 β+∆ ∗

ii xuvm  (where v is the integration variable) are 

 

({
)

( )( ) } 21

1
2

2

~2~//

/~2)/~(

/~/~)/~(~

ττ′∆+∆β−β+

τβ⋅∆−β∆−

β⋅∆+β⋅∆+β∆=∆ ∗

GggGddGgddgGGg

ddGggdGdg

ddgGgddggGdgdGgm L

 (A.17) 

Substituting the expressions for the kernel estimators given by (2.12) and (2.19)-(2.20), 
we can write the kernel approximation error in the linear part of the trimmed score 
functions as a double sum of the form 

 ( ) ∑ ∑
≠

−∗∗− εεψ=β−β
i ij

jjiinnLnL xxnSSn ),,,()()(~ 2/3
0,0,

2/1  (A.18) 

where, for example, the contribution to nψ  of the first term in (A.16) is 

 
( ){ }

)(])|()|([)|(
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The summation on the right-hand side of (A.18) can be symmetrized in the indices i and j 
to make a U-statistic.  We can then apply Lemma 3.1 of Powell et al. (1989), which 
generalizes the usual projection theorem for U-statistics to the case where individual 
terms in the sum can grow with n, provided that they are )(no in mean square.  In the 
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present case we have )]()()[(][E 413222
nnnnn hOnhObuO +=ψ −−− , and the required rate of 

convergence follows from Condition 2.  The projection theorem then gives 
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where 

 2/}],|),,,([E],|),,,([E{),( xxxxxxxr iinjjnn εεεψ+εεεψ=ε  (A.20) 

First, taking expectations over ),( jj xε  conditional on ),( ii xε , we have the bias term 
)(],|),(~[E 2

niii hOxg =εβε∆ , and similarly for the other kernel estimators.  It follows that 

 )(],|),,([E 22
, nnniijjiin hbuOxxx −=εεεψ . (A.21) 

Next, we take expectations over ),( ii xε  conditional on ),( jj xε .  Following the steps 
leading to (A.7) for a generic function ),( xvµ , we have 
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This can be used to evaluate the expectations of the terms coming from the integral of 

Lm2
~∆ .  This is where the specific functional form of the efficient score comes into play, 

as well as the use of a common trimmed denominator for all its components.  After some 
calculations, we arrive at the nice result 

 0],|),,([E , =εεεψ jjjjiin xxx . (A.22) 

and therefore also 0][E =ψn .  The right hand side of (A.19) now reduces to 2/1−n  times 
a sum of independent terms with mean zero and bounded by (A.21), so application of a 
central limit theorem gives 

 ( ) )()()(~ 22
0,0,

2/1
nnnnLnL hbuOSSn −∗∗− =β−β  (A.23) 

which tends to zero by Condition 2. 
Finally, we have to show that the trimmed and untrimmed score functions )( 0β

∗
nS  

and )( 0βnS  are asymptotically equivalent.  Since they are both sums of i.i.d. terms with 
mean zero, we can use mean square convergence.  We have 
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with 

 ∫
∞

∗ β∆−>βε∆=β∆≡β−β
u

xvmdvyxmsss ),,()0(1),,()()()( 0201000  (A.25) 

The differences 111 mmm −=∆ ∗  and 222 mmm −=∆ ∗  are related by =β∆ ),,( 02 xvm  
),,()](/)([ 01 β∆ xvmvFvf  because of the common trimmed denominator.  Evaluating 

(A.24), and using integration by parts to eliminate the cross product between the two 
terms on the right-hand side of (A.25), then gives 

 ∞
∞−ε+>βε∆ )]([)]0(1|),,(|E[ 2

01 Ryxm  (A.26) 

where 

 ∫ ∫ β∆ε>ε−>βε=ε
2

010 )(/),,()(1)()(1)()()( vFxvmvvfdvxxhdxFR  

The remainder term in (A.26) evidently vanishes provided that the integrals exist.  To 
bound )(εR , apply the Cauchy-Schwarz inequality, 
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and then use the inequalities |||| 11 mm ≤∆  and )(1)(1)(1 00 vxvx −>β≥ε>ε−>β  to get 

 ∫ ∫ ∞<=β−>β≤ε ∗IxvmvxvfdvxhdxR tr|),,(|)(1)()()( 2
010 . 

