Structural Error Correction Models:
Instrumental Variables Methods and
an Application to an Exchange Rate Model
by

Jaebeom Kim
State University of New York at Binghamton

Masao Ogaki
Ohio State University

and

Min-Seok Yang
Hyundai Economic Institute

Ohio State University
Department of Economics
Working Paper No. 01-01

March 2001
Abstract

Error correction models are widely used to estimate dynamic cointegrated
systems. In most applications, estimated error correction models are
reduced form meodels. As a result, nonstructural speed of adjustment
coefficients are estimated in these applications. A single equation
instrumental variable method can be used to estimate a structural speed of
adjustment coefficient. This paper develops a system instrumental variable
method to estimate the structural speed of adjustment coefficient in an
error correction model. This method utilizes Hansen and Sargent’s (1982)
instrumental variable estimator for linear rational expectations models, and
is applied to an exchange rate model with sticky prices.
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1. Introduction

As discussed by Cooley and LeRoy (1985), Vector Autoregression (VAR})
models for stationary random variables are reduced form models. Structural
interpretations of VAR models require restrictions on structural form
models. When some of the random variables in the system are unit root
nonstationary and are not cointegrated, Blanchard and Quah’s (1989}
structural VAR method can be used as in Ahmed, Ickes, Wang, and Yoo (1993)
among others.] When some ot the random variables in the system are unit
root nonstationary and are cointegrated, then Davidson, Hendry, Srba, and
Yeo’s Error Correction Model (ECM) is widely used.2  As the Granger
Representation Theorem shows (see Engle and Granger (1988)), an ECM
representation exists when the variables are cointegrated and vice versa.2
The standard ECMs are reduced form models just as VAR models are as pointed
out by Urbain (1992) and Boswijk (1994,1995).

In a structural ECM, at least one linear combination of variables
slowly adjusts to the long-run equilibrium level with a constant speed of
adjustment. In general, the speed of adjustment coefficient in a structural
ECM s different from the speed of adjustment coefficient in its reduced
form ECM. As an example, we will show that they are different in an
exchange rate model with sticky prices. Because the reduced form speed of

adjustment coefficient mixes the structural speed of adjustment coefficient

1ghapiro and Watson’s (1988) method can also be used.

An alternative method is levels VAR without imposing unit roots.
Estimators which are based on a levels VAR are more robust but are usually
less efficient than those based on an ECM if the restrictions regarding
nonstationarity and coiniegration imposed by the ECM are true.

3The theorem should be used with caution because there exist economic
models in which the regularity conditions of the theorem do not apply as
shown in Ogaki (1998). However, the model in this paper is subject to this
criticism.




with other parameters in the system, it 18 not easy to interpret it. In the
exchange rate model, the structural speed of adjustment coefficient in the
ECM is equal to one minus the first order autoregressive coefficient for the
log real exchange rate?. Hence the structural speed of adjustment
coefficient can be used to compute the half life of the real exchange rate.
However, the reduced form speed of adjustment is a nonlinear function of the
structural speed of adjustment and the interest elasticity of money demand.
Hence the reduced form speed of adjustment coefficient in the ECM cannot be
directly compared with the half life estimates of real exchange rates in the
literature (see, e.g., Rogoff (1996) for a survey, and Kilian and Zha (2001)
and Murray and Papell (2001) for more recent works).

Standard estimaticn methods for ECMs such as Engle and Granger’s two
step method and Johansen’s (1988) Maximum Likelihood method estimate the
reduced form speed of adjustiment coefficient rather than the structural
speed of adjustment coefficient. A single equation instrumental variable
(IV) method can be directly applied to a slow adjustment equation. The main
purpose of this paper 1s to develop a system method that combines the single
equation method with Hansen and Sargent’s (1982) IV method for linear
rational expectations models.

In the single equation method, an IV method is applied to a slow
adjustment equation that describes how a variable slowly adjusts to the
long-run equilibrium level in the structural ECM. The system method

combines the single equation method with Hansen and Sargent’s (1982) method

4As explained later, the coetficient cannot be estimated by Ordinary
Least Squares with measurement errors. However, the structural coefficient
is equal to one munus the first order autoregressive coefficient of the true
value of the log real exchange rate even with measurement errors.
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which applies Hansen’s (1982) Generalized Method of Moments (GMM) to linear
rational expectations models. The system method is more efficient than the
single-equation method when the restrictions implied by linear rational
expectations models are true. On the other hand, the single equation method
is robust to misspecification in the other equations of the structural ECM.
Therefore, we can form a test statistic of the restrictions by comparing the
results from the two methods.

These methods are applied to an exchange rate model with sticky prices.
The model is a one-good version of Mussa’s (1982) model, which may be viewed
as a stochastic discrete time version of Dornbush’s (1976) model. This
model includes a slow adjustment equation, in which the domestic price
adjusts to the long run equilibrium level determined by Purchasing Power
Parity (PPP) with rational expectations. We refer the speed of adjustment
coefficient for this equation as the structural speed of adjustment
coefficient. Because the basic idea of the ECM is that variables adjust to
their long run levels, it is of interest to examine whether or not the
standard estimation methods of the ECM can be used to estimate the
structural speed of adjustment coefficient. We will show that, in the
exchange rate model, the standard ECM estimation methods do not recover the
structural speed of adjustment coefficient.

Data are for the exchange rates of currencies of Canada, France,
Germany, Italy, Japan, Netherlunds, Switzerland, United Kingdom, against the
U.S. dollar. Using the single equation method, we obtain positive estimates
for the structural speed of adjustment coefficient in most cases.

We then apply the system method to the same data set. In this case the

speed of adjustment coefficient can be estimated from the stow adjustment
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equation for the domestic price and the rational expectations equation for
the exchange rate. We form a specification test by comparing the estimates
for the speed of adjustment coefficient from these two equations.

Structural ECMs have been considered by several authors. As in VAR
models, identification of structural shocks 18 an important issue for
structural ECMs. King, Plosser, Stock, and Watson (1991), Jang (2000), and
Jang and Ogaki (2001) develop methods to identify structural shocks with
short-run and long-run restrictions. This paper focues on estimation of the
structural speed of adjustment coefficients. This issue does not arise in
VAR models with stationary variables. Urbain (1992) investigates sufficient
conditions for weak exogeneity for structural ECMs that are similar to ours.
Boswijk (1994,1995) and Hsiao (1995) discuss the relationship between the
ECM and structural simultaneous equations models. However, unlike Urbain
and Hsiao, we do not assume that exogenous variables are observed by the
econometrician.  In our empirical application, it is not natural to assume
exogeneity of any variable in the cointegrated system.  Pappell (1995)
derives a reduced form ECM from an exchange rate model that is similar to
ours. However, the real exchangre rate is nonstationary in his model unlike
ours. He applies Phillips’ (1991} ML estimator to the reduced form ECM.
Dolado, Galbraith and Banerjee (1991) and Gregory, Pagan, and Smith (1993)
derive structural ECMs from lineur quadratic models. They discuss the
difficulties associated with the application of standard estimation methods
such as Engle and Granger’s (1987) two-step method and Johansen’s (1988,
1991) Maximum Likelihood (ML) method to the ECM. They do not combine their
method with Hansen and Sargent's (1982) IV method for hnear rational

expectations models.




