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INTRODUCTION 

 The parameters of time series models often appear to change over time.  A popular 

method of dealing with these changes is to introduce "structural breaks" or "regime shifts."  These 

"breaks" are assumed to occur infrequently, but when they do happen, one or more parameter is 

customarily permitted to undergo a complete break with its past value.  (See, e.g. Perron 1994; 

Bai, Lumsdaine and Stock 1998).   

 This note shows, using standard state-space time series modeling techniques, that if such a 

model is taken literally and estimated by maximum likelihood (ML), it does not give the desired 

results:  The assumption that no new value of the parameter (or parameters) in question is any 

more likely than any other implies that the ML estimator of the parameter in question should 

ignore the possibility of structural breaks, no matter how evident they may be in the data.  

Furthermore, such a model has no predictive power, since the parameter(s) in question could 

make another complete break with its past at any moment, and take the time series anywhere.   

 The solution to this problem is to explicitly model the breaks as coming from a distribution 

that is more likely to give a new value in some vicinity of the old value than arbitrarily far from it.  

Once this is done, the rate of occurrence of the breaks and/or the parameter(s) of the break-

generating distribution may be estimated by ML, and the time-changing parameter(s) estimated by 

an appropriate smoothing algorithm.  The time-changing parameter(s) will make the future course 

of the time series more unpredictable than it would otherwise be, but at least this uncertainty will 

be probabilistically quantifiable. 
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A SIMPLE "STRUCTURAL BREAK" MODEL 

 The simplest model that gives rise to the possibility of "structural breaks" is one in which 

an observed time series yt has an unobserved conditional mean xt that occasionally undergoes 

permanent shifts.  Let 
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where the observation errors εt and the random shifts ηt have mean zero and are serially and 

mutually independently distributed.  The shift ηt may be thought of as representing a “break” if 

with some small positive probability λ it is drawn from some distribution with density h(ηt), and 

otherwise, with probability (1 - λ), is zero.  This makes g(ηt) a compound distribution, with a 

mass point with weight (1 - λ) at 0, and density λ h(ηt) everywhere else.1 

 In general, system (1) can be estimated using the recursive filtering algorithm due to 

Sorenson and Alspach (1971) (see also Kitagawa 1987, Harvey 1989: 162-165).  The implicit 

hyperparameter vector θ includes λ and any other parameters of f(· ) and h(· ), such as their 

variances and any shape parameters.  The filter is initialized with 

 p x y f y x( | ) ( )1 1 1 1= − .        (2) 

Then, given last period's filter density p(xt-1|Yt-1), the one-step-ahead predictive density is given by 
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1  If desired, g(η) may be written (1-λ)δ(η) + λh(η), where δ(· ) is the Dirac delta function. 
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where Yt = {y1, y2, ... yt}.  The new filter density is then given by 
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where the denominator, which is the probability of yt conditional on Yt-1, and therefore the 

likelihood contribution of yt, is given by the integral of the numerator: 
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The first moment of the filter density gives the expectation of xt, conditional on data up to time t, 

while the hyperparameter vector θ may be estimated by numerically maximizing the likelihood, or 

equivalently, the probability of the entire sample through the last observed time T, conditional on 

the first observation: 
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The “smoother” density, which gives the distribution of xt conditional on all the data in both 

directions, may be obtained by backward recursion using the following formula: 
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The expectation of this smoother density and its quantiles provide an ex post point estimate and 

confidence intervals for xt.  The estimated value of λ times T gives a point estimate of the number 

of “breaks” that are present in the sample. 
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The Conventional “Structural Break” Model 

 The conventional “structural break” literature makes no assumption that any value of ηt, 

apart from 0, is more likely than any other value.  The only way this can be true is if h(η) is 

everywhere 0.  This tacit assumption implies that g(η) integrates to 1 - λ, which must be less than 

unity if breaks are a true possibility, and therefore that g(η) is an improper density.2 

 Theorem 1:  If the observation errors εt in (1) are drawn from a normal distribution with 

mean 0 and some variance σ2, i.e. 