It follows, by bounded convergence as ∞±→ε , that 0)()( =−∞=∞ RR .  That leaves the 
first term in (A.26), where 01 →∆m  pointwise.  The bounded convergence theorem 
again applies because |||| 11 mm ≤∆  and ∞<=>βε ∗Iyxm tr)]0(1|),,(E[| 2

01 .  Therefore, 

 0)()(E
2

00 →



 β−β∗ ss  (A.27) 

From (A.24) and (A.27), 

 ( ) 0)()( 00
2/1 →β−β∗− P

nn SSn  

Together with (A.15) and (A.23), this gives the required result 

 ( ) 0)()(~
00

2/1 →β−β∗− P
nn SSn  
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A.3.  Estimation and Asymptotic Efficiency when 00 ====ββββ  

The derivation given above has to be modified when 00 =β  because the conditional 
density function )|( βuh  is singular at )0,0(),( =βu , and therefore the derivatives of 

)|( βug  and )|( βuG  are not well defined at that point.  However, the other key points of 
the derivation are not affected when 00 =β : the kernel estimates converge uniformly to 
their expected values at the same rates as before, and the conditional expected value in 
(A.22) is still zero. 

First, the estimator is modified by incorporating the additional trimming factor )(3 uτ , 
defined by (3.14), in the terms ),,(~

1 β∗ xum  and ),,(~
2 β∗ xum  of the trimmed score function.  

This excludes u from a neighborhood }||:{U nn uu µ<= , where 0→µn  with 
∞→µ nn h/ . 

Secondly, in the derivation of uniform convergence, β is restricted to a neighborhood 
}||:{B ,0 nn a<ββ= , where 0→na  with ∞→2/1nan .  (This of course relies on an 

initial n -consistent estimator of β.)  This allows )|(~ βug  to be considered as an 
estimator of )0|(ug  rather than )|( βug . 

Define the following functions to replace the derivatives βddg /  and β′βddgd /2  

 ])0(1)()([E)|( >β+β+′−=β XuXufxXug  (A.28) 

 ])0(1)()()([E)|( >β+β+′′′−−=β XuXufxXxXug  (A.29) 

and similarly for )|( βuG  and )|( βuG .  Note that when the limit is taken as ∞→n  for 
fixed u with 0≠u , 

 ]/)0|(~E[lim)0|( β= dugdug  

and similarly for the other derivative terms.  The modified score function =β)(,0 nS  
∑ βi ii yxs ),,(0  is then defined as in (3.5)–(3.7) but with the moment functions 

 )0(1])0|(/)0|()0|(/)0|([)0,,(1,0 >−= uuGuGugugxum  (A.30) 

 ),()]0|(/)0|([)0,,( 1,02,0 xumuGugxum = . (A.31) 

The modified hessian matrix )(,0 βnS , corresponding to ββ ddSn /)( , is defined similarly 
with 
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 ]),(),([)]0|(/)0|([)0,,( 2
1,01,02,0 xumxumuGugxum += . (A.33) 

The trimmed versions )(,0 β∗
nS  and )(,0 β∗

nS  incorporate the trimming factor 
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 )()()]0|([)0|( 321 uuuDu τττ=τ . 

Evaluating the modified score )(,0 βnS  at 0=β , we find 

 ( ) ( )xXFfyyfyfyyxs −≤+′>= ]E[)0(/)0()0(1)(/)()0(1)0,,(0  (A.34) 

This is the same as the efficient semiparametric score for the case 00 =β .  Its variance is 
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where ∗0V  denotes the semiparametric efficiency bound for this case.  (The efficient 
semiparametric score (A.34) is in fact the limit of (3.8) as 00 →β , but it is safer to start 
with 00 =β  and derive it via the relevant orthogonality conditions for the “worst-case” 
direction of approach.)  Finally, evaluating the modified hessian matrix at 0=β , we find 

 1
00 )]0,,(E[ −
∗−= VYXs  (A.36) 

The random variable )0(])0([ ,0
1

,00 nn SS −−=β  is )( 2/1−nOp  (and therefore 

nB∈β0  with probability approaching 1) and is asymptotically normal with asymptotic 
variance 

 ∗
−− =′ 0

1
00

1
0 ])0,,([E)]0,,([var)]0,,([E VYXsYXsYXs  

The next result shows that β̂  and 0β  are asymptotically equivalent. 