The rest of this paper is organized as follows. Section 2 presents an
exchange rate model in which the domestic price slowly adjusts toward the
Purchasing Power Parity (PPP) level. In Section 3, a structural ECM is
presented and its relationship to a reduced form ECM is discussed. Section
4 discusses the single equation and system methods for the structural ECM.
In Section 5, the modei of Section 2 is augmented to include measurement
errors,  Section 6 presents our empirical results for the single equation

and system methods. Section 7 contains concluding remarks.

2. An Exchange Rate Model with Sticky Prices

In this section, we present a simple exchange rate model in which the
domestic price adjusts slowly toward the long-run equilibrium level implied
by Purchasing Power Parity (PPP). This model is used to motivate a
particular form of a structural ECM in the next section. The model’s two
main components are a slow adjustment equation and a rational expectations
equation for the exchange rate. The single equation method in Section 4 is
based only on the slow adjustment equation. The system method utilizes both

the slow adjustment and rational expectations equations.

2.A. The Slow Adjustment Equation

Let p(r) be the log domestic price level, p*(t) be the log foreign
price level, and eft) be the log nominal exchange rate (the price of one
unit of the foreign currency in terms of the domestic currency). We assume
that these variables are first difference stationary. We also assume that
PPP holds in the long run, so that the real exchange rate, p() - p*(z) -
e{t), 1s stationary, or y(t) = (p(t), et), p*(t))' is cointegrated with a

cointegrating vector (1,-1,-1). Let u=E{p(t) - p*(t) - e(r)], then 1 can be
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nonzero when different units are used to measure prices in the two
countries.
Using a one-good version of Mussa’s (1982) model, the domestic price

level 1s assumed to adjust slowly to the PPP level
* * *
() Ape+l) = b u+p ()+e@ypt)] + Efp (t+1)+e+1)] - [p (1) +e(t)]

where Ax(t+1) = x(t+1)-x{t) ftfor any variable x(1), E(-|Il) is the
expectation operator conditional on It, the information available to the
economic agents at time f, and a positive constant b<1 is the adjustment
coefficient. The idea behind Equation (1) is that the domestic price level
slowly adjusts toward its PPP level of p$(r)+e(t), while it adjusts
instantaneously to the expected change in its PPP level. The adjustment
speed is slow (fast) when & 1s close 10 zero (one).

From Equation (1). we obtain
Q) Bplt+1) =d +blp @) + elt) - pi)] + Ap (t+1) + Ae(t+1) + eft+1)

where d=byL, €(+1) =Efp (t+1)+e(t+1)]-[p (t+1)+e(t+1)]. Hencee(t+1)is
a one-period ahead forecasting error. and Efe(t+1}|1 r] = (. Because p$(t) +
e(t) - p(t) is the log real exchange rate, » coincides with one minus the
first order autoregressive coetficient of the log real exchange rate.
Without measurement errors, the coefficient b can be estimated by Ordinary
Least Squares directly from (2). In the presence of measurment error,
instrumental variables are necessary.  We will consider cases with and

without measurement ercor.

2.B. The Exchange Rare under Rativnal Expectations

We close the model by adding the money demand equation and the




Uncovered Interest Parity condition. Let

3 m@) =8+ p@) - hil)

4 itt) = i*(r) + E[e(r+})|1r] - eft)
where mf() is the log nominal money supply minus the log real national
income, iff) is the nominal interest rate in the domestic country, and i*(r)
is the nominal interest rate in the foreign country. In (3), we are
assuming that the income efasticity of money is one. From (3) and (4), we
obtain
* *
(5) Ele@+1)|I]-e() = (1/h) {8+ p(t) - of) - k Elp ¢+1)-p 0]|1]}
where
s
(6) W) = m@t) + hr (1)
and r*(t) is the foreign real interest rate:
% ok Lk _ *
(7 @ =i@-Ep e+l +p @)

Following Mussa, selving (I) and (5) as a system of stochastic

difference equation for Efp(t+j) |I|] and Efe(t+j) |Ir] for fixed ¢ results in

o

®  p) = EFOU, ] - T d-b) (EFe)I ] - EFEHII, J)
=0

@ e =2 L5yt - ptw - Apw)

where

(10)  F@) = (1 -[5) ) or+))
j=0

and d=h/(1+h).

We assume that w(r) is first difference stationary. Since & is a

8




positive constant that s smaller than one, this implies that F{t) is also

first difference stationary. From (8} and (9),

(D e@+p 6pt) = T (-0 EFE)IL ] -EFCH|I I}
=0

*

Since the right hand side of (11) is stationary,d e(ty+p (t}-p(t) 1is
*

stationary. Hence Equation (11) implies that ({pff), eft), p (1)) is

cointegrated with a cointegrating vector (1,-1,-1).

2.C. Hansen and Sargent’s Formula
In order to obtain a structural ECM representation from the exchange
rate model, we use Hansen and Sargent’s (1980, 1982) formula for linear

rational expectations models. From (9}, we obtain

(4]

ST sy sl

=0
. E%A;J(H-U - apTHD) + e g+l

where Ee(H_U = %{I’E[F[HUH]] —E[FT+]|IJ}, so that the law of iterated

(12) Ae(r+1)

expectations implies E[EJHU”;]:O‘ The system method in Section 3 is
applicable because this equation involves a discounted sum of expected
future values of Amf(),

Hansen and Sargent (1982) proposes to project the conditional
expectation of the discounted sum, Lfy SjAy4(t+j+1)|I l] onte an information
set HI, which is a subset of Il. the economic agents’ information set. Let
;E\,'( . 1H[) be the linear projection operator conditional on an information set

HI which is a subset of [.‘

5This assumes that E[,r'F(f)]-El_l[Fu}j 1s stationary, which is true for a

large class of first difference swationary variable F() and information
sets.




We take the econometrician’s information set at ¢, H[, to be the one

*
generated by the lmear functions of the current and past values of Ap (¢).
Then replacing the cconomic agents’ best forecast, E[}:SiAm(t+j+I}|Ij, by

the econometrician’s linear forecast based on H{r) in Equation (12), we

obtain
_ bh+1 N .
(13) Be(t+1) = == (I-8) E[ ) BAwe+j+1)|H ()
=8
- AP 1) - Ap (D) + w4 D)
where
(14) uz(f+]) = ec(r-i-}) +

PRYL08) E (T §a0u+j+ 1)) E[f§A0@+j+1) | HOJ}.

