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Abstract

Engel (1999) computes the variance of k-di¤erences for each time horizon us-

ing the method of Cochrane (1988) in order to measure the importance of the

traded goods component in U.S. real exchange rate movements. The importance

of traded goods should decrease as the horizon increases if the law of one price

holds for traded goods in the long run. However, Engel �nds that the variance of

k-di¤erences decreases only initially and then increases as k approaches the sample

size. He interpets the increasing variance as evidence of an increase in the long-run

importance of the traded goods component. By contrast, we show that the variance

of k-di¤erences tends to return to the initial value as k approaches the sample size

whether the variable is stationary or unit root nonstationary. Our results imply

that the increasing variances for k-values close to the sample size cannot be inter-

preted as evidence of an increase in the importance of the traded goods component

in the long run. We �nd that our test results regarding the variance of k-di¤erences

are consistent with smaller importance of the traded goods component in the longer

run.
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1 Introduction

Since Balassa (1964) and Samuelson (1964), the disaggregation of the economy into

internationally traded and nontraded sectors has been one of the main building blocks

in many open economy models. In those two-good models, if the law of one price holds

in the prices of traded goods, then the real exchange rate (RER) is determined by the

movement of its nontraded goods component which consists of the relative prices of

nontraded goods.

Since Isard (1977), however, empirical evidence has clearly shown that, in the short

run, the law of one price does not hold even for available measures of traded goods.

Thus, the Balassa-Samuelson view focusing on the role of nontraded goods had been

thought to better �t the long run.

Contrary to this traditional view, Engel (1999) presented empirical results which

can be interpreted to imply that almost all U.S. RER movements can be accounted for

by movements of the traded good component at all time horizons. Engel (1999) himself

refrains from reaching a decisive conclusion about the long-run time horizon and argues

that his results are mainly about short and medium horizons because of the small

number of observations. Nevertheless, some authors have taken Engel�s (1999) results

as evidence against the relevance of the traditional dichotomy of goods in modeling long

run real exchange rate movements1. For example, Obstfeld (2001) writes;

This is a striking contradiction of the Harrod-Balassa-Samuelson the-

ory. International divergences in the relative consumer price of "tradables"

are so huge that the theoretical distinction between supposedly arbitraged

tradables prices and completely sheltered nontradables prices o¤ers little or

no help in understanding U.S. real exchange rate movements, even at long

1Those who discuss Engel�s (1999) empirical �ndings in the context of the long run movements of
the real exchange rate include Alexius and Nilsson (2000), Chinn (2006), Obstfeld (2001), Sarno and
Taylor (2002), Sarno and Valente (2006), Schnatz, Vijselaar, and Osbat (2004), and Taylor and Taylor
(2004).
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horizons.

In his paper, Engel measures the importance of the traded goods component in ac-

counting for U.S. real exchange rate movements by adopting the variance of k-di¤erences

used in Cochrane (1988). In this paper, we challenge this widely accepted interpretation

of Engel�s results about the long run movement of the RER by analyzing properties of

the limit distribution of the variance of k-di¤erences when k is close to the sample size.

The variance of k-di¤erences of a time series zt is denoted as Vk(z) in this paper.

As in Cochrane (1988), Vk(z) is de�ned as follows:

Vk(z) �
T

(T � k)(T � k + 1)k

T�kX
t=0

[zt+k � zt � k�z]2; (1)

where �z =
1

T
(zT � z0):

According to the de�nition in Equation (1), the variance of k-di¤erences is a variance

of k-period di¤erences centered around the sample mean of the di¤erence.

Cochrane (1988) shows that Vk(z) is asymptotically equivalent to the Bartlett kernel

estimator of the long run variance of �zt: If the law of one price holds for traded goods

in the long run, then the long run variance of the traded goods component of the RER

is zero since it is stationary. Thus, based on Cochrane (1988), Engel (1999) expects

that Vk(z) for the traded goods component will converge down to zero as k increases if

the traditional Balassa-Samuelson view is true for the long run2.

However, Engel�s empirical results show that Vk(z) for the traded goods component

decreases at �rst but increases towards the end of time horizons, most prominently in

the case of the US-Canada RER.3 Engel interprets the rise in the later part of the

2 In Engel (1999), the formula for Vk(z) is a little di¤erent from Cochrane�s (1988). Engel does not
divide it by k. Thus, Engel says, "One expects the variance of k-di¤erences of xt [the traded goods
component] to converge [to a �nite number] as k gets large."

3As we shall see in the next section, what Engel (1999) actually computes is the ratio of Vk of the
traded goods component to that of the real exchange rate. However, the shape of the graph is mainly
determined by the numerator. It is because Vk of the nontraded goods component is expected to remain
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graph as an increase in the importance of the traded goods component in the long run

movement of the RER4.

This paper shall show that Vk(z) for k �= T tends to go back to the initial value on

average as k gets closer to the sample size, whether the variable of interest is mean-

reverting or not. As such, Engel�s (1999) observation about the long run time horizons

may come simply from this statistical property of the variance of k-di¤erences and have

little to do with the long run properties of the real exchange rate.

Our �ndings in this paper imply that the variances of k-di¤erences in the middle

range of k0s are more relevant to the long run than those at k0s close to both ends of

the time span. Thus, the fall of the graph of the variance of k-di¤erences in the middle

range of Engel�s results favors the smaller importance of the traded goods component in

the longer run. However, Engel (1999) �nds that the fall is not statistically meaningful

from his test based on the variance of k-di¤erences. After some adjustments in Engel�s

testing method, however, our results show that the fall of the graph is statistically

signi�cant for some countries, meaning that Engel�s test results are not very robust. As

such, arguing that the nontraded goods component plays the same minimal role for the

long run movement of the US real exchange rate based on Engel�s empirical results is

less convincing.

