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Jacques Drèze, Leo Hurwicz, Jean-Francois Mertens, Anne van den Nouweland, Alex Possajennikov,
Roberto Serrano, Marco Slikker, Stef Tijs, and Rajiv Vohra for helpful comments and discussions.
Seminars at Cal.Tech., CORE, Brown, Harvard, Madison, Pompeu Fabra, Iowa State, and Stony
Brook have been very helpful. The usual disclaimer applies.
morelli.10@osu.edu, maria.montero@wiso.uni-dortmund.de

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7199439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The interest in the stability properties of coalitions and payoff allocations in coalition

formation games can be traced back to the first half of the 20th century, and the

discussion about which solution concept we should use to predict coalition structures

and payoff allocations at the same time remains open. Value concepts yield an ex

ante evaluation, hence they cannot offer predictions about the prevailing payoff

distribution within the prevailing coalitions. On the other hand, solution concepts

like the bargaining set, the stable sets, and the kernel avoid the emptiness problems

of the core for a large class of games and do face the problem of predicting the

possible ex post configurations of payoffs, but the set of solutions is often too large.

Most solution concepts determine the distribution of gains within given coalitions or

coalition structures, and hence are very helpful to model arbitration problems, where

coalitions are formed before the bargaining process over the distribution of payoffs

begins. In contrast, as pointed out in Bennett (1985), the aspirations approach

seems well suited for situations where the formation of coalitions is endogenous.

The cooperative solution concept introduced in this paper, the stable demand

set, shares the central role of payoff demands with the aspiration approach, but it

does not limit attention to the domain of aspirations. While on the one hand the

traditional imputation approach determines payoff distribution after having fixed a

coalition structure, and while on the other hand the aspirations approach determines

coalitional outcomes after having fixed a payoff distribution, we allow payoff distrib-

ution and coalition formation to be simultaneously determined. In spite of this larger

strategic space, we will show that in constant-sum homogeneous weighted majority

games our stable demands coincide with the balanced aspirations of the game.1

The stable demand set turns out to contain the core, and is a subset of the

Zhou bargaining set. With respect to these and other solutions in the bargaining

set tradition, there are two main innovations: (1) we make use of the fact that every

allocation can be viewed as a pair consisting of a demand vector and a coalition struc-

1The concept of balanced aspirations is well explained in Bennett (1983).
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ture; and (2) for every proposed pair the set of counterobjections (to objections to

such a proposal) is restricted to include only those pairs that use the same demand

vector as in the original proposal. The second feature is the one determining the

selection of a subset of the Zhou bargaining set. In particular, the selection obtained

through the stable demand set has a very general property: in grand-coalition su-

peradditive games no “dominated” coalition structure can ever be part of a solution

(Theorem 2). Beside this property, we also show that the stable demand set is

immune to most of the other criticisms moved against bargaining set type solutions.

To give a clear example of the meaningfulness of the selection provided by the

stable demand set in applications, we show in Section 3 that in any constant-sum

weighted majority game that admits a homogeneous representation the proportional

payoff division is the unique stable outcome, and no previous bargaining set could

make such a sharp prediction.2 This result illustrates particularly well the role of the

axiom requiring that counterobjections be limited to those that can use the original

demand vector: the social norm of distributing payoffs proportionally to the relative

contributions (within the minimal winning coalition) is the only one that can be used

to counter all possible objections to a proposal where the proportional norm itself

is used. This type of self-stability is the key idea proposed by our concept.

In Section 4 the stable demand set is implemented for all superadditive games

satisfying the one-stage property, following the methodology of Pérez-Castrillo and

Wettstein (2000). The mechanism is simple and serves to illustrate further the forces

behind our concept.

2 The stable demand set

In this section we introduce the cooperative solution concept, defining it for any TU

game and discussing some general properties.

2There is however an interesting connection with the main simple solution in the von Neumann

and Morgenstern stable set. Druckman and Warwick (2002) is a good reference to see the empirical

relevance of proportional payoffs in legislative bargaining contexts.
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2.1 Notation and Basic Definitions

Let N be the set of players, N ≡ {1, 2, . . . , i, . . . , n}. Let S ⊆ N represent a generic

coalition of players, S denote the set of possible coalitions, and v : S → R+ denote
the characteristic function. If v(i) = 0 for all i in N , the pair (N, v) is called a

zero-normalized TU game. Given any n-dimensional payoff vector x, x(S) denotes

the sum of the values corresponding to the components of x related to the members

of S: x(S) ≡ P
i∈S xi. We will denote by Σ the set of possible partitions of N (or

set of coalition structures), and σ will represent a generic element of that set.

The stable demand set (henceforth SDS) is defined on the space of norm real-

izations X , where

X = {(α,σ) ∈ (Rn × Σ) :
X
j∈S

αj ≤ v(S) for all S ∈ σ, |S| > 1}.

Thus, a candidate element for the SDS is a pair (α,σ) where α ∈ Rn is the demand
vector specifying what each player should receive for his cooperation with other

players in a coalition and σ is a coalition structure compatible with α in the sense

that coalitions of more than one player must be able to afford the demands of their

members. No such restriction is imposed on singletons.3

For any given pair (α,σ) ∈ X , the corresponding feasible allocation ασ is obtained
using the following payoff assignment rule:

ασi =

 αi if i ∈ S ∈ σ : |S| > 1
v(i) otherwise.

(1)

In words, the demands are assigned as actual payoffs to the members of coalitions

with more than one player; singletons receive v(i) regardless of players’ demands.