Because H[ is a subset of II, we obtain E[uz(r+1)|Hr] = {).
Since Ef-|H (] is the linear projection operator onto H:’ there exist

possibly mfinite order lag pelynomials B(@}, y({L), and &(L), such that

(15)  E[Ap ¢+1)|H@)] = BLIAY @)

(16)  EfAo@+1){HW)] = yLbp ()

o}
~

j - N I *
(a7 E[) SAo+j+ )| HO] = SL)Ap ()
j=0
Then following Hansen and Sargent (1980, Appendix A), we obtain the
restrictions imposed by (13) on &(L):

(18) Ea) = YO Y@HI-SB®)) {1-LB)}
18
¥
Assume that linear projections of Ap (t+1) and Aw(t+1) onto H{t) have

sk
only finite number of Ap (¢ terms:
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(19) Efap" (+D|HO = BAp @) + BAD (-1 + .. + BpAp*(z-pH}

(20) Efpou+D|HO] = 10p @) + vap (D) + ..+ Yp_lAp*(t-p+2)

Here we assume [() is of order p and y(L} is of order p-I m order to
simplify the exposition, but we do not lose generality because any of Bi and
Y, can be zero. Then as in Hansen and Sargent (1982), (18) mmplies that
E(L) =C;U+§1L+... +§pL", where
@y & = vE){1-56@®);"
& = SY©){I-5B®)) (B, + 5p

+ ...+ &
i} it2 0 Bp)

8y L+ 8"'j~,rp) for j=1.....p.
Thus

oo
s

(22) E[ZSjAm(£+j‘+})|1~1(r)} = 2‘;1;1;)*(0 + ézAp*(r-J) + ...+ épAp*(z-erl).
j=0
Using (2), (13), (15}, (16), and (22), we obtain a system of four

equations:

(23) Aplt+1) = d + Ap (1+1) + Be+1) - blp) - p () - e()] + u (t+1)
(24)  Beft+D) = - ZAp+l) - &p (+1) +

AP () + aBAp () + .+ agpap*(:-pﬂ) +u+)
@5y ApTu+D) = BAp ) + Bap D) + .+ BpAp*(r-p—H) + u (t+])

26) Ao@+D) = yAp @) + vAp ) + .+ yp_lAp*(t~p+2) + u,(t+1)

bh+ -
where o, = *b-h—f (1-8) and u (1+1) = e(r+1).

E
Given the data for jAp(r+1), Acy+1), Ap (t+1), Aw(t+1)]", GMM can be

applied to these four equations as will be discussed in Section 4.B. There
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exist additional complications for cobtaining data for Aw(t+1) as we discuss

in Section 4.C.

3. Structural Models and Error Correction Models
In this section, we discuss the relationship between structural models
and ECMs. Let y() be an n-dimensional vector of first difference
stationary random  variables. We  assume that there exist p linearly
independent cointegrating vectors, so that A’y{f) is stationary, where A’ is
a (p x nj matrix of real numbers whose rows are linearly independent

colntegrating vectors. Consider a standard ECM
(27) Aye+1) = k + GA’y(1) + F Ay(r) + FAy(-1) +

+ pr{r—p-&-}) + v{t+1},
where Kk 1s a (n x 1) vector, G is a (n x p) matrix of real numbers, v(t) is
a stationary n-dimensicnal vector of random variables with Ef(v(t+1 )|HT_T)=O.
In many applications 1=0, but we will give examples of applications in which
1>0.0  There exist many ways to estimate (27). For example, Engle and
Granger’s two step method or Johansen’s Maximum Likelihood methods can be
used.

Many applications of standard ECMs give elements in G structural
interpretations as parameters of the speed of adjustment toward the long-run
equilibrium represented by A‘y({r). It 1s of interest to study conditions
under which the elements in G can be given such a structural interpretation.

In the model of the previcus section, the domestic price level gradually

SWe will treat more general cases in which the expectation of v{r+1)
conditional on the economic agents’ information is not zero, but the linear
projection of v{r+1) onto an econometrician’s information set (which is
smaller than the economic agents’ information set) is zero.
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adjusts to its PPP level with a speed of adjustment parameter 4. We will
investigate conditions under which & can be estimated as an element in G
from {27).

In most applications, (27) is a reduced form model. A class of

structural models can be written in the following form of a structural ECM:
(28) CnAy(r+I) =d + BA'v({) + C}Ay(z) + CAy@-1) +

.+ CFAy{r-p+I) + uit+1i)

where Ci is a (n x n) matrix, d is an (r x 1) vector, and B is an (n x p)
matrix of real numbers.” Here C:, is a nonsingular matrix of real numbers
with ones along its principal diagonal, u{f) is a stationary #s-dimensional
vector of random variables with E[u(r+])|H[_T] = 0. Even though
cointegrating vectors are not unique, we assume that there is a
normalization that uniquely determines A, so that parameters in B have
structural meanings.

The exchange rate model can be written in the SECM form (28&) as in the
system of equations (23)-(26): we have y(t) = [Ap{t+1), Ae(t+1), Ap$(r+1),
Ao+ 1)}, B=[-56,0,0,0{ . A=[], -1, -1, O]",

I -1 -1 0
e 1 10
@ C=1% o 1 o
0 0 0 I
and

7If the deterministic cointegration restriction (see Ogaki and Park, 1998,
for this terminology) is not satisficd. then a lJinear trend term needs to be
added to Equation (28).
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o 0 0 0
0 0 af 0
(30) CJ. =lo o0 BJ. 0
0 0 Y 0

for j=1,....p. For any nonzero constant v, vy{i, -1, -I1)’ is also a
cointegrating vector. However, the first row of B is & only when W is
normalized to one.

In order to see the relationship between the standard ECM and the
structural ECM, we premultiply both sides of (4) by C(']] to obtain the
standard ECM (3), where k = C''d. G=C(']1B, F = Cl')‘c,l, and v(1) = C{']}u(r).
Thus the standard ECM esumated by Engle and Granger’s two step method or
Johansen’s Maximum Likelihood methods is a reduced form model. Hence it
cannot be used to recover structural parameters in B, nor can the impulse-
response functions based on v{t) be interpreted in a structural way unless
some restrictions are imposed on CU.

As in a VAR, various restrictions are possible for C()' One example 18
to assume that C is lower triangular. If C is lower triangular, then the
first row of G is equal to the first row of B, and structural parameters in
the first row of B are estimated by the standard methods used to estimate an
ECM.

In the exchange rate model in the previous section, b is a structural
parameter of interest.  For the purpose of estimating & in the model, the
restriction that Cn is lower triangular is not attractive. However, as 1s
clear from Equation (29), the structural ECM from the one-good version of
the exchange rate model does not satisty the restriction that C is lower

triangular for any ordering of the variables. Even though some structural

14




models may be written in iower triangular form, this example suggests that
many structural models cannot be written in that particular form.
It is instructive to observe the relationship between the structural
ECM and the reduced form ECM in the exchange rate model. Because
b!l/{!?!:+l_} bh./(af;h-i-l) o 0
31) C{]-l _ —}/(b(!)z-i- 1) bh/(z_gw-l) J; 8
0 0 0 1
G = C'B = [-0'h/(bh+1), b/(bh+1), 0, ). Comparing G and B shows
contemporaneous interactions between the domestic price and the exchange
rate affect the speed of adjustment coefficients. The speed of adjustment
coefficient for the domestic price is & in the structural model, while it is
bzh/(bh+1) in the reduced form model. The error correction term does not
appear in the second equation for the exchange rate in the structural ECM,
while it appears with the speed of adjustment coefficient of b/(bh+1) in the

reduced form model.