Proposition 3.  Suppose that Assumptions 1–4, 6–10 and Conditions 1–4 hold, as given in 
Appendix A.1, and let the trimming factor be =βτ )|(u )]|([1 βτ uD  )()( 32 uu ττ , as 
defined by (3.12)–(3.14).  Then if 00 =β , the results of Proposition 2 hold with B, 

)(βnS and ββ ddSn /)(  replaced by nB ,0 , )(,0 βnS and )(,0 βnS . 

It follows from the usual first-order series expansion of )(~ β∗
nS  in )( 0β−β  that (i) 

there is an )( 2/1−nOp  consistent root (as previously defined), and (ii) if we identify β̂  
with the consistent root, then β̂  has the same asymptotic distribution as 0β , i.e., β̂  
achieves the semiparametric efficiency bound for 00 =β . 

The following result is used in the proof of Proposition 3. 

Proposition B.  Suppose that (i) )( nn uoh =  and )( nn uo=β , (ii) ∞<]||E[ px , and (iii) 
)(⋅κ  is a bounded function such that )||()( ν−=κ zOz  for all 0>ν  as ∞±→z .  Then for 
pr < , 

 )|/|()/][(||)( rp
nnnnn

r uOhxuxxhdx −β=β+κ∫ . (A.37) 

Proof.  First consider the integration region where |||| 2
1 ux ≥β : 
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(where c represents a generic constant).  In the remaining integration region, |||| 2
1 ux <β  

implies |||| 2
1 uxu >β+ , and therefore 
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For large enough ν (depending on the rates of convergence of nβ  and nu ) (A.39) 
becomes negligible in comparison with (A.38), and the proposition follows. 
 
Proof of Proposition 3 

We have to show that )(~ β∗
nS  and β′β∗ dSd n /)(~  converge uniformly to )(,0 β∗

nS  and 
)(0, β∗

nS  at the same rates as in the proof of Proposition 2 (Appendix A.2).  Since the 
uniform convergence of the kernel estimates to their expected values is not affected by 
the value of 0β , the essential step is to bound the “bias” terms, such as 

 )]0|)((/)|)((~E[ β−βββ ugdugd . (A.40) 

by )( 2
nhO .  However, the second derivative terms occur only in the hessian, and therefore 

need only be bounded by )( 2/12/5 +−− nho n  according to (A.14). 
Consider (A.40) as a typical bias term, with 

 [ ] )]()()(1)[(E/)|(~E 1
nnnn whXufwKXuwhdwxXhdugd −β+′β+<−=ββ ∫− . 

First integrate by parts with respect to w to isolate the term in 1−
nh , and then in the 

remaining term expand )( nwhXuf −β+′  to second order in powers of nh .  Then (A.40) 
can be written as 
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 (A.41) 

with 
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The last inequality is derived in the same way as (A.38), assuming that ∞<]||E[ px .  The 
remaining terms in (A.41) are bounded using (A.37), and the overall bound on the bias 
term (A.40) (with 4=p ) has the form 

 })()()({)||( 2331
nnnnn hOahOaOxc +µ++ −−  

According to Condition 2, nh » 5/1−n , so we can choose )( 2
nn hOa =  and still have 

na » 2/1−n .  Then, with )( nn oh µ=  from Condition 4, the overall bound on (A.40) 
becomes )()||( 2

nhOxc +  as required. 
The remaining bias terms in )(~ β∗

nS  are bounded similarly, while the bias associated 
with the second derivative terms in β′β∗ dSd n /)(~  has the required bound 

 )()||(})()()({)||( 2/12/5222222 +−−−− +=+µ++ nhoxchOahOaOxc nnnnnn  

under the same assumptions, except that this time we need )( 4/14/3 −= nhOa nn . 
The rest of the proof is the same as for Proposition 2, except the limit functions are 

now )(,0 βnS  and )(,0 βnS  instead of )(βnS  and ββ ddSn /)( . 
 