2.2 Solution Concept

Consider a proposed pair (α, σ) ∈ X .
3The reason for not imposing any requirement on singletons is that α is interpreted as the

demand players make for cooperating with other players.
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Definition 1 An objection of a coalition T against the proposal (α,σ) is an alloca-

tion vector y such that

yi > ασi for all i ∈ T
and

X
i∈T

yi ≤ v(T ) (i.e., y is feasible for T ).

Notice that objections are against actual payoffs, not against demands; thus, an

objecting player may receive less than his demand in the objection.

Definition 2 A coalition Z can counter (or, make a counterobjection to) the objec-

tion of T against the proposal (α, σ) iff

(1) Z ∩ T 6= ∅ and
(2) the original demand vector α is such that

X
i∈Z

αi ≤ v(Z)

αi > yi for all i ∈ T ∩ Z.

Definition 3 An objection to (α, σ) is justified iff it cannot be countered.

Notice that with respect to the standard definition of a counterobjection (as

used in most versions of the bargaining set) we restrict the set of possible counter-

objections to include only those that can be derived using the same demand vector

of the original proposal. We also require the inequality within Z ∩ T to be strict.4
Because of the strict inequality, objections that use the original demand vector α

are always justified.

Definition 4 A pair (α, σ) in X belongs to the stable demand set iff there is no

justified objection to it.

If players can counterobject using an allocation that can be derived from the

same demand vector of the original proposal, it means that the demand vector itself

4Requiring this inequality to be strict is necessary for theorems 1 and 2, but not for theorem 3.
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is self-stable. Intuitively, trying to obtain larger shares (with an objection) does not

pay if there is the risk of being simply excluded from a coalition that distributes the

unchanged demands of the other players.

2.3 Important Properties and Relation to Previous Concepts

2.3.1 The aspiration approach

Like the stable demand set, the aspiration solution concepts also study the stability

of demand vectors. However, as we will now show, there is an important difference

with respect to the domain where the solution is defined.

Definition 5 A demand vector x ∈ Rn is an aspiration iff it satisfies

1. x(S) ≥ v(S) for all S ⊆ N (maximality);

2. For all i ∈ N there exists a coalition S 3 i such that x(S) ≤ v(S) (feasibility).

Limiting attention to the space of aspirations, it is possible to define a variety

of solution concepts.5

The SDS is defined in a larger space. Neither maximality nor feasibility are

imposed on demand vectors. However, maximality is obtained endogenously since

otherwise there would be a justified objection.

5These solution concepts are constructed by adding a stability condition to the requirements of

maximality and feasibility. The most important solution concepts are the aspiration bargaining set,

obtained by adding the partnership condition (Albers (1974), Bennett (1983)) and the aspiration

core, obtained by adding the balancedness condition (Cross (1967)). Denoting by Si(x) the set

of coalitions containing i that are feasible given x, an aspiration vector x is partnered iff for any

two players i and j either Si(x) = Sj(x) or Si(x)\Sj(x) and Sj(x)\Si(x) are both non-empty. An
aspiration vector x is balanced iff it minimizes

P
i∈N xi in the space of aspirations. Other solution

concepts are the set of equal gains aspirations (Bennett 1983) and the aspiration kernel (Bennett

1985).
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Remark 1 If (α,σ) is in the SDS, it follows that α is maximal (but not necessarily

feasible).6,7

2.3.2 Other bargaining sets and the core

Something similar can be said about the traditional bargaining sets, defined on

the space of individually rational payoff configurations. We do not actually require

(ασ,σ) to be an individually rational payoff configuration, but this property arises

endogenously.

Remark 2 If (α,σ) is in the SDS, then (ασ,σ) is an individually rational payoff

configuration.8

Since the stable outcomes in the sense of the SDS lie in the space of individually

rational payoff configurations, it is interesting to relate the SDS to other solution

concepts that lie in this standard domain, like the bargaining sets and the core.

Remark 3 Since the core is the set of allocations to which there are no objections,

the SDS contains the core.

Maximality implies that if (α,σ) is in the SDS and the realized allocation and

coalition structure are such that all players receive their demands, then α is in the

core. Thus, the SDS coincides with the core for the grand coalition. If the core

of v is empty, there is no allocation in the SDS such that all players receive their

demands.9

6Consider the following game: N = {1, 2, 3}, v(1, 2) = 6, v(1, 3) = v(2, 3) = 2, v(N) = 3. The

demand vector (3, 3, x) is in the SDS for any x ≥ 0, though only x = 0 is feasible.
7Even though a stable demand vector α may not be feasible for some players it cannot be

unfeasible for all players except in the uninteresting case with v(T ) ≤P
i∈T v(i) for all T ⊆ N .

8The maximality of the demand vector together with the allocation rule guarantee individual

rationality.
9Like the core, it is easy to show that the SDS may be empty. To see this, consider a four-player

game where v(S) = 1 if |S| = 3, v(S) = 0 otherwise. Whatever (α,σ) one starts from, it is possible
to find an acceptable objection where two players are given more than α, making it impossible to

counterobject using α itself.
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There are two bargaining sets that define objections and counterobjections as

made not by individual players but by coalitions: the Mas-Colell (1989) bargaining

set and the Zhou (1994) bargaining set. When compared to the Mas-Colell bar-

gaining set, the SDS makes both objections and counterobjections more difficult, so

that none of the sets is contained in the other.