The evidence in this paper is consistent with recent works. Kakkar and Ogaki (1999)

run a cointegration regression of the real exchange rate on its nontraded goods compo-

nent and �nd that the nontraded goods component can explain long run real exchange

rate movements fairly well. Related evidence for the usefulness of the dichotomy of

goods in understanding the real exchange movements is found in a line of studies on

the half-life5 of the real exchange rate. Crucini and Shintani (2002), Kim (2005), and

constant on average if it is random walk.
4p.513 in Engel (1999). Applying Engel�s approach to bilateral Asian-Paci�c real exchange rates,

Parsley (2001) also �nds the rise in the later part of the graph in the case of US-Hong Kong and
interprets it as an increase in the variability of the traded goods component in that time horizon (p.9).

5Half life is the time it takes for half the e¤ects of a given shock to dissipate.
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Kim and Ogaki (2004) �nd that half-lives of the RER based on traded good prices are

shorter than those of the RER based on nontraded good prices. Crucini, Telmer, and

Zachariades (2005) also �nd that the law of one price holds better for traded goods than

for nontraded goods in data for over 500 goods. Taylor and Taylor (2004) state that

the Harrod-Balassa-Samuelson model of equilibrium real exchange rates is attracting

renewed interest as a desirable modi�cation [of PPP theory] after languishing for some

years in relative obscurity.

The rest of the paper is organized as follows. Section 2 will review the existing

literature on the asymptotic distribution of Vk(z) and provide the main theoretical

result of this paper. Section 3 discusses the implication of this paper�s result for Engel�s

�ndings and presents our test results based on the variance of k-di¤erences. Section 4

concludes.

2 The statistical properties of the variance of k-di¤erences

2.1 Existing theories on the statistical properties of Vk(z)

Throughout the paper, suppose that the following Assumption 1 holds for a random

variable, zt.

Assumption 1 For a random variable, zt; assume that �zt = d +  (L)"t = d +P1
j=0  j"t�j ; where

P1
j=0 j �

�� j�� < 1 and f"tg is an i:i:d. sequence with mean zero,

variance �2, and �nite fourth moment6. De�ne

6We follow the assumption in Proposition 17.3 in Hamilton (1994) in order to apply the functional
central limit theorem to unit root nonstationary processes with serial correlation.
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j � E [(�zt+j � d)(�zt � d)] = �2
1X
s=0

 s s+j for j = 0; 1; 2; � � �

� � �

1X
j=0

 j = � �  (1)


 �
1P

j=�1
j = �2

The variance of k-di¤erences has been studied in the context of the variance ratio

test for the random walk hypothesis. Earlier works focused on the case when k is

much smaller than the sample size. As in Lo and MacKinlay(1999)7, the variance of

k-di¤erences can be expressed as a weighted average of sample autocovariances, only

with a small di¤erence in order of op(T�1=2);

Vk(z) =
k�1P

�=�k+1

k � j� j
k

c� + op(T�1=2); (2)

where c� � 1

T

T�j� jX
t=1

(�zt ��z)(�zt+j� j ��z):

Hence, when k is relatively small and �xed, by the law of large numbers,

Vk(z)!
k�1P

�=�k+1

k � j� j
k

� as T !1: (3)

Especially when k = 1;

V1(z)! 0 as T !1:

For the variance ratio test, in which the test statistic is de�ned as follows:

V Rk(z) � Vk(z)=V1(z); (4)

7p54, chapter 3.
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it is possible to show the following asymptotic distribution of V Rk(z) :

p
T (V Rk(z)� 1)

D! N(0; �2k); (5)

where �2k is a simple function of k
8.

The variance of k-di¤erences is asymptotically equivalent to the Bartlett kernel

estimator for the long-run variance of�zt; as pointed out in Cochrane (1988)9. Equation

(2) illustrates the fact. The �rst term of the right hand side in equation (2) is the

de�nition of the Bartlett kernel estimator with the lag length of k: Newey and West

(1987) show that the Bartlett kernel estimator converges to the long-run variance of �zt

as T !1 and k ! 1 at a much slower growth rate10, O(T 1=4): Thus, under certain

conditions,

Vk(z)! 
 when k=T ! 0 as T !1: (6)

However, it turns out that the variance ratios do not converge to a point, are severely

right skewed for relatively large k in a small sample, and are not asymptotically normally

distributed as in equation (5). So it is not appropriate to apply conventional asymptotics

to this case. Richardson and Stock (1989) study the limit distribution of Vk(z) when

k=T ! b > 0 under the null of a random walk, and Deo and Richardson (2003) extend

Richardson and Stock�s (1989) result to the process which contains both permanent

and transitory components. They �nd that Vk(z) does not converge to a limit but to

a nondegenerate limiting distribution, which is a functional of a Brownian motion as

8For instance, if  (L) = 1 and "t is an iid normal random variable with variance �2, then �2k =
2(2k � 1)(k � 1)

3k
:

9Actually, what Cochrane (1988) shows is that the population variance of k-di¤erences is exactly
equal to the population counterpart of the Bartlett estimator of long run variance. After replacing the
two population concepts with the sample counterparts, the equality becomes an asymptotic equivalence.
10Later, Andrews (1991) shows that the Bartlett kernel estimator can attain consistency with the

bandwidth at growth rate o(T 1=2).
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follows:

Vk(z) ) 


(1� b)2b

Z 1

b
[W (r)�W (r � b)� bW (1)]2 dr; (7)

as k=T ! b and T !1;

where W (r) is a standard Brownian motion.

Unlike the case when k=T ! 0; the limit distribution of Vk(z) in this case is signi�-

cantly di¤erent from that of the Bartlett kernel estimator. To see the di¤erence, we can

rewrite the expression for Vk(z) in equation (1) as follows11.

Vk(z) =
T 2

(T � k)(T � k + 1)

 b
k � 1

Tk

k�1X
t=1

S2t �
1

Tk

T�1X
t=T�k+1

S2t

!
(8)

where b
k is the Bartlett kernel estimator with the bandwidth of k,
and St is the partial sum process,

tX
i=1

ui:

In equation (8), the main di¤erences between the Bartlett kernel estimator of the

long run variance and the variance of k-di¤erences are the two partial sum processes in

the parenthesis in equation (8). This di¤erence indicates the fact that the variance of k-

di¤erences underweights observations around both endpoints as mentioned in Cochrane

(1988).