A.4.  Random censoring 

Linear regression with random censoring is closely related to the tobit model.  In this case 
we have ),max( iiii xcy ε+β= , where the censoring points ic  are i.i.d. with density 
function )(cpc  and (in the case considered here) are independent of x and ε.15 

Following the same procedure as in Section 2, the kernel estimators )|(~ βug  and 
)|(~ βuG , the estimated likelihood function )(~ βnL , and the score function )(~ βnS  are the 

same as in (2.12)–(2.15), except that the indicator function is changed to )(1 ii cy > .  The 
underlying functions )|( βug  and )|( βuG  are now defined by 

 ∫ +ββ−β+=β )()][()()|( 0 uxPxufxhdxug c  (A.42) 

 ∫ +ββ−β+−=β )()}][(1{)()|( 0 uxPxuFxhdxuG c  (A.43) 

where cP  is the distribution function of c.  These versions of the functions are easier to 
work with because the integrands are differentiable. 

As before, (A.42) and (A.43) can be used to define an artificial likelihood function 
)(βnL  and score function )(βnS  as in (3.3) and (3.5).  Evaluating the score function at 

0β=β  gives 

                                                 
15 Since the estimator in Section 3 was derived for the tobit model, we continue here with left censoring.  
This can easily be translated into the more usual case of random right-censoring. 
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where 0β−= xyu .  The asymptotic information matrix for )(βnL  is the variance of 
(A.44), i.e., 

 ∫ >+β>+β













]|[var}Pr{

)(
)(log)( 00

2

CuXXCuX
uF
uf

du
dufdu  (A.45) 

which is equal to the inverse of the semiparametric efficiency bound for the model with 
random censoring.  The proof that β̂  achieves this bound is the same as before.  No 
special treatment is needed in the case 00 =β . 
 
A.5.  Efficient semiparametric estimation of truncated regression 

The same technique can be used to construct an efficient semiparametric likelihood-based 
estimator of the truncated regression model.  As before, ε+β= 0xy , but now the joint 
density of ),( xε  is 

 ∫∫ >ε′+β′′ε′′ε′>ε+βε })0(1)()(/{)0(1)()( 00 xxhfxddxxhf  

Without loss this can be written in term of )(xh∗ , the marginal density of x in the 
observable population (after truncation), as16 

 )()]}(1[/)(1)({ 00 xhxFxf ∗β−−β−>εε  

The nonparametric maximum likelihood estimator of )|( βεF , the distribution 
function of the residuals, is given by the following equation corresponding to (2.3) for the 
censored model, 

 ∑∑ −ββ−−β−≥εβε−=<ε≤β−
j

jj
j

jj xFxFex 1)]|(ˆ1[)(1)]|(ˆ1[)(1  (A.46) 

where β−= jjj xye .  The solution of this equation is the Lynden-Bell product-limit 
estimator for truncated sampling, analogous to the Kaplan-Meier estimator for censored 
sampling (see, for example, Tsui, Jewell and Wu, 1988).  The smoothed equation 
corresponding to (2.5) is 

                                                 
16 The constraint that )](1[/)( 0β−−∗ xFxh  is integrable has no effect in finite samples and so is ignored. 
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with K and K  as before.  This is a linear integral equation in 1)]|(~1[ −βε− F , and the 
solution is 

 





ββ−−=βε ∫
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)|(~/)|(~exp1)|(~ vGvgdvF  (A.48) 

with new expressions for g~  and G~ , 
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These are kernel estimators of the functions 

 ∫ −>ββ−−β−β+=β −
∗ )(1)](1[)][()()|( 1

00 uxxFxufxhdxug  (A.51) 

 ∫ −>ββ−−β−β+−=β −
∗ )(1)](1[)}][(1{)()|( 1

00 uxxFxuFxhdxuG  (A.52) 

The score )(βnS  and its kernel estimator )(~ βnS  are then calculated as before.  Then 
)( 0βs  is equal to the efficient score for semiparametric estimation of the truncated 

regression model, 
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with 0β−= xyu .  Its variance is equal to the corresponding semiparametric information 

bound (under the assumption that the bound is finite) 
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where Q is the probability of selection into the truncated sample.17 
 
Appendix B 

Simulation results 

Simulations were carried out to evaluate the performance of semiparametric maximum 
likelihood estimator for samples of moderate size (n = 100, 200, 400) generated by the 
tobit model, and to compare it with the adaptive M-estimator of Kim and Lai (2000). 