We now turn to the Zhou bargaining set. The SDS and the Zhou bargaining

set share the same definition of objection. As for the definition of counterobjection,

they cannot be directly ranked. The SDS makes justified objections easier since

it requires counterobjections to use the original demand vector and some of the

counterobjecting players to be strictly better off, whereas the Zhou bargaining set

requires only that the counterobjecting players are weakly better off. On the other

hand, counterobjecting could seem easier in our framework, since the SDS does not

impose the requirements Z\T 6= ∅ and T\Z 6= ∅. However we are able to show (by
contradiction) that the balance of these conflicting forces implies that the SDS is

included in the Zhou bargaining set.

Theorem 1 If (α,σ) is in the SDS, then (ασ,σ) is in the Zhou bargaining set.

Proof. Suppose (α, σ) is in the SDS but (ασ,σ) is not in the Zhou bargaining

set. Then, there must be a coalition T that has an objection y such that any

counterobjecting coalition Z satisfies either Z ⊂ T or T ⊂ Z.
Consider first the case in which T has an objection and Z ⊂ T has a counterob-

jection. Then it must be the case that αi > yi > ασi for all i ∈ Z, thus Z itself has
a justified objection and (α, σ) cannot be in the SDS.

Consider now the case in which T has an objection that can only be countered

by supersets of T . Let Z be one of those supersets. Since Z is a superset of T ,

it follows that αi > yi for all i in T . Maximality, together with the fact that the

demand vector α is feasible for Z, implies
P
i∈Z αi = v(Z). Z itself has an objection

in which one of the players in T (say, j) receives less than his demand and each other

player in Z receives more than his demand. In order for (α, σ) to be in the SDS,

there must be a counterobjection to this objection. Let Z 0 be one of the coalitions
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that have a counterobjection to this objection. Z 0 must contain player j and cannot

contain any other player in T . But then Z 0 itself has a counterobjection to the

original objection by coalition T , contradicting the assumption that this objection

can only be countered by supersets of T .10 QED.

Corollary 1 The requirements T\Z 6= ∅ and/or Z\T 6= ∅ could have been imposed
in definition 2 without changing the SDS.

2.3.3 Elimination of dominated coalition structures

An important property of the SDS is that it eliminates the “dominated” coalition

structures for grand-coalition superadditive games,11 and therefore constitutes a

meaningful selection of the Zhou bargaining set. In order to show why such selection

is meaningful, let us explain what a dominated coalition structure is, and then give

an example.

Definition 6 A coalition structure σ is dominated given α if either

X
i∈T

ασi < v(T ), for some T ⊂ S for some S ∈ σ (2)

or

∃T : v(T ) >
X
i∈T

ασi and T is union of elements of σ. (3)

Example 1 Consider the players’ set N = {1, 2, 3, 4} with

v(T ) = 4 if |T | = 2
v(S) = |S| otherwise.

In this example (example 2.6 in Zhou (1994)) both the grand coalition and the

all-singletons coalition structure are dominated. However, the grand coalition with

equal payoff division is included in the Zhou bargaining set and in the Mas-Colell

10Z 0 can only be a superset of T if T is a singleton. Notice that since the SDS only contains

individually rational payoff configurations, any objecting set T must have at least two players.

11A game is grand-coalition superadditive iff for any σ ∈ Σ, v(N) ≥P
S∈σ v(S).
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bargaining set. The same happens with the “all-singletons” coalition structure.12

Neither of these unintuitive coalition structures is stable in the sense of the SDS.

The general ability of the SDS to eliminate unreasonable coalition structures from

being stable13 is established in the following theorem.

Theorem 2 If (N, v) is grand-coalition superadditive and (α,σ) is in the SDS, then

σ cannot be dominated given α.

Proof. If (α, σ) in the SDS, maximality ensures that there is no T satisfying

condition (2). As for condition (3), suppose ∃T : v(T ) >
P
i∈T ασi and T is the

union of elements of σ. If (α,σ) is such that all players in T are receiving their

demands, T itself has a justified objection. If (α, σ) is such that not all players

in T are receiving their demands, call Z the set of players who are receiving their

demands. Condition (3) can be written as v(T ) >
P
i∈T∩Z αi +

P
i∈T\Z v(i). Since

the game satisfies grand coalition superadditivity and T is the union of elements of

σ, v(N) >
P
i∈Z αi +

P
i∈N\Z v(i). Consider an objection by the grand coalition

that gives all players in Z more than their demands. A counterobjecting coalition

C cannot include any players from Z. Thus, if a counterobjecting coalition exists,

this counterobjecting coalition itself has a justified objection. QED.

Corollary 2 If v(N) >
P
S∈σ v(S) for all σ ∈ Σ, only the grand coalition can be

stable in the sense of the SDS.

Unlike the Zhou bargaining set, the SDS has the dummy player property. The

SDS is also immune to two more criticisms often made to other solution concepts

in the family of bargaining sets: the fact that they are “too large” and the fact that

they are sometimes difficult to compute.14

12The traditional bargaining set (Davis and Maschler, 1967) is always nonempty for all coalition

structures (see Peleg, 1967).
13Notice that the elimination of dominated coalition structures may be at the cost of emptiness

of the solution concept, since there are games that have only dominated coalition structures.

14See Maschler (1992) for a lucid discussion of these two problems.
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As far as the first problem is concerned, Theorems 1 and 2 hint that the SDS

is less exposed to that problem than most other solution concepts of the same

family. In particular, we will show below that the SDS predicts a unique payoff

distribution for all constant-sum weighted majority games admitting a homogeneous

representation, while other bargaining sets typically admit a continuum of payoff

distributions.

As far as the second problem is concerned, the results of this paper indicate that

it is possible, at least for some classes of games, to construct algorithms to generate

the allocation(s) in the SDS.