To learn the di¤erence between the variance of k-di¤erences and the Bartlett ker-

nel estimator for large k�s, we compute the mean of each term in equation (8). As

in equation (9), Kiefer and Vogelsang (2005) provide the analytical form of the limit

distribution of the Bartlett kernel estimator and its mean when k=T ! b > 0:12

11This expression is inspired by Cai and Shintani (2006) and Kiefer and Vogelsang (2002).
12fW (r) is called a Brownian bridge. Davidson (1994, p.445) explains this as a Brownian motion tied

down at both ends.
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b
k ) Q(b) � 2


b

�Z 1

0

fW (r)2dr � Z 1�b

0

fW (r + b)fW (r)dr� ; (9)

where fW (r) � W (r)� �W (1)

E (Q(b)) = 


�
1� b+ b2

3

�
: (10)

From the functional central limit theorem and the continuous mapping theorem,

1

Tk

k�1X
t=1

S2t ) 


b

Z b

0

fW (r)2dr; (11)

1

Tk

T�1X
t=T�k+1

S2t ) 


b

Z 1

1�b
fW (r)2dr; as k=T ! b and T !1: (12)

The expectations of the limit distributions for the two partial sum processes are as

follows.

E

�



b

Z b

0

fW (r)2dr + 

b

Z 1

1�b
fW (r)2dr� = 
�b� 2

3
b2
�
13. (13)

Equation (11) shows that the mean of the Bartlett kernel estimator when b > 0 is

proportional to, but di¤erent from the long run variance, 
: Equation (13) shows that

the variance of k-di¤erences before the small sample correction may be even further

away from long run variance on average than the Bartlett kernel estimator. The small

correction term adjusts the mean of the variance of k-di¤erences to the level of the long

run variance14: That is,

T 2

(T � k)(T � k + 1) !
1

(1� b)2 as k=T ! b and T !1:

13The following formula on p.445 in Davidson (1994) is used to compute the expectation:
E(fW (t)fW (s)) = min(t; s)� ts:
14 It can be shown that the three limit distributions in equations (9), (11), and (12) are consistent

with Deo and Richardson�s (2003) limit distribution as in equation (7).
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Meanwhile,

E (Q(b))� E
�



b

Z b

0

fW (r)2dr + 

b

Z 1

1�b
fW (r)2dr� = 


�
1� b+ b2

3

�
� 


�
b� 2

3
b2
�

= 
(1� b)2:

To sum up, when k=T ! b > 0, the limit distribution of variance of k-di¤erences

is signi�cantly di¤erent from that of the Bartlett kernel estimator. On the other hand,

both the Bartlett kernel estimator and the variance of k-di¤erences converge to a limit

distribution which is the multiple of the long run variance and a nuisance-parameter-

free distribution. The nuisance-parameter-free distributions depend only on the value

of b and are invariant to the distribution of each variable.15 Since the variance of k-

di¤erences is proportional to the long run variance when when k=T ! b > 0, the ratio of

the variance of k-di¤erences at large k�s may contain some information about the ratio

of long run variances even though the variance of k-di¤erences is no longer consistent.

Engel�s (1999) inference about the relative importance of the traded goods com-

ponent in the RER movement relies on the statistical properties of the variance of

k-di¤erences at b = 0 even when k is relatively big. The fact that the variance of

k-di¤erences has di¤erent limit distributions depending on the value of b raises doubt

about Engel�s inference. However, there seems to be some hope for Engel�s argument

about large k0s because of the proportionality of the limit distribution of the variance

of k-di¤erences to the long run variance at b > 0. Even so, it should also be noted that

there exists a noticeable di¤erence between the limit distribution of the Bartlett kernel

estimator and that of the variance of k-di¤erences at b > 016:
15Using this property, Kiefer and Vogelsang (2005) are able to construct a test with this inconsistent

Bartlett kernel estimator. They call their approach "�xed-b asymptotics" and the conventional approach
"small-b asymptotics" Sun, Phillips, and Jin (2006) show another way to utilize "�xed-b asymptotics".
16Later in this paper, we shall see how di¤erent the variance of k-di¤erences can be from the Bartlett

kernel estimator for a given b in Figure 2.
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2.2 Statistical properties of Vk(z) when k is close to the sample size

The limit distribution of the Bartlett kernel estimator in Kiefer and Voglesang (2005)

is applicable for k=T ! b in the interval of (0,1], including the case when b = 1. On

the other hand, the limit distribution of the variance of k-di¤erences in equation (7) is

applicable only for b in (0,1). In equation (7), the limit distribution is not de�ned when

b = 1 since both numerator and denominator in the limit distribution become zero in

this case17. So we cannot say that the variance of k-di¤erences is proportional to the

long run variance when b = 1. In other words, while there is continuity in the limit

distribution of the Bartlett kernel estimator at b = 1, such continuity does not exist for

the limit distribution of the variance of k-di¤erences. Thus, at this point, the di¤erence

between the Bartlett kernel estimator and the variance of k-di¤erences is so huge that

the two are not even close to each other.

Unlike the previous cases when b < 1, only a small of number of observations are

used to compute the variance of k-di¤erences at b = 1 regardless of the sample size.

For example, when k = T � 1; there are only two observations available for any given

sample size. As a result, conventional asymptotic theory is not applicable. Due to

this restriction, we characterize the statistical properties of the variance of k-di¤erences

with the mean of its limit distribution instead of the analytical expression for the limit

distribution itself.

The exact analytical solution for the mean of the limit distribution can be computed

for the case when k = T � 1; the largest possible value of k: It turns out that there

exists a symmetric relationship between the two extreme cases when k = 1 and when

k = T�1. For the case when k < T�1; the symmetry is not exact but approximate. The

following proposition establishes a statistical property of the variance of k-di¤erences

when k = T � 1, the largest possible k.
17 In particular, the fact that the whole term in the parenthesis in the equality (8) is zero when k = T

is consistent with Kiefer and Vogelsang�s (2002) proof.
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Proposition 1 Under Assumption 1, the limit of the mean of Vk(z) when k is the

largest possible, i.e. T � 1; is equal to the variance of the change, which is equal to the

limit of V1(z). That is,

lim
T!1

E(VT�1(z)) = 0 = lim
T!1

V1(z): (14)

Proof of Proposition 1. First, without loss of generality, let�s assume that the drift

term, d; in Assumption 1 is zero18.