Data generation.  The model is 

 )0,(max 00 iii uxy +β+α=  

with a scalar regressor )1,0(~ Nx , intercept 00 =α , and slope parameter 10 =β  or 
00 =β ..  With a symmetric error distribution, this gives 50% censoring.  (If the error 

variance can be normalized to 1, then the underlying regression equation with 10 =β  has 
5.02 =R  in the absence of censoring.)  Both x and u are randomly generated in each 

replication. 
Results are given for the following error distributions:  normal, logistic, Laplace, t(3), 

t(2), Cauchy, and two normal mixtures with distribution functions of the form 

 )/][()1()/][( 2211 σµ−Φ−+σµ−Φ zpzp . 

The first mixture has parameters 9.0=p , 021 =µ=µ , 3/11 =σ , 32 =σ  (representing 
“contamination” by an error component with large variance), and the other has 5.0=p , 

2/121 =µ−=µ , 2/121 =σ=σ  (a bimodal distribution).  Conventional scaling is 
used for the t(2) and Cauchy distributions, while the other distributions are normalized to 
zero mean and unit variance.  Because the estimator does not restrict F to be symmetric 
or to have zero median, the intercept α is not identified as a regression parameter; 
instead, it can be estimated as the median of F̂ . 

Implementation of the estimator.  The kernel K is standard normal.  For the bandwidth 

nh , we adopt the simple rule given by Silverman (1986, p. 47), setting a
n nRch −=  

where R is a preliminary estimate of the interquartile range of the error distribution and c 
is a suitably chosen constant.18  (The interquartile range is used here because even when 
the variance exists, estimates of the error variance from censored data tend to be 
unreliable.)  For estimation of β, the scale factor 1=c  gives good results (in terms of 
                                                 
17  The conditional variance and the distribution function H in (A.54) refer to the underlying (untruncated) 
population, for which the marginal density of x is )](1[/)()( 0β−−= ∗ xFxhQxh . 
18 The convergence rate 19.0=a  was used, so as to be formally compatible with Condition 2. 
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mean square error) across the variety of different error distributions considered here; the 
results with 67.0=c  and 5.1=c  (not reported here) are similar.  For estimating the 
quantiles of F, smaller bandwidths are better, and the quantile estimates reported here are 
for 67.0=c  (the value suggested by Silverman for density estimation).  Likelihood 
cross-validation and least-squares cross-validation methods were generally not effective 
in selecting a good bandwidth.  Locally adaptive bandwidths are not used in this study 
because of their computational cost. 

As found in other studies, the simulation results are generally insensitive to the choice 
of trimming parameters.  Simulations were run for 0=nb  (no trimming), 0001.0=nb  
and 001.0=nb .  An order-of-magnitude upper bound for nb  in small samples can be 
found by evaluating the denominator 2)|()|( ββ uGug at some suitable trimming point in 
the left tail of the distribution of residuals.  For the sample designs used here, values at 
the 5th (10th) percentile vary from 0.00015 (0.0010) for the bimodal normal mixture to 
0.0005 (0.0026) for the Cauchy distribution.  The results given here are for 001.0=nb . 

The initial values β~  are the least absolute deviations (LAD) tobit estimates (Powell, 
1984).  Because that estimator can have wide dispersion for small samples with 50% 
censoring (Paarsch, 1984), the initial estimator is restricted to 5|~| ≤β  in the simulations 
with 10 =β , and 2|~| ≤β  when 00 =β . 

Modifications in the practical implementation of the estimator are: (i) to reduce the 
computational cost of the numerical quadrature, terms with ji =  are retained in the 
kernel estimates, because then the integrand is the same function for all observations; 
(ii) to reduce search costs, the untrimmed estimator ( 0=nb ) is computed by maximizing 
the estimated log likelihood and (iii) the trimmed estimator ( 0>nb ) uses a two-step 
method with the untrimmed estimator as the starting point for minimization of the square 
of the trimmed score function; (iv) the trimming factors )(2 uτ  and )(3 uτ  are dropped, as 
is the convergence rate (slower than 10/1−n ) for the trimming parameter nb .  In the small 
number of simulations where no solution was found for the trimmed score equation, β̂  
was computed by minimizing the square of the trimmed score function.19 