4. The Instrumental Variables Methods
Because standard methods of cstimating reduced form ECMs may not
recover the structural parameters of interest in B, we consider two
instrumental variables methods. The single equation method simply applies
an IV estimator to a slow adjustment equation. The system method combines
the single equation method with Hansen-Sargent IV estimator. These methods

do mot require restrictions on C .
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4.A. The Single Eguation Method

First, we consider a single equation method, which applies an IV method
to a slow adjustment equation. Imagine that we are interested in estimating
the first row of Equauon (28). In some applications, the cointegrating
vectors are known, and thus the values of A are known. [t should be noted
that ordinary least squares may be applicable in this case of known
cointegrating vectors.8  In other applications, the values of A are unknown.
In the case of the unknown cointegrating vectors, a two step method that is
similar to Engle and Granger’s (1987) and Cooley and Ogaki’s (1996) methods
can be used. In this two-step method, the cointegrating vectors are
estimated in the first step.

In the first step. we estimate A, using a method to consistently
estimate cointegrating vectors. There exist many methods to estimate
cointegrating vectors. Jfohansen’s Maximum Likelihood (ML) Estimators for
Equation (27) can be used for this purpose. If p is equal to one,
estimators based on regressions that are as efficient as Johansen’s ML
estimators such as Phillips and Hansen’s Fully Modified Estimation Method
(1990), Park’s (1992} Canonical Cointegrating Regression, and Stock and
Watson’s (1993) estimators can be used. Ordinary Least Squares estimators
are also consistent when p 1s equal to one, but not as efficient as these
estimators. We assume that A’r 15 the first step estimator, where T is the

. - 1/2
sample size, and AT converges to A at a faster rate than T 2

8In our exchange rate model without measurement errors, ordinary least
squres can be applied W an autoregressive regression for the real exchange
rate tg estimate the structural speed of adjustment coefficient.

Usually, AT converges at the rate of T, but there are cases where AT

converges at the rate of 7" (see West, 1988)
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In the single equation method, an IV method is applied to
(32) Ay (1+1) = d - LAy it+1)- .. - c(l}n.f_‘.y"(wrl) + b A"y

+ c:Ay(t) + C;Ay(I-U + ...+ c;Ay(r-p+1) + ul{r+1),

where y_l(r) is the /-th element of y(), af1 is the first element in d, C:)i
1s the i-th element of the first row of CU, h1 is the first row of B, cl,l 18
the first row of C_l, and ul(r) 15 the first element of wu(). When
E[u](r+1)|Ht_T]=0._ any stationary variable in the information set available
at time ¢t that is correlated with variables in the right hand side of
Equation (32) can be used as an instrumental variable. In the case of the
known cointegrating vectors, the known values of A are used in (32). In the
case of the unknown cointegrating vectors, AT obtained in the first step
replaces A in Equation (32). Because AT converges t0 A at a faster rate
1/2

than 7", the first step estimation does not affect the asymptotic

distributions of the second step estimator under regularity conditions. 10

4.B. The System Method

In this section. we propose an econometric method that combines our
single equation method with Hansen and Sargent’s (1982) procedure to impose
nonlinear restrictions implied by rational expectations models.

Let y(r)=(yl(r),y:(r),_vs(r),):4(r))’ be a 4x1 vector of random variables
with a structural ECM representation (4). Assume that there exists only one

linearly independent cointegrating vector A such that A’y(t) is stationary.

10As suggested by the results in de Jong (2001), the first step
estimation can affect the asymptotic distributions of the second step
estimator because of the nonlinear restrictions. However, because the
equations are linear in this application, the reqularity conditions are
likely to hold.
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In the following, y(r} is partitioned into four subvectors, and each
subvector is given a different role. For expositional simplicity, we assume
that each subvector is one dimensional so that y{f) is a 4x1 vector, and
that y(z) has only one cointegrating vector.

The first element of y(z) represents a slow adjustment as in Equation
(32), with nonzero b} where E[ul(HJ ) |Hn-':]20' We assume that the second

element of y{) is related to a discounted sum of expected future values of

the fourth element in the following form:

_ 2 B _ 2 _ 2
(33) Ay e+1) = d, - ¢ Ay (1+1) - ¢ Ay (t+1)- ¢ Ay, (1+1)
+ OLE[ZSjA}!__I(t+j+J)|]r) + € (t+1)
i=u

where & is a positive constant that is smaller than one, and « is a
constant.  As pointed out by Hansen and Sargent, many linear rational
expectations models imply that one variable is a geometrically declining
weighted sum of expected future values of other variables.

Hansen and Sargent’s (1982) methodology is to project the conditional
expectation of the discounted sum, Lfy SjAy4(t+j+I M j, onto an information
set H[, which i1s a subset of [l. the economic agents’ information set. Let
g‘{ . |HI) be the linear projection operator conditional on an information set
H which is a subset of I[, Replacing the conditional expectation by the

linear projection gives

— 2 1 — - 2 - 2
(34) Ayz(t+1) = "’_. - cmA}I(H 1) CUSAya(t+J) c04Ay4(r+1)

+ aFf § 88y g+j+D|H] + w 1),
j=0

where
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35 uz(r+1) = EE(H—I) + E[Z(‘SJAy4(t+j+I)|f[] - ;%[ZSjAy4(t+j+I)|H(}.
j=0 i=0

Because HT is a subset of I!, we obtain }%[uz(t+})|HJ = {},

The current and past values of the first difference of the third
element of y() are used to form the econometrician’s information set H:'
Since Ef-|H r] 18 the linear projection operator onto Ht, there exist

possibly infinite order lag pelynomials B(L}, v(L}, and E(L), such that

(36)  E[Ay,(+1)|H©)] = BLIAY, @)

BT E[by (t+1)|H®)] = vL)Ay, (1)

(38)  E[) §ay,(+j+1)|HO] = EL)AY, (1)
i=0

Then following Hansen and Sargent (1980, Appendix A), we obtain the

restrictions imposed on E(L):

(39) ey = YELSLY@){1-8B®)) (I-LBL)}
1-8L."

Substituting (38) into (34) gives the equation

. 2 ) . B 2 _ 2
(40) Ay, (t+1) = d, - € Ay (t+1) - ¢ Ay (1+D)- ¢ Ay, (t+1)

+ o E(L) Ay ) + uz(r+l),
where (L) is given by (39). We now make an additional assumption that the

lag polynomials B(.) and y(L) are tinite order polynomials, so that

(1) Ay (t+1) = BAy () + Bay (-1) + .+ BAY(pHD) + ur+])

(42) Ay (1) = YO0 () + YA, (1) + .+ Yy (p+2) + u (t+])

where E[ui(r+ 1) |H!'/=O for i=3,4. Here we assume B(L} is of order p and y(L)
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is of order p-I In order to simplity the exposition, but we do not lose
generality because any of B and v can be zero. Then as in Hansen and
| !