Next, let�s transform equation (1) into the following:

Vk(z) � T

(T � k)(T � k + 1)k

T�kX
t=0

[zt+k � zt � k�z]2

=
T

(T � k)(T � k + 1)k

T�kX
j=0

[
kP
t=1

�
�zt+j ��z

	
]2

=
T

(T � k)(T � k + 1)k

T�kX
j=0

[
kP
t=1

ut+j ]
2; where ut � �zt ��z (15)

To deal more easily with the case when k is close to the sample size, let m � T � k:

Then

Vk(z) = VT�m(z)

=
T

m(m+ 1)(T �m)

mX
j=0

[
T�mP
t=1

ut+j ]
2

=
T

m(m+ 1)(T �m)

mX
j=0

[
jP
i=1

ui +
TP

s=T�m+j+1
us]

2 (16)

18When d 6= 0; all the following steps in the proof hold true for �ezt � �zt � d after �ezt replaces
�zt:
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The last equality holds because
TP
t=1

ut =
TP
t=1

�
�zt ��z

�
= 0 :

0 =
TP
t=1

ut =
jP
i=1

ui +
T�mP
t=1

ut+j +
TP

s=T�m+j+1
us (17)

) �
T�mP
t=1

ut+j =
jP
i=1

ui +
TP

s=T�m+j+1
us

) [
T�mP
t=1

ut+j ]
2 = [

jP
i=1

ui +
TP

s=T�m+j+1
us]

2:

Especially when m = 1 or k = T � 1, from equation (16),

VT�1(z) =
T

(1 + 1)(T � 1)

1X
j=0

[
jP
i=1

ui +
TP

s=T+j

us]
2 =

T

(T � 1)
1

2

�
u2T + u

2
1

�
: (18)

The �rst term on the right hand side of equation (18) is

T

T � 1u
2
1 =

T

T � 1

 
�z1 �

1

T

TX
s=1

�zs

!2

=
T

T � 1

24(�z1)2 � 2

T

TX
s=1

�z1�zs +
1

T 2

 
TX
s=1

�zs

!235 : (19)

By taking the unconditional expectation of equation (19),

E

�
T

T � 1u
2
1

�
=

T

T � 1

0@0 � 2

T

T�1X
j=0

j +
1

T

T�1X
j=�T+1

T � j
T

j

1A
=

T

T � 1

0@T � 1
T

0 �
1

T

T�1X
j=�T+1

j +
1

T

T�1X
j=�T+1

T � j
T

j

1A
= 0 �

1

T � 1

T�1X
j=�T+1

j +
1

T � 1

T�1X
j=�T+1

T � j
T

j

! 0 �
1

T � 1
 +
1

T � 1


! 0 as T !1: (20)
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Finally, from equations (18) and (20),

E (VT�1(z)) =
1

2

�
E

�
T

T � 1u
2
T

�
+E

�
T

T � 1u
2
1

��
! 1

2
(0 + 0) = 0 as T !1: (21)

In equation (18), VT�1(z) is a function of u2t but not a function of any ut+jut, j 6= 0:

V1(z) is also a function of u2t as follows:

V1(z) =
T

(T � 1)T

T�1X
j=0

[
1P
t=1

ut+j ]
2 =

T

(T � 1)
1

T

TX
t=1

ut
2: (22)

By the law of large numbers,

V1(z)! 0 as T !1: � (23)

Proposition 1 shows that the �nal value of E (Vk(z)) goes back to its initial value

as k varies from 1 to T � 1. The proposition indicates that E (Vk(z)) for the largest k

has little to do with the long run movement of the variable since its limit is 0; which

represents the shortest run movement of the variable. So, if we treat it as an estimator

of the long run variance, VT�1(z) has a severe bias.

Equation (18) shows that VT�1(z) can be expressed only by ut2. No higher order

sample autocovariance terms, utut+� (� 6= 0), appear in equation (18). It indicates that

E (VT�1(z)) is associated only with the shortest run movement of the variable. In the

proof of the proposition, equation (17) is the key to derive equation (18). Equation (17)

holds because the mean of the change is unknown and estimated by �z. So estimated

unknown drift is a source of bias. The Bartlett kernel estimator also has such bias due

to the estimated unknown drift term. Equation (10) shows the bias from the long run

variance19. The bias grows bigger as � increases. The Bartlett kernel dampens the bias

19The Bartlett kernel estimator is a weighted sum of c� . The estimate of autocovariance, c� ; is biased
14



by assigning smaller weights to higher order sample autocovariances, but the variance of

k-di¤erences reverses the e¤ect by underweighting observations near both endpoints.20

Vk(z) is continuous with respect to k. Proposition 1 implies that, when k is close to

the sample size, there is a central tendency for Vk(z) to go back toward the initial value

of Vk(z) no matter what DGP zt follows. To get an idea about the quasi-symmetry of

E (Vk(z)) near both ends of the time horizon, let�s �nd a similar expression to equations

(21) and (22) for Vk(z) when k = 2 and T � 2. From equation (9), when k = 2;

V2(z) =
T

(T � 1)
1

(T � 1)

T�kX
j=0

[
kP
t=1

ut+j ]
2

=
T

(T � 1)
1

(T � 1)

T�1X
j=1

[uj + uj+1]
2 (24)

while, by equation (16) when k = T � 2;

VT�2(z) =
T

(T � 1)
1

3

T�kX
j=0

[
kP
t=1

ut+j ]
2

=
T

(T � 1)
1

3

�
[u1 + u2]

2 + [uT�1 + uT ]
2 + [u1 + uT ]

2
	
: (25)

Hence, V2(z) is associated with zero and the �rst order sample autocovariance term-

namely, u2t and utut+1. On the other hand, VT�2(z) is a¤ected by u
2
t ; utut+1 and u1uT :

Under the summability condition in Assumption 1,
P1
j=0 j �

�� j�� < 1; the high order

autocovariance term, u1uT ; should be negligible on average. It hints that, for �xed and

small m, VT�m(z) is mainly associated with the (m�1)th or lower order autocovariance

terms as is Vm(z).