Implementing the Kim and Lai estimator.  For comparison, we also give corresponding 
results from the adaptive M-estimator proposed by Kim and Lai (2000), where efficient 
weights are estimated by a spline-function method, using a split-sample technique.  The 
specific implementation is the one given in Section 3 of Kim and Lai (2000), except that 
(i) the starting values β~  are the same as in the previous simulation (i.e., LAD estimates), 
                                                 
19 See footnote 10.  The rate of occurrence (averaged over the various error distributions) was about 1 in 
10,000 simulations for 100=n  and about 1 in 20,000 for 400=n . 
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(ii) x is expressed as a deviation from the sample mean x , and (iii) the estimated moment 
equation is solved for β̂  by a direct search method, rather than the iterative procedure 
used by Kim and Lai.20  There are many alternative choices available for the spline basis 
function, for the cross-validation criterion used to determine the number of knots, and for 
the trimming rule, and it should be noted that some of these might yield an improved 
version of the Kim and Lai estimator. 

Kim and Lai make use of asymptotic results derived in Lai and Ying (1994).  Their 
proof extends to the case of a fixed censoring point only if the parameter space excludes 
the point 00 =β  a priori, as can be seen from assumption (4.14) of Lai and Ying (1994).  
This does not necessarily invalidate the estimator, of course, and some results are 
presented here for 00 =β  as well as for 10 =β .21 

Results.  Table 1 reports sampling statistics (biases and standard errors) of β̂  for the 
simulations with 10 =β .  The column labeled RMSE/ASD gives the ratio of the root 
mean square error to the asymptotic efficiency bound for the standard deviation (ASD).  
The performance of the SPMLE β̂  is best for normal errors, where it is only slightly less 
efficient than the conventional parametric maximum likelihood tobit estimator.  (For 
comparison, the corresponding normalized root mean squared errors of the tobit MLE are 
1.021, 1.007, and 0.996 for 100=n , 200 and 400.)  With thicker-tailed error distributions 
there is substantial bias at small sample sizes, and the approach to the efficiency bound is 
slower.  The Kim and Lai estimator shows smaller bias but larger variance.  In contrast 
with the SPMLE it performs relatively better for the thicker-tailed distributions, and for 
the t(2) and Cauchy distributions it begins to match the SPMLE (in terms of root mean 
square error) at 400=n . 

For a subset of the sample designs, simulations were also run with 00 =β , with 
results reported in Table 2.  Because of the symmetry of the estimator when 00 =β , the 
bias in β̂  is negligible and only the standard deviations are given.  In this case the Kim 
and Lai estimator has larger standard errors, and does not appear to be “catching up” with 
the SPMLE over this range of sample sizes. 
 

                                                 
20 Since the simulations reported here involve only a one-dimensional search, Brent’s method was used (see 
Press et al., 1993, Chapter 9). 
21  Another assumption, (4.12b) of Lai and Ying (1994), requires an error distribution with at least 
exponentially decreasing tails, but the simulations given here do not show any markedly different behavior 
of the Kim and Lai estimator when the errors have a t-distribution. 
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Table 1   Estimates of β with 10 =β  
 

 SPML estimator Adaptive M-estimator  

N bias SD RMSE/ASD bias SD RMSE/ASD ASD 

Normal        
100 0.054 0.155 1.17 0.027 0.237 1.68 0.1414 
200 0.029 0.106 1.10 0.007 0.149 1.49 0.1000 
400 0.020 0.073 1.07 0.005 0.100 1.41 0.0707 

Logistic        
100 0.058 0.157 1.19 0.023 0.218 1.56 0.1407 
200 0.034 0.107 1.13 0.012 0.135 1.36 0.0995 
400 0.022 0.074 1.10 0.006 0.090 1.29 0.0703 

Laplace        
100 0.066 0.157 1.39 0.022 0.192 1.59 0.1217 
200 0.040 0.100 1.24 0.013 0.120 1.41 0.0860 
400 0.026 0.068 1.20 0.005 0.081 1.33 0.0608 

t(3)        
100 0.058 0.130 1.21 0.015 0.169 1.46 0.1168 
200 0.029 0.090 1.15 0.008 0.106 1.28 0.0826 
400 0.022 0.061 1.11 0.004 0.070 1.21 0.0584 

t(2)        
100 0.112 0.223 1.38 0.033 0.272 1.48 0.1853 
200 0.060 0.151 1.24 0.017 0.169 1.30 0.1310 
400 0.039 0.100 1.15 0.008 0.111 1.20 0.0927 