Sargent (1982}, (39) implies

(43) E = v8){1-5p(5)}"
& = S@(I-SP®}' B, + 8B, + ... + 8B
+(YJ. + SW/J_ + ...+ Sp'j'yp) for j=1,...,p.

In the SECM form (28), we huve B=[-b,0,0,0]", A=f1, -1, -1, O,

Ji ¢’ : ! 1
0 03 [
(44) Cn - C;11 d :13 ]’
0 0 I 0
0 0 0 1
and
[ i 1 1 |
c C. < C
Jt I 13 14
0 0 af 0
(45) C = |
1 0 0 [ij 0
( 0 YJ 0

for j=1,...,p, where 'yp=0.

We have now obtamned a system of four equations that consist of (32),
(40), (41), and (42). Because Eml(:)ul_,[):o and E(ui(t)|Hl)=O, we can
obtain a vector of instrumental variables zl(t) n ][-“c for ul(t) and z,l(r)
in H: for ui{r) (i=2,3,4).

Because the speed of adjustment & for yl(r) affects the dynamics of

other variables,!! there will be cross-equation restrictions involving & in

1INote that only y ) adjusts  slowly, but b affects dynamics of other
variables because of imeractions between yl(r} and those variables.
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many applications in addition to the restrictions in (43). Using the moment
conditions E[zi(r)ui(rjij for i=1,....4, we form a GMM estimator, imposing
the restrictions in (43) and the other cross-equation restrictions implied
by the model.

Given estimates of cointegrating vectors from the first step, this
system method provides more efficient estimators than the single equation
two step method proposed in Section 3 as long as the restrictions implied by
the model are true. On the other hand, the single equation two step method
estimators are more robust because misspecification in other equations does
not affect their consistency. The cross-equation restrictions can be tested
by Wald, Likelihood Ratio type, and Lagrange Multiplier tests in the GMM
framework (see, e.g., Ogaki 1993a). When restrictions are nonlinear,
Likelihcod Ratio type and Lagrange Multiplier tests are known to be more

reliable than Wald tests.

4.C. Applying the System Method to the Exchange Rate Model

In order to apply the systemm method to Equations (23)-(26) of the
exchange rate model in Section 2, we need data for Aw{), which requires the
knowledge of 4. Even though / is unknown, a cointegrating regression can be
applied to money demand if meney demand is stable in the long-run as in

Stock and Watson (1993). For this purpose, we augment the model as follows:
46)  m{t) =6 + p@) - hi@) + C ()

where £ (1) is the money demand shock, which is assumed to be stationary, so
m
that money demand 1s stable.
By redefining m{f) in the previous section as m(r)-f;m(t), the same

equations as those in Section 2 are obtained. For the measurement of Aw(t)
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used in the system method, we note that the ex ame foreign real interest
rate can be replaced by the ex peosr real foreign real interest rate because
of the Law of lterated Expectations. Using the money market clearing

condition (46), we obtain
A7) A} = Ap(t+1) -hAi+1)+hAL @+1) h [Ap (+2)-Ap (+D)].

With this expression, Aw(t) can be measured from price and interest rate
data without data for monetary aggregate and national income once A is
obtained. This is useful because the latter data are available not at the

monthly frequency for many countrics.

5. A Meusurement Model

We apply the singic cquation and system methods to the exchange rate
model in Section 2, using monthly cxchange rate and aggregate price data for
Canada, France, Germany. ltaly, Japan, the Netherlands, Switzerland, the
United Kingdom, and the United States from January 1974 to June 1995. In
the model, we assume that y{) = (p(), e(), p*(r)) is cointegrated with a
known cointegrating vector (I,-1,-1). This assumption may cause a problem
in applications of the model to data in the post-Bretton Woods period
because many researchers have failed to reject the null hypothesis of no
cointegration using similar data sets. Because more favorable evidence for
the assumption is often found when a longer sample period is used, the
failure to reject no cointegration may be due to low power of the no
cointegration tests in small samples (see, e.g., Rogoff, 1995 for a survey).
Because the evidence is mixed, a sensitivity analysis with respect to this
assumption is in order.  For the purpose of a sensitivity analysis, we

employ Cheung and Lui (1993) and Fisher and Park’s (1991) model with
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measurement errors to allow the cointegrating vector to be different from

(4,-1,-1).

5.A. Measurement Errors and the Single Equation Method
¥
Let p™1) and p "{r) be the log measured domestic and foreign prices,

which are related to the true prices by

48) p"t) =8 + 6 pt)y + v}

*n # T #
4% p =0 +¢ pO) + v

#
where Ei_][v(r)]=0 and EH['.) (r}]=0. We assume that true prices follow the

model of Section 2 and satisty PPP in the long-run. Then

50) ) - belr) - 0 )p M) = 0-0°0/07) + ¢ [pE)-e)p O]
+ -0 )V @]

*
is statiomary. Hence, y@=@"@). e, p "))’ is cointegrated with a
cointegrating  vector  (/,-¢,-0/¢ ). In the first step, we run a

cointegrating regression of the form

51 P = v, + wel) + vy "0 + Lo,

where \|11=¢, ¢2=¢/¢"‘, and {1} is statiomary with mean zero.
In order to obtain the second step estimator, we use Equation (2) and

ApUe+1) = o Ap@+1) + Av(+1) 0 obtain
52)  AP"+D) = d - b [PV - o) - @0 )p "))

0 AP Ta+]) + b Ae(t+1) + wi+])
where d = b(p+9-8$¢/¢*), and
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(53)  w+D) = Oe+l) + vi+i) - (I-b)v()-po/ v @+1)

LB ) ().
Because E[_][w(t+1}]=0. we can apply the two step procedure from the last
section as long as the instrumental variables are chosen from the
information set available at z-/. In this case, the second step is to apply
an IV estimation method to Equation (52), where ¢ and ¢* are obtained in the
first step estimation. Because El_l[mv(r-i-l)]:() and w(t+1) is in the
information set available at r+/, w@+1) has a moving average (MA)
representation of order one, and this serial correlation structure needs to
be taken into account (see, e.g., Ogaki 1993a for an explanation of methods

which treat this type of serial correlation in GMM).

5.B. Measurement Errors and the Svstem Method

We use the measurement modei for the purpose of a sensitivity analysis
with respect to PPP as tn the case lor the single equation method. Again it
1s assumed that the model is true for the true price levels, but that only
measured prices that follow (48) and (49) are observed. Since p™(f) and
p*‘“(t) are observed instead of p(7) and p*(t), (48) and (49) are substituted
into Equations (23)-(26) in order to express these equations in terms of
measured prices. It s also assumed that H! 1s the information set
generated by the current and past values of Ap*"'(f) instead of Ap*(f).