Engel (1999) infers the importance of the traded goods component in the long run

when the mean is unknown. See Theorem 6.2.2 in Fuller (1996) and Percival (1993) for more details.
20Campbell and Mankiw (1987) already warned that one must be careful not to misinterpret the

behavior of Vk(z) as k increases to the point where it approaches T when the sample mean is used.
However, their formula goes to zero instead of 0 because it does not have the small sample correction
term in equation (1).
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movement of the US RER based on the asymptotics in equation (6). According to

equation (6), for small and �xed k0s, the larger k is, the longer run movements of zt

Vk(z) represents. Contrary to what equation (6) indicates, however, when k is close to

the sample size, Vk(z) seems to get associated with lower order autocovariances as k

increases up to the sample size.

2.3 Simulation results for the distribution of Vk(z)

Table 1 recapitulates our discussion so far on the limit of Vk(z) or the limit of its mean

over various time horizons. Under Assumption 1, V1(z) converges to 0: As k increases,

Vk(z) converges to the long run variance of �zt when k=T ! 0: However, if k is big

enough compared with the sample size resulting in k=T ! b > 0; then Vk(z) converges

to a limit distribution and not to a number. In this case, we can show that, from

equation (7), the mean of the limit distribution is the long run variance. Finally, as k

gets close to the sample size, the mean of the limit distribution of Vk(z) goes back to

its initial value, 0.

If zt is a random walk, the limit of Vk(z) or the limit of its mean continues to be

0 irrespective of k: This follows from � = 0 for each � 6= 0, implying that the long

run variance of �zt is equal to the variance of the change, 0. If zt is stationary, on

the other hand, although the graph of the mean of Vk(z) starts from the same point

(V1(z)! 0); it will go down toward zero as k grows. When the variable is stationary,

its long run variance of the �rst di¤erence is zero. Thus, the limit distribution in this

case degenerates to zero. Thus, even in case of k=T ! � > 0, Vk(z) converges to zero.

Later, as k grows close to the sample size, the mean of Vk(z) goes back toward the initial

value, 0.
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Table 1. The limit of Vk(z) or the limit of the mean of its distribution

k = 1 k is small and �xed k=T ! 0 k=T ! b > 0 k = T � 1

general case 0
k�1P

�=�k+1

k � j� j
k

� 
 
 0

random walk 0 0 0 0 0

stationary 0
k�1P

�=�k+1

k � j� j
k

� 0 0 0

* � is the � -th order autocovariance of �zt; and 
 is the long run variance of �zt

By means of a Monte Carlo simulation, we get the mean and 90% con�dence intervals

of Vk for each k = 1; 2; � � � ; T � 1 from 5,000 simulated series of pure random walks and

a stationary AR(1) as in Figure 1.21 In the graph, bold lines are the means of Vk(z)

in the simulation while normal lines represent 90% two-sided con�dence intervals. The

solid lines are for the stationary AR(1) process, and the dotted lines are for the random

walk process.

Figure 1 illustrates our �ndings in Proposition 1. The graph for the mean of Vk(z)

for each DGP starts at its variance of the change and ends at the same value. Note

especially that the mean of Vk(z) for random walk does not change much as we see in

Table 1. On the other hand, the mean of Vk(z) for the stationary AR(1) shows as a

U-shaped graph.

Then, next observation from Figure 1 is that the mean of Vk(z) for the stationary

AR(1) has the closest value to its long run variance, zero, in the middle range of time

horizons. The minimum of the mean of Vk(z) over di¤erent k0s is 0.2 at k = 179, a little

less than half of the sample size. Hence, Vk(z) in the middle range of time horizons

seems more relevant to the long run movement of the variable than that at the time

horizons close to the sample size.

21 In the simulation, the number of observation is 408 (t = 0; 1; 2; : : : ; 407) as in the �rst data set in
Engel (1999). The AR(1) coe¢ cient for the stationary process is set to be .94387 which implies that
the half life is one year in a monthly data. The variance of the di¤erence in each process is set to be
one. The error terms in each series are assumed to be normal.
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Figure 1

The distribution of the variance of k-di¤erences
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* The solid line is for the AR(1); and the dotted line is for the pure random walk.

? Bold lines are the means, and normal lines are the 90% con�dence intervals.

Another observation is that the mean of Vk(z) for the stationary AR(1) process even

in the middle range of time horizons is clearly above its long run variance, i.e. zero. As

an estimate of the long run variance, Vk(z) has a severe upward bias when the variable

is stationary AR(1) even at the most relevant time horizons. Since Vk(z) in equation

(1) is de�ned as a sum of squared terms, the value of Vk(z) in a �nite sample should be

always positive. Thus, the issue here is how close the value of Vk(z) is to the true long

run variance. The simulation result shows that the 34 year time-span in Engel (1999)

even with fairly short half life is not enough to get an estimate close to the true long

run variance.

In terms of the width of the con�dence intervals, the con�dence interval for the

stationary AR(1) process is much narrower than that for the random walk in the middle

range of time horizons. Intuitively, the narrower con�dence interval of the stationary

AR(1) may be related to the fact that the limit distribution of Vk(x) does not converges

to a nondegenerate distribution but goes to a number even when k=T ! b � 0:
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The next observation for the con�dence intervals is that the two distributions become

indiscernible as k gets close to the sample size. Hence, the test based on Vk(z) for k

close to the sample size will su¤er from very low power with the null hypothesis of a

random walk against the alternative hypothesis of a stationary AR(1).

We can compare this with simulation results for the Bartlett kernel estimator. As is

apparent in equation (10), the mean of the Bartlett kernel estimator is getting smaller

as b increases when the variable follows a random walk while the mean of the variance of

k-di¤erences remains constant because of the small sample correction term. To compare

the two statistics, we divide the Bartlett kernel estimator by the terms in parentheses

in equation (10). After the adjustment, we �nd no di¤erence between the mean of the

Bartlett kernel estimator and that of the variance of k-di¤erences when the variable

follows a pure random walk. On the other hand, the two are very di¤erent for large k0s

in the case of a stationary AR(1).