Cauchy        
100 0.215 0.293 1.72 0.051 0.349 1.67 0.2115 
200 0.097 0.185 1.40 0.022 0.212 1.42 0.1495 
400 0.066 0.122 1.30 0.009 0.137 1.30 0.1057 

Mixture 1        
100 0.043 0.078 1.26 0.008 0.107 1.52 0.0706 
200 0.025 0.053 1.16 0.003 0.065 1.31 0.0499 
400 0.011 0.037 1.10 0.002 0.042 1.20 0.0353 

Mixture 2        
100 0.060 0.151 1.22 0.024 0.261 1.96 0.1335 
200 0.025 0.100 1.09 0.007 0.156 1.66 0.0944 
400 0.018 0.071 1.09 0.005 0.110 1.65 0.0668 
 
Mixture 1 is  )9,0(1.0)9/1,0(9.0 NN +  
Mixture 2 is  )2/1,2/1(5.0)2/1,2/1(5.0 −+ NN  
ASD is the standard deviation corresponding to the asymptotic semiparametric efficiency bound 
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Table 2   Estimates of β with 00 =β  
 

 SPML 
estimator 

Adaptive 
M-estimator 

 

n SD SD ASD 

Normal    
100 0.128 0.231 0.1105 
400 0.062 0.100 0.0553 

Laplace    
100 0.115 0.202 0.0707 
400 0.050 0.084 0.0353 

t(2)    
100 0.189 0.279 0.1348 
400 0.080 0.136 0.0674 

Mixture 1    
100 0.053 0.124 0.0406 
400 0.024 0.044 0.0203 

 
Table 3   Simulation results for quantiles of the SPML estimator of F 

 
 median IQR   median IQR 

n mean (SD) mean (SD)  n mean (SD) mean (SD) 

Normal   1.349   t(2)   1.633  
100 −0.079 (0.171) 1.527 (0.220)  100 −0.133 (0.221) 1.970 (0.370) 
200 −0.048 (0.110) 1.469 (0.151)  200 −0.080 (0.142) 1.863 (0.245) 
400 −0.039 (0.080) 1.440 (0.107)  400 −0.055 (0.098) 1.792 (0.167) 

Logistic   1.211   Cauchy   2.000  
100 −0.084 (0.163) 1.387 (0.215)  100 −0.208 (0.277) 2.536 (0.542) 
200 −0.056 (0.108) 1.341 (0.150)  200 −0.130 (0.171) 2.402 (0.364) 
400 −0.035 (0.074) 1.300 (0.105)  400 −0.081 (0.112) 2.257 (0.264) 

Laplace   0.980   Mixture 1   0.502  
100 −0.082 (0.136) 1.175 (0.200)  100 −0.028 (0.092) 0.563 (0.162) 
200 −0.051 (0.090) 1.115 (0.137)  200 −0.018 (0.053) 0.544 (0.058) 
400 −0.029 (0.063) 1.059 (0.096)  400 −0.010 (0.038) 0.526 (0.039) 

t(3)   0.883   Mixture 2   1.486  
100 −0.058 (0.134) 1.016 (0.164)  100 −0.069 (0.178) 1.637 (0.234) 
200 −0.031 (0.084) 0.970 (0.108)  200 −0.044 (0.118) 1.596 (0.165) 
400 −0.029 (0.059) 0.959 (0.073)  400 −0.038 (0.087) 1.571 (0.109) 

 
For each error distribution, the first figure in the IQR column is the true interquartile range. 
See Table 1 for the definitions of the error distributions denoted “Mixture 1” and “Mixture 2”. 
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Table 3 presents results for the median and interquartile range of the SPML estimator 
F̂ , in the case 10 =β .  Negative bias in the median and overestimation of the 
interquartile range both arise from over-correction of censoring in the left tail.  Although 
asymptotic properties of F̂  and its quantiles are not analyzed in this paper, we note that 
the simulation results appear consistent with an an 2−  rate of convergence. 
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