2.3.4 Von Neumann-Morgenstern stable sets

Both the SDS and stable sets require counterobjections to be related to the original

allocation, but not in the same way: in a stable set, a counterobjection may be very

different from the original proposal but it has to belong to the same stable set; in

the SDS a counterobjection does not have to belong to the SDS but it has to use the

original demand vector. Unlike the stable sets (and like all other bargaining sets),

the SDS is not defined in a ”circular” way: the definition of stability in the sense of

the SDS applies to each element separately and not to the whole set. Thus, whether

a particular (α, σ) is stable does not depend on whether other pairs are stable.

In general, the SDS may not be a stable set. Since the SDS may coincide with the

core, it is clear that the SDS may not be externally stable15. For a counterexample

on internal stability, consider the following game.

Example 2 N = {1, 2, 3, 4}, v(1, 2, 3) = 3, v(2, 4) = v(3, 4) = 2. All other values
are zero.

The SDS contains a continuum of stable demand vectors. We concentrate on

two of them: (1, 1, 1, 1) and (0, 1.5, 1.5, 0.5). The first one is stable with coali-

tion structure {{1, 2, 3}, {4}}, and the second one is stable with coalition structures
15Take N = {1, 2, 3}, v(1, 2) = v(1, 3) = v(1, 2, 3) = 1. The only vector in the SDS is (1, 0, 0),

but allocations like ( 12 ,
1
4 ,

1
4 ) are not dominated.
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{{1}, {2}, {3, 4}}, {{1}, {3}, {2, 4}} and {{1, 2, 3}, {4}}. The allocation resulting

from the first pair, (1, 1, 1, 0) is dominated by the allocation resulting from the sec-

ond pair, (0, 0, 1.5, 0.5)), thus the SDS is not internally stable. The example also

shows that a stable demand vector need not be unique and that the same vector

(in this case (1, 1, 1, 1)) may be stable with some coalition structures and not with

others (coalition structure {{1}, {2}, {3, 4}} is also feasible with this demand vector
but it is not stable because coalition {1, 2, 3} can object with (1 − 2², 1 + ², 1 + ²)
and no counterobjection is possible).

However, we will see in the next section that for the special case of constant-sum

homogeneous weighted majority games the SDS makes the same predictions as one

of the stable sets, called the main simple solution.

We now turn to the characterization and predictions that the SDS allows us to

obtain for the important class of weighted majority games.

3 Characterization for Weighted Majority Games

3.1 Definitions, Assumptions, and Auxiliary Results

A coalitional game (N, v) is a simple game iff v(∅) = 0, v(N) = 1, v(S) = 0 or 1

and v(S) = 1 whenever v(T ) = 1 for some T ⊂ S.
Denote by Ω ≡ {S : v(S) = 1} the set of winning coalitions (WC) and by

Ωm ≡ {S : v(S) = 1, v(T ) = 0 for all T ⊂ S} the set of minimal winning coalitions
(MWC).

A simple game is called proper iff for all S ∈ Ω, N \S /∈ Ω. It is called strong iff
for all S /∈ Ω, N \S ∈ Ω. Proper and strong simple games are called constant-sum.

A simple game (N, v) is a weighted majority game iff there exists a vector of

non-negative weights w and a number q (0 < q ≤Pn
i=1wi) such that

S ∈ Ω ⇐⇒
X
i∈S
wi ≥ q.

Assumption 1 (N, v) is a constant-sum weighted majority game.16

16A sufficient condition for a game with integer weights to be constant-sum is p ≡Pn

i=1
wi to be
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Assumption 2 wi < q for all i ∈ N .17

Assumptions 1 and 2 together imply n ≥ 3 and exclude the presence of veto

players in the game.

A weighted majority game admits a homogeneous representation iff there exists

a vector w (and an induced quota q) such thatX
i∈S
wi = q for all S ∈ Ωm. (4)

A weighted majority game admitting a homogeneous representation is called a

homogeneous weighted majority game.

Example 3 Consider a four-player game where player 1 holds 3 votes, player 2

holds 2, and players 3, 4 hold 1; this representation is not homogeneous: there is

one MWC with 5 votes, and three MWCs with 4 votes; however, an equivalent

representation of the same characteristic function game is one where player 1 has 2

votes, players 2, 3, 4 have one vote each, and this is homogeneous.

Denote by W i the set of winning coalitions containing player i for a given game

(N, v). Notice that W i ⊆ Ω, and W i = Ω only if i is a veto player. Denote by µi

the number of WCs in W i. Similarly, denote by M i the set of MWCs containing

player i and mi is the number of MWCs in M i.

Lemma 1 Consider a weighted majority game satisfying assumption 1; for every

player i, either mi = 0 or mi ≥ 2.

Proof. Suppose that for some i there exists a MWC S ∈ M i. Since the game

is strong, the coalition T ≡ {N \ S} ∪ {i} must be a winning coalition. Either T
itself is a MWC, or there must exist Z ⊂ T such that Z ∈ Ωm, and such a coalition
Z must contain i, otherwise S would not have been winning in the first place. In

either case, mi ≥ 2. QED.

an odd number and q = p+1
2 . If q is a smaller number the game may not be proper, whereas for a

larger q, as well as for an even number of votes, the game may not be strong.

17Otherwise the coalitional game would be irrelevant.
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Corollary 3 For any MWC S containing player i, we can find another MWC S0

such that S ∩ S0 = {i}.

Definition 7 Player i and player j are of the same type iff the characteristic func-

tion is unchanged when permuting them.

Remark 4 If (N, v) is a weighted majority game and µi = µj, then i and j are of

the same type.