As for the adjustment to the PPP level, (23) is replaced by (52). For

Awm{t), we use
m T a . ¥ h *m *m
(54) Aw (r+1)—5Ap {14+ 1)-hAiGT+ 1 FRAT (04 1)-—fAp T (+2)-Ap T (t+1)],
o

50 that
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w

(55) Aet+1) = d + %*hi (1-8) E[ZajAw‘“(r+j+1)|H(:)j

j=0
; Efwﬁp”‘aﬂ) - éﬁap*’“(rﬂ) + u(t+1)

where
s6) W+l = w+1) - B 1g) E[% Vi) - q—}’;v*(:)[ﬂ(z)]

v Lavern - Laviern
Dho o ’

and E[u';(t+1)[Hl-]] = 0
Because the price level 1s assumed to be measured with errors as in

(48),

(57)  m@) =0, + (pp" ) - hiw) + L)

where 92=8m—8/¢ and ?;2(1) = t_',m(r)-v(f)/q:u. Because f;z(t) is stationary, a
cointegrating regression is applied to (57), assuming m(t) and it} are
first difference stationary.

Thus we run two cointegrating regressions, (51) and (57), in the first
step. In the second step, GMM is applied to the system of four equations
that consist of (52),

(58) Aeft+1) = - Efﬁ&p'"(r-f-]) A Ap ™+
®

o Ap W) + o Ap (1) + .+ aE,pAp*m(t-p+1) + uT+ )
(539) Ap ™e+1) = =P ap @ +Bap "D .+ BpAp*m(t—p+]} +u(t+])

60) AW"(+1) =yAp ") + ¥,Ap (D) + .. + «,rp_IAp*'“(:-pu) + u,(1+1)

£
where A is replaced by its estimate from (537) and ¢ and ¢ are replaced by

their estimates from (51). As before, because the first step estimators are
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super consistent, the first step estimation does not affect asymptotic
distributions of the second step GMM estimators under some regularity

conditions.

6. Empirical Results

In this section, we present cmpirical results for the single equation
procedure. Monthly end-of-period foreign exchange rates from the
International Financial Statistics {I°S) are used. The foreign exchange
rates are stated as the domestic price of one unit of foreign currency. In
each regression, the United States is regarded as the foreign country, while
other countries are the domestic countries. Meonthly CPI is used to measure
prices in the model. The sample period is from January 1974 to June 1995.

For each couhtry, we report results for two cases. The first case is
when prices are measured without error, which leads to the case of the known
cointegrating vector.  The second case is that of the measurement error
model of Section 5.A. in which the cointegrating vector for domestic prices,
exchange rates and foreign prices is not restricted to be (1,-1,-1). For
the latter case, the two-step method is used. In the first step, we use CCR
to obtain long-run coefficients in PPP relations. In the second step, we
apply GMM to estimate the short-run coefficient.

For the measurement error model, we need estimates of the coefficients
in the cointegrating relationship (51), which is based on PPP. Table 1
presents the results cointegrating regressions. We report the third stage
estimates of CCR for the coefficiems and the fourth stage test results.

The deterministic cointegrating restrictions are rejected for Canada,

France, Germany and ltaly at the five percent significance level.  The
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restriction is rejected for France at the one percent significance level.
The restriction is not rejected for Japan, the Netherlands, Switzerland and
UK at the five percent level.

Stochastic cointegration is not rejected for Germany, Switzerland and
UK at the one percent significance level for any H(l,q) test in the table.
French and Japanese data reject the null of stochastic cointegration for any
H(1,q) test.

Even though the main focus of this paper is the system method results,
Table 2 reports the single equation method results for the purpose of
comparisons with the svstem method results.  The instrumental variables are
Ap*m(r-j’) and Ap*m(f—«ij, which are US prices. For each country, the first
row in table 2 reports the GMM results for the case of the known
cointegrating vector (1, -1, -1), and the second row shows the GMM results
for the case of the unknown cointegrating vector. To obtain the half life
of each estimate for b, we rearrange the ECM equation as an AR(1) process
for the real exchange rates.

In most cases, we obtain positive point estimates for the structural
speed of adjustment coefficient . In cases where the point estimates are
negative, they are not significantly different from zero at the 5 percent
level.

For the system method, our estimation procedure has two steps. First,
we estimate the moneclary equilibrium equation to obtain interest elasticity
of money demand. For the measurement error model, we also obtain the
measurement error coefficients, exploiting the long-run relationship between
domestic prices, foreign prices and exchange rates, In the second step, the

speed of price adjustment is estimated from the adjustment equation as well
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as the Hansen and Sargent equations.

To estimate the interest elasticity of money demand, we use the sum of
M1 and Quasi Money as the measure of the money stock, called M2, as the IFS
suggests, The data for interest rates are the three month T-bill rates, but
three month deposit rates are employed for Japan because T-bill rates are
not available. We use nominal and real gross domestic product data in the
IFS dataset for all countries except the UK, for which we use the DRI data.
All data series are scasonally unadjusted.  Sample periods vary across
countries, according to data availa‘t}ility.l2

The semi-elasticity of interest rates in the money demand equation is
estimated using quarterly data. However, since we use monthly data to
estimate the systemn, we transtform the quarterly estimated elasticities into
monthly elasticities. We multiply the elasticities from the quarterly data
by 3, because the quarterly interest rates are divided by 3 to obtain
monthly interest rates.

Table 3 shows the CCR results for the money demand equations. We
assume that the income elasticity of money demand is one. For each country,
the first row reports the results when the coefficient of the log price is
restricted to be one, and the second row reports the results when the
coefficient is allowed to differ from one. When we employ the measurement
error model, we use the results reported in the second row.

The null of stochastic cointegration is rejected only for Germany,

regardless of the assumption of mecasurement errors at the 5 percent level.

12 Sample periods used to estimate nioney demand equations are 1975:1 - 1995:1
for Canada, 1986:3 - 1995:1 for Frauce, 1978:3 - 1995:1 for Germany, 1977:1
- 1993:3 for ltaly, 1974:1 - 1993:4 for Japan, 1978:2 - 1990:2 for
Netherlands, 1980:1 - 1995:2 for Switzerland, and 1974:1 - 1994:1 for U.K.

28




The deterministic cointegrating restriction is rejected for Germany, Italy
and Japan at the 5 percent level, when we allow for measurement errors. With
the prespecified cointegrating vector (1, -1, -1), France and Switzerland
reject the deterministic cointegraiing restriction at the 5 percent level,
but do not reject it at 1 percent.

In all cases, the signs of the estimates for the interest elasticity of
money demand are negative, as expected from the economic model. For Canada,
France and Switzerland, the specification of measurement errors does not
affect the estimates for the interest elasticities. However, for Germany,
Italy, Japan, the Nethertunds and the UK, the estimates from the measurement
error models have smaller values than those from the models without
measurement error. Interestingly, these range from one fourth to one fifth
of the estimates from the no measurement error models for each country.

When we restrict the cointegrating vector to (1, -1, -1), the
measurement error coefficients are no longer free parameters. In this case,
we have no problem when we separately run two cointegrating regressions
which include a common coefficient. But, if we allow for measurement errors
in price indices, then we have two estimates for the measurement error
coefficient on the domestic prices. One set of estimates is obtained from
the PPP regression and the other set from the money demand equation. There
is no guarantee in practice for the two estimates to be the same. If the
estimates from the two equations :wre significantly different, it might imply
misspecification of the simple exchange rate model. Although this 15 the’
case, we use the estimates from the PPP equation in Table 1 because we are
more interested in PPP than in the money demand equation. Park and Ogaki

(1991) suggest the seemingly unrelated canonical cointegrating regressions
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(SUCCR) method to deal with cross equation restrictions, when there are
cointegrating vectors n the equations. However, since the small sample
properties of their estimator are not better than CCR, we use the estimates
from PPP.