Figure 2 shows the mean of the simulation results for both the Bartlett kernel es-

timator after the adjustment and that for the variance of k-di¤erences in the case of a

stationary AR(1). In the �gure, the bold solid line is the mean of the Bartlett kernel

estimator, and the normal solid line is for the variance of k-di¤erences. The dotted

line is the mean of the population counterpart of the variance of k-di¤erences22. Both

the Bartlett kernel estimator and the variance of k-di¤erences are above the population

counterpart on average. There is not much di¤erence between the Bartlett kernel esti-

mator and the variance of k-di¤erences for the �rst half of the time horizons. However,

for the second half, the two statistics are very di¤erent. The Bartlett kernel estimator

does not change much in this region while the variance of k-di¤erences goes back to the

initial level.
22 If xt = �xt�1 + "t with 0 < � < 1; "t � iid(0; �2");

E(Vk(x)) =
2(1��k)
k(1��2)�

2
" =

(1��k)
k(1��)�

2
�x:
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Figure 2

Mean of Vk and mean of Bartlett kernel estimator for a stationary AR(1)
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Another model for our simulation is an integrated AR(1) which is considered as a

possible DGP of log stock price in Lo and MacKinlay (1988). An integrated AR(1)

process with a positive AR coe¢ cient is more persistent than a pure random walk. The

integrated AR(1) model in Lo and MacKinlay is

�zt = � ��zt�1 + �t; where � s i:i:d:N(0; �2� ) and j�j < 1: (26)

In the simulation, � = :2, �2�z = 1; and the sample size is set to be 408 for comparison

with the previous simulation. Figure 3 represents the simulation result.

Figure 3 also illustrates the result in Proposition 1. For k close to the sample size,

the mean goes back to the variance of the change as k increases23. Unlike in our �rst

simulation results, the mean of the variance of k-di¤erences soon reaches the level of its

long run variance and stays around this level throughout the middle time horizons.

23 In this case, the long run variance of �zt, 
 is �2�=(1 � �)2; whereas 0 = �2�=(1 � �2): Thus,

=0 = 1:5: In this example, for comparison with Figure 1, 0 is set to be one. Then 
 = 1:5:
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Figure 3

The distribution of the variance of k-di¤erences (ARIMA(1,1,0) Model)
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* Solid lines are the means, and dotted lines are the 90% con�dence intervals.

So far, the error terms in the DGP are assumed to be normally distributed. We also

performed the same simulation above assuming that the error terms follow t-distribution

with 3 degrees of freedom. In this case, the mean of the graph is the same as in Figures

1 and 2. On the other hand, the con�dence intervals for the short run time horizons

are wider than those for the normal distribution case. However, as k increases, the

con�dence intervals converge to those in Figures 1 and 2.

In conclusion, �rst, our simulation results in Figures 1 and 2 show that the mean of

Vk(z) does go back to 0 as Proposition 1 states, irrespective of the DGP of zt under

Assumption 1. Second, in terms of its mean; Vk(z) reaches the closest point to the

long run variance not in the end but in the middle of the time horizons. Third, while

the Bartlett kernel estimator and Vk(z) are very close to each other in the �rst half

of the time horizon, the two are quite di¤erent in the second half. Finally, there are

two di¤erences between the case of a stationary AR(1) and the case of an integrated

AR(1). First, when k is around the middle of the sample size, the mean of Vk(z) for

an integrated AR(1) is very close to the long run variance while that for a stationary
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AR(1) has a severe upward bias. Second, the slope of the graph of the mean of Vk(z)

for a stationary AR(1) is much less steep at both ends of the graph than that for an

integrated AR(1).

3 Implication of Proposition 1 for Engel�s ratio of Vk(z)

3.1 Ratio of Variance of k-di¤erences in Engel (1999)

As in Engel (1999), we de�ne the real exchange rate, qt; as

qt � st + p
�
t � pt: (27)

where st is the log of the nominal exchange rate, pt is the log of the general price index

of the home country, and p�t is the log of the general price index of the foreign country.

Engel (1999) regards the log of the general price index as a weighted average of

traded- and nontraded-goods prices:

pt = (1� �)pTt + �pNt ; (28)

p�t = (1� �)pT�t + �pN�t (29)

Superscripts T and N indicate traded and nontraded goods each. An asterisk represents

the foreign country. � and � are the shares of nontraded goods in each country�s price

index.

The RER can be decomposed by

qt = xt + yt; (30)

where

xt � st + p
T�
t � pTt ; (31)
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yt � �(pN�t � pT�t )� �(pNt � pTt ): (32)

xt; the traded goods component, is the relative price of traded goods between the two

countries while yt; the nontraded goods component, is a weighted di¤erence of the

relative prices of nontraded goods in each country.

Engel (1999) measures the importance of the traded goods component in explaining

US RER movements with the ratio of the variance of k-di¤erences of xt over that of qt,

RVk :
24

RVk =
V ar(xt � xt�k)
V ar(qt � qt�k)

=
Vk(x)

Vk(x) + Vk(y)
(33)

assuming x and y are uncorrelated

3.2 An illustration with highly tradable goods

In order to illustrate the implication of Proposition 1 for Engel�s method, we �rst apply

his method to data involving highly tradable goods for which the law of one price is

likely to hold. Our purpose in this exercise is to show that the ratio of the variances of

k-di¤erences for stationary xt is likely to have a U-shaped graph.