Proof. Suppose not. Then, without loss of generality, wi > wj. Consider the

winning coalitions that contain either i or j, {W i∪W j}\{W i∩W j}. If we take the
coalitions in W j\W i and replace j by i, the resulting coalition are all winning. If

we take a coalition in W i\W j and replace i by j the resulting coalitions cannot be

all winning, or i and j would be the same type. But then µi > µj , a contradiction.

In general, if two players, i, j, have different numbers of votes (wi 6= wj), it

does not follow that they must be of a different type, i.e., they not necessarily have

different bargaining power. For example, consider a three-player game, where one

has 5 votes, one has 4, and one 3. 7 votes are needed to win, and hence every

pair of players can make it. Every player has the same number of MWCs (and

of WCs), and permuting them does not change the characteristic function, even

though every player has a different weight. There is no reason why the player with

5 votes should have more bargaining power than the other two. In fact, an equivalent

homogeneous representation of this game is one where each of the three players has

1 vote. For homogeneous representations of weighted majority games players with

different numbers of votes are indeed of different types. While it is always true that

if wi = wj then µ
i = µj , the converse is true (as established below) if the game is

strong and homogeneous.

Remark 5 If the coalitional game (N, v) satisfies assumption 1 and admits a ho-

mogeneous representation through some vector w, then µi = µj −→ wi = wj, ∀
i :M i 6= ∅, ∀ j :M j 6= ∅.
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Proof. Suppose that µi = µj and wi > wj . Consider all the WCs that contain

either i or j: {W i ∪W j} \ {W i ∩W j}. These sets are always non-empty because
of Corollary 3. If we take every single coalition in W j \ {W i ∩W j} and substitute
j with i, we always obtain a WC with i, while when substituting i with j in every

coalition in W i \ {W i ∩W j} this is not the case: wi > wj plus homogeneity implies
that there exists at least one MWC containing i but not j with exactly q votes, and

this in turn implies that after the substitution the coalition would not be winning

anymore. Hence µi > µj . Contradiction. QED.

Lemma 2 Let (N, v) be a homogeneous weighted majority game satisfying Assump-

tions 1 and 2. Let i and j be two players such that each of them belongs to at least

one MWC. Then there is a MWC containing both i and j.

Proof. Let S be a MWC containing i. If it also contains j, we are done. If it

does not, consider N\S ∪ {i}. Because the game is strong, this coalition is winning.
It includes a MWC T 3 i. If T 3 j, we are done. If not, this implies wj < wi. Now
we take a coalition S0 3 j and repeat the same process. This time we cannot throw
away i, because it would imply that wi < wj , a contradiction. QED.

3.2 The Proportionality Result

Theorem 2 has the following implication for the selection of coalition structures in

weighted majority games:

Lemma 3 The only “candidate pairs” (α,σ) for the SDS of any weighted majority

game satisfying Assumption 1 are those where

(1) For any T ∈ Ω, Pi∈T αi ≥ v(T );
(2) σ always includes a WC S ∈ Ω with Pi∈S αi = v(S).

Proof. (1) follows from maximality. The fact that σ must include a winning

coalition follows from Theorem 2. Since σ must be compatible with α,
P
i∈S αi

cannot exceed v(S), which together with maximality implies
P
i∈S αi = v(S). QED.
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Theorem 3 Consider a weighted majority game (N, v) satisfying Assumption 1 and

2 that admits a homogeneous representation with weights w1, ..., wn. If there are no

dummy players, the SDS of any such game is non-empty and only contains pairs

(α∗, σ) where the unique stable demand vector has

α∗i =
wi
q
, for all i

and σ always contains a MWC S.

If there are dummy players, the SDS is non-empty and only contains pairs (α∗,σ)

where α∗i =
wi
q for all non-dummy players and σ contains a winning coalition.

Proof. We first provide the proof for the case in which there are no dummy

players.

Consider a pair where there is a MWC S ∈ σ and the demand vector is α∗. We
first show that (α∗, σ) is in the SDS of the game.

Since (N, v) is proper, any blocking coalition T must contain some agents in

common with S (i.e., T ∩ S 6= ∅). T can make an objection to (α∗, σ) only if there
exists a payoff vector y feasible for T such that yi >

wi
q for all i ∈ T ∩ S. Define

Z ≡ {i ∈ T : yi ≥ wi
q }. Because Z ⊇ {T ∩ S} and all agents in T ∩ S must receive

strictly more than wi
q , it follows that Z is a losing coalition (Z winning would be

unfeasible). Thus, there must be a WC C ⊆ N\Z, and a MWC C 0 ⊆ C. Since

the game is homogeneous, α∗ is feasible for any MWC, thus coalition C 0 has a

counterobjection: since the game is proper, C 0 ∩ T 6= ∅. Moreover, the fact that C 0
is included in N\Z ensures that all players in C 0 ∩ T are strictly better-off.

We have shown that no objection to (α∗,σ) can be justified, because every

objection would lead to a counterobjection using α∗ once again. In order to complete

the proof, we now have to show that any pair (α, σ) with α 6= α∗ is vulnerable to

justified objections.