Table 4 reports the results of GMM estimation using the system method.
The instrumental variables are Apﬁ:'”(!—j’) and Ap*'“(t-éi), which are US prices.
For each country, we report results for the known cointegrating vector case
and the unknown cointegrating vector case. In the system method, the
structural speed of adjustment coefficient b, appears in two equations: the
slow adjustment equation, (3.29) or (2.15), or the Hansen-Sargent equation,
(3.30) or (3.38). The model imposes the restriction that the coefficient b
in the slow adjustment equation is the same as the coefficient b in the
Hansen-Sargent equation, We  report results with and  without this
restriction 1mposed for the system method of estimation. In the case of
unrestricted estimaticn, bhS is the estimate of b from the Hansen-Sargent
equation, and bsa is the estimate of & from the slow adjustment equation.
The restricted estimate is denoted by br. The likelihood ratio type test
statistic (see, e.g., Ogaki (1993a) for an explanation of this test),
denoted by C, is used to test the restriction. In most cases, this
restriction is not rejecied at the {ive percent level. The exceptions are
France with the unknown cointegrating vector case, Italy for both cases,
Japan for the known cointegrating vector case.

All  restricted estimates for the structural speed of adjustment
coefficient have the theoretically correct positive sign.  Most of them are
significant at the five percent level.  In almost all cases, the asymptotic

standard error for the speed of adjustment coefficient is smaller when the
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system method is used than when the single equation method is used.

The half life is calculated from the restricted estimate of the
structural speed of adjustment coefficient in each case.  The half life
estimate is based on the first order autoregressive process of the domestic
price impltied by Equation (1). The half life estimates range from 0.23 to
7.10 years. Rogoff (1996) describes the consensus of 3-5 year half lives
when long-horizon data are used. Only four point estimates for Italy and
U.K. fall in this range. For [France, Germany, the Netherlands, and
Switzerland, the point estimates of half lives are shorter. For Canada and
Japan, the half life esumates are very different depending on whether or

not the cointegrating vector is assunied to be known.

7. Conciuding Remarks

This paper compares reduced form ECMs with structural form ECMs. The
speed of adjustment cocfficients in reduced form ECMs are different from
those in structural form ECMs in general, and in our example of an exchange
rate model with sticky prices. We discussed a single equation IV method and
a system IV method to estimate structural speed of adjustment coefficients.
These IV methods do not require exogeneity assumptions, and can be applied
to a broad range of structural ECMs.

When the single equation method is applied to the exchange rate model,
the point estimate for the speed of adjustment coefficient are positive for
most countries. When the system method is applied to the exchange rate
model, the speed of adjustmem coctficient is estimated from both the slow
adjustment equation for the domestic price and the rational expectations

equation for the exchange rate. Half life estimates from the system method
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tend to be shorter than the consensus of 3-5 years explained by Rogoff
(1996). In most cases, this restriction is not rejected at the five percent
level. In some cases, the restricted estimate is significantly negative,
indicating that the restricted model is misspecified.  For the purpose of
estimating the structural speed ol adjustment coefficient, the results for
Canada and France in the case of the known cointegrating vector and those
for Canada, Japan, and the U.K. are encouraging. In each of these cases,
the restriction is not rejected and the restricted estimate is positive and
significant at the five percent level.

Kim (2000} applies the system method developed in this paper to traded
and nontraded good prices. He finds that traded good prices adjust faster

than nontraded good prices.
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TABLE 1.

Purchasing Power Parity

Country Yo e o/0t  H{©,1) H({1,2) H(l13)
0y (2) (3) (4) (3) (6) (7
Canada 0.005 0.029 1.014 5377 2.911 8.443

(0.169y (0.122) (0.024) (0.020) (0.088) (0.013)
France -0.899 0.221 1.106 104.0 30.17 41.67
(0.047) (0.017) (0.014) (0.000) (0.000) (0.000)
Germany 2.796  0.073 0.376 5402 5.571 6.068
(0.220) (0.022) (0.054) (0.020) (0.018) (0.048)
Italy -4.283 0.192 1.621  4.134 1.355 3.264
(0.064) (0.020) (0.028) (0.042) (0.244) {0.196)
Japan 0.509 0.156  0.728 0.204 6.963 22.45
(0.370) (0.039) (0.042) (0.652) (0.008) (0.000)
Netherlands 1.548 0.141 0.651 2.871 0.208 19.81
(0.167y (0.036) (0.021) (0.090) (0.648) (0.000)
Switzerland 2.929 0.027 0.346 1.763 3.460 3.473
(0.221) (0.031) (0.052) (0.184) (0.063) (0.176)
UK. -1.902 0.369 1.458 0.003 2.68 5.07%8
(0.144) (0.071) (0.030) (0.958) (0.101) (0.079)

Note: Results for p™(t) = wyg + defr) + (©/6%p ™M) + L)
Column (1) : domestic countries
Column (2)-(4) : Standard errors are in parentheses.
Column (5)-(7) : P-values are in parentheses.
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TABLE 2. The Single Equation Method Resuits

2

Country b /o d b y
(1} (2) (3) (4)

Canada 1 I -0.0036 0.0126 1.712
(0.0024) (0.0104) (0.634)
0.029 1.014  0.0005 0.0166 4.688
(0.0002) (0.0050)  (0.196)
France 1 1 -0.0268 0.0151 2.113
(0.0224) (0.0125) {0.549)
0.221 1.106 -0.0300 0.0335 2.324
(0.0131) (0.0146) (0.508)
Germany 1 1 -0.0042 0.0110 5.793
(0.0063) (0.0110) (0.122)
0.073 0.376 -0.0039 -0.0018 6.531
(0.0093) (0.0033) (0.088)
Italy 1 1 0.0701  -0.0094 1.612
(0.1880) (0.0256)  (0.657)
0.162 1.621 0.0058 -0.0014 9.025
(0.0423) (0.0099)  (0.02%)
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TABLE 2 - conrinued

Country ) o/ | d b ‘,gz
(1 (2) (3) (4)
Japan 1 1 -0.0143 0.0037 5.552

(0.0488) (0.0096) (0.136)

0.156 0.728 0.0209 0.0398 6.374

(0.0083) (0.0164) (0.095)

Netherlands 1 1 -0.0110 0.0182 0.074
(0.0071) (0.0106) (0.995)

0.141 0.651 0.0694 0.0445 2.788

{0.0197) (0.0127) {0.426)

Switzerland 1 1 -0.0098 (0.0248 1.471
(0.0081) (0.0162) (0.689)

0.027 0.3d6 -0.0108 -0.0041 11.70

(0.0071) (0.0024) (0.008)

U.K. 1 1 0.0105 0.0206 2.980
(0.0085) (0.0197) {0.3935)

0.360 1.458 -0.0208 0.0106 4 806

0.0217)  (0.011% (0.187)

Note: Results for Ap"(t+1) = d - b [p"({1) - be(t} - (lb/d)*)P*m(f)]

+ 080 e+ + 6 Ae@+D) + wi+])

Column (1) : domestic countries

Column (2)-(3) : Standard errors are in parentheses.