Burstein, Neves and Rebelo (2003) point out that distribution costs are so large for

consumer goods that the law of one price may not hold at the retail price level. For this

reason, Burstein, Eichenbaum and Rebelo (2005 and 2006) use the prices of pure-traded

goods at the dock25. Following Burstein, Eichenbaum and Rebelo (2006), we measure

the prices of traded goods using a geometric average of import and export prices and

compute xt in equation (31) with those prices. Then we construct data for yt as the

24Engel (1999) mainly uses the ratio of the mean-squared errors (MSE), the sum of the squared drift
and variance of k-di¤erences, in order to measure the movement comprehensively. However, he states
that the results based on the variance of k-di¤erences are not very di¤erent from the results based on
MSE�s for US RER. His inference in the paper is based on the properties of the variance of k-di¤erences.
For simplicity we only consider the ratio of the variance of k-di¤erences in this paper.
25Betts and Kehoe (2006) also show that the choice of the price series signi�cantly a¤ects the statistical

measure of the relative importance of the traded goods component in the real exchange rate movement.
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di¤erence between the RER and xt.26 For the RER, the CPI general indexes for both

countries are used.

The data are collected from the IFS CD ROM. The sample period is 1973:01-2002:12.

Among the ten bilateral real exchange rates with the US in Burstein, Eichenbaum and

Rebelo (2006), graphs for the US-Italy RER are presented in Figure 4 since our unit root

test and stationarity test results consistently indicate that its traded goods component

is likely to be stationary.

Figure 4 is a graph for Vk(x) of the US-Italy RER, and Figure 5 is for RVk . As far as

the long run movement of RER is concerned, Vk can be interpreted as an estimator of the

long-run variance following the asymptotics in equation (6). According to the traditional

Balassa-Samuelson theory, the numerator of RVk should converge to zero since the long

run variance of the traded good component, which is stationary, is zero. On the other

hand, the denominator of RVk must have a positive value because the nontraded good

component is unit-root nonstationary. As a whole, therefore, RVk should converge to

zero as k increases at an appropriate rate as the sample size increases. In other words,

the importance of the traded goods component should be small in the long run.

Given this result, it is tempting to interpret the rise of Vk and RVk for large k

in Figures 4 and 5 as evidence against the Balassa-Samuelson theory in the long-run.

However, Proposition 1 shows that, for large k, the asymptotics in equation (6) are

not applicable and that Vk has a tendency to go back to the initial level as k gets

closer to the sample size irrespective of whether the variable is stationary or di¤erence

stationary. Due to the statistical properties of its numerator and denominator, RVk also

has a tendency to go back to the neighborhood of the initial level. Therefore, the rise of

Vk and RVk for large k is more likely due to the property of Vk speci�ed in Proposition

1 than to the properties of US RER long run movements.

26So the decomposition of the RER is based on equation (3) in Engel (1999) rather than equation (1)
in Engel�s paper. In other words, yt = (p�t � pT�t )� (pt � pTt ):
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Figure 4

Variances of k-di¤erences for xt of US-Italy pure traded goods
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Figure 5

Ratio of Vk for US-Italy pure traded goods
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If we focus on the fall of Vk and RVk for the �rst half of the graph in these �gures,

the results with Engel�s method are consistent with those with unit root tests in Table

2. The importance of the traded goods component in explaining the movement of the

real exchange rate at each time horizon becomes smaller in the longer run. The graph
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in Figure 5 is clearly in favor of stationarity of xt since the solid line, RVk; is, in the

longer periods, under the lower dotted line which is the critical value of the null that

xt follows a random walk27. Thus, it is important not to interpret the rise of the ratio

in the second half of Figure 5 as evidence against the Balassa-Samuelson theory in the

long-run.

3.3 Reexamination of Engel�s Empirical Results

We now reexamine Engel�s results in light of our �ndings in this paper. Solid lines in

Figure 6 plot the graphs of RVk for the US RER computed from Engel�s (1999) �rst data

set in his paper28. For short time horizons, the ratios are all over 90%. For the middle

range of time horizons, the ratios go down except for the US-Italy RER, although the

magnitude of change varies from country to country. And �nally, for long time horizons,

the ratios move back to higher levels. The most prominent case is for the US-Canada

RER.

Although, Engel refrains from reaching a decisive conclusion because of the small

number of independent observations for large k0s, he interprets the rise of the graph

for the US-Canada RER in longer time horizons as an increase in the importance of

the traded goods component (p.513), implying that the traditional Balassa-Samuelson

theory does not work even in the long run.

However, previous discussions in this paper show that V 0ks for k
0s near the sample

size have little to do with the long run movement of the variables. Thus, the rise of the

graph for the US-Canada RV 0ks at large k
0s may not be interpreted as an increase in

the importance of the traded goods component for long run time horizons.

Instead, our simulation results indicate that V 0ks in the middle range of time horizons

27How we construct the critical value will be explained in detail in the next subsection.
28The data are monthly from January 1962 to December 1995 for Canada, France, Germany, Italy,

Japan, and the United States. Thus it has 408 observations (so T = 407). CPI�s for goods are used
for traded goods prices, and CPI�s for services are used for nontraded goods prices. See Appendix A of
Engel (1999) for more details.
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are more relevant to the long run movement of the variable while V 0ks at both ends of

the time horizon are associated with the short run movement. If xt is AR(1) and yt is

a random walk, the graph for RV 0ks is likely to be U-shaped on average while the graph

should be close to a �at line if both xt and yt are random walks. The graphs in Figure

6 show a U-shape except for US-Italy so that RV 0ks in the middle range have smaller

value than those at both ends. It may imply that the traded good component becomes

less important in the longer run in accounting for the movement of the US RER.

Although the graphs look U-shaped, RV 0ks in the middle range may not be statis-

tically di¤erent from those at both ends. With RV 0ks computed from the data, Engel

(1999) tries to test his null hypothesis that the law of one price for the traded goods

does not hold. Since there is no standardized asymptotic distribution of RVk; Engel uses

a parametric bootstrap method to compute the con�dence intervals of RVk. Under his

null, he supposes that both xt and yt are random walks with drift. Engel, then, shows

that the RVk at every time horizon in the data is within the two-sided 95% con�dence

interval of RVk. As such, Engel does not �nd any evidence for a less important role for

the traded goods component in the longer run movement of RER. Engel compares his

results with Kakkar and Ogaki�s (1999) which are in favor of an important role for the

nontraded goods component in the long run. He attributes the di¤erence to the low

power of the tests to distinguish between unit roots and stationarity in relatively short

time spans.