Suppose (α,σ) is in the SDS but α 6= α∗. We define the sets

U ≡ {i ∈ N : αi < α∗i }, the set of “underdemanding” players.
F ≡ {i ∈ N : αi = α∗i }, the set of players demanding exactly α∗.
O ≡ {i ∈ N : αi > α∗i }, the set of “overdemanding” players.
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There are two possibilities:

Case 1) U = ∅. Since U = ∅ and α 6= α∗, it must be the case that αi ≥ α∗i
for all i and αj > α∗j for some j. We know from Lemma 3 that σ contains a

winning coalition S such that
P
i∈S αi = v(S). Since U = ∅, coalitions containing

overdemanding players are unfeasible, thus S must be such that αi = α∗i for all

i ∈ S, therefore j /∈ S. Any MWC T 3 j has a justified objection. In this objection,
any player i ∈ T ∩F receives α∗i + ² and any player i in T ∩O receives some positive
payoff. Notice that j ∈ T and T being a MWC ensures that players in T∩F have less
than q votes, so that this payoff distribution is feasible. Since S∩O = ∅, any positive
payoff makes the players in T ∩ O better-off, hence we indeed have an objection.

There is no possible counterobjection, since it would have to include some players

in T ∩O, and any coalition containing overdemanding players is unfeasible.
Case 2): U 6= ∅. This implies O 6= ∅ (otherwise we would contradict maximality).

Again, we know from Lemma 3 that σ contains a winning coalition S such thatP
i∈S αi = v(S). We will distinguish two cases:

Case 2a) S ⊆ F . Take any player j ∈ U , and any MWC T 3 j. Denote T ∪ U
by Z. Coalition Z has a justified objection in which every member of Z\O gets

α∗i + ² and every member of Z ∩ O gets a positive payoff. To see this, notice that

this payoff division is feasible for Z if ² is small enough.18 S ⊆ F implies that all

players in Z are made better-off by the objection. Finally, since a counterobjection

must include at least one player from Z ∩O, and it can include no players from U ,

it follows that no counterobjecting coalition is feasible given α.

Case 2b) S is not a subset of F . Lemma 3 implies S ∩ O 6= ∅ and S ∩ U 6= ∅.
Notice that S need not be a MWC. There is a MWC S0 ⊆ S such that S0 ∩O 6= ∅
and S0 ∩ U 6= ∅, and S ∩ O ⊆ S0. Let Z := (N\S0) ∪ U . As in case 2a, Z has a

justified objection in which every member of Z\O gets α∗i + ² and every member of
Z ∩ O gets a positive payoff. Note that the difference with case 2a is that, in the

18This follows because Z\O is a losing coalition. If it were winning, one could find a subset of

Z\O having exactly q votes, and containing at least one player from U (because of the way Z has

been constructed, Z\U is losing), contradicting maximality.
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construction of Z we had to make sure that Z ∩ (S ∩O) = ∅.
Given that α∗ is the only stable payoff vector and that dominated coalition

structures are excluded from the SDS, it follows that σ must contain a minimal

winning coalition.

If there are dummy players, their actual payoff is always zero but their demands

are not constrained. A dummy player can be part of a winning coalition in σ if his

demand is zero. QED.

Remark 6 Notice that the SDS depends only on the characteristic function, and

hence it is invariant to the particular representation chosen.

Remark 7 Note that what matters is the homogeneous representation. For ex-

ample, in every 3-player weighted majority game where Assumptions 1 and 2 are

satisfied, the equivalent homogeneous representations give equal weights to the three

players, and hence the unique Stable Demand vector is α∗ = (1/2, 1/2, 1/2).

Remark 8 If (α, σ) is in the SDS of a homogeneous game (N, v) satisfying As-

sumptions 1 and 2, then α solves the following program:

min
P
i∈N αi

s.t.
P
i∈S αi ≥ 1 for all S ∈ Ωm.

(5)

This implies that α is a balanced aspiration.

Proof. Suppose α is a solution to the minimization problem but α 6= α∗. This

implies U 6= ∅. Take i1 ∈ U and a MWC S containing i1. Because of maximality,

the sum of the demands in this MWC is at least 1. In order for α to have a smaller

sum than α∗, there must be at least another player from U in N\S. Consider the
set N\S ∪ {i1}. Because the game is strong, this is a WC. If it is also a MWC,
it contradicts maximality. Otherwise, there is a MWC included in it. In order for

maximality to be satisfied, there must have been some player from U that has been

thrown away. Call this player i2. Now take a MWC S2 including player i2. Because

we could take i2 away and still have a WC, w2 < w1. Now we repeat the same
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reasoning with i2 and conclude that α cannot be in the aspiration core without

the existence of a player i3 in U with w3 < w2 and so on. Since we only have a

finite set of players, this cannot continue for ever, and on the way we have to find a

contradiction. QED.

Recall the following result shown by von Neumann and Morgenstern (1944). If

for a constant-sum simple game (N, v) there is a vector x = (x1, ..., xn) with each

xi ≥ 0 such that x(S) = 1 whenever S is a minimal winning coalition, the set of

imputation vectors {zS : zSi = xi ∀i ∈ S and zi = 0 ∀i ∈ N\S, S ∈ Ωm} is a stable
set and was called the Main Simple Solution by von Neumann and Morgenstern.

The weighted majority games that we have studied in this section are a subset of

this set of games, hence the next remark:

Remark 9 The set of imputations {α∗σ} derived from the set of pairs {(α∗,σ) ∈
SDS} coincides with the Main Simple Solution.

This means that among the many VNM stable sets of constant-sum weighted

majority games, the SDS selects the one that was singled out by von Neumann and

Morgenstern as the most meaningful one19.