 f n( ) ( ; , ),ε ε σ= 0 2          (8) 
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and the parameter shifts ηt equal 0 with probability 1 - λ, and have zero or essentially zero density 

elsewhere, then 

 i. p x Y n x y tt t t t( | ) ( ; , / )= σ 2 ,       (10) 

 ii. p x Y n x y Tt T t( | ) ( ; , / )= σ 2 ,       (11) 
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2  Alternatively, h(η) may be thought of as having say a normal distribution, with a very large yet finite variance.  
In this case, g(η) is technically proper yet has a density that is essentially 0 except for its mass point at the origin. 
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and y yT= . 

Proof: 

 See Appendix. 

 

Corollary: 

 It follows immediately from parts i) and ii) of the Theorem that  

 E x Y yt t t( | ) = ,          (14) 

and  

 E x Y yt T( | ) = ,          (15) 

regardless of the value of λ.  In other words, the appropriate ex post estimate of the mean of the 

distribution that yt  is being drawn from is simply the average of all the observations, regardless of 

any appearance of structural breaks.  Furthermore, the likelihood iii) above is maximized by  

 0ˆ =MLλ ,           (16) 

again regardless of any appearance of structural breaks.3 

 

DISCUSSION AND CONCLUSION 

 It has been demonstrated that proper ML estimation of a traditional "structural break" 

model, taken literally, leads to an estimator of the relevant parameter that ignores the possibility 

of breaks, and to an estimator of the probability of breaks that makes them impossible, no matter 

how numerous or obvious "regime shifts" may be in the data.  This problem arises because of the 

tacit assumption that any particular sized non-zero regime shift has zero density.  This makes a 

                                                        
3   It is interesting that the ML estimator of the variance using (6) is the sum of squared residuals about the mean 
divided by (T-1), rather than by T. 
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finite regime shift infinitely less likely than a draw of long runs of ε's at different levels, no matter 

how astronomically unlikely the latter may be. 

 The solution to this impasse is to explicitly model the breaks as coming from a distribution 

that gives finite density to h(ηt).  Once this is done, the appropriate estimator of the “breaking” 

parameter in question is the mean of its smoother density, as computed by structural time series 

methods.   

 If λ is simply assumed to be 1 and f(ηt) and g(ηt) are both taken to be Gaussian with mean 

0 and some variances σ2 and τ2, a "regime shift" of sorts occurs in every period, with Gaussian 

density h(ηt) = g(ηt).  In this case, the Sorenson/Alspach filter (4) reduces to the familiar Kalman 

filter, which may be estimated quickly in closed form.  The two variances may then be estimated 

by ML.  Unfortunately, this most easily computed case does not allow dramatic regime shifts of 

the type that are desired. 

 Once either f(εt) or g(ηt) is non-Gaussian, as is the case if λ < 1, there is no computational 

advantage to a Gaussian assumption for the remainder of the system, since the Sorenson/Alspach 

filter and/or Kitagawa smoother must still be computed numerically.  A Laplace (back-to-back 

exponential) distribution for the breaks, conditional on their occurrance, is easily computed and 

would allow a wider variety of break sizes to take place than if h(η) were taken to be Gaussian.  

Naturally, if the observed breaks are sufficiently few in number, it will be nearly impossible to 

determine anything about the precise shape of their distribution empirically.  Nevertheless, any 

proper distribution is better than h(η) ≡ 0.4 

                                                        
4  Another approach that allows occasional dramatic regime shifts, alongside continual minor regime shifts, is to 
set λ = 1 but then to model g(ηt) = h(ηt) as a leptokurtic distribution such as the symmetric stable or Student.  The 
degree of leptokurtosis, i.e. the stable characteristic exponent or Student degrees of freedom, is then an additional 
hyperparameter that needs to be estimated, but this is offset by the fact that λ does not.  Such a model, with stable 



 8

 Once system (1) is properly estimated, a proper out-of-sample predictive densities for xt 

may be obtained by repeated application of (3) for t > T, so long as h(ηt) is non-zero.  The 

predictive density for yt is then given by 
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This of course reflects uncertainty that increases with horizon, and that is greater than would be 

the case if xt were a constant.  But if h(ηt) is tacitly assumed to be 0, and the ML estimator of λ 

overriden with a value λ* greater than 0,5 the predictive densities for out-of-sample values of xt 

and therefore yt become improper and increasingly uninformative, with a probability equal to only 

(1-λ*)(t-T) of any finite value being observed.  The mean of such an improper distribution is 

necessarily undefined. 