We believe that Engel�s con�dence interval is not tight enough and needs some

adjustments. Those adjustments lead to a di¤erent conclusion from that in Engel (1999).

We �nd that Engel�s empirical results are not very robust. Our adjustments to Engel�s

testing method include the following:

First, we perform a one-sided test, as opposed to the two-sided test in Engel (1999).

Our main interest in this paper is the long run movement of the RER. In the long run,

Vk is the estimator of long run variance. If the law of one price for traded goods does
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not hold in the long run, then xt is nonstationary and the long run variance of �xt will

have a positive value. On the other hand, if the law of one price holds in the long run,

then xt is stationary and the long run variance of �xt is zero. Therefore, RVk under

the null that both xt and yt are random walks should be statistically larger than that

under the alternative hypothesis. Thus, lower dotted line in Figure 6 is the critical value

under the null that both xt and yt are random walk. That is, if RVk from the data is

lower than the con�dence intervals, then the test rejects the null.

Second, we report the con�dence interval only up to half of the sample size while

Engel (1999) reports up to the largest possible k. Since Cochrane (1988), it has been

known that the variance of k-di¤erences for large k is not reliable. Admitting the

inaccuracy of the statistics in his paper, Engel reports it for the entire time horizon

probably because he believes that a small piece of information about the long run is

better than no information. However, since our �ndings indicate that RVk for large k

has little to do with the long run, there is not much gain from reporting inaccurate test

results for large k0s.

Third, we do not allow drift either in xt or in yt:While the literature on the Balassa-

Samuelson theory has given some models which allow drift in yt; it is di¢ cult to �nd

a model which explains why xt may have drift. Engel does not provide a theoretical

explanation for it either.

Fourth, with the same testing method, it is easy to �ip the null. We can compute

the con�dence interval under the null that xt is stationary and that yt is still a random

walk. When RVk from the data is above the con�dence interval, the test rejects the

null. An additional problem in this case is how to specify the data generating process

of xt: Apparently, there are many di¤erent kinds of stationary processes. We report the

simplest case in which xt is AR(1) in this paper.

The dotted lines in Figure 6 are critical values for one-sided tests with 5% size after

the changes we make. The lower dotted line is the critical value under the null that xt is
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a random walk without drift while the upper dotted line is the critical value under the

null that xt is stationary AR(1): Overall, the graphs at many time horizons are within

the two dotted lines, indicating the low power problem pointed out by Engel (1999).

However, unlike the results in Engel (1999), RV 0ks for long time horizons are below the

lower dotted line, rejecting the null that both xt and yt are random walk for Canada,

France, and Germany. In the case of Italy and Japan, on the other hand, RV 0ks for short

time horizons are above the upper dotted line, rejecting the null that xt is AR(1) and

yt is a random walk.

To sum up, the test based on RV 0ks computed from the data and bootstrap critical

values does not necessarily support Engel�s null hypothesis but provides some evidence

for smaller importance of the traded goods component in accounting for longer run RER

movement although the evidence is not as clear as the result for highly tradable goods

in the previous subsection.
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Figure 6

Ratio of the variances of k-di¤erences for the US RER(1962:01-1995:12)
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4 Conclusion

According to the traditional Balassa-Samuelson view, the traded goods component of

the real exchange rate is stationary while the nontraded goods component has a unit

root. The long run variance of the traded goods component is zero while the real

exchange rate itself has a positive long run variance because of the unit root in the

nontraded goods component.

Cochrane (1988) shows that the variance of k-di¤erences (Vk) is asymptotically

equivalent to the Bartlett kernel estimator of long run variance. Engel (1999) computes

Vk for the real exchange rate and for its traded goods component. Based on Cochrane

(1988), Engel expected that the ratio of Vk of the traded goods component to Vk of the

real exchange rate would converge to zero as k increases if the traditional theory were

true.

In contrast to the traditional view, Engel �nds that the ratios decrease at �rst

but increase at the end of the time horizons, most prominently in case of the US-

Canada RER. Engel interprets this as an increase in the importance of the traded

goods component at longer run time horizons. Based on the empirical results, Engel

concludes that the behavior of the traded goods component is indistinguishable from

the behavior of a random walk.

This paper, however, shows that the mean of the variance of k-di¤erences for the

largest k; VT�1, converges to the limit of the variance of the �rst di¤erence, V1: There-

fore, if Vk falls as k increases, Vk tends to rise as k approaches T � 1 irrespective of

whether the variable of interest is stationary or unit root nonstationary. This means

that the rise of the graph at k close to the sample size in Engel (1999) cannot be inter-

preted as evidence for unit root nonstationarity of the traded goods component in the

real exchange rate.

While Vk for k close to the sample size does not re�ect the long run properties of

the variable, the simulation results in the paper show that Vk will get closer to the long
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run variance as k increases from one to time horizons in the middle range. The ratio of

Vk in Engel (1999) decreases in the �rst half of time horizons, which indicates that the

nontraded goods component plays a more important role in the longer run.

Engel (1999) show that the RV 0ks from the data are all within the con�dence intervals

he constructs under the null that there is no change in the importance of the nontraded

goods component over di¤erent time horizons. On the contrary, after some adjustments

of the testing method, our test results provide some evidence consistent with a more

important role for the nontraded goods component at longer time horizons for some

countries.

Cochrane (1988) pointed out that the variance of k-di¤erences for large k is less

reliable. He explains that the degrees of freedom of Vk are roughly equal to the number

of nonoverlapping long runs, which is less than two when k is more than half of the

sample size. Considering the inaccuracy due to low degrees of freedom, Cochrane (1988)

reports his results at time horizons only up to one fourth of the sample size. Lo and

MacKinlay (1988) also report their simulation results at time horizons up to half of the

sample size. It is exceptional in the literature to report up to the longest time horizon as

in Engel (1999), and Engel admits that his longer run horizon numbers are less reliable,

probably based on Cochrane�s (1988) argument.

What is new in this paper, though, is that Vk for k close to the sample size not only

has a big variance due to its low degrees of freedom but also has little to do with the

long run movement of the variable.
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