3.3 The Apex Game

Consider, as an example, the so called Apex Game.20

There are n = 5 players, where {1, 2, 3, 4} have one vote each and player 5 has
three votes. Thus, q = 4. The MWCs are:

I: {5, i};
II: {1, 2, 3, 4}.
The SDS makes, we believe, the most reasonable prediction, i.e., that if I forms

then player 5 receives 3/4, and the other player gets 1/4 (proportional payoffs); if

19Furthermore, the SDS coincides with the main simple solution for all constant-sum simple

games admitting a main simple solution, even if they are not weighted majority games.
20Davis & Maschler (1965) used this example to contrast the predictions of the existing solution

concepts. The name “apex game” came later.
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II forms they share equally (1/4 each).

The proof that the only stable demand vector (for this example) is the propor-

tional one can be summarized as follows.

Consider first the proposal where the demand vector is α∗ = (1/4, 1/4, 1/4, 1/4, 3/4)

and the coalition structure includes the WC I.

One possible objection to this proposal is coalition I but with a different small

player, and where y is (3/4+ ², 1/4− ²). However, these objections are not justified,
because there exists a counterobjection to each of them, with the vector α∗ and the

WC II. The second (and last) kind of objection to the pair (α∗, I), would be one

with the four small players together, where the “blocker” receives 1/4 + ² and the

others share the rest. But then at least one of these other three small players must

be receiving less than 1/4, and can therefore counter by offering again α∗ to player

5.

Consider then the pair (α∗, II). The objection to be considered here is one with

I and payoffs (3/4 − ², 1/4 + ²); to this, however, there exists a counterobjection
with (3/4, 1/4) and I (with a simple replacement of the small agent in the WC),

and hence there is no justified objection. It is finally easy to see that no other pair

can be in the SDS.

The core of the Apex Game is empty, as it would be for any other constant-sum

essential game. The Shapley Value only looks at the ex ante balance of power, which

here implies 3/5 for the big player and 1/10 for each small player. Similarly, the nu-

cleolus with respect to the grandcoalition has the allocation (3/7, 1/7, 1/7, 1/7, 1/7)

(the homogeneous representation of the game itself)21 and can again be interpreted

as an ex ante evaluation. While this solution assigns each player the appropriate

relative bargaining power, this property disappears when the nucleolus is computed

with respect to coalition structures containing a MWC: for example, if MWC I

forms, the nucleolus gives each of the two players a payoff of 1/2, in spite of the

very different endowments. Since we have established that the coalition structures

including a MWC are the only meaningful ones, the nucleolus and the Shapley Value

21See Peleg (1968).
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are therefore not appropriate solutions for these games if one wants an ex post pre-

diction, i.e., a prediction of the payoff distribution contingent on one of the possible

coalition structures prevailing, i.e., contingent on which MWC prevails.

The competitive bargaining set (Horowitz, 1973) predicts proportional payoffs

contingent on I or II being formed, but it allows for dominated coalition structures.22

The traditional bargaining set, on the other hand, not only allows for dominated

coalition structures (like the grand-coalition), but it also gives an uninformative

prediction about the payoff distribution even when contingent on an undominated

coalition structure. In fact, it contains I as one of the possible coalitions in a solution,

but with a payoff vector x = (x5, 1 − x5), where x5 can take any value between 3
4

and 1
2 . The same occurs with the Zhou bargaining set and with the Mas-Colell

bargaining set (the latter excludes the extreme payoffs 34 and
1
2). The equal division

(x = ( 12 ,
1
2)) corresponds to the kernel and its supersets the reactive bargaining set

(Granot and Maschler, 1997) and the semireactive bargaining set (Sudhölter and

Potters, 1999). The main simple solution yields the same prediction as the SDS for

the apex game, but there are other stable sets. The aspiration solution concepts

coincide with the SDS for apex games, but only the aspiration core coincides with

the SDS for constant-sum homogeneous weighted majority games in general (the

remaining aspiration solution concepts may be larger).

4 Implementation of the SDS

In this section, we provide an implementation of the SDS via a simple mechanism in

which an auxiliary set of individuals compete over the n players in the cooperative

game, following Pérez-Castrillo and Wettstein (2000). We will assume that the

cooperative game (N, v) is zero-normalized, superadditive and has the following

property: v(S) >
P
i∈S v(i) implies v(N\S) =

P
i∈N\S v(i). This property is called

the one-stage property (Selten, 1981) and implies that no more than one profitable

coalition can be formed at a time.

22Moreover, the competitive bargaining set may be empty for other constant-sum homogeneous

weighted majority games.
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The mechanism is played by four auxiliary individuals called principals. The

principals have lexicographic preferences: in the first place they want to maximize

profits but, other things equal, they prefer to hire as many agents as possible.23

The mechanism M is played as follows:

Stage 1. Principal 1 chooses (α, S), with α ∈ Rn and S ⊆ N . The bid of

principal 1 for agent i, xi, is computed in the following way: xi = αi for i ∈ S and
0 otherwise.

Stage 2. P2 and P3 simultaneously choose y2 and y3 ∈ Rn. We will denote
max(y2i , y

3
i ) by yi. Given the bid vectors x, y

2 and y3, each agent is provisionally

assigned to the principal that offers the highest price (or wage). Ties are broken in

favor of the principal with the lowest index. Let T j be the set of players provisionally

assigned to principal j = 1, 2, 3. If one principal gets all the agents, the game ends

and the principal that got the agents receives v(N) less the wages of the n agents.

If no principal has got all the agents, the game moves to the next stage.

Stage 3. P4 may hire any set Z of agents under the following conditions:

1) He has to offer them zi = αi;

2) Z must contain elements of both T 1 and T 2 ∪ T 3;
3) z must make all the players in Z weakly better-off, and players in Z∩(T 2∪T 3)

strictly better-off.

Finally, principal j (j = 1, 2, 3) hires the agents in T j\Z and pays them the wage
offered; P4 hires the agents in Z and pays them z.