 Having adopted a proper model and estimated it, the presence of breaks can be tested for 

by constraining λ to be 0 and/or h(η) to have zero scale, and constructing a likelihood ratio 

statistic for this null hypothesis.  Unfortunately, this null hypothesis is on the boundary of the 

parameter space, and there may also be unidentified nuisance parameters under the null, so that 

the LR statistic will not necessarily have its customary 2
)1(χ  distribution.  Nevertheless, its 

distribution may be ascertained by Monte Carlo simulation.6 

 If breaks are present, they may be approximately dated by examining the quantiles of the 

computed smoother densities.  However, the smoother density will not pinpoint the breaks, and, 

                                                                                                                                                                                   
distributions for both f(εt) and g(ηt), has been implemented numerically for bond returns by Oh (1994) and for U.S. 
inflation by Bidarkota and McCulloch (1998).   
5  Equal, say, to the number of apparent breaks divided by T. 
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like the filter density, it will in fact ordinarily widen in the vicinity of apparent breaks.7  If desired, 

a binary break indicator may be added to the system as an additional state variable, and the 

probability of a break in each period in addition to the filter and smoother densities for the 

breaking parameter.   

 The present note deals exclusively with the simple local level model (1), with a single 

additive unobserved state variable.  Nevertheless, its considerations extend directly to more 

complicated models, in which one or more parameter may undergo permanent or semi-permanent 

shifts.  If there is more than one unobserved continuous state variable, however, direct numerical 

integration quickly becomes intractable, since it requires evaluating a multiple integral for each 

point of a multi-dimensional grid at each t = 1, … T, and then repeating this for each iteration in 

the likelihood maximization search.  In such a case, Monte Carlo integration along the lines 

proposed by Kitagawa (1996) is the most promising avenue at present.8 

                                                                                                                                                                                   
6  Cp. McCulloch (1997), where LR critical values are simulated for the null hypothesis that the stable distribution 
characteristic exponent α takes on its Gaussian boundary value of 2. 
7  Cp. Bidarkota and McCulloch (1998). 
8  A binary additional state variable, as suggested in the preceding paragraph, would not require an unwieldy 
double integral, but merely a manageable pair of single integrals.  



 10

APPENDIX 

Lemma 1 (elementary): 

 The product of two normal densities is a third normal density, times a scaling factor.  

Specifically,  
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Proof of Lemma 1:   
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while 
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Multiplying and dividing the RHS of (A.3) by 32 σπ  and substituting in (A.4) yields (A.1). 

            /// 

Proof of Theorem 1: 

 We have 

 p x y n x y( | ) ( ; , )1 1 1 1
2= σ         (A.5) 

This satisfies i) for t = 1.  Assume tentatively that i) is true for t-1.  The predictive density (3) is 

then 
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By (4), the new filter density for time t is 
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Since the third normal density integrates to unity, it follows that the likelihood contribution is just 

(1-λ) times the scaling factor: 
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and that the filter density is this third normal density itself: 

 p x Y n x y
tt t t t( | ) ( ; , )=

σ 2

.        (A.10) 

This completes the proof of i) by induction.  Part iii) follows immediately from (5).   

 The proof of ii) proceeds by a backward induction that begins by confirming that the 

proposition in question is valid is true for t = T, and then demonstrates that if it is valid for any 

t+1, it is also valid for t.  By i), ii) is valid for t = T.  Suppose that ii) is valid for t+1.  Then by (7) 

with h(· ) ≡ 0, and using (A.6),  
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This completes the proof of ii), and therefore of Theorem 1.  

            /// 
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