Column (4) : P-values are in parentheses.
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TABLE 3.

Money Demand Equation

Country 8j /¢ h H{0, 1) H(l.2) H{l 3)
(1) (2} (3} 4) (3) (6) (7)
Canada -0.046 1 30.03 1.019 0.445 1.098

(0.247) {9.875) (0.313) (0.505) (0.578)
0.464 1.899 40.79 0.523 4.681 4.792
(0.456) (0.240) (16.20) (0.469) (0.030y (0.091)
France -0.341 1 5.661 4.823 0.963 1.183
(0.071) (3.182) (0.028) (0.326) (0.554)
-0.337 0.253  5.560 2.036 0.097 0.321
(0.014) (0.038) (0.636} (0.153)y  (0.755) (0.851)
Germany -0.272 1 17.88 1.537 1.600 4.575
(0.165) (9.856) (0.215) (0.206) (0.102)
-0.434 1.597  3.003 11.50 18.61 18.65
(0.022) (0.050) (1.307) (0.001) (0.000) (0.000)
Italy -0.205 1 7.847 3.755 0.753 2.424
0.172) (4.807) (0.053) (0.386) (0.298)
-0.508 0.7890  1.994 9.247 1.560 5.979
(0.041)y (0,013} (1.073) (0.002) (0.212) (0.050)
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TABLE 3 - continued

Country 0, 1/ h H{,1) H(L2} H{(l3)
(1) (2) {3) 4) (5) (6) (7
Japan -11.31 1 39.66 3.274 3.229 5.353

(0.059) (5.827) (C.070) (0.072) (0.069)
-13.93 1.320  R8.089 13.02 0.035 0.674
(0.784) (0.171) (5.228) (0.000 (0.852) (0.714)
Netherlands -0.178 1 6.658 10.16 0.292 0.257
(0.075) (4.124) (0.001) (0.864) (0.879)
-1.451 1.778 1.731 0.565 3.729 4.826
(0.051) (0.156) (3.006) (0.452) (0.053) (0.090)
Switzerland 0.282 1 0.858 4.029 0.876 1.751
(0.036) (2.468) (0.045 (0.349) (0417
0.287 1.155 8.987 0.085 2.296 3.839
(0.620) (0.056) (1.276) (0.771)  (0.129) (0.145)
U.K. 10.66 1 111.3 1.853 0.088 0.397
(3.410) (128.3) (0.173)  (0.766) (0.742)
8982 2.265 27.36 2.942 0.129 5.562
(0.273) (0.116) {9.306) (0.086) (0.720) (0.062)

Note: Results for m() = 6, + (1/)p™(1) - hit) + L (0

Column (1) : domestic countries
Column (2)-(4) : Standard errors are in parentheses.
Column (5)~(7) : P-values are in parentheses.
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TABLE 4. The Systern Method Resuits

| unrestricted restricted
Country o ot b bua b, Haf J c
Life
(1) (2) 3 M (5) (6) (7) 8y (9 (10)
(Canada 1 1 . -0.0001 0.0184 5.229 0.2256 0.23 35.276  0.047
» (0.0001) (0.0374) (0.156) (0.0183) (0.260) (0.828)
0.029 1.014 ‘ 0.0081 0.0081 4.124 0.0081 7.10 4.143 0.019
| (0.0001) (0.0119) (0.248) {0.0002) (0.387) (0.891)
France 1 1 ! 0.0589 0.0162 1.198 0.0590 2.29 2.291 1.093
| (0.0001) (0.0129) (0.754) (0.0002) (0.682) (0.296)
0.221 1.106 0.0186 -0.0843 5.068 0.0186 0.24 8.293  7.297
1 (0.0001) (0.0546) (0.167) (0.0001) (0.081) (0.007)
|
|
Germany 1 1 0.0186 -0.0843 5.068 0.0186 1.23 7.519 2451
: (0.0001) (0.0546) (0.167) (0.0001) (0.111) (0.117)
!
0.073 0376 | 0.1334 -0.0058 4.986 0.1134 0.94 6.037 1.051
(0.1550) (0.0060) (0.173) (0.0017) (0.196) (0.303)
Italy 1 1 0.0042 0.0425 4.020 0.0424 395 7992 3971
{0.0112) (0.0008) (0.259) (0.0006) (0.092) (0G.046)
0.192  1.621 0.1755 -0.0196 4.612 0.0194 4.74 12.363  7.751
(0.0054) (0.0089) (0.203) (0.0101) (0.015) (0.005)
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TABLE 4 - Continued

] unrestricted restricted
COU[][I’y (D ¢)’H¢)m I bu.hs bl]..‘i:l Ju br Half Jr ¢
; Life
(1 @ & | @ (5) (6) 7’ (9 (10
Japan 1 1 0.0084 -0.0612 6.191 0.0084 6.85 11.561 5.369
(0.0005) (0.0322) (0.10%) {0.0002) (0.021) (0.020)
0.156 0.728 0.0414 0.0790 6.774 0.0414 1.37 6.823 0.049
(0.0002) (0.0606) (0.079) (0.0001) (0.146) (0.825)
Netherlands 1 1 0.0503 0.0247 7.573 0.0249 2.29 8.584 1.012
{0.0010) (0.0300) (0.056) (0.0145) (0.072) (0.315)
0.141 0.65] 0.1762 0.2963 3.732 0.2157 0.24 4.574 0.842
(0.0085) (0.0466) (0.292) (0.0131) (0.334) (0.359)
Switzerland 1 1 0.0018 0.0463 7.052 0.0457 1.23 7.079 (0.028
! (0.0011) (0.0362) (0.070) (0.035D (0.132) (0.868)
|
0.027 0.346 C.0373 0.0209 7.008 0.0596 0.94 7.407 .399
{0.0003) (0.0121) (0.072) (0.0181) (0.354) (0.528)
UK. 1 1 0.0030 -0.0411 6.497 0.0145 3.95 8.097 1.600
(0.0044) (0.0613) (0.090) (0.0601) (0.088y (0.206)
0.369 1.458 0.0121 0.0047 5.377 0.0121 4.74 5.500 0.123
(0.0009) (0.0204) (0.146) (0.0001) (0.240) (0.726)

Note: For the unrestricted estimaion, b, ,, is the estimate for the speed of adjustment
cocfficient obtained from Hansen and Sargent equations, and b, is the estimate for the
coetficient obtained from the price adjustment equation.

Column (1) : domestic countries

Column (2) and (3) are from Table 3.

Column (4),(5) & (7) : Standard errors are in parentheses.

Column (6),(9) & (10) : P-values are in parentheses.
Column (8): Half life in years.
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