Theorem 4 The mechanism M implements the SDS in SPE.

Proof. We first construct an equilibrium of the mechanism M for any (α,σ) in

the SDS chosen by P1.

Consider the following strategies: P1 submits (α, S), where S is the set of players

receiving their demands given (α,σ), that is, S = {i ∈ N : ασi = αi}. After observing
23This type of preferences is also assumed by Pérez-Castrillo and Wettstein in one of their

mechanisms.
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this choice, P2 and P3 bid y2 = y3 = x = ασ (and play an equilibrium in all other

subgames). If the game reaches stage 3, P4 plays a best response.

Given these strategies, P1 gets all the agents and all principals make zero profits.

To show that this is an equilibrium, we prove that there is no profitable deviation

at stage 1 or 2 (since at stage 3 this is the case by construction).

Let us first rule out that P1 has a profitable deviation. This cannot be the case

because P2 would not be playing a best response.24

Any profitable deviation by P2 or P3 corresponds to an objection to (α,σ). The

third stage would be reached after the deviation (an objection that takes all the

players is excluded by theorem 2). Since (α, σ) is in the SDS, there is a counterob-

jection to this objection. P4 hiring some agents corresponds to a counterobjection

and, since P4 prefers to hire more agents rather than less, he will always counter-

object. The one-stage property ensures that the deviator (P2 or P3) would be left

with a negative profit.

Now we prove that the outcome of any SPE of the mechanism M is in the SDS

(provided nonempty).

First, all principals make nonnegative profits in equilibrium. Second, they all

make zero profits (if some principal is making positive profits, P2 or P3 could bid ²

more for all agents the other principals would be getting, get all the agents and end

the game). Third, P1 must have all the agents. Because of the one-stage property,

P1 can secure all the agents by choosing (α, S) such that the corresponding (α,σ)

is in the SDS, so any strategy combination in which P1 does not get all the agents

cannot be an equilibrium. Fourth, (α,σ) is in the SDS. Suppose not. Then P2 is

not playing a best response, since he can make an objection, secure some agents,

and P4 cannot do anything since there is no counterobjection.25 QED.

24Since P2, P3 and P4 play best responses in all subgames, after the deviation by P1 all principals

make nonnegative profits. Moreover, P3 and P4 pay for the agents at least what P1 offered them.

It follows that P2 cannot be playing a best response: slightly overbidding P1 (and possibly P3) and

thus getting all the agents and finishing the game would be profitable.
25In the mechanisms of Pérez-Castrillo and Wettstein (2000) the designer does not need to know

the characteristic function; in our mechanism, the game is zero-normalized, so the designer knows
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5 Concluding Remarks

Payoff distribution and coalition formation should be studied simultaneously. Since

value concepts give only an ex ante evaluation of the prospectives of different players,

they cannot be used to predict the ex post payoff distribution in an “equilibrium”

coalition structure. Solution concepts that keep the spirit of core-like competition,

respecting individual rationality as well as group rationality, seem more appropriate

for this task. The stable demand set is, we believe, a meaningful addition to the set

of concepts of this family. In fact, it is a selection of the Zhou bargaining set that

manages to eliminate from the set of solutions all the counterintuitive solutions that

are dominated, and gives a precise prediction for the important class of constant-

sum homogeneous weighted majority games. The selection of undominated coalition

structures makes the SDS, in our view, a very useful concept, with a much sharper

predictive power than previous concepts in the family of bargaining sets. It is

not always nonempty, but the proportional prediction for homogeneous weighted

majority games suggests that it can be used in important allocation and distribution

problems where the core is empty.

However, predictive power was not the only motivation of the paper. The main

conceptual contribution of the stable demand set is the idea itself of self-stability of

demands. A set of “claims” by the players is considered stable if the same claims

can be used by some subset of the players to counter any possible objection to

the assignment of those claims. Intuitively, this is an important requirement in

distributive politics or in any distributive problem in legislatures: the advocates

of any given distributive “norm” (like “to everyone according to its contribution”)

should be able, if they want that norm to prevail, to counter any objection by

making reference to the norm itself. Countering an objection with a completely

v(i) for all i in N . The extension to a completely unknown characteristic functions is straightfor-

ward: let P1 complete the vector x himself and add a final stage in which the agents accept or reject

the wage offer (this would have been a problem for the original mechanisms of Pérez-Castrillo and

Wettstein since they implement bargaining sets that are not individually rational). In equilibrium

P1 will complete the vector x with v(i) for all i /∈ S.
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unrelated counterobjection would not be convincing as much as an argument that

uses the same norm originally proposed. Asking that counterobjections have to

use exactly the initial demand vector is an extreme form of consistency with the

initial proposed norm, and in future research it could be interesting to study weaker

forms of consistency, but we believe that this concept will serve at least as an useful

benchmark for this type of investigation of the way social norms are agreed upon.

Morelli (1999) studies demand bargaining games that produce similar predictions

to the SDS for homogeneous weighted majority games. However, the connection

between those noncooperative games and the SDS is not one-to-one. Selten (1981)

implements the set of partnered aspirations, which is a superset of the SDS for

constant-sum homogeneous weighted majority games. Here, instead, we managed

to obtain a tight implementation result.
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[15] PÉREZ-CASTRILLO, D. and D. WETTSTEIN (2000), ”Implementation of

Bargaining Sets via Simple Mechanisms”, Games and Economic Behavior 31,

106-120.

[16] SELTEN, R. (1981), “A Non-Cooperative Model of Characteristic Function
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